aboutsummaryrefslogtreecommitdiff
path: root/vendor/exr/src/image
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/exr/src/image')
-rw-r--r--vendor/exr/src/image/channel_groups.rs267
-rw-r--r--vendor/exr/src/image/crop.rs801
-rw-r--r--vendor/exr/src/image/mod.rs1326
-rw-r--r--vendor/exr/src/image/pixel_vec.rs97
-rw-r--r--vendor/exr/src/image/read/any_channels.rs128
-rw-r--r--vendor/exr/src/image/read/image.rs209
-rw-r--r--vendor/exr/src/image/read/layers.rs204
-rw-r--r--vendor/exr/src/image/read/levels.rs219
-rw-r--r--vendor/exr/src/image/read/mod.rs207
-rw-r--r--vendor/exr/src/image/read/samples.rs122
-rw-r--r--vendor/exr/src/image/read/specific_channels.rs463
-rw-r--r--vendor/exr/src/image/recursive.rs178
-rw-r--r--vendor/exr/src/image/write/channels.rs407
-rw-r--r--vendor/exr/src/image/write/layers.rs188
-rw-r--r--vendor/exr/src/image/write/mod.rs184
-rw-r--r--vendor/exr/src/image/write/samples.rs205
16 files changed, 0 insertions, 5205 deletions
diff --git a/vendor/exr/src/image/channel_groups.rs b/vendor/exr/src/image/channel_groups.rs
deleted file mode 100644
index 7d74375..0000000
--- a/vendor/exr/src/image/channel_groups.rs
+++ /dev/null
@@ -1,267 +0,0 @@
-
-use std::collections::HashMap;
-use crate::image::write::channels::{WritableChannels, ChannelsWriter};
-use crate::meta::attribute::{LevelMode, ChannelList, Text, TextSlice, ChannelInfo};
-use crate::meta::header::Header;
-use crate::image::read::layers::{ReadChannels, ChannelsReader};
-use crate::block::{BlockIndex, UncompressedBlock};
-use crate::block::lines::{collect_uncompressed_block_from_lines, LineIndex};
-use std::io::{Cursor, Read};
-use crate::error::{Result, UnitResult};
-use crate::block::chunk::TileCoordinates;
-use crate::prelude::SmallVec;
-
-
-
-
-
-pub struct ChannelGroups<ChannelGroup> {
- channel_group: Option<ChannelGroup>,
- children: HashMap<Text, Self>
-}
-
-
-impl<ChannelGroup> ChannelGroups<ChannelGroup> {
-
-
- // pub fn visit_groups_mut(&mut self, visitor: impl Fn(&mut Channels)) {
- // }
-
-
-
- pub fn groups(&self) -> SmallVec<[&ChannelGroup; 12]> {
- let children = self.children.iter().flat_map(|group| group.groups());
- self.channel_group.iter().chain(children).collect()
- }
-
- pub fn lookup_group(&self, group_name: &TextSlice) -> Option<&ChannelGroup> {
- let dot_index = group_name.iter().position('.');
- if let Some(dot_index) = dot_index {
- let group_name = &group_name[.. dot_index];
- let child_name = &group_name[dot_index + 1 ..];
- self.children.get(group_name)
- .and_then(|child| child.lookup(child_name))
- }
- else {
- self.channel_group.lookup(name)
- }
- }
-
-
- /*pub fn insert_group(&mut self, full_name: &TextSlice, value: ChannelGroup) {
- let dot_index = full_name.iter().position('.');
- if let Some(dot_index) = dot_index {
- let group_name = &group_name[.. dot_index];
- let name_rest = &group_name[dot_index + 1 ..];
-
- self.children.entry(Text::from_slice_unchecked(group_name))
- .or_insert(|| );
-
- // self.children.insert(Text::from_slice_unchecked(group_name), value)
- // .and_then(|child| child.lookup(name_rest));
- }
- else {
- self.channel_group.lookup(name);
- }
- }*/
-
- pub fn map<T>(self, mapper: impl FnMut(ChannelGroup) -> T) -> ChannelGroups<T> {
- ChannelGroups {
- children: self.channel_group.iter().map(&mapper).collect(),
- channel_group: self.channel_group.map(mapper),
- }
- }
-}
-
-
-pub fn parse_channel_list_groups<T>(channels: impl Iterator<Item=(Text, T)>)
- -> ChannelGroups<SmallVec<(Text, T)>>
-{
- fn insert_into_groups(groups: &mut ChannelGroups<SmallVec<(Text, T)>>, name: Text, value: T) {
- let dot_index = name.as_slice().iter().position('.');
-
- if let Some(dot_index) = dot_index {
- // insert into child group
-
- let group_name = Text::from_slice_unchecked(&name.as_slice()[.. dot_index]);
- let child_channel = Text::from_slice_unchecked(&name.as_slice()[dot_index + 1 ..]);
-
- let child_group = groups.children.entry(group_name)
- .or_insert(ChannelGroups { channel_group: None, children: Default::default() });
-
- insert_into_groups(child_group, child_channel, value);
- }
-
- else {
- // insert directly into group
-
- if groups.channel_group.is_none() {
- groups.channel_group = Some(SmallVec::new());
- }
-
- groups.channel_group.unwrap().push(value);
- }
- }
-
- let mut result = ChannelGroups { channel_group: None, children: HashMap::default() };
- for (name, value) in channels { insert_into_groups(&mut result, name, value); }
- result
-}
-
-
-impl<'slf, ChannelGroup> WritableChannels<'slf> for ChannelGroups<ChannelGroup>
- where ChannelGroup: WritableChannels<'slf>
-{
- fn infer_channel_list(&self) -> ChannelList {
- // TODO what about empty groups with NO channels??
-
- let child_channels = self.children.iter().flat_map(|(group_name, child)| {
- let mut child_channels = child.infer_channel_list().list;
- for channel in &mut child_channels { channel.name.push_front(group_name) };
- child_channels
- });
-
- let mut own_channels = self.channel_group
- .map(|chans| chans.infer_channel_list().list)
- .unwrap_or_default();
-
- own_channels.extend(child_channels);
- own_channels.sort_unstable(); // TODO only once at end
- ChannelList::new(own_channels) // might be empty, but will be checked in MetaData::validate()
- }
-
- fn level_mode(&self) -> LevelMode {
- fn find_mode_or_none(channels: &Self) -> Option<LevelMode> {
- channels.channel_group.map(WritableChannels::level_mode).or_else(|| {
- channels.children.iter().map(find_mode_or_none).next()
- })
- }
-
- let mode = find_mode_or_none(self)
- .expect("empty channel groups (check failed)"); // TODO only happens for empty channels, right? panic maybe?
-
- if let Some(chans) = self.channel_group.as_ref() {
- debug_assert_eq!(chans.level_mode(), mode, "level mode must be equal for all legacy channel groups")
- }
-
- debug_assert!(
- self.children.values()
- .flat_map(find_mode_or_none)
- .all(|child_mode| child_mode == mode),
-
- "level mode must be equal for all legacy channel groups"
- );
-
- mode
- }
-
- type Writer = GroupChannelsWriter<'slf, ChannelGroup>;
-
- fn create_writer(&'slf self, header: &Header) -> Self::Writer {
- let channels = header.channels.list.iter()
- .map(|channel_info|{
- // hashmap order is not guaranteed? so look up each channel group manually instead of generating new
- let channels = self.lookup_group(channel_info.name.as_slice())
- .expect("channels not found bug");
-
- channels.create_writer(header) // channel_info.name.clone()
- })
- .collect();
-
- GroupChannelsWriter { channels_list: channels }
- }
-}
-
-struct GroupChannelsWriter<'c, ChannelGroupWriter> {
- channels_list: Vec<&'c ChannelGroupWriter>,
-}
-
-impl<'c, Channels> ChannelsWriter for GroupChannelsWriter<'c, Channels> where Channels: ChannelsWriter {
- fn extract_uncompressed_block(&self, header: &Header, block: BlockIndex) -> Vec<u8> {
- let mut blocks_per_channel: Vec<Cursor<Vec<u8>>> = self
- .channels_list.iter()
- .map(|channels| Cursor::new(channels.extract_uncompressed_block(header, block)))
- .collect();
-
- UncompressedBlock::uncompressed_block_from_lines(header, block, |line|{
- let channel_reader = &mut blocks_per_channel[line.location.channel]; // TODO subsampling
-
- // read from specific channel into total byte block
- // this assumes that the lines in the callback are iterated in strictly increasing order
- // because each channel reader is consumed
- channel_reader.read_exact(line.value)
- .expect("collecting grouped channel byte block failed");
- })
- }
-}
-
-
-struct ReadChannelGroups<ReadChannelGroup> {
- read_channels: ReadChannelGroup
-}
-
-struct ChannelGroupsReader<ChannelGroupReader> {
- channels: ChannelGroups<usize>,
- indexed_channels: Vec<ChannelGroupReader>,
-}
-
-impl<'s, ReadChannelGroup> ReadChannels<'s> for ReadChannelGroups<ReadChannelGroup>
- where ReadChannelGroup: ReadChannels<'s>
-{
- type Reader = ChannelGroupsReader<ReadChannelGroup::Reader>;
-
- fn create_channels_reader(&'s self, header: &Header) -> Result<Self::Reader> {
- let swap = |(a,b)| (b,a);
- let channel_groups = parse_channel_list_groups(
- header.channels.list.iter().enumerate().map(swap)
- );
-
- let mut indexed_channels = Vec::new();
- let channel_groups = channel_groups.map(|channels| {
-
- let mut channels_header = header.clone(); // TODO no clone?
- channels_header.channels = ChannelList::new(channels.iter().map(|(name, index)|{
- let mut channel_info = header.channels.list[index].clone();
- channel_info.name = name;
- channel_info
- }).collect()); // FIXME does not comply to `header.chunk_count` and that stuff?? change ReadChannels fn signature?
-
- indexed_channels.push(self.read_channels.create_channels_reader(&channels_header));
-
- // FIXME this is not the original order indexed_channels.len() - 1
- indexed_channels[]
- });
-
- Ok(ChannelGroupsReader {
- channels: channel_groups,
- indexed_channels,
- })
-
- /*Ok(ChannelGroupsReader {
- channels: header.channels.list.iter().map(|channel| {
- let mut channels_header = header.clone();
-
- let reader = self.read_channels.create_channels_reader(&channels_header);
- (channels_header, reader)
- }).collect(),
- })*/
- }
-}
-
-impl<ChannelGroupReader> ChannelsReader for ChannelGroupsReader<ChannelGroupReader> where ChannelGroupReader: ChannelsReader {
- type Channels = ChannelGroups<ChannelGroupReader::Channels>;
-
- fn filter_block(&self, tile: (usize, &TileCoordinates)) -> bool {
- self.indexed_channels.iter().any(|channel| channel.filter_block(tile))
- }
-
- fn read_block(&mut self, header: &Header, block: UncompressedBlock) -> UnitResult {
- block.for_lines(|line|{
-
- })
- }
-
- fn into_channels(self) -> Self::Channels {
-
- }
-} \ No newline at end of file
diff --git a/vendor/exr/src/image/crop.rs b/vendor/exr/src/image/crop.rs
deleted file mode 100644
index 63aadbf..0000000
--- a/vendor/exr/src/image/crop.rs
+++ /dev/null
@@ -1,801 +0,0 @@
-//! Crop away unwanted pixels. Includes automatic detection of bounding rectangle.
-//! Currently does not support deep data and resolution levels.
-
-use crate::meta::attribute::{IntegerBounds, LevelMode, ChannelList};
-use crate::math::{Vec2, RoundingMode};
-use crate::image::{Layer, FlatSamples, SpecificChannels, AnyChannels, FlatSamplesPixel, AnyChannel};
-use crate::image::write::channels::{GetPixel, WritableChannels, ChannelsWriter};
-use crate::meta::header::{LayerAttributes, Header};
-use crate::block::BlockIndex;
-
-/// Something that has a two-dimensional rectangular shape
-pub trait GetBounds {
-
- /// The bounding rectangle of this pixel grid.
- fn bounds(&self) -> IntegerBounds;
-}
-
-/// Inspect the pixels in this image to determine where to crop some away
-pub trait InspectSample: GetBounds {
-
- /// The type of pixel in this pixel grid.
- type Sample;
-
- /// Index is not in world coordinates, but within the data window.
- /// Position `(0,0)` always represents the top left pixel.
- fn inspect_sample(&self, local_index: Vec2<usize>) -> Self::Sample;
-}
-
-/// Crop some pixels ways when specifying a smaller rectangle
-pub trait Crop: Sized {
-
- /// The type of this image after cropping (probably the same as before)
- type Cropped;
-
- /// Crop the image to exclude unwanted pixels.
- /// Panics for invalid (larger than previously) bounds.
- /// The bounds are specified in absolute coordinates.
- /// Does not reduce allocation size of the current image, but instead only adjust a few boundary numbers.
- /// Use `reallocate_cropped()` on the return value to actually reduce the memory footprint.
- fn crop(self, bounds: IntegerBounds) -> Self::Cropped;
-
- /// Reduce your image to a smaller part, usually to save memory.
- /// Crop if bounds are specified, return the original if no bounds are specified.
- /// Does not reduce allocation size of the current image, but instead only adjust a few boundary numbers.
- /// Use `reallocate_cropped()` on the return value to actually reduce the memory footprint.
- fn try_crop(self, bounds: Option<IntegerBounds>) -> CropResult<Self::Cropped, Self> {
- match bounds {
- Some(bounds) => CropResult::Cropped(self.crop(bounds)),
- None => CropResult::Empty { original: self },
- }
- }
-}
-
-/// Cropping an image fails if the image is fully transparent.
-/// Use [`or_crop_to_1x1_if_empty`] or [`or_none_if_empty`] to obtain a normal image again.
-#[must_use]
-#[derive(Debug, Clone, Copy, Eq, PartialEq)]
-pub enum CropResult<Cropped, Old> {
-
- /// The image contained some pixels and has been cropped or left untouched
- Cropped (Cropped),
-
- /// All pixels in the image would be discarded, removing the whole image
- Empty {
-
- /// The fully discarded image which caused the cropping to fail
- original: Old
- }
-}
-
-/// Crop away unwanted pixels from the border if they match the specified rule.
-pub trait CropWhere<Sample>: Sized {
-
- /// The type of the cropped image (probably the same as the original image).
- type Cropped;
-
- /// Crop away unwanted pixels from the border if they match the specified rule.
- /// Does not reduce allocation size of the current image, but instead only adjust a few boundary numbers.
- /// Use `reallocate_cropped()` on the return value to actually reduce the memory footprint.
- fn crop_where(self, discard_if: impl Fn(Sample) -> bool) -> CropResult<Self::Cropped, Self>;
-
- /// Crop away unwanted pixels from the border if they match the specified color.
- /// If you want discard based on a rule, use `crop_where` with a closure instead.
- /// Does not reduce allocation size of the current image, but instead only adjust a few boundary numbers.
- /// Use `reallocate_cropped()` on the return value to actually reduce the memory footprint.
- fn crop_where_eq(self, discard_color: impl Into<Sample>) -> CropResult<Self::Cropped, Self> where Sample: PartialEq;
-
- /// Convert this data to cropped data without discarding any pixels.
- fn crop_nowhere(self) -> Self::Cropped;
-}
-
-impl<Channels> Crop for Layer<Channels> {
- type Cropped = Layer<CroppedChannels<Channels>>;
-
- fn crop(self, bounds: IntegerBounds) -> Self::Cropped {
- CroppedChannels::crop_layer(bounds, self)
- }
-}
-
-impl<T> CropWhere<T::Sample> for T where T: Crop + InspectSample {
- type Cropped = <Self as Crop>::Cropped;
-
- fn crop_where(self, discard_if: impl Fn(T::Sample) -> bool) -> CropResult<Self::Cropped, Self> {
- let smaller_bounds = {
- let keep_if = |position| !discard_if(self.inspect_sample(position));
- try_find_smaller_bounds(self.bounds(), keep_if)
- };
-
- self.try_crop(smaller_bounds)
- }
-
- fn crop_where_eq(self, discard_color: impl Into<T::Sample>) -> CropResult<Self::Cropped, Self> where T::Sample: PartialEq {
- let discard_color: T::Sample = discard_color.into();
- self.crop_where(|sample| sample == discard_color)
- }
-
- fn crop_nowhere(self) -> Self::Cropped {
- let current_bounds = self.bounds();
- self.crop(current_bounds)
- }
-}
-
-/// A smaller window into an existing pixel storage
-#[derive(Debug, Clone, Eq, PartialEq)]
-pub struct CroppedChannels<Channels> {
-
- /// The uncropped pixel storage
- pub full_channels: Channels,
-
- /// The uncropped pixel storage bounds
- pub full_bounds: IntegerBounds,
-
- /// The cropped pixel storage bounds
- pub cropped_bounds: IntegerBounds,
-}
-
-impl<Channels> CroppedChannels<Channels> {
-
- /// Wrap a layer in a cropped view with adjusted bounds, but without reallocating your pixels
- pub fn crop_layer(new_bounds: IntegerBounds, layer: Layer<Channels>) -> Layer<CroppedChannels<Channels>> {
- Layer {
- channel_data: CroppedChannels {
- cropped_bounds: new_bounds,
- full_bounds: layer.absolute_bounds(),
- full_channels: layer.channel_data,
- },
-
- size: new_bounds.size,
-
- attributes: LayerAttributes {
- layer_position: new_bounds.position,
- .. layer.attributes
- },
-
- encoding: layer.encoding
- }
- }
-}
-
-// TODO make cropped view readable if you only need a specific section of the image?
-
-// make cropped view writable:
-
-impl<'slf, Channels:'slf> WritableChannels<'slf> for CroppedChannels<Channels> where Channels: WritableChannels<'slf> {
- fn infer_channel_list(&self) -> ChannelList {
- self.full_channels.infer_channel_list() // no need for adjustments, as the layer content already reflects the changes
- }
-
- fn infer_level_modes(&self) -> (LevelMode, RoundingMode) {
- self.full_channels.infer_level_modes()
- }
-
- type Writer = CroppedWriter<Channels::Writer>;
-
- fn create_writer(&'slf self, header: &Header) -> Self::Writer {
- let offset = (self.cropped_bounds.position - self.full_bounds.position)
- .to_usize("invalid cropping bounds for cropped view").unwrap();
-
- CroppedWriter { channels: self.full_channels.create_writer(header), offset }
- }
-}
-
-/// A writer for the cropped view layer
-#[derive(Debug, Clone, PartialEq)]
-pub struct CroppedWriter<ChannelsWriter> {
- channels: ChannelsWriter,
- offset: Vec2<usize>
-}
-
-impl<'c, Channels> ChannelsWriter for CroppedWriter<Channels> where Channels: ChannelsWriter {
- fn extract_uncompressed_block(&self, header: &Header, block: BlockIndex) -> Vec<u8> {
- let block = BlockIndex {
- pixel_position: block.pixel_position + self.offset,
- .. block
- };
-
- self.channels.extract_uncompressed_block(header, block)
- }
-}
-
-impl<Samples, Channels> InspectSample for Layer<SpecificChannels<Samples, Channels>> where Samples: GetPixel {
- type Sample = Samples::Pixel;
- fn inspect_sample(&self, local_index: Vec2<usize>) -> Samples::Pixel {
- self.channel_data.pixels.get_pixel(local_index)
- }
-}
-
-impl InspectSample for Layer<AnyChannels<FlatSamples>> {
- type Sample = FlatSamplesPixel;
-
- fn inspect_sample(&self, local_index: Vec2<usize>) -> FlatSamplesPixel {
- self.sample_vec_at(local_index)
- }
-}
-
-// ALGORITHM IDEA: for arbitrary channels, find the most desired channel,
-// and process that first, keeping the processed bounds as starting point for the other layers
-
-/// Realize a cropped view of the original data,
-/// by actually removing the unwanted original pixels,
-/// reducing the memory consumption.
-/// Currently not supported for `SpecificChannels`.
-pub trait ApplyCroppedView {
-
- /// The simpler type after cropping is realized
- type Reallocated;
-
- /// Make the cropping real by reallocating the underlying storage,
- /// with the goal of reducing total memory usage.
- /// Currently not supported for `SpecificChannels`.
- fn reallocate_cropped(self) -> Self::Reallocated;
-}
-
-impl ApplyCroppedView for Layer<CroppedChannels<AnyChannels<FlatSamples>>> {
- type Reallocated = Layer<AnyChannels<FlatSamples>>;
-
- fn reallocate_cropped(self) -> Self::Reallocated {
- let cropped_absolute_bounds = self.channel_data.cropped_bounds;
- let cropped_relative_bounds = cropped_absolute_bounds.with_origin(-self.channel_data.full_bounds.position);
-
- assert!(self.absolute_bounds().contains(cropped_absolute_bounds), "bounds not valid for layer dimensions");
- assert!(cropped_relative_bounds.size.area() > 0, "the cropped image would be empty");
-
- Layer {
- channel_data: if cropped_relative_bounds.size == self.channel_data.full_bounds.size {
- assert_eq!(cropped_absolute_bounds.position, self.channel_data.full_bounds.position, "crop bounds size equals, but position does not");
-
- // the cropping would not remove any pixels
- self.channel_data.full_channels
- }
- else {
- let start_x = cropped_relative_bounds.position.x() as usize; // safe, because just checked above
- let start_y = cropped_relative_bounds.position.y() as usize; // safe, because just checked above
- let x_range = start_x .. start_x + cropped_relative_bounds.size.width();
- let old_width = self.channel_data.full_bounds.size.width();
- let new_height = cropped_relative_bounds.size.height();
-
- let channels = self.channel_data.full_channels.list.into_iter().map(|channel: AnyChannel<FlatSamples>| {
- fn crop_samples<T:Copy>(samples: Vec<T>, old_width: usize, new_height: usize, x_range: std::ops::Range<usize>, y_start: usize) -> Vec<T> {
- let filtered_lines = samples.chunks_exact(old_width).skip(y_start).take(new_height);
- let trimmed_lines = filtered_lines.map(|line| &line[x_range.clone()]);
- trimmed_lines.flatten().map(|x|*x).collect() // TODO does this use memcpy?
- }
-
- let samples = match channel.sample_data {
- FlatSamples::F16(samples) => FlatSamples::F16(crop_samples(
- samples, old_width, new_height, x_range.clone(), start_y
- )),
-
- FlatSamples::F32(samples) => FlatSamples::F32(crop_samples(
- samples, old_width, new_height, x_range.clone(), start_y
- )),
-
- FlatSamples::U32(samples) => FlatSamples::U32(crop_samples(
- samples, old_width, new_height, x_range.clone(), start_y
- )),
- };
-
- AnyChannel { sample_data: samples, ..channel }
- }).collect();
-
- AnyChannels { list: channels }
- },
-
- attributes: self.attributes,
- encoding: self.encoding,
- size: self.size,
- }
- }
-}
-
-
-
-/// Return the smallest bounding rectangle including all pixels that satisfy the predicate.
-/// Worst case: Fully transparent image, visits each pixel once.
-/// Best case: Fully opaque image, visits two pixels.
-/// Returns `None` if the image is fully transparent.
-/// Returns `[(0,0), size]` if the image is fully opaque.
-/// Designed to be cache-friendly linear search. Optimized for row-major image vectors.
-pub fn try_find_smaller_bounds(current_bounds: IntegerBounds, pixel_at: impl Fn(Vec2<usize>) -> bool) -> Option<IntegerBounds> {
- assert_ne!(current_bounds.size.area(), 0, "cannot find smaller bounds of an image with zero width or height");
- let Vec2(width, height) = current_bounds.size;
-
- // scans top to bottom (left to right)
- let first_top_left_pixel = (0 .. height)
- .flat_map(|y| (0 .. width).map(move |x| Vec2(x,y)))
- .find(|&position| pixel_at(position))?; // return none if no pixel should be kept
-
- // scans bottom to top (right to left)
- let first_bottom_right_pixel = (first_top_left_pixel.y() + 1 .. height) // excluding the top line
- .flat_map(|y| (0 .. width).map(move |x| Vec2(x, y))) // x search cannot start at first_top.x, because this must catch all bottom pixels
- .rev().find(|&position| pixel_at(position))
- .unwrap_or(first_top_left_pixel); // did not find any at bottom, but we know top has some pixel
-
- // now we know exactly how much we can throw away top and bottom,
- // but we don't know exactly about left or right
- let top = first_top_left_pixel.y();
- let bottom = first_bottom_right_pixel.y();
-
- // we only now some arbitrary left and right bounds which we need to refine.
- // because the actual image contents might be wider than the corner points.
- // we know that we do not need to look in the center between min x and max x,
- // as these must be included in any case.
- let mut min_left_x = first_top_left_pixel.x().min(first_bottom_right_pixel.x());
- let mut max_right_x = first_bottom_right_pixel.x().max(first_top_left_pixel.x());
-
- // requires for loop, because bounds change while searching
- for y in top ..= bottom {
-
- // escape the loop if there is nothing left to crop
- if min_left_x == 0 && max_right_x == width - 1 { break; }
-
- // search from right image edge towards image center, until known max x, for existing pixels,
- // possibly including some pixels that would have been cropped otherwise
- if max_right_x != width - 1 {
- max_right_x = (max_right_x + 1 .. width).rev() // excluding current max
- .find(|&x| pixel_at(Vec2(x, y)))
- .unwrap_or(max_right_x);
- }
-
- // search from left image edge towards image center, until known min x, for existing pixels,
- // possibly including some pixels that would have been cropped otherwise
- if min_left_x != 0 {
- min_left_x = (0 .. min_left_x) // excluding current min
- .find(|&x| pixel_at(Vec2(x, y)))
- .unwrap_or(min_left_x);
- }
- }
-
- // TODO add 1px margin to avoid interpolation issues?
- let local_start = Vec2(min_left_x, top);
- let local_end = Vec2(max_right_x + 1, bottom + 1);
- Some(IntegerBounds::new(
- current_bounds.position + local_start.to_i32(),
- local_end - local_start
- ))
-}
-
-impl<S> GetBounds for Layer<S> {
- fn bounds(&self) -> IntegerBounds {
- self.absolute_bounds()
- }
-}
-
-impl<Cropped, Original> CropResult<Cropped, Original> {
-
- /// If the image was fully empty, return `None`, otherwise return `Some(cropped_image)`.
- pub fn or_none_if_empty(self) -> Option<Cropped> {
- match self {
- CropResult::Cropped (cropped) => Some(cropped),
- CropResult::Empty { .. } => None,
- }
- }
-
- /// If the image was fully empty, crop to one single pixel of all the transparent pixels instead,
- /// leaving the layer intact while reducing memory usage.
- pub fn or_crop_to_1x1_if_empty(self) -> Cropped where Original: Crop<Cropped=Cropped> + GetBounds {
- match self {
- CropResult::Cropped (cropped) => cropped,
- CropResult::Empty { original } => {
- let bounds = original.bounds();
- if bounds.size == Vec2(0,0) { panic!("layer has width and height of zero") }
- original.crop(IntegerBounds::new(bounds.position, Vec2(1,1)))
- },
- }
- }
-}
-
-
-
-#[cfg(test)]
-mod test {
- use super::*;
-
- #[test]
- fn find_bounds() {
- fn find_bounds(offset: Vec2<i32>, lines: &Vec<Vec<i32>>) -> IntegerBounds {
- if let Some(first_line) = lines.first() {
- assert!(lines.iter().all(|line| line.len() == first_line.len()), "invalid test input");
- IntegerBounds::new(offset, (first_line.len(), lines.len()))
- }
- else {
- IntegerBounds::new(offset, (0,0))
- }
- }
-
- fn assert_found_smaller_bounds(offset: Vec2<i32>, uncropped_lines: Vec<Vec<i32>>, expected_cropped_lines: Vec<Vec<i32>>) {
- let old_bounds = find_bounds(offset, &uncropped_lines);
-
- let found_bounds = try_find_smaller_bounds(
- old_bounds,
- |position| uncropped_lines[position.y()][position.x()] != 0
- ).unwrap();
-
- let found_bounds = found_bounds.with_origin(-offset); // make indices local
-
- let cropped_lines: Vec<Vec<i32>> =
- uncropped_lines[found_bounds.position.y() as usize .. found_bounds.end().y() as usize]
- .iter().map(|uncropped_line|{
- uncropped_line[found_bounds.position.x() as usize .. found_bounds.end().x() as usize].to_vec()
- }).collect();
-
- assert_eq!(cropped_lines, expected_cropped_lines);
- }
-
- assert_found_smaller_bounds(
- Vec2(-3,-3),
-
- vec![
- vec![ 2, 3, 4 ],
- vec![ 2, 3, 4 ],
- ],
-
- vec![
- vec![ 2, 3, 4 ],
- vec![ 2, 3, 4 ],
- ]
- );
-
- assert_found_smaller_bounds(
- Vec2(-3,-3),
-
- vec![
- vec![ 2 ],
- ],
-
- vec![
- vec![ 2 ],
- ]
- );
-
- assert_found_smaller_bounds(
- Vec2(-3,-3),
-
- vec![
- vec![ 0 ],
- vec![ 2 ],
- vec![ 0 ],
- vec![ 0 ],
- ],
-
- vec![
- vec![ 2 ],
- ]
- );
-
- assert_found_smaller_bounds(
- Vec2(-3,-3),
-
- vec![
- vec![ 0, 0, 0, 3, 0 ],
- ],
-
- vec![
- vec![ 3 ],
- ]
- );
-
- assert_found_smaller_bounds(
- Vec2(3,3),
-
- vec![
- vec![ 0, 1, 1, 2, 1, 0 ],
- vec![ 0, 1, 3, 1, 1, 0 ],
- vec![ 0, 1, 1, 1, 1, 0 ],
- ],
-
- vec![
- vec![ 1, 1, 2, 1 ],
- vec![ 1, 3, 1, 1 ],
- vec![ 1, 1, 1, 1 ],
- ]
- );
-
- assert_found_smaller_bounds(
- Vec2(3,3),
-
- vec![
- vec![ 0, 0, 0, 0 ],
- vec![ 1, 1, 2, 1 ],
- vec![ 1, 3, 1, 1 ],
- vec![ 1, 1, 1, 1 ],
- vec![ 0, 0, 0, 0 ],
- ],
-
- vec![
- vec![ 1, 1, 2, 1 ],
- vec![ 1, 3, 1, 1 ],
- vec![ 1, 1, 1, 1 ],
- ]
- );
-
- assert_found_smaller_bounds(
- Vec2(3,3),
-
- vec![
- vec![ 0, 1, 1, 2, 1, 0 ],
- vec![ 0, 0, 3, 1, 0, 0 ],
- vec![ 0, 1, 1, 1, 1, 0 ],
- ],
-
- vec![
- vec![ 1, 1, 2, 1 ],
- vec![ 0, 3, 1, 0 ],
- vec![ 1, 1, 1, 1 ],
- ]
- );
-
- assert_found_smaller_bounds(
- Vec2(3,3),
-
- vec![
- vec![ 0, 0, 1, 2, 0, 0 ],
- vec![ 0, 1, 3, 1, 1, 0 ],
- vec![ 0, 0, 1, 1, 0, 0 ],
- ],
-
- vec![
- vec![ 0, 1, 2, 0 ],
- vec![ 1, 3, 1, 1 ],
- vec![ 0, 1, 1, 0 ],
- ]
- );
-
- assert_found_smaller_bounds(
- Vec2(1,3),
-
- vec![
- vec![ 1, 0, 0, 0, ],
- vec![ 0, 0, 0, 0, ],
- vec![ 0, 0, 0, 0, ],
- ],
-
- vec![
- vec![ 1 ],
- ]
- );
-
- assert_found_smaller_bounds(
- Vec2(1,3),
-
- vec![
- vec![ 0, 0, 0, 0, ],
- vec![ 0, 1, 0, 0, ],
- vec![ 0, 0, 0, 0, ],
- ],
-
- vec![
- vec![ 1 ],
- ]
- );
-
- assert_found_smaller_bounds(
- Vec2(-1,-3),
-
- vec![
- vec![ 0, 0, 0, 0, ],
- vec![ 0, 0, 0, 1, ],
- vec![ 0, 0, 0, 0, ],
- ],
-
- vec![
- vec![ 1 ],
- ]
- );
-
- assert_found_smaller_bounds(
- Vec2(-1,-3),
-
- vec![
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- vec![ 0, 0, 1, 1, 1, 0, 0 ],
- vec![ 0, 0, 1, 1, 1, 0, 0 ],
- vec![ 0, 0, 1, 1, 1, 0, 0 ],
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- ],
-
- vec![
- vec![ 1, 1, 1 ],
- vec![ 1, 1, 1 ],
- vec![ 1, 1, 1 ],
- ]
- );
-
- assert_found_smaller_bounds(
- Vec2(1000,-300),
-
- vec![
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- vec![ 0, 0, 1, 1, 1, 0, 0 ],
- vec![ 0, 1, 1, 1, 1, 1, 0 ],
- vec![ 0, 0, 1, 1, 1, 0, 0 ],
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- ],
-
- vec![
- vec![ 0, 1, 1, 1, 0 ],
- vec![ 1, 1, 1, 1, 1 ],
- vec![ 0, 1, 1, 1, 0 ],
- ]
- );
-
- assert_found_smaller_bounds(
- Vec2(-10,-300),
-
- vec![
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- vec![ 0, 0, 1, 0, 1, 0, 0 ],
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- vec![ 0, 0, 1, 0, 1, 0, 0 ],
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- ],
-
- vec![
- vec![ 1, 0, 1 ],
- vec![ 0, 0, 0 ],
- vec![ 1, 0, 1 ],
- ]
- );
-
- assert_found_smaller_bounds(
- Vec2(-10,-300),
-
- vec![
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- vec![ 0, 0, 1, 0, 1, 0, 0 ],
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- ],
-
- vec![
- vec![ 1, 0, 1 ],
- ]
- );
-
- assert_found_smaller_bounds(
- Vec2(-10,-300),
-
- vec![
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- vec![ 0, 0, 0, 1, 0, 0, 0 ],
- vec![ 0, 0, 0, 2, 0, 0, 0 ],
- vec![ 0, 0, 3, 3, 3, 0, 0 ],
- vec![ 0, 0, 0, 4, 0, 0, 0 ],
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- ],
-
- vec![
- vec![ 0, 1, 0 ],
- vec![ 0, 2, 0 ],
- vec![ 3, 3, 3 ],
- vec![ 0, 4, 0 ],
- ]
- );
-
- assert_found_smaller_bounds(
- Vec2(-10,-300),
-
- vec![
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- vec![ 0, 0, 0, 0, 1, 0, 0 ],
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- vec![ 0, 0, 1, 0, 0, 0, 0 ],
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- ],
-
- vec![
- vec![ 0, 0, 1 ],
- vec![ 0, 0, 0 ],
- vec![ 0, 0, 0 ],
- vec![ 1, 0, 0 ],
- ]
- );
-
- assert_found_smaller_bounds(
- Vec2(-10,-300),
-
- vec![
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- vec![ 0, 0, 1, 0, 0, 0, 0 ],
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- vec![ 0, 0, 0, 0, 0, 1, 0 ],
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- ],
-
- vec![
- vec![ 1, 0, 0, 0 ],
- vec![ 0, 0, 0, 0 ],
- vec![ 0, 0, 0, 1 ],
- ]
- );
-
- assert_found_smaller_bounds(
- Vec2(-10,-300),
-
- vec![
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- vec![ 0, 0, 1, 0, 0, 0, 0 ],
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- vec![ 0, 0, 1, 0, 0, 0, 0 ],
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- ],
-
- vec![
- vec![ 1 ],
- vec![ 0 ],
- vec![ 0 ],
- vec![ 1 ],
- ]
- );
-
-
- assert_found_smaller_bounds(
- Vec2(-1,-3),
-
- vec![
- vec![ 0, 0, 1, 0, ],
- vec![ 0, 0, 0, 1, ],
- vec![ 0, 0, 0, 0, ],
- ],
-
- vec![
- vec![ 1, 0, ],
- vec![ 0, 1, ],
- ]
- );
-
- assert_found_smaller_bounds(
- Vec2(-1,-3),
-
- vec![
- vec![ 1, 0, 0, 0, ],
- vec![ 0, 1, 0, 0, ],
- vec![ 0, 0, 0, 0, ],
- vec![ 0, 0, 0, 0, ],
- ],
-
- vec![
- vec![ 1, 0, ],
- vec![ 0, 1, ],
- ]
- );
- }
-
-
- #[test]
- fn find_no_bounds() {
- let pixels = vec![
- vec![ 0, 0, 0, 0 ],
- vec![ 0, 0, 0, 0 ],
- vec![ 0, 0, 0, 0 ],
- ];
-
- let bounds = try_find_smaller_bounds(
- IntegerBounds::new((0,0), (4,3)),
- |position| pixels[position.y()][position.x()] != 0
- );
-
- assert_eq!(bounds, None)
- }
-
-}
-
-
-
-
diff --git a/vendor/exr/src/image/mod.rs b/vendor/exr/src/image/mod.rs
deleted file mode 100644
index db75050..0000000
--- a/vendor/exr/src/image/mod.rs
+++ /dev/null
@@ -1,1326 +0,0 @@
-
-//! Data structures that represent a complete exr image.
-//! Contains generic structs that must be nested to obtain a complete image type.
-//!
-//!
-//! For example, an rgba image containing multiple layers
-//! can be represented using `Image<Layers<SpecificChannels<MyPixelStorage>>>`.
-//! An image containing a single layer with arbitrary channels and no deep data
-//! can be represented using `Image<Layer<AnyChannels<FlatSamples>>>`.
-//!
-//!
-//! These and other predefined types are included in this module as
-//! 1. `PixelImage`: A single layer, fixed set of arbitrary channels.
-//! 1. `PixelLayersImage`: Multiple layers, fixed set of arbitrary channels.
-//! 1. `RgbaImage`: A single layer, fixed set of channels: rgb, optional a.
-//! 1. `RgbaLayersImage`: Multiple layers, fixed set of channels: rgb, optional a.
-//! 1. `FlatImage`: Multiple layers, any channels, no deep data.
-//! 1. `AnyImage`: All supported data (multiple layers, arbitrary channels, no deep data yet)
-//!
-//! You can also use your own types inside an image,
-//! for example if you want to use a custom sample storage.
-//!
-//! This is the high-level interface for the pixels of an image.
-//! See `exr::blocks` module for a low-level interface.
-
-pub mod read;
-pub mod write;
-pub mod crop;
-pub mod pixel_vec;
-pub mod recursive;
-// pub mod channel_groups;
-
-
-use crate::meta::header::{ImageAttributes, LayerAttributes};
-use crate::meta::attribute::{Text, LineOrder};
-use half::f16;
-use crate::math::{Vec2, RoundingMode};
-use crate::compression::Compression;
-use smallvec::{SmallVec};
-use crate::error::Error;
-
-/// Don't do anything
-pub(crate) fn ignore_progress(_progress: f64){}
-
-/// This image type contains all supported exr features and can represent almost any image.
-/// It currently does not support deep data yet.
-pub type AnyImage = Image<Layers<AnyChannels<Levels<FlatSamples>>>>;
-
-/// This image type contains the most common exr features and can represent almost any plain image.
-/// Does not contain resolution levels. Does not support deep data.
-pub type FlatImage = Image<Layers<AnyChannels<FlatSamples>>>;
-
-/// This image type contains multiple layers, with each layer containing a user-defined type of pixels.
-pub type PixelLayersImage<Storage, Channels> = Image<Layers<SpecificChannels<Storage, Channels>>>;
-
-/// This image type contains a single layer containing a user-defined type of pixels.
-pub type PixelImage<Storage, Channels> = Image<Layer<SpecificChannels<Storage, Channels>>>;
-
-/// This image type contains multiple layers, with each layer containing a user-defined type of rgba pixels.
-pub type RgbaLayersImage<Storage> = PixelLayersImage<Storage, RgbaChannels>;
-
-/// This image type contains a single layer containing a user-defined type of rgba pixels.
-pub type RgbaImage<Storage> = PixelImage<Storage, RgbaChannels>;
-
-/// Contains information about the channels in an rgba image, in the order `(red, green, blue, alpha)`.
-/// The alpha channel is not required. May be `None` if the image did not contain an alpha channel.
-pub type RgbaChannels = (ChannelDescription, ChannelDescription, ChannelDescription, Option<ChannelDescription>);
-
-/// Contains information about the channels in an rgb image, in the order `(red, green, blue)`.
-pub type RgbChannels = (ChannelDescription, ChannelDescription, ChannelDescription);
-
-/// The complete exr image.
-/// `Layers` can be either a single `Layer` or `Layers`.
-#[derive(Debug, Clone, PartialEq)]
-pub struct Image<Layers> {
-
- /// Attributes that apply to the whole image file.
- /// These attributes appear in each layer of the file.
- /// Excludes technical meta data.
- /// Each layer in this image also has its own attributes.
- pub attributes: ImageAttributes,
-
- /// The layers contained in the image file.
- /// Can be either a single `Layer` or a list of layers.
- pub layer_data: Layers,
-}
-
-/// A list of layers. `Channels` can be `SpecificChannels` or `AnyChannels`.
-pub type Layers<Channels> = SmallVec<[Layer<Channels>; 2]>;
-
-/// A single Layer, including fancy attributes and compression settings.
-/// `Channels` can be either `SpecificChannels` or `AnyChannels`
-#[derive(Debug, Clone, PartialEq)]
-pub struct Layer<Channels> {
-
- /// The actual pixel data. Either `SpecificChannels` or `AnyChannels`
- pub channel_data: Channels,
-
- /// Attributes that apply to this layer.
- /// May still contain attributes that should be considered global for an image file.
- /// Excludes technical meta data: Does not contain data window size, line order, tiling, or compression attributes.
- /// The image also has attributes, which do not differ per layer.
- pub attributes: LayerAttributes,
-
- /// The pixel resolution of this layer.
- /// See `layer.attributes` for more attributes, like for example layer position.
- pub size: Vec2<usize>,
-
- /// How the pixels are split up and compressed.
- pub encoding: Encoding
-}
-
-/// How the pixels are split up and compressed.
-#[derive(Copy, Clone, Debug, PartialEq)]
-pub struct Encoding {
-
- /// How the pixel data of all channels in this layer is compressed. May be `Compression::Uncompressed`.
- /// See `layer.attributes` for more attributes.
- pub compression: Compression,
-
- /// Describes how the pixels of this layer are divided into smaller blocks.
- /// Either splits the image into its scan lines or splits the image into tiles of the specified size.
- /// A single block can be loaded without processing all bytes of a file.
- pub blocks: Blocks,
-
- /// In what order the tiles of this header occur in the file.
- /// Does not change any actual image orientation.
- /// See `layer.attributes` for more attributes.
- pub line_order: LineOrder,
-}
-
-/// How the image pixels are split up into separate blocks.
-#[derive(Copy, Clone, Debug, PartialEq, Eq)]
-pub enum Blocks {
-
- /// The image is divided into scan line blocks.
- /// The number of scan lines in a block depends on the compression method.
- ScanLines,
-
- /// The image is divided into tile blocks.
- /// Also specifies the size of each tile in the image
- /// and whether this image contains multiple resolution levels.
- ///
- /// The inner `Vec2` describes the size of each tile.
- /// Stays the same number of pixels across all levels.
- Tiles (Vec2<usize>)
-}
-
-
-/// A grid of pixels. The pixels are written to your custom pixel storage.
-/// `PixelStorage` can be anything, from a flat `Vec<f16>` to `Vec<Vec<AnySample>>`, as desired.
-/// In order to write this image to a file, your `PixelStorage` must implement [`GetPixel`].
-#[derive(Debug, Clone, PartialEq, Eq)]
-pub struct SpecificChannels<Pixels, ChannelsDescription> {
-
- /// A description of the channels in the file, as opposed to the channels in memory.
- /// Should always be a tuple containing `ChannelDescription`s, one description for each channel.
- pub channels: ChannelsDescription, // TODO this is awkward. can this be not a type parameter please? maybe vec<option<chan_info>> ??
-
- /// Your custom pixel storage
- // TODO should also support `Levels<YourStorage>`, where levels are desired!
- pub pixels: Pixels, // TODO rename to "pixels"?
-}
-
-
-/// A dynamic list of arbitrary channels.
-/// `Samples` can currently only be `FlatSamples` or `Levels<FlatSamples>`.
-#[derive(Debug, Clone, PartialEq)]
-pub struct AnyChannels<Samples> {
-
- /// This list must be sorted alphabetically, by channel name.
- /// Use `AnyChannels::sorted` for automatic sorting.
- pub list: SmallVec<[AnyChannel<Samples>; 4]>
-}
-
-/// A single arbitrary channel.
-/// `Samples` can currently only be `FlatSamples` or `Levels<FlatSamples>`
-#[derive(Debug, Clone, PartialEq)]
-pub struct AnyChannel<Samples> {
-
- /// One of "R", "G", or "B" most of the time.
- pub name: Text,
-
- /// The actual pixel data.
- /// Can be `FlatSamples` or `Levels<FlatSamples>`.
- pub sample_data: Samples,
-
- /// This attribute only tells lossy compression methods
- /// whether this value should be quantized exponentially or linearly.
- ///
- /// Should be `false` for red, green, blue and luma channels, as they are not perceived linearly.
- /// Should be `true` for hue, chroma, saturation, and alpha channels.
- pub quantize_linearly: bool,
-
- /// How many of the samples are skipped compared to the other channels in this layer.
- ///
- /// Can be used for chroma subsampling for manual lossy data compression.
- /// Values other than 1 are allowed only in flat, scan-line based images.
- /// If an image is deep or tiled, the sampling rates for all of its channels must be 1.
- pub sampling: Vec2<usize>,
-}
-
-/// One or multiple resolution levels of the same image.
-/// `Samples` can be `FlatSamples`.
-#[derive(Debug, Clone, PartialEq, Eq)]
-pub enum Levels<Samples> {
-
- /// A single image without smaller versions of itself.
- /// If you only want to handle exclusively this case, use `Samples` directly, and not `Levels<Samples>`.
- Singular(Samples),
-
- /// Contains uniformly scaled smaller versions of the original.
- Mip
- {
- /// Whether to round up or down when calculating Mip/Rip levels.
- rounding_mode: RoundingMode,
-
- /// The smaller versions of the original.
- level_data: LevelMaps<Samples>
- },
-
- /// Contains any possible combination of smaller versions of the original.
- Rip
- {
- /// Whether to round up or down when calculating Mip/Rip levels.
- rounding_mode: RoundingMode,
-
- /// The smaller versions of the original.
- level_data: RipMaps<Samples>
- },
-}
-
-/// A list of resolution levels. `Samples` can currently only be `FlatSamples`.
-// or `DeepAndFlatSamples` (not yet implemented).
-pub type LevelMaps<Samples> = Vec<Samples>;
-
-/// In addition to the full resolution image,
-/// this layer also contains smaller versions,
-/// and each smaller version has further versions with varying aspect ratios.
-/// `Samples` can currently only be `FlatSamples`.
-#[derive(Debug, Clone, PartialEq, Eq)]
-pub struct RipMaps<Samples> {
-
- /// A flattened list containing the individual levels
- pub map_data: LevelMaps<Samples>,
-
- /// The number of levels that were generated along the x-axis and y-axis.
- pub level_count: Vec2<usize>,
-}
-
-
-// TODO deep data
-/*#[derive(Clone, PartialEq)]
-pub enum DeepAndFlatSamples {
- Deep(DeepSamples),
- Flat(FlatSamples)
-}*/
-
-/// A vector of non-deep values (one value per pixel per channel).
-/// Stores row after row in a single vector.
-/// The precision of all values is either `f16`, `f32` or `u32`.
-///
-/// Since this is close to the pixel layout in the byte file,
-/// this will most likely be the fastest storage.
-/// Using a different storage, for example `SpecificChannels`,
-/// will probably be slower.
-#[derive(Clone, PartialEq)] // debug is implemented manually
-pub enum FlatSamples {
-
- /// A vector of non-deep `f16` values.
- F16(Vec<f16>),
-
- /// A vector of non-deep `f32` values.
- F32(Vec<f32>),
-
- /// A vector of non-deep `u32` values.
- U32(Vec<u32>),
-}
-
-
-/*#[derive(Clone, PartialEq)]
-pub enum DeepSamples {
- F16(Vec<Vec<f16>>),
- F32(Vec<Vec<f32>>),
- U32(Vec<Vec<u32>>),
-}*/
-
-use crate::block::samples::*;
-use crate::meta::attribute::*;
-use crate::error::Result;
-use crate::block::samples::Sample;
-use crate::image::write::channels::*;
-use crate::image::write::layers::WritableLayers;
-use crate::image::write::samples::{WritableSamples};
-use crate::meta::{mip_map_levels, rip_map_levels};
-use crate::io::Data;
-use crate::image::recursive::{NoneMore, Recursive, IntoRecursive};
-use std::marker::PhantomData;
-use std::ops::Not;
-use crate::image::validate_results::{ValidationOptions};
-
-
-impl<Channels> Layer<Channels> {
- /// Sometimes called "data window"
- pub fn absolute_bounds(&self) -> IntegerBounds {
- IntegerBounds::new(self.attributes.layer_position, self.size)
- }
-}
-
-
-impl<SampleStorage, Channels> SpecificChannels<SampleStorage, Channels> {
- /// Create some pixels with channel information.
- /// The `Channels` must be a tuple containing either `ChannelDescription` or `Option<ChannelDescription>`.
- /// The length of the tuple dictates the number of channels in the sample storage.
- pub fn new(channels: Channels, source_samples: SampleStorage) -> Self
- where
- SampleStorage: GetPixel,
- SampleStorage::Pixel: IntoRecursive,
- Channels: Sync + Clone + IntoRecursive,
- <Channels as IntoRecursive>::Recursive: WritableChannelsDescription<<SampleStorage::Pixel as IntoRecursive>::Recursive>,
- {
- SpecificChannels { channels, pixels: source_samples }
- }
-}
-
-/// Convert this type into one of the known sample types.
-/// Also specify the preferred native type, which dictates the default sample type in the image.
-pub trait IntoSample: IntoNativeSample {
-
- /// The native sample types that this type should be converted to.
- const PREFERRED_SAMPLE_TYPE: SampleType;
-}
-
-impl IntoSample for f16 { const PREFERRED_SAMPLE_TYPE: SampleType = SampleType::F16; }
-impl IntoSample for f32 { const PREFERRED_SAMPLE_TYPE: SampleType = SampleType::F32; }
-impl IntoSample for u32 { const PREFERRED_SAMPLE_TYPE: SampleType = SampleType::U32; }
-
-/// Used to construct a `SpecificChannels`.
-/// Call `with_named_channel` as many times as desired,
-/// and then call `with_pixels` to define the colors.
-#[derive(Debug)]
-pub struct SpecificChannelsBuilder<RecursiveChannels, RecursivePixel> {
- channels: RecursiveChannels,
- px: PhantomData<RecursivePixel>
-}
-
-/// This check can be executed at compile time
-/// if the channel names are `&'static str` and the compiler is smart enough.
-pub trait CheckDuplicates {
-
- /// Check for duplicate channel names.
- fn already_contains(&self, name: &Text) -> bool;
-}
-
-impl CheckDuplicates for NoneMore {
- fn already_contains(&self, _: &Text) -> bool { false }
-}
-
-impl<Inner: CheckDuplicates> CheckDuplicates for Recursive<Inner, ChannelDescription> {
- fn already_contains(&self, name: &Text) -> bool {
- &self.value.name == name || self.inner.already_contains(name)
- }
-}
-
-impl SpecificChannels<(),()>
-{
- /// Start building some specific channels. On the result of this function,
- /// call `with_named_channel` as many times as desired,
- /// and then call `with_pixels` to define the colors.
- pub fn build() -> SpecificChannelsBuilder<NoneMore, NoneMore> {
- SpecificChannelsBuilder { channels: NoneMore, px: Default::default() }
- }
-}
-
-impl<RecursiveChannels: CheckDuplicates, RecursivePixel> SpecificChannelsBuilder<RecursiveChannels, RecursivePixel>
-{
- /// Add another channel to this image. Does not add the actual pixels,
- /// but instead only declares the presence of the channel.
- /// Panics if the name contains unsupported characters.
- /// Panics if a channel with the same name already exists.
- /// Use `Text::new_or_none()` to manually handle these cases.
- /// Use `with_channel_details` instead if you want to specify more options than just the name of the channel.
- /// The generic parameter can usually be inferred from the closure in `with_pixels`.
- pub fn with_channel<Sample: IntoSample>(self, name: impl Into<Text>)
- -> SpecificChannelsBuilder<Recursive<RecursiveChannels, ChannelDescription>, Recursive<RecursivePixel, Sample>>
- {
- self.with_channel_details::<Sample>(ChannelDescription::named(name, Sample::PREFERRED_SAMPLE_TYPE))
- }
-
- /// Add another channel to this image. Does not add the actual pixels,
- /// but instead only declares the presence of the channel.
- /// Use `with_channel` instead if you only want to specify the name of the channel.
- /// Panics if a channel with the same name already exists.
- /// The generic parameter can usually be inferred from the closure in `with_pixels`.
- pub fn with_channel_details<Sample: Into<Sample>>(self, channel: ChannelDescription)
- -> SpecificChannelsBuilder<Recursive<RecursiveChannels, ChannelDescription>, Recursive<RecursivePixel, Sample>>
- {
- // duplicate channel names are checked later, but also check now to make sure there are no problems with the `SpecificChannelsWriter`
- assert!(self.channels.already_contains(&channel.name).not(), "channel name `{}` is duplicate", channel.name);
-
- SpecificChannelsBuilder {
- channels: Recursive::new(self.channels, channel),
- px: PhantomData::default()
- }
- }
-
- /// Specify the actual pixel contents of the image.
- /// You can pass a closure that returns a color for each pixel (`Fn(Vec2<usize>) -> Pixel`),
- /// or you can pass your own image if it implements `GetPixel`.
- /// The pixel type must be a tuple with the correct number of entries, depending on the number of channels.
- /// The tuple entries can be either `f16`, `f32`, `u32` or `Sample`.
- /// Use `with_pixel_fn` instead of this function, to get extra type safety for your pixel closure.
- pub fn with_pixels<Pixels>(self, get_pixel: Pixels) -> SpecificChannels<Pixels, RecursiveChannels>
- where Pixels: GetPixel, <Pixels as GetPixel>::Pixel: IntoRecursive<Recursive=RecursivePixel>,
- {
- SpecificChannels {
- channels: self.channels,
- pixels: get_pixel
- }
- }
-
- /// Specify the contents of the image.
- /// The pixel type must be a tuple with the correct number of entries, depending on the number of channels.
- /// The tuple entries can be either `f16`, `f32`, `u32` or `Sample`.
- /// Use `with_pixels` instead of this function, if you want to pass an object that is not a closure.
- ///
- /// Usually, the compiler can infer the type of the pixel (for example, `f16,f32,f32`) from the closure.
- /// If that's not possible, you can specify the type of the channels
- /// when declaring the channel (for example, `with_named_channel::<f32>("R")`).
- pub fn with_pixel_fn<Pixel, Pixels>(self, get_pixel: Pixels) -> SpecificChannels<Pixels, RecursiveChannels>
- where Pixels: Sync + Fn(Vec2<usize>) -> Pixel, Pixel: IntoRecursive<Recursive=RecursivePixel>,
- {
- SpecificChannels {
- channels: self.channels,
- pixels: get_pixel
- }
- }
-}
-
-impl<SampleStorage> SpecificChannels<
- SampleStorage, (ChannelDescription, ChannelDescription, ChannelDescription, ChannelDescription)
->
-{
-
- /// Create an image with red, green, blue, and alpha channels.
- /// You can pass a closure that returns a color for each pixel (`Fn(Vec2<usize>) -> (R,G,B,A)`),
- /// or you can pass your own image if it implements `GetPixel<Pixel=(R,G,B,A)>`.
- /// Each of `R`, `G`, `B` and `A` can be either `f16`, `f32`, `u32`, or `Sample`.
- pub fn rgba<R, G, B, A>(source_samples: SampleStorage) -> Self
- where R: IntoSample, G: IntoSample,
- B: IntoSample, A: IntoSample,
- SampleStorage: GetPixel<Pixel=(R, G, B, A)>
- {
- SpecificChannels {
- channels: (
- ChannelDescription::named("R", R::PREFERRED_SAMPLE_TYPE),
- ChannelDescription::named("G", G::PREFERRED_SAMPLE_TYPE),
- ChannelDescription::named("B", B::PREFERRED_SAMPLE_TYPE),
- ChannelDescription::named("A", A::PREFERRED_SAMPLE_TYPE),
- ),
- pixels: source_samples
- }
- }
-}
-
-impl<SampleStorage> SpecificChannels<
- SampleStorage, (ChannelDescription, ChannelDescription, ChannelDescription)
->
-{
-
- /// Create an image with red, green, and blue channels.
- /// You can pass a closure that returns a color for each pixel (`Fn(Vec2<usize>) -> (R,G,B)`),
- /// or you can pass your own image if it implements `GetPixel<Pixel=(R,G,B)>`.
- /// Each of `R`, `G` and `B` can be either `f16`, `f32`, `u32`, or `Sample`.
- pub fn rgb<R, G, B>(source_samples: SampleStorage) -> Self
- where R: IntoSample, G: IntoSample, B: IntoSample,
- SampleStorage: GetPixel<Pixel=(R, G, B)>
- {
- SpecificChannels {
- channels: (
- ChannelDescription::named("R", R::PREFERRED_SAMPLE_TYPE),
- ChannelDescription::named("G", G::PREFERRED_SAMPLE_TYPE),
- ChannelDescription::named("B", B::PREFERRED_SAMPLE_TYPE),
- ),
- pixels: source_samples
- }
- }
-}
-
-
-/// A list of samples representing a single pixel.
-/// Does not heap allocate for images with 8 or fewer channels.
-pub type FlatSamplesPixel = SmallVec<[Sample; 8]>;
-
-// TODO also deep samples?
-impl Layer<AnyChannels<FlatSamples>> {
-
- /// Use `samples_at` if you can borrow from this layer
- pub fn sample_vec_at(&self, position: Vec2<usize>) -> FlatSamplesPixel {
- self.samples_at(position).collect()
- }
-
- /// Lookup all channels of a single pixel in the image
- pub fn samples_at(&self, position: Vec2<usize>) -> FlatSampleIterator<'_> {
- FlatSampleIterator {
- layer: self,
- channel_index: 0,
- position
- }
- }
-}
-
-/// Iterate over all channels of a single pixel in the image
-#[derive(Debug, Copy, Clone, PartialEq)]
-pub struct FlatSampleIterator<'s> {
- layer: &'s Layer<AnyChannels<FlatSamples>>,
- channel_index: usize,
- position: Vec2<usize>,
-}
-
-impl Iterator for FlatSampleIterator<'_> {
- type Item = Sample;
-
- fn next(&mut self) -> Option<Self::Item> {
- if self.channel_index < self.layer.channel_data.list.len() {
- let channel = &self.layer.channel_data.list[self.channel_index];
- let sample = channel.sample_data.value_by_flat_index(self.position.flat_index_for_size(self.layer.size));
- self.channel_index += 1;
- Some(sample)
- }
- else { None }
- }
-
- fn nth(&mut self, pos: usize) -> Option<Self::Item> {
- self.channel_index += pos;
- self.next()
- }
-
- fn size_hint(&self) -> (usize, Option<usize>) {
- let remaining = self.layer.channel_data.list.len().saturating_sub(self.channel_index);
- (remaining, Some(remaining))
- }
-}
-
-impl ExactSizeIterator for FlatSampleIterator<'_> {}
-
-impl<SampleData> AnyChannels<SampleData>{
-
- /// A new list of arbitrary channels. Sorts the list to make it alphabetically stable.
- pub fn sort(mut list: SmallVec<[AnyChannel<SampleData>; 4]>) -> Self {
- list.sort_unstable_by_key(|channel| channel.name.clone()); // TODO no clone?
- Self { list }
- }
-}
-
-// FIXME check content size of layer somewhere??? before writing?
-impl<LevelSamples> Levels<LevelSamples> {
-
- /// Get a resolution level by index, sorted by size, decreasing.
- pub fn get_level(&self, level: Vec2<usize>) -> Result<&LevelSamples> {
- match self {
- Levels::Singular(block) => {
- debug_assert_eq!(level, Vec2(0,0), "singular image cannot write leveled blocks bug");
- Ok(block)
- },
-
- Levels::Mip { level_data, .. } => {
- debug_assert_eq!(level.x(), level.y(), "mip map levels must be equal on x and y bug");
- level_data.get(level.x()).ok_or(Error::invalid("block mip level index"))
- },
-
- Levels::Rip { level_data, .. } => {
- level_data.get_by_level(level).ok_or(Error::invalid("block rip level index"))
- }
- }
- }
-
- /// Get a resolution level by index, sorted by size, decreasing.
- // TODO storage order for RIP maps?
- pub fn get_level_mut(&mut self, level: Vec2<usize>) -> Result<&mut LevelSamples> {
- match self {
- Levels::Singular(ref mut block) => {
- debug_assert_eq!(level, Vec2(0,0), "singular image cannot write leveled blocks bug");
- Ok(block)
- },
-
- Levels::Mip { level_data, .. } => {
- debug_assert_eq!(level.x(), level.y(), "mip map levels must be equal on x and y bug");
- level_data.get_mut(level.x()).ok_or(Error::invalid("block mip level index"))
- },
-
- Levels::Rip { level_data, .. } => {
- level_data.get_by_level_mut(level).ok_or(Error::invalid("block rip level index"))
- }
- }
- }
-
- /// Get a slice of all resolution levels, sorted by size, decreasing.
- pub fn levels_as_slice(&self) -> &[LevelSamples] {
- match self {
- Levels::Singular(data) => std::slice::from_ref(data),
- Levels::Mip { level_data, .. } => level_data,
- Levels::Rip { level_data, .. } => &level_data.map_data,
- }
- }
-
- /// Get a mutable slice of all resolution levels, sorted by size, decreasing.
- pub fn levels_as_slice_mut(&mut self) -> &mut [LevelSamples] {
- match self {
- Levels::Singular(data) => std::slice::from_mut(data),
- Levels::Mip { level_data, .. } => level_data,
- Levels::Rip { level_data, .. } => &mut level_data.map_data,
- }
- }
-
- // TODO simplify working with levels in general! like level_size_by_index and such
-
- /*pub fn levels_with_size(&self, rounding: RoundingMode, max_resolution: Vec2<usize>) -> Vec<(Vec2<usize>, &S)> {
- match self {
- Levels::Singular(ref data) => vec![ (max_resolution, data) ],
- Levels::Mip(ref maps) => mip_map_levels(rounding, max_resolution).map(|(_index, size)| size).zip(maps).collect(),
- Levels::Rip(ref rip_maps) => rip_map_levels(rounding, max_resolution).map(|(_index, size)| size).zip(&rip_maps.map_data).collect(),
- }
- }*/
-
- /// Whether this stores multiple resolution levels.
- pub fn level_mode(&self) -> LevelMode {
- match self {
- Levels::Singular(_) => LevelMode::Singular,
- Levels::Mip { .. } => LevelMode::MipMap,
- Levels::Rip { .. } => LevelMode::RipMap,
- }
- }
-}
-
-impl<Samples> RipMaps<Samples> {
-
- /// Flatten the 2D level index to a one dimensional index.
- pub fn get_level_index(&self, level: Vec2<usize>) -> usize {
- level.flat_index_for_size(self.level_count)
- }
-
- /// Return a level by level index. Level `0` has the largest resolution.
- pub fn get_by_level(&self, level: Vec2<usize>) -> Option<&Samples> {
- self.map_data.get(self.get_level_index(level))
- }
-
- /// Return a mutable level reference by level index. Level `0` has the largest resolution.
- pub fn get_by_level_mut(&mut self, level: Vec2<usize>) -> Option<&mut Samples> {
- let index = self.get_level_index(level);
- self.map_data.get_mut(index)
- }
-}
-
-impl FlatSamples {
-
- /// The number of samples in the image. Should be the width times the height.
- /// Might vary when subsampling is used.
- pub fn len(&self) -> usize {
- match self {
- FlatSamples::F16(vec) => vec.len(),
- FlatSamples::F32(vec) => vec.len(),
- FlatSamples::U32(vec) => vec.len(),
- }
- }
-
- /// Views all samples in this storage as f32.
- /// Matches the underlying sample type again for every sample,
- /// match yourself if performance is critical! Does not allocate.
- pub fn values_as_f32<'s>(&'s self) -> impl 's + Iterator<Item = f32> {
- self.values().map(|sample| sample.to_f32())
- }
-
- /// All samples in this storage as iterator.
- /// Matches the underlying sample type again for every sample,
- /// match yourself if performance is critical! Does not allocate.
- pub fn values<'s>(&'s self) -> impl 's + Iterator<Item = Sample> {
- (0..self.len()).map(move |index| self.value_by_flat_index(index))
- }
-
- /// Lookup a single value, by flat index.
- /// The flat index can be obtained using `Vec2::flatten_for_width`
- /// which computes the index in a flattened array of pixel rows.
- pub fn value_by_flat_index(&self, index: usize) -> Sample {
- match self {
- FlatSamples::F16(vec) => Sample::F16(vec[index]),
- FlatSamples::F32(vec) => Sample::F32(vec[index]),
- FlatSamples::U32(vec) => Sample::U32(vec[index]),
- }
- }
-}
-
-
-impl<'s, ChannelData:'s> Layer<ChannelData> {
-
- /// Create a layer with the specified size, attributes, encoding and channels.
- /// The channels can be either `SpecificChannels` or `AnyChannels`.
- pub fn new(
- dimensions: impl Into<Vec2<usize>>,
- attributes: LayerAttributes,
- encoding: Encoding,
- channels: ChannelData
- ) -> Self
- where ChannelData: WritableChannels<'s>
- {
- Layer { channel_data: channels, attributes, size: dimensions.into(), encoding }
- }
-
- // TODO test pls wtf
- /// Panics for images with Scanline encoding.
- pub fn levels_with_resolution<'l, L>(&self, levels: &'l Levels<L>) -> Box<dyn 'l + Iterator<Item=(&'l L, Vec2<usize>)>> {
- match levels {
- Levels::Singular(level) => Box::new(std::iter::once((level, self.size))),
-
- Levels::Mip { rounding_mode, level_data } => Box::new(level_data.iter().zip(
- mip_map_levels(*rounding_mode, self.size)
- .map(|(_index, size)| size)
- )),
-
- Levels::Rip { rounding_mode, level_data } => Box::new(level_data.map_data.iter().zip(
- rip_map_levels(*rounding_mode, self.size)
- .map(|(_index, size)| size)
- )),
- }
- }
-}
-
-impl Encoding {
-
- /// No compression. Massive space requirements.
- /// Fast, because it minimizes data shuffling and reallocation.
- pub const UNCOMPRESSED: Encoding = Encoding {
- compression: Compression::Uncompressed,
- blocks: Blocks::ScanLines, // longest lines, faster memcpy
- line_order: LineOrder::Increasing // presumably fastest?
- };
-
- /// Run-length encoding with tiles of 64x64 pixels. This is the recommended default encoding.
- /// Almost as fast as uncompressed data, but optimizes single-colored areas such as mattes and masks.
- pub const FAST_LOSSLESS: Encoding = Encoding {
- compression: Compression::RLE,
- blocks: Blocks::Tiles(Vec2(64, 64)), // optimize for RLE compression
- line_order: LineOrder::Unspecified
- };
-
- /// ZIP compression with blocks of 16 lines. Slow, but produces small files without visible artefacts.
- pub const SMALL_LOSSLESS: Encoding = Encoding {
- compression: Compression::ZIP16,
- blocks: Blocks::ScanLines, // largest possible, but also with high probability of parallel workers
- line_order: LineOrder::Increasing
- };
-
- /// PIZ compression with tiles of 256x256 pixels. Small images, not too slow.
- pub const SMALL_FAST_LOSSLESS: Encoding = Encoding {
- compression: Compression::PIZ,
- blocks: Blocks::Tiles(Vec2(256, 256)),
- line_order: LineOrder::Unspecified
- };
-}
-
-impl Default for Encoding {
- fn default() -> Self { Encoding::FAST_LOSSLESS }
-}
-
-impl<'s, LayerData: 's> Image<LayerData> where LayerData: WritableLayers<'s> {
- /// Create an image with one or multiple layers. The layer can be a `Layer`, or `Layers` small vector, or `Vec<Layer>` or `&[Layer]`.
- pub fn new(image_attributes: ImageAttributes, layer_data: LayerData) -> Self {
- Image { attributes: image_attributes, layer_data }
- }
-}
-
-// explorable constructor alias
-impl<'s, Channels: 's> Image<Layers<Channels>> where Channels: WritableChannels<'s> {
- /// Create an image with multiple layers. The layer can be a `Vec<Layer>` or `Layers` (a small vector).
- pub fn from_layers(image_attributes: ImageAttributes, layer_data: impl Into<Layers<Channels>>) -> Self {
- Self::new(image_attributes, layer_data.into())
- }
-}
-
-
-impl<'s, ChannelData:'s> Image<Layer<ChannelData>> where ChannelData: WritableChannels<'s> {
-
- /// Uses the display position and size to the channel position and size of the layer.
- pub fn from_layer(layer: Layer<ChannelData>) -> Self {
- let bounds = IntegerBounds::new(layer.attributes.layer_position, layer.size);
- Self::new(ImageAttributes::new(bounds), layer)
- }
-
- /// Uses empty attributes.
- pub fn from_encoded_channels(size: impl Into<Vec2<usize>>, encoding: Encoding, channels: ChannelData) -> Self {
- // layer name is not required for single-layer images
- Self::from_layer(Layer::new(size, LayerAttributes::default(), encoding, channels))
- }
-
- /// Uses empty attributes and fast compression.
- pub fn from_channels(size: impl Into<Vec2<usize>>, channels: ChannelData) -> Self {
- Self::from_encoded_channels(size, Encoding::default(), channels)
- }
-}
-
-
-impl Image<NoneMore> {
-
- /// Create an empty image, to be filled with layers later on. Add at least one layer to obtain a valid image.
- /// Call `with_layer(another_layer)` for each layer you want to add to this image.
- pub fn empty(attributes: ImageAttributes) -> Self { Self { attributes, layer_data: NoneMore } }
-}
-
-impl<'s, InnerLayers: 's> Image<InnerLayers> where
- InnerLayers: WritableLayers<'s>,
-{
- /// Add another layer to this image. The layer type does
- /// not have to equal the existing layers in this image.
- pub fn with_layer<NewChannels>(self, layer: Layer<NewChannels>)
- -> Image<Recursive<InnerLayers, Layer<NewChannels>>>
- where NewChannels: 's + WritableChannels<'s>
- {
- Image {
- attributes: self.attributes,
- layer_data: Recursive::new(self.layer_data, layer)
- }
- }
-}
-
-
-impl<'s, SampleData: 's> AnyChannel<SampleData> {
-
- /// Create a new channel without subsampling.
- ///
- /// Automatically flags this channel for specialized compression
- /// if the name is "R", "G", "B", "Y", or "L",
- /// as they typically encode values that are perceived non-linearly.
- /// Construct the value yourself using `AnyChannel { .. }`, if you want to control this flag.
- pub fn new(name: impl Into<Text>, sample_data: SampleData) -> Self where SampleData: WritableSamples<'s> {
- let name: Text = name.into();
-
- AnyChannel {
- quantize_linearly: ChannelDescription::guess_quantization_linearity(&name),
- name, sample_data,
- sampling: Vec2(1, 1),
- }
- }
-
- /*/// This is the same as `AnyChannel::new()`, but additionally ensures that the closure type is correct.
- pub fn from_closure<V>(name: Text, sample_data: S) -> Self
- where S: Sync + Fn(Vec2<usize>) -> V, V: InferSampleType + Data
- {
- Self::new(name, sample_data)
- }*/
-}
-
-impl std::fmt::Debug for FlatSamples {
- fn fmt(&self, formatter: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
- if self.len() <= 6 {
- match self {
- FlatSamples::F16(vec) => vec.fmt(formatter),
- FlatSamples::F32(vec) => vec.fmt(formatter),
- FlatSamples::U32(vec) => vec.fmt(formatter),
- }
- }
- else {
- match self {
- FlatSamples::F16(vec) => write!(formatter, "[f16; {}]", vec.len()),
- FlatSamples::F32(vec) => write!(formatter, "[f32; {}]", vec.len()),
- FlatSamples::U32(vec) => write!(formatter, "[u32; {}]", vec.len()),
- }
- }
- }
-}
-
-
-
-/// Compare the result of a round trip test with the original method.
-/// Supports lossy compression methods.
-// #[cfg(test)] TODO do not ship this code
-pub mod validate_results {
- use crate::prelude::*;
- use smallvec::Array;
- use crate::prelude::recursive::*;
- use crate::image::write::samples::WritableSamples;
- use std::ops::Not;
- use crate::block::samples::IntoNativeSample;
-
-
- /// Compare two objects, but with a few special quirks.
- /// Intended mainly for unit testing.
- pub trait ValidateResult {
-
- /// Compare self with the other. Panics if not equal.
- ///
- /// Exceptional behaviour:
- /// This does not work the other way around! This method is not symmetrical!
- /// Returns whether the result is correct for this image.
- /// For lossy compression methods, uses approximate equality.
- /// Intended for unit testing.
- ///
- /// Warning: If you use `SpecificChannels`, the comparison might be inaccurate
- /// for images with mixed compression methods. This is to be used with `AnyChannels` mainly.
- fn assert_equals_result(&self, result: &Self) {
- self.validate_result(result, ValidationOptions::default(), || String::new()).unwrap();
- }
-
- /// Compare self with the other.
- /// Exceptional behaviour:
- /// - Any two NaN values are considered equal, regardless of bit representation.
- /// - If a `lossy` is specified, any two values that differ only by a small amount will be considered equal.
- /// - If `nan_to_zero` is true, and __self is NaN/Infinite and the other value is zero, they are considered equal__
- /// (because some compression methods replace nan with zero)
- ///
- /// This does not work the other way around! This method is not symmetrical!
- fn validate_result(
- &self, lossy_result: &Self,
- options: ValidationOptions,
- // this is a lazy string, because constructing a string is only necessary in the case of an error,
- // but eats up memory and allocation time every time. this was measured.
- context: impl Fn() -> String
- ) -> ValidationResult;
- }
-
- /// Whether to do accurate or approximate comparison.
- #[derive(Default, Debug, Eq, PartialEq, Hash, Copy, Clone)]
- pub struct ValidationOptions {
- allow_lossy: bool,
- nan_converted_to_zero: bool,
- }
-
- /// If invalid, contains the error message.
- pub type ValidationResult = std::result::Result<(), String>;
-
-
- impl<C> ValidateResult for Image<C> where C: ValidateResult {
- fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
- if self.attributes != other.attributes { Err(location() + "| image > attributes") }
- else { self.layer_data.validate_result(&other.layer_data, options, || location() + "| image > layer data") }
- }
- }
-
- impl<S> ValidateResult for Layer<AnyChannels<S>>
- where AnyChannel<S>: ValidateResult, S: for<'a> WritableSamples<'a>
- {
- fn validate_result(&self, other: &Self, _overridden: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
- let location = || format!("{} (layer `{:?}`)", location(), self.attributes.layer_name);
- if self.attributes != other.attributes { Err(location() + " > attributes") }
- else if self.encoding != other.encoding { Err(location() + " > encoding") }
- else if self.size != other.size { Err(location() + " > size") }
- else if self.channel_data.list.len() != other.channel_data.list.len() { Err(location() + " > channel count") }
- else {
- for (own_chan, other_chan) in self.channel_data.list.iter().zip(other.channel_data.list.iter()) {
- own_chan.validate_result(
- other_chan,
-
- ValidationOptions {
- // no tolerance for lossless channels
- allow_lossy: other.encoding.compression
- .is_lossless_for(other_chan.sample_data.sample_type()).not(),
-
- // consider nan and zero equal if the compression method does not support nan
- nan_converted_to_zero: other.encoding.compression.supports_nan().not()
- },
-
- || format!("{} > channel `{}`", location(), own_chan.name)
- )?;
- }
- Ok(())
- }
- }
- }
-
- impl<Px, Desc> ValidateResult for Layer<SpecificChannels<Px, Desc>>
- where SpecificChannels<Px, Desc>: ValidateResult
- {
- /// This does an approximate comparison for all channels,
- /// even if some channels can be compressed without loss.
- fn validate_result(&self, other: &Self, _overridden: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
- let location = || format!("{} (layer `{:?}`)", location(), self.attributes.layer_name);
-
- // TODO dedup with above
- if self.attributes != other.attributes { Err(location() + " > attributes") }
- else if self.encoding != other.encoding { Err(location() + " > encoding") }
- else if self.size != other.size { Err(location() + " > size") }
- else {
- let options = ValidationOptions {
- // no tolerance for lossless channels
- // pxr only looses data for f32 values, B44 only for f16, not other any other types
- allow_lossy: other.encoding.compression.may_loose_data(),// TODO check specific channels sample types
-
- // consider nan and zero equal if the compression method does not support nan
- nan_converted_to_zero: other.encoding.compression.supports_nan().not()
- };
-
- self.channel_data.validate_result(&other.channel_data, options, || location() + " > channel_data")?;
- Ok(())
- }
- }
- }
-
- impl<S> ValidateResult for AnyChannels<S> where S: ValidateResult {
- fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
- self.list.validate_result(&other.list, options, location)
- }
- }
-
- impl<S> ValidateResult for AnyChannel<S> where S: ValidateResult {
- fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
- if self.name != other.name { Err(location() + " > name") }
- else if self.quantize_linearly != other.quantize_linearly { Err(location() + " > quantize_linearly") }
- else if self.sampling != other.sampling { Err(location() + " > sampling") }
- else {
- self.sample_data.validate_result(&other.sample_data, options, || location() + " > sample_data")
- }
- }
- }
-
- impl<Pxs, Chans> ValidateResult for SpecificChannels<Pxs, Chans> where Pxs: ValidateResult, Chans: Eq {
- fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
- if self.channels != other.channels { Err(location() + " > specific channels") }
- else { self.pixels.validate_result(&other.pixels, options, || location() + " > specific pixels") }
- }
- }
-
- impl<S> ValidateResult for Levels<S> where S: ValidateResult {
- fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
- self.levels_as_slice().validate_result(&other.levels_as_slice(), options, || location() + " > levels")
- }
- }
-
- impl ValidateResult for FlatSamples {
- fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
- use FlatSamples::*;
- match (self, other) {
- (F16(values), F16(other_values)) => values.as_slice().validate_result(&other_values.as_slice(), options, ||location() + " > f16 samples"),
- (F32(values), F32(other_values)) => values.as_slice().validate_result(&other_values.as_slice(), options, ||location() + " > f32 samples"),
- (U32(values), U32(other_values)) => values.as_slice().validate_result(&other_values.as_slice(), options, ||location() + " > u32 samples"),
- (own, other) => Err(format!("{}: samples type mismatch. expected {:?}, found {:?}", location(), own.sample_type(), other.sample_type()))
- }
- }
- }
-
- impl<T> ValidateResult for &[T] where T: ValidateResult {
- fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
- if self.len() != other.len() { Err(location() + " count") }
- else {
- for (index, (slf, other)) in self.iter().zip(other.iter()).enumerate() {
- slf.validate_result(other, options, ||format!("{} element [{}] of {}", location(), index, self.len()))?;
- }
- Ok(())
- }
- }
- }
-
- impl<A: Array> ValidateResult for SmallVec<A> where A::Item: ValidateResult {
- fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
- self.as_slice().validate_result(&other.as_slice(), options, location)
- }
- }
-
- impl<A> ValidateResult for Vec<A> where A: ValidateResult {
- fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
- self.as_slice().validate_result(&other.as_slice(), options, location)
- }
- }
-
- impl<A,B,C,D> ValidateResult for (A, B, C, D) where A: Clone+ ValidateResult, B: Clone+ ValidateResult, C: Clone+ ValidateResult, D: Clone+ ValidateResult {
- fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
- self.clone().into_recursive().validate_result(&other.clone().into_recursive(), options, location)
- }
- }
-
- impl<A,B,C> ValidateResult for (A, B, C) where A: Clone+ ValidateResult, B: Clone+ ValidateResult, C: Clone+ ValidateResult {
- fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
- self.clone().into_recursive().validate_result(&other.clone().into_recursive(), options, location)
- }
- }
-
- // // (low priority because it is only used in the tests)
- /*TODO
- impl<Tuple> SimilarToLossy for Tuple where
- Tuple: Clone + IntoRecursive,
- <Tuple as IntoRecursive>::Recursive: SimilarToLossy,
- {
- fn similar_to_lossy(&self, other: &Self, max_difference: f32) -> bool {
- self.clone().into_recursive().similar_to_lossy(&other.clone().into_recursive(), max_difference)
- } // TODO no clone?
- }*/
-
-
- // implement for recursive types
- impl ValidateResult for NoneMore {
- fn validate_result(&self, _: &Self, _: ValidationOptions, _: impl Fn()->String) -> ValidationResult { Ok(()) }
- }
-
- impl<Inner, T> ValidateResult for Recursive<Inner, T> where Inner: ValidateResult, T: ValidateResult {
- fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
- self.value.validate_result(&other.value, options, &location).and_then(|()|
- self.inner.validate_result(&other.inner, options, &location)
- )
- }
- }
-
- impl<S> ValidateResult for Option<S> where S: ValidateResult {
- fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
- match (self, other) {
- (None, None) => Ok(()),
- (Some(value), Some(other)) => value.validate_result(other, options, location),
- _ => Err(location() + ": option mismatch")
- }
- }
- }
-
- impl ValidateResult for f32 {
- fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
- if self == other || (self.is_nan() && other.is_nan()) || (options.nan_converted_to_zero && !self.is_normal() && *other == 0.0) {
- return Ok(());
- }
-
- if options.allow_lossy {
- let epsilon = 0.06;
- let max_difference = 0.1;
-
- let adaptive_threshold = epsilon * (self.abs() + other.abs());
- let tolerance = adaptive_threshold.max(max_difference);
- let difference = (self - other).abs();
-
- return if difference <= tolerance { Ok(()) }
- else { Err(format!("{}: expected ~{}, found {} (adaptive tolerance {})", location(), self, other, tolerance)) };
- }
-
- Err(format!("{}: expected exactly {}, found {}", location(), self, other))
- }
- }
-
- impl ValidateResult for f16 {
- fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
- if self.to_bits() == other.to_bits() { Ok(()) } else {
- self.to_f32().validate_result(&other.to_f32(), options, location)
- }
- }
- }
-
- impl ValidateResult for u32 {
- fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
- if self == other { Ok(()) } else { // todo to float conversion resulting in nan/infinity?
- self.to_f32().validate_result(&other.to_f32(), options, location)
- }
- }
- }
-
- impl ValidateResult for Sample {
- fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
- use Sample::*;
- match (self, other) {
- (F16(a), F16(b)) => a.validate_result(b, options, ||location() + " (f16)"),
- (F32(a), F32(b)) => a.validate_result(b, options, ||location() + " (f32)"),
- (U32(a), U32(b)) => a.validate_result(b, options, ||location() + " (u32)"),
- (_,_) => Err(location() + ": sample type mismatch")
- }
- }
- }
-
-
- #[cfg(test)]
- mod test_value_result {
- use std::f32::consts::*;
- use std::io::Cursor;
- use crate::image::pixel_vec::PixelVec;
- use crate::image::validate_results::{ValidateResult, ValidationOptions};
- use crate::meta::attribute::LineOrder::Increasing;
- use crate::image::{FlatSamples};
-
- fn expect_valid<T>(original: &T, result: &T, allow_lossy: bool, nan_converted_to_zero: bool) where T: ValidateResult {
- original.validate_result(
- result,
- ValidationOptions { allow_lossy, nan_converted_to_zero },
- || String::new()
- ).unwrap();
- }
-
- fn expect_invalid<T>(original: &T, result: &T, allow_lossy: bool, nan_converted_to_zero: bool) where T: ValidateResult {
- assert!(original.validate_result(
- result,
- ValidationOptions { allow_lossy, nan_converted_to_zero },
- || String::new()
- ).is_err());
- }
-
- #[test]
- fn test_f32(){
- let original:&[f32] = &[0.0, 0.1, 0.2, 0.3, 0.4, 0.5, -20.4, f32::NAN];
- let lossy:&[f32] = &[0.0, 0.2, 0.2, 0.3, 0.4, 0.5, -20.5, f32::NAN];
-
- expect_valid(&original, &original, true, true);
- expect_valid(&original, &original, true, false);
- expect_valid(&original, &original, false, true);
- expect_valid(&original, &original, false, false);
-
- expect_invalid(&original, &lossy, false, false);
- expect_valid(&original, &lossy, true, false);
-
- expect_invalid(&original, &&original[..original.len()-2], true, true);
-
- // test relative comparison with some large values
- expect_valid(&1_000_f32, &1_001_f32, true, false);
- expect_invalid(&1_000_f32, &1_200_f32, true, false);
-
- expect_valid(&10_000_f32, &10_100_f32, true, false);
- expect_invalid(&10_000_f32, &12_000_f32, true, false);
-
- expect_valid(&33_120_f32, &30_120_f32, true, false);
- expect_invalid(&33_120_f32, &20_120_f32, true, false);
- }
-
- #[test]
- fn test_nan(){
- let original:&[f32] = &[ 0.0, f32::NAN, f32::NAN ];
- let lossy:&[f32] = &[ 0.0, f32::NAN, 0.0 ];
-
- expect_valid(&original, &lossy, true, true);
- expect_invalid(&lossy, &original, true, true);
-
- expect_valid(&lossy, &lossy, true, true);
- expect_valid(&lossy, &lossy, false, true);
- }
-
- #[test]
- fn test_error(){
-
- fn print_error<T: ValidateResult>(original: &T, lossy: &T, allow_lossy: bool){
- let message = original
- .validate_result(
- &lossy,
- ValidationOptions { allow_lossy, .. Default::default() },
- || String::new() // type_name::<T>().to_string()
- )
- .unwrap_err();
-
- println!("message: {}", message);
- }
-
- let original:&[f32] = &[ 0.0, f32::NAN, f32::NAN ];
- let lossy:&[f32] = &[ 0.0, f32::NAN, 0.0 ];
- print_error(&original, &lossy, false);
-
- print_error(&2.0, &1.0, true);
- print_error(&2.0, &1.0, false);
-
- print_error(&FlatSamples::F32(vec![0.1,0.1]), &FlatSamples::F32(vec![0.1,0.2]), false);
- print_error(&FlatSamples::U32(vec![0,0]), &FlatSamples::F32(vec![0.1,0.2]), false);
-
- {
- let image = crate::prelude::read_all_data_from_file("tests/images/valid/openexr/MultiResolution/Kapaa.exr").unwrap();
-
- let mut mutated = image.clone();
- let samples = mutated.layer_data.first_mut().unwrap()
- .channel_data.list.first_mut().unwrap().sample_data.levels_as_slice_mut().first_mut().unwrap();
-
- match samples {
- FlatSamples::F16(vals) => vals[100] = vals[1],
- FlatSamples::F32(vals) => vals[100] = vals[1],
- FlatSamples::U32(vals) => vals[100] = vals[1],
- }
-
- print_error(&image, &mutated, false);
- }
-
- // TODO check out more nested behaviour!
- }
-
- #[test]
- fn test_uncompressed(){
- use crate::prelude::*;
-
- let original_pixels: [(f32,f32,f32); 4] = [
- (0.0, -1.1, PI),
- (0.0, -1.1, TAU),
- (0.0, -1.1, f32::EPSILON),
- (f32::NAN, 10000.1, -1024.009),
- ];
-
- let mut file_bytes = Vec::new();
- let original_image = Image::from_encoded_channels(
- (2,2),
- Encoding {
- compression: Compression::Uncompressed,
- line_order: Increasing, // FIXME unspecified may be optimized to increasing, which destroys test eq
- .. Encoding::default()
- },
- SpecificChannels::rgb(PixelVec::new(Vec2(2,2), original_pixels.to_vec()))
- );
-
- original_image.write().to_buffered(Cursor::new(&mut file_bytes)).unwrap();
-
- let lossy_image = read().no_deep_data().largest_resolution_level()
- .rgb_channels(PixelVec::<(f32,f32,f32)>::constructor, PixelVec::set_pixel)
- .first_valid_layer().all_attributes().from_buffered(Cursor::new(&file_bytes)).unwrap();
-
- original_image.assert_equals_result(&original_image);
- lossy_image.assert_equals_result(&lossy_image);
- original_image.assert_equals_result(&lossy_image);
- lossy_image.assert_equals_result(&original_image);
- }
-
- #[test]
- fn test_compiles(){
- use crate::prelude::*;
-
- fn accepts_validatable_value(_: &impl ValidateResult){}
-
- let object: Levels<FlatSamples> = Levels::Singular(FlatSamples::F32(Vec::default()));
- accepts_validatable_value(&object);
-
- let object: AnyChannels<Levels<FlatSamples>> = AnyChannels::sort(SmallVec::default());
- accepts_validatable_value(&object);
-
- let layer: Layer<AnyChannels<Levels<FlatSamples>>> = Layer::new((0,0), Default::default(), Default::default(), object);
- accepts_validatable_value(&layer);
-
- let layers: Layers<AnyChannels<Levels<FlatSamples>>> = Default::default();
- accepts_validatable_value(&layers);
-
- let object: Image<Layer<AnyChannels<Levels<FlatSamples>>>> = Image::from_layer(layer);
- object.assert_equals_result(&object);
- }
- }
-}
-
-
diff --git a/vendor/exr/src/image/pixel_vec.rs b/vendor/exr/src/image/pixel_vec.rs
deleted file mode 100644
index 3447bf2..0000000
--- a/vendor/exr/src/image/pixel_vec.rs
+++ /dev/null
@@ -1,97 +0,0 @@
-
-//! Provides a predefined pixel storage.
-//! Currently only contains a simple flattened vector storage.
-//! Use the functions `create_pixel_vec::<YourPixelTuple>` and
-//! `set_pixel_in_vec::<YourPixelTuple>` for reading a predefined pixel vector.
-//! Use the function `PixelVec::new` to create a pixel vector which can be written to a file.
-
-use super::*;
-
-/// Store all samples in a single array.
-/// All samples will be converted to the type `T`.
-/// This supports all the sample types, `f16`, `f32`, and `u32`.
-///
-/// The flattened vector contains all rows one after another.
-/// In each row, for each pixel, its red, green, blue, and then alpha
-/// samples are stored one after another.
-///
-/// Use `PixelVec.compute_pixel_index(position)`
-/// to compute the flat index of a specific pixel.
-#[derive(Eq, PartialEq, Clone)]
-pub struct PixelVec<T> {
-
- /// The resolution of this layer.
- pub resolution: Vec2<usize>,
-
- /// The flattened vector contains all rows one after another.
- /// In each row, for each pixel, its red, green, blue, and then alpha
- /// samples are stored one after another.
- ///
- /// Use `Flattened::compute_pixel_index(image, position)`
- /// to compute the flat index of a specific pixel.
- pub pixels: Vec<T>,
-}
-
-impl<Pixel> PixelVec<Pixel> {
-
- /// Create a new flattened pixel storage, filled with default pixels.
- /// Accepts a `Channels` parameter, which is not used, so that it can be passed as a function pointer instead of calling it.
- pub fn constructor<Channels>(resolution: Vec2<usize>, _: &Channels) -> Self where Pixel: Default + Clone {
- PixelVec { resolution, pixels: vec![Pixel::default(); resolution.area()] }
- }
-
- /// Examine a pixel of a `PixelVec<T>` image.
- /// Can usually be used as a function reference instead of calling it directly.
- #[inline]
- pub fn get_pixel(&self, position: Vec2<usize>) -> &Pixel where Pixel: Sync {
- &self.pixels[self.compute_pixel_index(position)]
- }
-
- /// Update a pixel of a `PixelVec<T>` image.
- /// Can usually be used as a function reference instead of calling it directly.
- #[inline]
- pub fn set_pixel(&mut self, position: Vec2<usize>, pixel: Pixel) {
- let index = self.compute_pixel_index(position);
- self.pixels[index] = pixel;
- }
-
- /// Create a new flattened pixel storage, checking the length of the provided pixels vector.
- pub fn new(resolution: impl Into<Vec2<usize>>, pixels: Vec<Pixel>) -> Self {
- let size = resolution.into();
- assert_eq!(size.area(), pixels.len(), "expected {} samples, but vector length is {}", size.area(), pixels.len());
- Self { resolution: size, pixels }
- }
-
- /// Compute the flat index of a specific pixel. Returns a range of either 3 or 4 samples.
- /// The computed index can be used with `PixelVec.samples[index]`.
- /// Panics for invalid sample coordinates.
- #[inline]
- pub fn compute_pixel_index(&self, position: Vec2<usize>) -> usize {
- position.flat_index_for_size(self.resolution)
- }
-}
-
-use crate::image::validate_results::{ValidateResult, ValidationResult};
-
-impl<Px> ValidateResult for PixelVec<Px> where Px: ValidateResult {
- fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn() -> String) -> ValidationResult {
- if self.resolution != other.resolution { Err(location() + " > resolution") }
- else { self.pixels.as_slice().validate_result(&other.pixels.as_slice(), options, || location() + " > pixels") }
- }
-}
-
-impl<Px> GetPixel for PixelVec<Px> where Px: Clone + Sync {
- type Pixel = Px;
- fn get_pixel(&self, position: Vec2<usize>) -> Self::Pixel {
- self.get_pixel(position).clone()
- }
-}
-
-use std::fmt::*;
-
-impl<T> Debug for PixelVec<T> {
- #[inline] fn fmt(&self, formatter: &mut Formatter<'_>) -> std::fmt::Result {
- write!(formatter, "[{}; {}]", std::any::type_name::<T>(), self.pixels.len())
- }
-}
-
diff --git a/vendor/exr/src/image/read/any_channels.rs b/vendor/exr/src/image/read/any_channels.rs
deleted file mode 100644
index 054a7c3..0000000
--- a/vendor/exr/src/image/read/any_channels.rs
+++ /dev/null
@@ -1,128 +0,0 @@
-//! How to read arbitrary channels.
-
-use crate::image::*;
-use crate::meta::header::{Header};
-use crate::error::{Result, UnitResult};
-use crate::block::UncompressedBlock;
-use crate::block::lines::{LineRef};
-use crate::math::Vec2;
-use crate::meta::attribute::{Text, ChannelDescription};
-use crate::image::read::layers::{ReadChannels, ChannelsReader};
-use crate::block::chunk::TileCoordinates;
-
-/// A template that creates an [AnyChannelsReader] for each layer in the image.
-/// This loads all channels for each layer.
-/// The `ReadSamples` can, for example, be [ReadFlatSamples] or [ReadAllLevels<ReadFlatSamples>].
-#[derive(Debug, Clone, Eq, PartialEq)]
-pub struct ReadAnyChannels<ReadSamples> {
-
- /// The sample reading specification
- pub read_samples: ReadSamples
-}
-
-/// A template that creates a new [`SampleReader`] for each channel in each layer.
-pub trait ReadSamples {
-
- /// The type of the temporary samples reader
- type Reader: SamplesReader;
-
- /// Create a single reader for a single channel of a layer
- fn create_sample_reader(&self, header: &Header, channel: &ChannelDescription) -> Result<Self::Reader>;
-}
-
-/// Processes pixel blocks from a file and accumulates them into a collection of arbitrary channels.
-/// Loads all channels for each layer.
-#[derive(Debug, Clone, Eq, PartialEq)]
-pub struct AnyChannelsReader<SamplesReader> {
-
- /// Stores a separate sample reader per channel in the layer
- sample_channels_reader: SmallVec<[AnyChannelReader<SamplesReader>; 4]>,
-}
-
-/// Processes pixel blocks from a file and accumulates them into a single arbitrary channel.
-#[derive(Debug, Clone, Eq, PartialEq)]
-pub struct AnyChannelReader<SamplesReader> {
-
- /// The custom reader that accumulates the pixel data for a single channel
- samples: SamplesReader,
-
- /// Temporarily accumulated meta data.
- name: Text,
-
- /// Temporarily accumulated meta data.
- sampling_rate: Vec2<usize>,
-
- /// Temporarily accumulated meta data.
- quantize_linearly: bool,
-}
-
-/// Processes pixel blocks from a file and accumulates them into a single pixel channel.
-/// For example, stores thousands of "Red" pixel values for a single layer.
-pub trait SamplesReader {
-
- /// The type of resulting sample storage
- type Samples;
-
- /// Specify whether a single block of pixels should be loaded from the file
- fn filter_block(&self, tile: TileCoordinates) -> bool;
-
- /// Load a single pixel line, which has not been filtered, into the reader, accumulating the sample data
- fn read_line(&mut self, line: LineRef<'_>) -> UnitResult;
-
- /// Deliver the final accumulated sample storage for the image
- fn into_samples(self) -> Self::Samples;
-}
-
-
-impl<'s, S: 's + ReadSamples> ReadChannels<'s> for ReadAnyChannels<S> {
- type Reader = AnyChannelsReader<S::Reader>;
-
- fn create_channels_reader(&self, header: &Header) -> Result<Self::Reader> {
- let samples: Result<_> = header.channels.list.iter()
- .map(|channel: &ChannelDescription| Ok(AnyChannelReader {
- samples: self.read_samples.create_sample_reader(header, channel)?,
- name: channel.name.clone(),
- sampling_rate: channel.sampling,
- quantize_linearly: channel.quantize_linearly
- }))
- .collect();
-
- Ok(AnyChannelsReader { sample_channels_reader: samples? })
- }
-}
-
-impl<S: SamplesReader> ChannelsReader for AnyChannelsReader<S> {
- type Channels = AnyChannels<S::Samples>;
-
- fn filter_block(&self, tile: TileCoordinates) -> bool {
- self.sample_channels_reader.iter().any(|channel| channel.samples.filter_block(tile))
- }
-
- fn read_block(&mut self, header: &Header, decompressed: UncompressedBlock) -> UnitResult {
- /*for (bytes, line) in LineIndex::lines_in_block(decompressed.index, header) {
- let channel = self.sample_channels_reader.get_mut(line.channel).unwrap();
- channel.samples.read_line(LineSlice { location: line, value: &decompressed.data[bytes] })?;
- }
-
- Ok(())*/
- for line in decompressed.lines(&header.channels) {
- self.sample_channels_reader[line.location.channel].samples.read_line(line)?;
- }
-
- Ok(())
- }
-
- fn into_channels(self) -> Self::Channels {
- AnyChannels { // not using `new()` as the channels are already sorted
- list: self.sample_channels_reader.into_iter()
- .map(|channel| AnyChannel {
- sample_data: channel.samples.into_samples(),
-
- name: channel.name,
- quantize_linearly: channel.quantize_linearly,
- sampling: channel.sampling_rate
- })
- .collect()
- }
- }
-}
diff --git a/vendor/exr/src/image/read/image.rs b/vendor/exr/src/image/read/image.rs
deleted file mode 100644
index fce2f52..0000000
--- a/vendor/exr/src/image/read/image.rs
+++ /dev/null
@@ -1,209 +0,0 @@
-//! The last wrapper of image readers, finally containing the [`from_file(path)`] method.
-//! This completes the builder and reads a complete image.
-
-use crate::image::*;
-use crate::meta::header::{Header, ImageAttributes};
-use crate::error::{Result, UnitResult};
-use crate::block::{UncompressedBlock, BlockIndex};
-use crate::block::chunk::TileCoordinates;
-use std::path::Path;
-use std::io::{Read, BufReader};
-use std::io::Seek;
-use crate::meta::MetaData;
-use crate::block::reader::ChunksReader;
-
-/// Specify whether to read the image in parallel,
-/// whether to use pedantic error handling,
-/// and a callback for the reading progress.
-#[derive(Debug, Clone)]
-pub struct ReadImage<OnProgress, ReadLayers> {
- on_progress: OnProgress,
- read_layers: ReadLayers,
- pedantic: bool,
- parallel: bool,
-}
-
-impl<F, L> ReadImage<F, L> where F: FnMut(f64)
-{
- /// Uses relaxed error handling and parallel decompression.
- pub fn new(read_layers: L, on_progress: F) -> Self {
- Self {
- on_progress, read_layers,
- pedantic: false, parallel: true,
- }
- }
-
- /// Specify that any missing or unusual information should result in an error.
- /// Otherwise, `exrs` will try to compute or ignore missing information.
- ///
- /// If pedantic is true, then an error will be returned as soon as anything is missing in the file,
- /// or two values in the image contradict each other. If pedantic is false,
- /// then only fatal errors will be thrown. By default, reading an image is not pedantic,
- /// which means that slightly invalid files might still be readable.
- /// For example, if some attribute is missing but can be recomputed, this flag decides whether an error is thrown.
- /// Or if the pedantic flag is true and there are still bytes left after the decompression algorithm finished,
- /// an error is thrown, because this should not happen and something might be wrong with the file.
- /// Or if your application is a target of attacks, or if you want to emulate the original C++ library,
- /// you might want to switch to pedantic reading.
- pub fn pedantic(self) -> Self { Self { pedantic: true, ..self } }
-
- /// Specify that multiple pixel blocks should never be decompressed using multiple threads at once.
- /// This might be slower but uses less memory and less synchronization.
- pub fn non_parallel(self) -> Self { Self { parallel: false, ..self } }
-
- /// Specify a function to be called regularly throughout the loading process.
- /// Replaces all previously specified progress functions in this reader.
- pub fn on_progress<OnProgress>(self, on_progress: OnProgress) -> ReadImage<OnProgress, L>
- where OnProgress: FnMut(f64)
- {
- ReadImage {
- on_progress,
- read_layers: self.read_layers,
- pedantic: self.pedantic,
- parallel: self.parallel
- }
- }
-
-
- /// Read the exr image from a file.
- /// Use [`ReadImage::read_from_unbuffered`] instead, if you do not have a file.
- #[inline]
- #[must_use]
- pub fn from_file<Layers>(self, path: impl AsRef<Path>) -> Result<Image<Layers>>
- where for<'s> L: ReadLayers<'s, Layers = Layers>
- {
- self.from_unbuffered(std::fs::File::open(path)?)
- }
-
- /// Buffer the reader and then read the exr image from it.
- /// Use [`ReadImage::read_from_buffered`] instead, if your reader is an in-memory reader.
- /// Use [`ReadImage::read_from_file`] instead, if you have a file path.
- #[inline]
- #[must_use]
- pub fn from_unbuffered<Layers>(self, unbuffered: impl Read + Seek) -> Result<Image<Layers>>
- where for<'s> L: ReadLayers<'s, Layers = Layers>
- {
- self.from_buffered(BufReader::new(unbuffered))
- }
-
- /// Read the exr image from a buffered reader.
- /// Use [`ReadImage::read_from_file`] instead, if you have a file path.
- /// Use [`ReadImage::read_from_unbuffered`] instead, if this is not an in-memory reader.
- // TODO Use Parallel<> Wrapper to only require sendable byte source where parallel decompression is required
- #[must_use]
- pub fn from_buffered<Layers>(self, buffered: impl Read + Seek) -> Result<Image<Layers>>
- where for<'s> L: ReadLayers<'s, Layers = Layers>
- {
- let chunks = crate::block::read(buffered, self.pedantic)?;
- self.from_chunks(chunks)
- }
-
- /// Read the exr image from an initialized chunks reader
- /// that has already extracted the meta data from the file.
- /// Use [`ReadImage::read_from_file`] instead, if you have a file path.
- /// Use [`ReadImage::read_from_buffered`] instead, if this is an in-memory reader.
- // TODO Use Parallel<> Wrapper to only require sendable byte source where parallel decompression is required
- #[must_use]
- pub fn from_chunks<Layers>(mut self, chunks_reader: crate::block::reader::Reader<impl Read + Seek>) -> Result<Image<Layers>>
- where for<'s> L: ReadLayers<'s, Layers = Layers>
- {
- let Self { pedantic, parallel, ref mut on_progress, ref mut read_layers } = self;
-
- let layers_reader = read_layers.create_layers_reader(chunks_reader.headers())?;
- let mut image_collector = ImageWithAttributesReader::new(chunks_reader.headers(), layers_reader)?;
-
- let block_reader = chunks_reader
- .filter_chunks(pedantic, |meta, tile, block| {
- image_collector.filter_block(meta, tile, block)
- })?
- .on_progress(on_progress);
-
- // TODO propagate send requirement further upwards
- if parallel {
- block_reader.decompress_parallel(pedantic, |meta_data, block|{
- image_collector.read_block(&meta_data.headers, block)
- })?;
- }
- else {
- block_reader.decompress_sequential(pedantic, |meta_data, block|{
- image_collector.read_block(&meta_data.headers, block)
- })?;
- }
-
- Ok(image_collector.into_image())
- }
-}
-
-/// Processes blocks from a file and collects them into a complete `Image`.
-#[derive(Debug, Clone, PartialEq)]
-pub struct ImageWithAttributesReader<L> {
- image_attributes: ImageAttributes,
- layers_reader: L,
-}
-
-impl<L> ImageWithAttributesReader<L> where L: LayersReader {
-
- /// A new image reader with image attributes.
- pub fn new(headers: &[Header], layers_reader: L) -> Result<Self>
- {
- Ok(ImageWithAttributesReader {
- image_attributes: headers.first().as_ref().expect("invalid headers").shared_attributes.clone(),
- layers_reader,
- })
- }
-
- /// Specify whether a single block of pixels should be loaded from the file
- fn filter_block(&self, meta: &MetaData, tile: TileCoordinates, block: BlockIndex) -> bool {
- self.layers_reader.filter_block(meta, tile, block)
- }
-
- /// Load a single pixel block, which has not been filtered, into the reader, accumulating the image
- fn read_block(&mut self, headers: &[Header], block: UncompressedBlock) -> UnitResult {
- self.layers_reader.read_block(headers, block)
- }
-
- /// Deliver the complete accumulated image
- fn into_image(self) -> Image<L::Layers> {
- Image {
- attributes: self.image_attributes,
- layer_data: self.layers_reader.into_layers()
- }
- }
-}
-
-
-/// A template that creates a `LayerReader` for each layer in the file.
-pub trait ReadLayers<'s> {
-
- /// The type of the resulting Layers
- type Layers;
-
- /// The type of the temporary layer reader
- type Reader: LayersReader<Layers = Self::Layers>;
-
- /// Create a single reader for a single layer
- fn create_layers_reader(&'s self, headers: &[Header]) -> Result<Self::Reader>;
-
- /// Specify that all attributes should be read from an image.
- /// Use `from_file(path)` on the return value of this method to actually decode an image.
- fn all_attributes(self) -> ReadImage<fn(f64), Self> where Self: Sized {
- ReadImage::new(self, ignore_progress)
- }
-}
-
-/// Processes pixel blocks from a file and accumulates them into a single image layer.
-pub trait LayersReader {
-
- /// The type of resulting layers
- type Layers;
-
- /// Specify whether a single block of pixels should be loaded from the file
- fn filter_block(&self, meta: &MetaData, tile: TileCoordinates, block: BlockIndex) -> bool;
-
- /// Load a single pixel block, which has not been filtered, into the reader, accumulating the layer
- fn read_block(&mut self, headers: &[Header], block: UncompressedBlock) -> UnitResult;
-
- /// Deliver the final accumulated layers for the image
- fn into_layers(self) -> Self::Layers;
-}
-
diff --git a/vendor/exr/src/image/read/layers.rs b/vendor/exr/src/image/read/layers.rs
deleted file mode 100644
index 75159c2..0000000
--- a/vendor/exr/src/image/read/layers.rs
+++ /dev/null
@@ -1,204 +0,0 @@
-//! How to read either a single or a list of layers.
-
-use crate::image::*;
-use crate::meta::header::{Header, LayerAttributes};
-use crate::error::{Result, UnitResult, Error};
-use crate::block::{UncompressedBlock, BlockIndex};
-use crate::math::Vec2;
-use crate::image::read::image::{ReadLayers, LayersReader};
-use crate::block::chunk::TileCoordinates;
-use crate::meta::MetaData;
-
-/// Specify to read all channels, aborting if any one is invalid.
-/// [`ReadRgbaChannels`] or [`ReadAnyChannels<ReadFlatSamples>`].
-#[derive(Debug, Clone, Eq, PartialEq)]
-pub struct ReadAllLayers<ReadChannels> {
-
- /// The channel reading specification
- pub read_channels: ReadChannels,
-}
-
-/// Specify to read only the first layer which meets the previously specified requirements
-// FIXME do not throw error on deep data but just skip it!
-#[derive(Debug, Clone, Eq, PartialEq)]
-pub struct ReadFirstValidLayer<ReadChannels> {
-
- /// The channel reading specification
- pub read_channels: ReadChannels,
-}
-
-/// A template that creates a [`ChannelsReader`] once for all channels per layer.
-pub trait ReadChannels<'s> {
-
- /// The type of the temporary channels reader
- type Reader: ChannelsReader;
-
- /// Create a single reader for all channels of a specific layer
- fn create_channels_reader(&'s self, header: &Header) -> Result<Self::Reader>;
-
-
- /// Read only the first layer which meets the previously specified requirements
- /// For example, skips layers with deep data, if specified earlier.
- /// Aborts if the image contains no layers.
- // TODO test if this filters non-deep layers while ignoring deep data layers!
- fn first_valid_layer(self) -> ReadFirstValidLayer<Self> where Self:Sized { ReadFirstValidLayer { read_channels: self } }
-
-// FIXME do not throw error on deep data but just skip it!
-
-
- /// Reads all layers, including an empty list. Aborts if any of the layers are invalid,
- /// even if only one of the layers contains unexpected data.
- fn all_layers(self) -> ReadAllLayers<Self> where Self:Sized { ReadAllLayers { read_channels: self } }
-
- // TODO pub fn all_valid_layers(self) -> ReadAllValidLayers<Self> { ReadAllValidLayers { read_channels: self } }
-}
-
-
-/// Processes pixel blocks from a file and accumulates them into a list of layers.
-/// For example, `ChannelsReader` can be
-/// [`SpecificChannelsReader`] or [`AnyChannelsReader<FlatSamplesReader>`].
-#[derive(Debug, Clone, PartialEq)]
-pub struct AllLayersReader<ChannelsReader> {
- layer_readers: SmallVec<[LayerReader<ChannelsReader>; 2]>, // TODO unpack struct?
-}
-
-/// Processes pixel blocks from a file and accumulates them into a single layers, using only the first.
-/// For example, `ChannelsReader` can be
-/// `SpecificChannelsReader` or `AnyChannelsReader<FlatSamplesReader>`.
-#[derive(Debug, Clone, PartialEq)]
-pub struct FirstValidLayerReader<ChannelsReader> {
- layer_reader: LayerReader<ChannelsReader>,
- layer_index: usize,
-}
-
-/// Processes pixel blocks from a file and accumulates them into a single layers.
-/// For example, `ChannelsReader` can be
-/// `SpecificChannelsReader` or `AnyChannelsReader<FlatSamplesReader>`.
-#[derive(Debug, Clone, PartialEq)]
-pub struct LayerReader<ChannelsReader> {
- channels_reader: ChannelsReader,
- attributes: LayerAttributes,
- size: Vec2<usize>,
- encoding: Encoding
-}
-
-/// Processes pixel blocks from a file and accumulates them into multiple channels per layer.
-pub trait ChannelsReader {
-
- /// The type of the resulting channel collection
- type Channels;
-
- /// Specify whether a single block of pixels should be loaded from the file
- fn filter_block(&self, tile: TileCoordinates) -> bool;
-
- /// Load a single pixel block, which has not been filtered, into the reader, accumulating the channel data
- fn read_block(&mut self, header: &Header, block: UncompressedBlock) -> UnitResult;
-
- /// Deliver the final accumulated channel collection for the image
- fn into_channels(self) -> Self::Channels;
-}
-
-
-impl<C> LayerReader<C> {
- fn new(header: &Header, channels_reader: C) -> Result<Self> {
- Ok(LayerReader {
- channels_reader,
- attributes: header.own_attributes.clone(),
- size: header.layer_size,
- encoding: Encoding {
- compression: header.compression,
- line_order: header.line_order,
- blocks: match header.blocks {
- crate::meta::BlockDescription::ScanLines => Blocks::ScanLines,
- crate::meta::BlockDescription::Tiles(TileDescription { tile_size, .. }) => Blocks::Tiles(tile_size)
- },
- },
- })
- }
-}
-
-impl<'s, C> ReadLayers<'s> for ReadAllLayers<C> where C: ReadChannels<'s> {
- type Layers = Layers<<C::Reader as ChannelsReader>::Channels>;
- type Reader = AllLayersReader<C::Reader>;
-
- fn create_layers_reader(&'s self, headers: &[Header]) -> Result<Self::Reader> {
- let readers: Result<_> = headers.iter()
- .map(|header| LayerReader::new(header, self.read_channels.create_channels_reader(header)?))
- .collect();
-
- Ok(AllLayersReader {
- layer_readers: readers?
- })
- }
-}
-
-impl<C> LayersReader for AllLayersReader<C> where C: ChannelsReader {
- type Layers = Layers<C::Channels>;
-
- fn filter_block(&self, _: &MetaData, tile: TileCoordinates, block: BlockIndex) -> bool {
- let layer = self.layer_readers.get(block.layer).expect("invalid layer index argument");
- layer.channels_reader.filter_block(tile)
- }
-
- fn read_block(&mut self, headers: &[Header], block: UncompressedBlock) -> UnitResult {
- self.layer_readers
- .get_mut(block.index.layer).expect("invalid layer index argument")
- .channels_reader.read_block(headers.get(block.index.layer).expect("invalid header index in block"), block)
- }
-
- fn into_layers(self) -> Self::Layers {
- self.layer_readers
- .into_iter()
- .map(|layer| Layer {
- channel_data: layer.channels_reader.into_channels(),
- attributes: layer.attributes,
- size: layer.size,
- encoding: layer.encoding
- })
- .collect()
- }
-}
-
-
-impl<'s, C> ReadLayers<'s> for ReadFirstValidLayer<C> where C: ReadChannels<'s> {
- type Layers = Layer<<C::Reader as ChannelsReader>::Channels>;
- type Reader = FirstValidLayerReader<C::Reader>;
-
- fn create_layers_reader(&'s self, headers: &[Header]) -> Result<Self::Reader> {
- headers.iter().enumerate()
- .flat_map(|(index, header)|
- self.read_channels.create_channels_reader(header)
- .and_then(|reader| Ok(FirstValidLayerReader {
- layer_reader: LayerReader::new(header, reader)?,
- layer_index: index
- }))
- .ok()
- )
- .next()
- .ok_or(Error::invalid("no layer in the image matched your specified requirements"))
- }
-}
-
-
-impl<C> LayersReader for FirstValidLayerReader<C> where C: ChannelsReader {
- type Layers = Layer<C::Channels>;
-
- fn filter_block(&self, _: &MetaData, tile: TileCoordinates, block: BlockIndex) -> bool {
- block.layer == self.layer_index && self.layer_reader.channels_reader.filter_block(tile)
- }
-
- fn read_block(&mut self, headers: &[Header], block: UncompressedBlock) -> UnitResult {
- debug_assert_eq!(block.index.layer, self.layer_index, "block should have been filtered out");
- self.layer_reader.channels_reader.read_block(&headers[self.layer_index], block)
- }
-
- fn into_layers(self) -> Self::Layers {
- Layer {
- channel_data: self.layer_reader.channels_reader.into_channels(),
- attributes: self.layer_reader.attributes,
- size: self.layer_reader.size,
- encoding: self.layer_reader.encoding
- }
- }
-}
-
diff --git a/vendor/exr/src/image/read/levels.rs b/vendor/exr/src/image/read/levels.rs
deleted file mode 100644
index 5705903..0000000
--- a/vendor/exr/src/image/read/levels.rs
+++ /dev/null
@@ -1,219 +0,0 @@
-//! How to read a set of resolution levels.
-
-use crate::meta::*;
-use crate::image::*;
-use crate::error::*;
-use crate::meta::attribute::*;
-use crate::image::read::any_channels::*;
-use crate::block::chunk::TileCoordinates;
-use crate::image::read::specific_channels::*;
-use crate::image::recursive::*;
-use crate::math::Vec2;
-use crate::block::lines::LineRef;
-use crate::block::samples::*;
-use crate::meta::header::{Header};
-
-
-// Note: In the resulting image, the `FlatSamples` are placed
-// directly inside the channels, without `LargestLevel<>` indirection
-/// Specify to read only the highest resolution level, skipping all smaller variations.
-/// The sample storage can be [`ReadFlatSamples`].
-#[derive(Debug, Clone, Eq, PartialEq)]
-pub struct ReadLargestLevel<DeepOrFlatSamples> {
-
- /// The sample reading specification
- pub read_samples: DeepOrFlatSamples
-}
-
-
-// FIXME rgba levels???
-
-// Read the largest level, directly, without intermediate structs
-impl<DeepOrFlatSamples> ReadLargestLevel<DeepOrFlatSamples> {
-
- /// Read all arbitrary channels in each layer.
- pub fn all_channels(self) -> ReadAnyChannels<DeepOrFlatSamples> { ReadAnyChannels { read_samples: self.read_samples } } // Instead of Self, the `FlatSamples` are used directly
-
- /// Read only layers that contain rgba channels. Skips any other channels in the layer.
- /// The alpha channel will contain the value `1.0` if no alpha channel can be found in the image.
- ///
- /// Using two closures, define how to store the pixels.
- /// The first closure creates an image, and the second closure inserts a single pixel.
- /// The type of the pixel can be defined by the second closure;
- /// it must be a tuple containing four values, each being either `f16`, `f32`, `u32` or `Sample`.
- ///
- /// Throws an error for images with deep data or subsampling.
- /// Use `specific_channels` or `all_channels` if you want to read something other than rgba.
- pub fn rgba_channels<R,G,B,A, Create, Set, Pixels>(
- self, create_pixels: Create, set_pixel: Set
- ) -> CollectPixels<
- ReadOptionalChannel<ReadRequiredChannel<ReadRequiredChannel<ReadRequiredChannel<NoneMore, R>, G>, B>, A>,
- (R, G, B, A), Pixels, Create, Set
- >
- where
- R: FromNativeSample, G: FromNativeSample, B: FromNativeSample, A: FromNativeSample,
- Create: Fn(Vec2<usize>, &RgbaChannels) -> Pixels,
- Set: Fn(&mut Pixels, Vec2<usize>, (R,G,B,A)),
- {
- self.specific_channels()
- .required("R").required("G").required("B")
- .optional("A", A::from_f32(1.0))
- .collect_pixels(create_pixels, set_pixel)
- }
-
- /// Read only layers that contain rgb channels. Skips any other channels in the layer.
- ///
- /// Using two closures, define how to store the pixels.
- /// The first closure creates an image, and the second closure inserts a single pixel.
- /// The type of the pixel can be defined by the second closure;
- /// it must be a tuple containing three values, each being either `f16`, `f32`, `u32` or `Sample`.
- ///
- /// Throws an error for images with deep data or subsampling.
- /// Use `specific_channels` or `all_channels` if you want to read something other than rgb.
- pub fn rgb_channels<R,G,B, Create, Set, Pixels>(
- self, create_pixels: Create, set_pixel: Set
- ) -> CollectPixels<
- ReadRequiredChannel<ReadRequiredChannel<ReadRequiredChannel<NoneMore, R>, G>, B>,
- (R, G, B), Pixels, Create, Set
- >
- where
- R: FromNativeSample, G: FromNativeSample, B: FromNativeSample,
- Create: Fn(Vec2<usize>, &RgbChannels) -> Pixels,
- Set: Fn(&mut Pixels, Vec2<usize>, (R,G,B)),
- {
- self.specific_channels()
- .required("R").required("G").required("B")
- .collect_pixels(create_pixels, set_pixel)
- }
-
- /// Read only layers that contain the specified channels, skipping any other channels in the layer.
- /// Further specify which channels should be included by calling `.required("ChannelName")`
- /// or `.optional("ChannelName", default_value)` on the result of this function.
- /// Call `collect_pixels` afterwards to define the pixel container for your set of channels.
- ///
- /// Throws an error for images with deep data or subsampling.
- pub fn specific_channels(self) -> ReadZeroChannels {
- ReadZeroChannels { }
- }
-}
-
-/// Specify to read all contained resolution levels from the image, if any.
-#[derive(Debug, Clone, Eq, PartialEq)]
-pub struct ReadAllLevels<DeepOrFlatSamples> {
-
- /// The sample reading specification
- pub read_samples: DeepOrFlatSamples
-}
-
-impl<ReadDeepOrFlatSamples> ReadAllLevels<ReadDeepOrFlatSamples> {
-
- /// Read all arbitrary channels in each layer.
- pub fn all_channels(self) -> ReadAnyChannels<Self> { ReadAnyChannels { read_samples: self } }
-
- // TODO specific channels for multiple resolution levels
-
-}
-
-/*pub struct ReadLevels<S> {
- read_samples: S,
-}*/
-
-/// Processes pixel blocks from a file and accumulates them into multiple levels per channel.
-#[derive(Debug, Clone, Eq, PartialEq)]
-pub struct AllLevelsReader<SamplesReader> {
- levels: Levels<SamplesReader>,
-}
-
-/// A template that creates a [`SamplesReader`] once for each resolution level.
-pub trait ReadSamplesLevel {
-
- /// The type of the temporary level reader
- type Reader: SamplesReader;
-
- /// Create a single reader for a single resolution level
- fn create_samples_level_reader(&self, header: &Header, channel: &ChannelDescription, level: Vec2<usize>, resolution: Vec2<usize>) -> Result<Self::Reader>;
-}
-
-
-impl<S: ReadSamplesLevel> ReadSamples for ReadAllLevels<S> {
- type Reader = AllLevelsReader<S::Reader>;
-
- fn create_sample_reader(&self, header: &Header, channel: &ChannelDescription) -> Result<Self::Reader> {
- let data_size = header.layer_size / channel.sampling;
-
- let levels = {
- if let crate::meta::BlockDescription::Tiles(tiles) = &header.blocks {
- match tiles.level_mode {
- LevelMode::Singular => Levels::Singular(self.read_samples.create_samples_level_reader(header, channel, Vec2(0,0), header.layer_size)?),
-
- LevelMode::MipMap => Levels::Mip {
- rounding_mode: tiles.rounding_mode,
- level_data: {
- let round = tiles.rounding_mode;
- let maps: Result<LevelMaps<S::Reader>> = mip_map_levels(round, data_size)
- .map(|(index, level_size)| self.read_samples.create_samples_level_reader(header, channel, Vec2(index, index), level_size))
- .collect();
-
- maps?
- },
- },
-
- // TODO put this into Levels::new(..) ?
- LevelMode::RipMap => Levels::Rip {
- rounding_mode: tiles.rounding_mode,
- level_data: {
- let round = tiles.rounding_mode;
- let level_count_x = compute_level_count(round, data_size.width());
- let level_count_y = compute_level_count(round, data_size.height());
- let maps: Result<LevelMaps<S::Reader>> = rip_map_levels(round, data_size)
- .map(|(index, level_size)| self.read_samples.create_samples_level_reader(header, channel, index, level_size))
- .collect();
-
- RipMaps {
- map_data: maps?,
- level_count: Vec2(level_count_x, level_count_y)
- }
- },
- },
- }
- }
-
- // scan line blocks never have mip maps
- else {
- Levels::Singular(self.read_samples.create_samples_level_reader(header, channel, Vec2(0, 0), data_size)?)
- }
- };
-
- Ok(AllLevelsReader { levels })
- }
-}
-
-
-impl<S: SamplesReader> SamplesReader for AllLevelsReader<S> {
- type Samples = Levels<S::Samples>;
-
- fn filter_block(&self, _: TileCoordinates) -> bool {
- true
- }
-
- fn read_line(&mut self, line: LineRef<'_>) -> UnitResult {
- self.levels.get_level_mut(line.location.level)?.read_line(line)
- }
-
- fn into_samples(self) -> Self::Samples {
- match self.levels {
- Levels::Singular(level) => Levels::Singular(level.into_samples()),
- Levels::Mip { rounding_mode, level_data } => Levels::Mip {
- rounding_mode, level_data: level_data.into_iter().map(|s| s.into_samples()).collect(),
- },
-
- Levels::Rip { rounding_mode, level_data } => Levels::Rip {
- rounding_mode,
- level_data: RipMaps {
- level_count: level_data.level_count,
- map_data: level_data.map_data.into_iter().map(|s| s.into_samples()).collect(),
- }
- },
- }
- }
-}
diff --git a/vendor/exr/src/image/read/mod.rs b/vendor/exr/src/image/read/mod.rs
deleted file mode 100644
index c03fc90..0000000
--- a/vendor/exr/src/image/read/mod.rs
+++ /dev/null
@@ -1,207 +0,0 @@
-
-//! Read an exr image.
-//!
-//! For great flexibility and customization, use the `read()` function.
-//! The return value of the `read()` function must be further customized before reading a file.
-
-//!
-//! For very simple applications, you can alternatively use one of these functions:
-//!
-//! 1. `read_first_rgba_layer_from_file(path, your_constructor, your_pixel_setter)`:
-//! You specify how to store the pixels.
-//! The first layer containing rgba channels is then loaded from the file.
-//! Fails if no rgba layer can be found.
-//!
-//! 1. `read_all_rgba_layers_from_file(path, your_constructor, your_pixel_setter)`:
-//! You specify how to store the pixels.
-//! All layers containing rgba channels are then loaded from the file.
-//! Fails if any layer in the image does not contain rgba channels.
-//!
-//! 1. `read_first_flat_layer_from_file(path)`:
-//! The first layer containing non-deep data with arbitrary channels is loaded from the file.
-//! Fails if no non-deep layer can be found.
-//!
-//! 1. `read_all_flat_layers_from_file(path)`:
-//! All layers containing non-deep data with arbitrary channels are loaded from the file.
-//! Fails if any layer in the image contains deep data.
-//!
-//! 1. `read_all_data_from_file(path)`:
-//! All layers with arbitrary channels and all resolution levels are extracted from the file.
-//!
-//! Note: Currently does not support deep data, and currently fails
-//! if any layer in the image contains deep data.
-//!
-
-// The following three stages are internally used to read an image.
-// 1. `ReadImage` - The specification. Contains everything the user wants to tell us about loading an image.
-// The data in this structure will be instantiated and might be borrowed.
-// 2. `ImageReader` - The temporary reader. Based on the specification of the blueprint,
-// a reader is instantiated, once for each layer.
-// This data structure accumulates the image data from the file.
-// It also owns temporary data and references the blueprint.
-// 3. `Image` - The clean image. The accumulated data from the Reader
-// is converted to the clean image structure, without temporary data.
-
-pub mod image;
-pub mod layers;
-pub mod any_channels;
-pub mod levels;
-pub mod samples;
-pub mod specific_channels;
-
-use crate::error::{Result};
-use crate::image::read::samples::{ReadFlatSamples};
-use std::path::Path;
-use crate::image::{AnyImage, AnyChannels, FlatSamples, Image, Layer, FlatImage, PixelLayersImage, RgbaChannels};
-use crate::image::read::image::ReadLayers;
-use crate::image::read::layers::ReadChannels;
-use crate::math::Vec2;
-use crate::prelude::{PixelImage};
-use crate::block::samples::FromNativeSample;
-
-
-/// All resolution levels, all channels, all layers.
-/// Does not support deep data yet. Uses parallel decompression and relaxed error handling.
-/// Inspect the source code of this function if you need customization.
-pub fn read_all_data_from_file(path: impl AsRef<Path>) -> Result<AnyImage> {
- read()
- .no_deep_data() // TODO deep data
- .all_resolution_levels()
- .all_channels()
- .all_layers()
- .all_attributes()
- .from_file(path)
-}
-
-// FIXME do not throw error on deep data but just skip it!
-/// No deep data, no resolution levels, all channels, all layers.
-/// Uses parallel decompression and relaxed error handling.
-/// Inspect the source code of this function if you need customization.
-pub fn read_all_flat_layers_from_file(path: impl AsRef<Path>) -> Result<FlatImage> {
- read()
- .no_deep_data()
- .largest_resolution_level()
- .all_channels()
- .all_layers()
- .all_attributes()
- .from_file(path)
-}
-
-/// No deep data, no resolution levels, all channels, first layer.
-/// Uses parallel decompression and relaxed error handling.
-/// Inspect the source code of this function if you need customization.
-pub fn read_first_flat_layer_from_file(path: impl AsRef<Path>) -> Result<Image<Layer<AnyChannels<FlatSamples>>>> {
- read()
- .no_deep_data()
- .largest_resolution_level()
- .all_channels()
- .first_valid_layer()
- .all_attributes()
- .from_file(path)
-}
-
-/// No deep data, no resolution levels, rgba channels, all layers.
-/// If a single layer does not contain rgba data, this method returns an error.
-/// Uses parallel decompression and relaxed error handling.
-/// `Create` and `Set` can be closures, see the examples for more information.
-/// Inspect the source code of this function if you need customization.
-/// The alpha channel will contain the value `1.0` if no alpha channel can be found in the image.
-///
-/// Using two closures, define how to store the pixels.
-/// The first closure creates an image, and the second closure inserts a single pixel.
-/// The type of the pixel can be defined by the second closure;
-/// it must be a tuple containing four values, each being either `f16`, `f32`, `u32` or `Sample`.
-// FIXME Set and Create should not need to be static
-pub fn read_all_rgba_layers_from_file<R,G,B,A, Set:'static, Create:'static, Pixels: 'static>(
- path: impl AsRef<Path>, create: Create, set_pixel: Set
-)
- -> Result<PixelLayersImage<Pixels, RgbaChannels>>
- where
- R: FromNativeSample, G: FromNativeSample, B: FromNativeSample, A: FromNativeSample,
- Create: Fn(Vec2<usize>, &RgbaChannels) -> Pixels, // TODO type alias? CreateRgbaPixels<Pixels=Pixels>,
- Set: Fn(&mut Pixels, Vec2<usize>, (R,G,B,A)),
-{
- read()
- .no_deep_data()
- .largest_resolution_level()
- .rgba_channels(create, set_pixel)
- .all_layers()
- .all_attributes()
- .from_file(path)
-}
-
-/// No deep data, no resolution levels, rgba channels, choosing the first layer with rgba channels.
-/// Uses parallel decompression and relaxed error handling.
-/// `Create` and `Set` can be closures, see the examples for more information.
-/// Inspect the source code of this function if you need customization.
-/// The alpha channel will contain the value `1.0` if no alpha channel can be found in the image.
-///
-/// Using two closures, define how to store the pixels.
-/// The first closure creates an image, and the second closure inserts a single pixel.
-/// The type of the pixel can be defined by the second closure;
-/// it must be a tuple containing four values, each being either `f16`, `f32`, `u32` or `Sample`.
-// FIXME Set and Create should not need to be static
-pub fn read_first_rgba_layer_from_file<R,G,B,A, Set:'static, Create:'static, Pixels: 'static>(
- path: impl AsRef<Path>, create: Create, set_pixel: Set
-)
- -> Result<PixelImage<Pixels, RgbaChannels>>
- where
- R: FromNativeSample, G: FromNativeSample, B: FromNativeSample, A: FromNativeSample,
- Create: Fn(Vec2<usize>, &RgbaChannels) -> Pixels, // TODO type alias? CreateRgbaPixels<Pixels=Pixels>,
- Set: Fn(&mut Pixels, Vec2<usize>, (R,G,B,A)),
-{
- read()
- .no_deep_data()
- .largest_resolution_level()
- .rgba_channels(create, set_pixel)
- .first_valid_layer()
- .all_attributes()
- .from_file(path)
-}
-
-
-/// Utilizes the builder pattern to configure an image reader. This is the initial struct.
-#[derive(Copy, Clone, Debug, Eq, PartialEq)]
-pub struct ReadBuilder;
-
-/// Create a reader which can be used to load an exr image.
-/// Allows you to exactly specify how to load the image, for example:
-///
-/// ```no_run
-/// use exr::prelude::*;
-///
-/// // the type of the this image depends on the chosen options
-/// let image = read()
-/// .no_deep_data() // (currently required)
-/// .largest_resolution_level() // or `all_resolution_levels()`
-/// .all_channels() // or `rgba_channels(constructor, setter)`
-/// .all_layers() // or `first_valid_layer()`
-/// .all_attributes() // (currently required)
-/// .on_progress(|progress| println!("progress: {:.1}", progress*100.0)) // optional
-/// .from_file("image.exr").unwrap(); // or `from_buffered(my_byte_slice)`
-/// ```
-///
-/// You can alternatively use one of the following simpler functions:
-/// 1. `read_first_flat_layer_from_file`
-/// 1. `read_all_rgba_layers_from_file`
-/// 1. `read_all_flat_layers_from_file`
-/// 1. `read_all_data_from_file`
-///
-// TODO not panic but skip deep layers!
-pub fn read() -> ReadBuilder { ReadBuilder }
-
-impl ReadBuilder {
-
- /// Specify to handle only one sample per channel, disabling "deep data".
- // TODO not panic but skip deep layers!
- pub fn no_deep_data(self) -> ReadFlatSamples { ReadFlatSamples }
-
- // pub fn any_resolution_levels() -> ReadBuilder<> {}
-
- // TODO
- // e. g. `let sum = reader.any_channels_with(|sample, sum| sum += sample)`
- // e. g. `let floats = reader.any_channels_with(|sample, f32_samples| f32_samples[index] = sample as f32)`
- // pub fn no_deep_data_with <S> (self, storage: S) -> FlatSamplesWith<S> { }
-
- // pub fn flat_and_deep_data(self) -> ReadAnySamples { ReadAnySamples }
-}
diff --git a/vendor/exr/src/image/read/samples.rs b/vendor/exr/src/image/read/samples.rs
deleted file mode 100644
index e03c3cc..0000000
--- a/vendor/exr/src/image/read/samples.rs
+++ /dev/null
@@ -1,122 +0,0 @@
-//! How to read samples (a grid of `f32`, `f16` or `u32` values).
-
-use crate::image::*;
-use crate::meta::header::{Header};
-use crate::error::{Result, UnitResult};
-use crate::block::lines::LineRef;
-use crate::math::Vec2;
-use crate::meta::attribute::{ChannelDescription, SampleType};
-use crate::image::read::any_channels::{SamplesReader, ReadSamples};
-use crate::image::read::levels::{ReadSamplesLevel, ReadAllLevels, ReadLargestLevel};
-use crate::block::chunk::TileCoordinates;
-// use crate::image::read::layers::ReadChannels;
-
-/// Specify to read only flat samples and no "deep data"
-// FIXME do not throw error on deep data but just skip it!
-#[derive(Debug, Copy, Clone, Eq, PartialEq)]
-pub struct ReadFlatSamples;
-// pub struct ReadAnySamples;
-
-impl ReadFlatSamples {
-
- // TODO
- // e. g. `let sum = reader.any_channels_with(|sample, sum| sum += sample)`
- // pub fn any_channels_with <S> (self, storage: S) -> { }
-
- /// Specify to read only the highest resolution level, skipping all smaller variations.
- pub fn largest_resolution_level(self) -> ReadLargestLevel<Self> { ReadLargestLevel { read_samples: self } }
-
- /// Specify to read all contained resolution levels from the image, if any.
- pub fn all_resolution_levels(self) -> ReadAllLevels<Self> { ReadAllLevels { read_samples: self } }
-
- // TODO pub fn specific_resolution_level<F: Fn(&[Vec2<usize>])->usize >(self, select_level: F) -> ReadLevelBy<Self> { ReadAllLevels { read_samples: self } }
-}
-
-
-/*pub struct AnySamplesReader { TODO
- resolution: Vec2<usize>,
- samples: DeepAndFlatSamples
-}*/
-
-/// Processes pixel blocks from a file and accumulates them into a grid of samples, for example "Red" or "Alpha".
-#[derive(Debug, Clone, PartialEq)]
-pub struct FlatSamplesReader {
- level: Vec2<usize>,
- resolution: Vec2<usize>,
- samples: FlatSamples
-}
-
-
-// only used when samples is directly inside a channel, without levels
-impl ReadSamples for ReadFlatSamples {
- type Reader = FlatSamplesReader;
-
- fn create_sample_reader(&self, header: &Header, channel: &ChannelDescription) -> Result<Self::Reader> {
- self.create_samples_level_reader(header, channel, Vec2(0, 0), header.layer_size)
- }
-}
-
-impl ReadSamplesLevel for ReadFlatSamples {
- type Reader = FlatSamplesReader;
-
- fn create_samples_level_reader(&self, _header: &Header, channel: &ChannelDescription, level: Vec2<usize>, resolution: Vec2<usize>) -> Result<Self::Reader> {
- Ok(FlatSamplesReader {
- level, resolution, // TODO sampling
- samples: match channel.sample_type {
- SampleType::F16 => FlatSamples::F16(vec![f16::ZERO; resolution.area()]),
- SampleType::F32 => FlatSamples::F32(vec![0.0; resolution.area()]),
- SampleType::U32 => FlatSamples::U32(vec![0; resolution.area()]),
- }
- })
- }
-}
-
-
-impl SamplesReader for FlatSamplesReader {
- type Samples = FlatSamples;
-
- fn filter_block(&self, tile: TileCoordinates) -> bool {
- tile.level_index == self.level
- }
-
- fn read_line(&mut self, line: LineRef<'_>) -> UnitResult {
- let index = line.location;
- let resolution = self.resolution;
-
- // the index is generated by ourselves and must always be correct
- debug_assert_eq!(index.level, self.level, "line should have been filtered");
- debug_assert!(index.position.x() + index.sample_count <= resolution.width(), "line index calculation bug");
- debug_assert!(index.position.y() < resolution.height(), "line index calculation bug");
- debug_assert_ne!(resolution.0, 0, "sample size bug");
-
- let start_index = index.position.y() * resolution.width() + index.position.x();
- let end_index = start_index + index.sample_count;
-
- debug_assert!(
- start_index < end_index && end_index <= self.samples.len(),
- "for resolution {:?}, this is an invalid line: {:?}",
- self.resolution, line.location
- );
-
- match &mut self.samples {
- FlatSamples::F16(samples) =>
- line.read_samples_into_slice(&mut samples[start_index .. end_index])
- .expect("writing line bytes failed"),
-
- FlatSamples::F32(samples) =>
- line.read_samples_into_slice(&mut samples[start_index .. end_index])
- .expect("writing line bytes failed"),
-
- FlatSamples::U32(samples) =>
- line.read_samples_into_slice(&mut samples[start_index .. end_index])
- .expect("writing line bytes failed"),
- }
-
- Ok(())
- }
-
- fn into_samples(self) -> FlatSamples {
- self.samples
- }
-}
-
diff --git a/vendor/exr/src/image/read/specific_channels.rs b/vendor/exr/src/image/read/specific_channels.rs
deleted file mode 100644
index 375691c..0000000
--- a/vendor/exr/src/image/read/specific_channels.rs
+++ /dev/null
@@ -1,463 +0,0 @@
-//! How to read arbitrary but specific selection of arbitrary channels.
-//! This is not a zero-cost abstraction.
-
-use crate::image::recursive::*;
-use crate::block::samples::*;
-use crate::image::*;
-use crate::math::*;
-use crate::meta::header::*;
-use crate::error::*;
-use crate::block::UncompressedBlock;
-use crate::image::read::layers::{ChannelsReader, ReadChannels};
-use crate::block::chunk::TileCoordinates;
-
-use std::marker::PhantomData;
-use crate::io::Read;
-
-
-/// Can be attached one more channel reader.
-/// Call `required` or `optional` on this object to declare another channel to be read from the file.
-/// Call `collect_pixels` at last to define how the previously declared pixels should be stored.
-pub trait ReadSpecificChannel: Sized + CheckDuplicates {
-
- /// A separate internal reader for the pixels. Will be of type `Recursive<_, SampleReader<_>>`,
- /// depending on the pixels of the specific channel combination.
- type RecursivePixelReader: RecursivePixelReader;
-
- /// Create a separate internal reader for the pixels of the specific channel combination.
- fn create_recursive_reader(&self, channels: &ChannelList) -> Result<Self::RecursivePixelReader>;
-
- /// Plan to read an additional channel from the image, with the specified name.
- /// If the channel cannot be found in the image when the image is read, the image will not be loaded.
- /// The generic parameter can usually be inferred from the closure in `collect_pixels`.
- fn required<Sample>(self, channel_name: impl Into<Text>) -> ReadRequiredChannel<Self, Sample> {
- let channel_name = channel_name.into();
- assert!(self.already_contains(&channel_name).not(), "a channel with the name `{}` is already defined", channel_name);
- ReadRequiredChannel { channel_name, previous_channels: self, px: Default::default() }
- }
-
- /// Plan to read an additional channel from the image, with the specified name.
- /// If the file does not contain this channel, the specified default sample will be returned instead.
- /// You can check whether the channel has been loaded by
- /// checking the presence of the optional channel description before instantiating your own image.
- /// The generic parameter can usually be inferred from the closure in `collect_pixels`.
- fn optional<Sample>(self, channel_name: impl Into<Text>, default_sample: Sample)
- -> ReadOptionalChannel<Self, Sample>
- {
- let channel_name = channel_name.into();
- assert!(self.already_contains(&channel_name).not(), "a channel with the name `{}` is already defined", channel_name);
- ReadOptionalChannel { channel_name, previous_channels: self, default_sample }
- }
-
- /// Using two closures, define how to store the pixels.
- /// The first closure creates an image, and the second closure inserts a single pixel.
- /// The type of the pixel can be defined by the second closure;
- /// it must be a tuple containing `f16`, `f32`, `u32` or `Sample` values.
- /// See the examples for more information.
- fn collect_pixels<Pixel, PixelStorage, CreatePixels, SetPixel>(
- self, create_pixels: CreatePixels, set_pixel: SetPixel
- ) -> CollectPixels<Self, Pixel, PixelStorage, CreatePixels, SetPixel>
- where
- <Self::RecursivePixelReader as RecursivePixelReader>::RecursivePixel: IntoTuple<Pixel>,
- <Self::RecursivePixelReader as RecursivePixelReader>::RecursiveChannelDescriptions: IntoNonRecursive,
- CreatePixels: Fn(
- Vec2<usize>,
- &<<Self::RecursivePixelReader as RecursivePixelReader>::RecursiveChannelDescriptions as IntoNonRecursive>::NonRecursive
- ) -> PixelStorage,
- SetPixel: Fn(&mut PixelStorage, Vec2<usize>, Pixel),
- {
- CollectPixels { read_channels: self, set_pixel, create_pixels, px: Default::default() }
- }
-}
-
-/// A reader containing sub-readers for reading the pixel content of an image.
-pub trait RecursivePixelReader {
-
- /// The channel descriptions from the image.
- /// Will be converted to a tuple before being stored in `SpecificChannels<_, ChannelDescriptions>`.
- type RecursiveChannelDescriptions;
-
- /// Returns the channel descriptions based on the channels in the file.
- fn get_descriptions(&self) -> Self::RecursiveChannelDescriptions;
-
- /// The pixel type. Will be converted to a tuple at the end of the process.
- type RecursivePixel: Copy + Default + 'static;
-
- /// Read the line of pixels.
- fn read_pixels<'s, FullPixel>(
- &self, bytes: &'s[u8], pixels: &mut [FullPixel],
- get_pixel: impl Fn(&mut FullPixel) -> &mut Self::RecursivePixel
- );
-}
-
-// does not use the generic `Recursive` struct to reduce the number of angle brackets in the public api
-/// Used to read another specific channel from an image.
-/// Contains the previous `ReadChannels` objects.
-#[derive(Clone, Debug)]
-pub struct ReadOptionalChannel<ReadChannels, Sample> {
- previous_channels: ReadChannels,
- channel_name: Text,
- default_sample: Sample,
-}
-
-// does not use the generic `Recursive` struct to reduce the number of angle brackets in the public api
-/// Used to read another specific channel from an image.
-/// Contains the previous `ReadChannels` objects.
-#[derive(Clone, Debug)]
-pub struct ReadRequiredChannel<ReadChannels, Sample> {
- previous_channels: ReadChannels,
- channel_name: Text,
- px: PhantomData<Sample>,
-}
-
-/// Specifies how to collect all the specified channels into a number of individual pixels.
-#[derive(Copy, Clone, Debug)]
-pub struct CollectPixels<ReadChannels, Pixel, PixelStorage, CreatePixels, SetPixel> {
- read_channels: ReadChannels,
- create_pixels: CreatePixels,
- set_pixel: SetPixel,
- px: PhantomData<(Pixel, PixelStorage)>,
-}
-
-impl<Inner: CheckDuplicates, Sample> CheckDuplicates for ReadRequiredChannel<Inner, Sample> {
- fn already_contains(&self, name: &Text) -> bool {
- &self.channel_name == name || self.previous_channels.already_contains(name)
- }
-}
-
-impl<Inner: CheckDuplicates, Sample> CheckDuplicates for ReadOptionalChannel<Inner, Sample> {
- fn already_contains(&self, name: &Text) -> bool {
- &self.channel_name == name || self.previous_channels.already_contains(name)
- }
-}
-
-impl<'s, InnerChannels, Pixel, PixelStorage, CreatePixels, SetPixel: 's>
-ReadChannels<'s> for CollectPixels<InnerChannels, Pixel, PixelStorage, CreatePixels, SetPixel>
- where
- InnerChannels: ReadSpecificChannel,
- <InnerChannels::RecursivePixelReader as RecursivePixelReader>::RecursivePixel: IntoTuple<Pixel>,
- <InnerChannels::RecursivePixelReader as RecursivePixelReader>::RecursiveChannelDescriptions: IntoNonRecursive,
- CreatePixels: Fn(Vec2<usize>, &<<InnerChannels::RecursivePixelReader as RecursivePixelReader>::RecursiveChannelDescriptions as IntoNonRecursive>::NonRecursive) -> PixelStorage,
- SetPixel: Fn(&mut PixelStorage, Vec2<usize>, Pixel),
-{
- type Reader = SpecificChannelsReader<
- PixelStorage, &'s SetPixel,
- InnerChannels::RecursivePixelReader,
- Pixel,
- >;
-
- fn create_channels_reader(&'s self, header: &Header) -> Result<Self::Reader> {
- if header.deep { return Err(Error::invalid("`SpecificChannels` does not support deep data yet")) }
-
- let pixel_reader = self.read_channels.create_recursive_reader(&header.channels)?;
- let channel_descriptions = pixel_reader.get_descriptions().into_non_recursive();// TODO not call this twice
-
- let create = &self.create_pixels;
- let pixel_storage = create(header.layer_size, &channel_descriptions);
-
- Ok(SpecificChannelsReader {
- set_pixel: &self.set_pixel,
- pixel_storage,
- pixel_reader,
- px: Default::default()
- })
- }
-}
-
-/// The reader that holds the temporary data that is required to read some specified channels.
-#[derive(Copy, Clone, Debug)]
-pub struct SpecificChannelsReader<PixelStorage, SetPixel, PixelReader, Pixel> {
- set_pixel: SetPixel,
- pixel_storage: PixelStorage,
- pixel_reader: PixelReader,
- px: PhantomData<Pixel>
-}
-
-impl<PixelStorage, SetPixel, PxReader, Pixel>
-ChannelsReader for SpecificChannelsReader<PixelStorage, SetPixel, PxReader, Pixel>
- where PxReader: RecursivePixelReader,
- PxReader::RecursivePixel: IntoTuple<Pixel>,
- PxReader::RecursiveChannelDescriptions: IntoNonRecursive,
- SetPixel: Fn(&mut PixelStorage, Vec2<usize>, Pixel),
-{
- type Channels = SpecificChannels<PixelStorage, <PxReader::RecursiveChannelDescriptions as IntoNonRecursive>::NonRecursive>;
-
- fn filter_block(&self, tile: TileCoordinates) -> bool { tile.is_largest_resolution_level() } // TODO all levels
-
- fn read_block(&mut self, header: &Header, block: UncompressedBlock) -> UnitResult {
- let mut pixels = vec![PxReader::RecursivePixel::default(); block.index.pixel_size.width()]; // TODO allocate once in self
-
- let byte_lines = block.data.chunks_exact(header.channels.bytes_per_pixel * block.index.pixel_size.width());
- debug_assert_eq!(byte_lines.len(), block.index.pixel_size.height(), "invalid block lines split");
-
- for (y_offset, line_bytes) in byte_lines.enumerate() { // TODO sampling
- // this two-step copy method should be very cache friendly in theory, and also reduce sample_type lookup count
- self.pixel_reader.read_pixels(line_bytes, &mut pixels, |px| px);
-
- for (x_offset, pixel) in pixels.iter().enumerate() {
- let set_pixel = &self.set_pixel;
- set_pixel(&mut self.pixel_storage, block.index.pixel_position + Vec2(x_offset, y_offset), pixel.into_tuple());
- }
- }
-
- Ok(())
- }
-
- fn into_channels(self) -> Self::Channels {
- SpecificChannels { channels: self.pixel_reader.get_descriptions().into_non_recursive(), pixels: self.pixel_storage }
- }
-}
-
-
-/// Read zero channels from an image. Call `with_named_channel` on this object
-/// to read as many channels as desired.
-pub type ReadZeroChannels = NoneMore;
-
-impl ReadSpecificChannel for NoneMore {
- type RecursivePixelReader = NoneMore;
- fn create_recursive_reader(&self, _: &ChannelList) -> Result<Self::RecursivePixelReader> { Ok(NoneMore) }
-}
-
-impl<DefaultSample, ReadChannels> ReadSpecificChannel for ReadOptionalChannel<ReadChannels, DefaultSample>
- where ReadChannels: ReadSpecificChannel, DefaultSample: FromNativeSample + 'static,
-{
- type RecursivePixelReader = Recursive<ReadChannels::RecursivePixelReader, OptionalSampleReader<DefaultSample>>;
-
- fn create_recursive_reader(&self, channels: &ChannelList) -> Result<Self::RecursivePixelReader> {
- debug_assert!(self.previous_channels.already_contains(&self.channel_name).not(), "duplicate channel name: {}", self.channel_name);
-
- let inner_samples_reader = self.previous_channels.create_recursive_reader(channels)?;
- let reader = channels.channels_with_byte_offset()
- .find(|(_, channel)| channel.name == self.channel_name)
- .map(|(channel_byte_offset, channel)| SampleReader {
- channel_byte_offset, channel: channel.clone(),
- px: Default::default()
- });
-
- Ok(Recursive::new(inner_samples_reader, OptionalSampleReader {
- reader, default_sample: self.default_sample,
- }))
- }
-}
-
-impl<Sample, ReadChannels> ReadSpecificChannel for ReadRequiredChannel<ReadChannels, Sample>
- where ReadChannels: ReadSpecificChannel, Sample: FromNativeSample + 'static
-{
- type RecursivePixelReader = Recursive<ReadChannels::RecursivePixelReader, SampleReader<Sample>>;
-
- fn create_recursive_reader(&self, channels: &ChannelList) -> Result<Self::RecursivePixelReader> {
- let previous_samples_reader = self.previous_channels.create_recursive_reader(channels)?;
- let (channel_byte_offset, channel) = channels.channels_with_byte_offset()
- .find(|(_, channel)| channel.name == self.channel_name)
- .ok_or_else(|| Error::invalid(format!(
- "layer does not contain all of your specified channels (`{}` is missing)",
- self.channel_name
- )))?;
-
- Ok(Recursive::new(previous_samples_reader, SampleReader { channel_byte_offset, channel: channel.clone(), px: Default::default() }))
- }
-}
-
-/// Reader for a single channel. Generic over the concrete sample type (f16, f32, u32).
-#[derive(Clone, Debug)]
-pub struct SampleReader<Sample> {
-
- /// to be multiplied with line width!
- channel_byte_offset: usize,
-
- channel: ChannelDescription,
- px: PhantomData<Sample>
-}
-
-/// Reader for a single channel. Generic over the concrete sample type (f16, f32, u32).
-/// Can also skip reading a channel if it could not be found in the image.
-#[derive(Clone, Debug)]
-pub struct OptionalSampleReader<DefaultSample> {
- reader: Option<SampleReader<DefaultSample>>,
- default_sample: DefaultSample,
-}
-
-impl<Sample: FromNativeSample> SampleReader<Sample> {
- fn read_own_samples<'s, FullPixel>(
- &self, bytes: &'s[u8], pixels: &mut [FullPixel],
- get_sample: impl Fn(&mut FullPixel) -> &mut Sample
- ){
- let start_index = pixels.len() * self.channel_byte_offset;
- let byte_count = pixels.len() * self.channel.sample_type.bytes_per_sample();
- let mut own_bytes_reader = &mut &bytes[start_index .. start_index + byte_count]; // TODO check block size somewhere
- let mut samples_out = pixels.iter_mut().map(|pixel| get_sample(pixel));
-
- // match the type once for the whole line, not on every single sample
- match self.channel.sample_type {
- SampleType::F16 => read_and_convert_all_samples_batched(
- &mut own_bytes_reader, &mut samples_out,
- Sample::from_f16s
- ),
-
- SampleType::F32 => read_and_convert_all_samples_batched(
- &mut own_bytes_reader, &mut samples_out,
- Sample::from_f32s
- ),
-
- SampleType::U32 => read_and_convert_all_samples_batched(
- &mut own_bytes_reader, &mut samples_out,
- Sample::from_u32s
- ),
- }
-
- debug_assert!(samples_out.next().is_none(), "not all samples have been converted");
- debug_assert!(own_bytes_reader.is_empty(), "bytes left after reading all samples");
- }
-}
-
-
-/// Does the same as `convert_batch(in_bytes.chunks().map(From::from_bytes))`, but vectorized.
-/// Reads the samples for one line, using the sample type specified in the file,
-/// and then converts those to the desired sample types.
-/// Uses batches to allow vectorization, converting multiple values with one instruction.
-fn read_and_convert_all_samples_batched<'t, From, To>(
- mut in_bytes: impl Read,
- out_samples: &mut impl ExactSizeIterator<Item=&'t mut To>,
- convert_batch: fn(&[From], &mut [To])
-) where From: Data + Default + Copy, To: 't + Default + Copy
-{
- // this is not a global! why is this warning triggered?
- #[allow(non_upper_case_globals)]
- const batch_size: usize = 16;
-
- let total_sample_count = out_samples.len();
- let batch_count = total_sample_count / batch_size;
- let remaining_samples_count = total_sample_count % batch_size;
-
- let len_error_msg = "sample count was miscalculated";
- let byte_error_msg = "error when reading from in-memory slice";
-
- // write samples from a given slice to the output iterator. should be inlined.
- let output_n_samples = &mut move |samples: &[To]| {
- for converted_sample in samples {
- *out_samples.next().expect(len_error_msg) = *converted_sample;
- }
- };
-
- // read samples from the byte source into a given slice. should be inlined.
- // todo: use #[inline] when available
- // error[E0658]: attributes on expressions are experimental,
- // see issue #15701 <https://github.com/rust-lang/rust/issues/15701> for more information
- let read_n_samples = &mut move |samples: &mut [From]| {
- Data::read_slice(&mut in_bytes, samples).expect(byte_error_msg);
- };
-
- // temporary arrays with fixed size, operations should be vectorized within these arrays
- let mut source_samples_batch: [From; batch_size] = Default::default();
- let mut desired_samples_batch: [To; batch_size] = Default::default();
-
- // first convert all whole batches, size statically known to be 16 element arrays
- for _ in 0 .. batch_count {
- read_n_samples(&mut source_samples_batch);
- convert_batch(source_samples_batch.as_slice(), desired_samples_batch.as_mut_slice());
- output_n_samples(&desired_samples_batch);
- }
-
- // then convert a partial remaining batch, size known only at runtime
- if remaining_samples_count != 0 {
- let source_samples_batch = &mut source_samples_batch[..remaining_samples_count];
- let desired_samples_batch = &mut desired_samples_batch[..remaining_samples_count];
-
- read_n_samples(source_samples_batch);
- convert_batch(source_samples_batch, desired_samples_batch);
- output_n_samples(desired_samples_batch);
- }
-}
-
-#[cfg(test)]
-mod test {
- use super::*;
-
- #[test]
- fn equals_naive_f32(){
- for total_array_size in [3, 7, 30, 41, 120, 10_423] {
- let input_f32s = (0..total_array_size).map(|_| rand::random::<f32>()).collect::<Vec<f32>>();
- let in_f32s_bytes = input_f32s.iter().cloned().flat_map(f32::to_le_bytes).collect::<Vec<u8>>();
-
- let mut out_f16_samples_batched = vec![
- f16::from_f32(rand::random::<f32>());
- total_array_size
- ];
-
- read_and_convert_all_samples_batched(
- &mut in_f32s_bytes.as_slice(),
- &mut out_f16_samples_batched.iter_mut(),
- f16::from_f32s
- );
-
- let out_f16_samples_naive = input_f32s.iter()
- .cloned().map(f16::from_f32);
-
- assert!(out_f16_samples_naive.eq(out_f16_samples_batched));
- }
- }
-}
-
-
-impl RecursivePixelReader for NoneMore {
- type RecursiveChannelDescriptions = NoneMore;
- fn get_descriptions(&self) -> Self::RecursiveChannelDescriptions { NoneMore }
-
- type RecursivePixel = NoneMore;
-
- fn read_pixels<'s, FullPixel>(
- &self, _: &'s[u8], _: &mut [FullPixel],
- _: impl Fn(&mut FullPixel) -> &mut NoneMore
- ){}
-}
-
-impl<Sample, InnerReader: RecursivePixelReader>
- RecursivePixelReader
- for Recursive<InnerReader, SampleReader<Sample>>
- where Sample: FromNativeSample + 'static
-{
- type RecursiveChannelDescriptions = Recursive<InnerReader::RecursiveChannelDescriptions, ChannelDescription>;
- fn get_descriptions(&self) -> Self::RecursiveChannelDescriptions { Recursive::new(self.inner.get_descriptions(), self.value.channel.clone()) }
-
- type RecursivePixel = Recursive<InnerReader::RecursivePixel, Sample>;
-
- fn read_pixels<'s, FullPixel>(
- &self, bytes: &'s[u8], pixels: &mut [FullPixel],
- get_pixel: impl Fn(&mut FullPixel) -> &mut Self::RecursivePixel
- ) {
- self.value.read_own_samples(bytes, pixels, |px| &mut get_pixel(px).value);
- self.inner.read_pixels(bytes, pixels, |px| &mut get_pixel(px).inner);
- }
-}
-
-impl<Sample, InnerReader: RecursivePixelReader>
-RecursivePixelReader
-for Recursive<InnerReader, OptionalSampleReader<Sample>>
- where Sample: FromNativeSample + 'static
-{
- type RecursiveChannelDescriptions = Recursive<InnerReader::RecursiveChannelDescriptions, Option<ChannelDescription>>;
- fn get_descriptions(&self) -> Self::RecursiveChannelDescriptions { Recursive::new(
- self.inner.get_descriptions(), self.value.reader.as_ref().map(|reader| reader.channel.clone())
- ) }
-
- type RecursivePixel = Recursive<InnerReader::RecursivePixel, Sample>;
-
- fn read_pixels<'s, FullPixel>(
- &self, bytes: &'s[u8], pixels: &mut [FullPixel],
- get_pixel: impl Fn(&mut FullPixel) -> &mut Self::RecursivePixel
- ) {
- if let Some(reader) = &self.value.reader {
- reader.read_own_samples(bytes, pixels, |px| &mut get_pixel(px).value);
- }
- else {
- // if this channel is optional and was not found in the file, fill the default sample
- for pixel in pixels.iter_mut() {
- get_pixel(pixel).value = self.value.default_sample;
- }
- }
-
- self.inner.read_pixels(bytes, pixels, |px| &mut get_pixel(px).inner);
- }
-}
-
-
diff --git a/vendor/exr/src/image/recursive.rs b/vendor/exr/src/image/recursive.rs
deleted file mode 100644
index 25a980f..0000000
--- a/vendor/exr/src/image/recursive.rs
+++ /dev/null
@@ -1,178 +0,0 @@
-//! A generic wrapper which can be used to represent recursive types.
-//! Supports conversion from and to tuples of the same size.
-
-/// No more recursion. Can be used within any `Recursive<NoneMore, YourValue>` type.
-#[derive(Copy, Clone, Debug, Default, Eq, PartialEq)]
-pub struct NoneMore;
-
-/// A recursive type-level linked list of `Value` entries.
-/// Mainly used to represent an arbitrary number of channels.
-/// The recursive architecture removes the need to implement traits for many different tuples.
-#[derive(Copy, Clone, Debug, Default, Eq, PartialEq)]
-pub struct Recursive<Inner, Value> {
- /// The remaining values of this linked list,
- /// probably either `NoneMore` or another instance of the same `Recursive<Inner - 1, Value>`.
- pub inner: Inner,
-
- /// The next item in this linked list.
- pub value: Value,
-}
-
-impl<Inner, Value> Recursive<Inner, Value> {
- /// Create a new recursive type. Equivalent to the manual constructor, but less verbose.
- pub fn new(inner: Inner, value: Value) -> Self { Self { inner, value } }
-}
-
-/// Convert this recursive type into a tuple.
-/// This is nice as it will require less typing for the same type.
-/// A type might or might not be convertible to the specified `Tuple` type.
-pub trait IntoTuple<Tuple> {
- /// Convert this recursive type to a nice tuple.
- fn into_tuple(self) -> Tuple;
-}
-
-/// Convert this recursive type into a tuple.
-/// This is nice as it will require less typing for the same type.
-/// A type will be converted to the specified `Self::NonRecursive` type.
-pub trait IntoNonRecursive {
- /// The resulting tuple type.
- type NonRecursive;
-
- /// Convert this recursive type to a nice tuple.
- fn into_non_recursive(self) -> Self::NonRecursive;
-}
-
-/// Create a recursive type from this tuple.
-pub trait IntoRecursive {
- /// The recursive type resulting from this tuple.
- type Recursive;
-
- /// Create a recursive type from this tuple.
- fn into_recursive(self) -> Self::Recursive;
-}
-
-impl IntoRecursive for NoneMore {
- type Recursive = Self;
- fn into_recursive(self) -> Self::Recursive { self }
-}
-
-impl<Inner: IntoRecursive, Value> IntoRecursive for Recursive<Inner, Value> {
- type Recursive = Recursive<Inner::Recursive, Value>;
- fn into_recursive(self) -> Self::Recursive { Recursive::new(self.inner.into_recursive(), self.value) }
-}
-
-// Automatically implement IntoTuple so we have to generate less code in the macros
-impl<I: IntoNonRecursive> IntoTuple<I::NonRecursive> for I {
- fn into_tuple(self) -> <I as IntoNonRecursive>::NonRecursive {
- self.into_non_recursive()
- }
-}
-
-//Implement traits for the empty tuple, the macro doesn't handle that
-impl IntoRecursive for () {
- type Recursive = NoneMore;
- fn into_recursive(self) -> Self::Recursive { NoneMore }
-}
-
-impl IntoNonRecursive for NoneMore {
- type NonRecursive = ();
-
- fn into_non_recursive(self) -> Self::NonRecursive {
- ()
- }
-}
-
-/// Generates the recursive type corresponding to this tuple:
-/// ```nocheck
-/// gen_recursive_type!(A, B, C)
-/// => Recursive<Recursive<Recursive<NoneMore, A>, B>, C>
-/// ```
-macro_rules! gen_recursive_type {
- () => { NoneMore };
- ($last:ident $(,$not_last:ident)*) => {
- Recursive<gen_recursive_type!($($not_last),*), $last>
- };
-}
-
-/// Generates the recursive value corresponding to the given indices:
-/// ```nocheck
-/// gen_recursive_value(self; 1, 0)
-/// => Recursive { inner: Recursive { inner: NoneMore, value: self.0 }, value: self.1 }
-/// ```
-macro_rules! gen_recursive_value {
- ($self:ident;) => { NoneMore };
- ($self:ident; $last:tt $(,$not_last:tt)*) => {
- Recursive { inner: gen_recursive_value!($self; $($not_last),*), value: $self.$last }
- };
-}
-
-/// Generates the into_tuple value corresponding to the given type names:
-/// ```nocheck
-/// gen_tuple_value(self; A, B, C)
-/// => (self.inner.inner.value, self.inner.value, self.value)
-/// ```
-macro_rules! gen_tuple_value {
- ($self:ident; $($all:ident),* ) => {
- gen_tuple_value!(@ $self; (); $($all),* )
- };
-
- (@ $self:ident; ($($state:expr),*);) => { ($($state .value,)*) };
- (@ $self:ident; ($($state:expr),*); $last:ident $(,$not_last:ident)* ) => {
- gen_tuple_value!(@ $self; ($($state .inner,)* $self); $($not_last),* )
- };
-}
-
-/// Generate the trait implementations given a sequence of type names in both directions and the indices backwards:
-/// ```nocheck
-/// generate_single(A, B, C; C, B, A; 2, 1, 0)
-/// ```
-macro_rules! generate_single {
- ( $($name_fwd:ident),* ; $($name_back:ident),* ; $($index_back:tt),*) => {
- impl<$($name_fwd),*> IntoNonRecursive for gen_recursive_type!($($name_back),*) {
- type NonRecursive = ($($name_fwd,)*);
- fn into_non_recursive(self) -> Self::NonRecursive {
- gen_tuple_value!(self; $($name_fwd),*)
- }
- }
-
- impl<$($name_fwd),*> IntoRecursive for ($($name_fwd,)*) {
- type Recursive = gen_recursive_type!($($name_back),*);
- fn into_recursive(self) -> Self::Recursive {
- gen_recursive_value!(self; $($index_back),*)
- }
- }
- };
-}
-
-generate_single!(A; A; 0);
-generate_single!(A,B; B,A; 1,0);
-generate_single!(A,B,C; C,B,A; 2,1,0);
-generate_single!(A,B,C,D; D,C,B,A; 3,2,1,0);
-generate_single!(A,B,C,D,E; E,D,C,B,A; 4,3,2,1,0);
-generate_single!(A,B,C,D,E,F; F,E,D,C,B,A; 5,4,3,2,1,0);
-generate_single!(A,B,C,D,E,F,G; G,F,E,D,C,B,A; 6,5,4,3,2,1,0);
-generate_single!(A,B,C,D,E,F,G,H; H,G,F,E,D,C,B,A; 7,6,5,4,3,2,1,0);
-generate_single!(A,B,C,D,E,F,G,H,I; I,H,G,F,E,D,C,B,A; 8,7,6,5,4,3,2,1,0);
-generate_single!(A,B,C,D,E,F,G,H,I,J; J,I,H,G,F,E,D,C,B,A; 9,8,7,6,5,4,3,2,1,0);
-generate_single!(A,B,C,D,E,F,G,H,I,J,K; K,J,I,H,G,F,E,D,C,B,A; 10,9,8,7,6,5,4,3,2,1,0);
-generate_single!(A,B,C,D,E,F,G,H,I,J,K,L; L,K,J,I,H,G,F,E,D,C,B,A; 11,10,9,8,7,6,5,4,3,2,1,0);
-generate_single!(A,B,C,D,E,F,G,H,I,J,K,L,M; M,L,K,J,I,H,G,F,E,D,C,B,A; 12,11,10,9,8,7,6,5,4,3,2,1,0);
-generate_single!(A,B,C,D,E,F,G,H,I,J,K,L,M,N; N,M,L,K,J,I,H,G,F,E,D,C,B,A; 13,12,11,10,9,8,7,6,5,4,3,2,1,0);
-generate_single!(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O; O,N,M,L,K,J,I,H,G,F,E,D,C,B,A; 14,13,12,11,10,9,8,7,6,5,4,3,2,1,0);
-generate_single!(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P; P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A; 15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0);
-generate_single!(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q; Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A; 16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0);
-generate_single!(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R; R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A; 17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0);
-generate_single!(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S; S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A; 18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0);
-generate_single!(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T; T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A; 19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0);
-generate_single!(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U; U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A; 20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0);
-generate_single!(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V; V,U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A; 21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0);
-generate_single!(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W; W,V,U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A; 22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0);
-generate_single!(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X; X,W,V,U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A; 23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0);
-generate_single!(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y; Y,X,W,V,U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A; 24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0);
-generate_single!(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z; Z,Y,X,W,V,U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A; 25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0);
-generate_single!(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1; A1,Z,Y,X,W,V,U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A; 26,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0);
-generate_single!(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1; B1,A1,Z,Y,X,W,V,U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A; 27,26,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0);
-generate_single!(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1; C1,B1,A1,Z,Y,X,W,V,U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A; 28,27,26,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0);
-generate_single!(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1; D1,C1,B1,A1,Z,Y,X,W,V,U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A; 29,28,27,26,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0);
-generate_single!(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1; E1,D1,C1,B1,A1,Z,Y,X,W,V,U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A; 30,29,28,27,26,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0);
-generate_single!(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1; F1,E1,D1,C1,B1,A1,Z,Y,X,W,V,U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A; 31,30,29,28,27,26,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0);
diff --git a/vendor/exr/src/image/write/channels.rs b/vendor/exr/src/image/write/channels.rs
deleted file mode 100644
index 2450f09..0000000
--- a/vendor/exr/src/image/write/channels.rs
+++ /dev/null
@@ -1,407 +0,0 @@
-//! How to read arbitrary channels and rgb channels.
-
-use crate::prelude::*;
-use crate::io::*;
-use crate::math::*;
-use crate::meta::{header::*, attribute::*};
-use crate::block::*;
-use crate::image::recursive::*;
-use crate::block::samples::*;
-use crate::image::write::samples::*;
-
-use std::marker::PhantomData;
-
-
-/// Enables an image containing this list of channels to be written to a file.
-pub trait WritableChannels<'slf> {
-
- /// Generate the file meta data for this list of channel
- fn infer_channel_list(&self) -> ChannelList;
-
- /// Generate the file meta data of whether and how resolution levels should be stored in the file
- fn infer_level_modes(&self) -> (LevelMode, RoundingMode);
-
- /// The type of temporary writer
- type Writer: ChannelsWriter;
-
- /// Create a temporary writer for this list of channels
- fn create_writer(&'slf self, header: &Header) -> Self::Writer;
-}
-
-/// A temporary writer for a list of channels
-pub trait ChannelsWriter: Sync {
-
- /// Deliver a block of pixels, containing all channel data, to be stored in the file
- fn extract_uncompressed_block(&self, header: &Header, block: BlockIndex) -> Vec<u8>; // TODO return uncompressed block?
-}
-
-
-/// Define how to get a pixel from your custom pixel storage.
-/// Can be a closure of type [`Sync + Fn(Vec2<usize>) -> YourPixel`].
-pub trait GetPixel: Sync {
-
- /// The pixel tuple containing `f32`, `f16`, `u32` and `Sample` values.
- /// The length of the tuple must match the number of channels in the image.
- type Pixel;
-
- /// Inspect a single pixel at the requested position.
- /// Will be called exactly once for each pixel in the image.
- /// The position will not exceed the image dimensions.
- /// Might be called from multiple threads at the same time.
- fn get_pixel(&self, position: Vec2<usize>) -> Self::Pixel;
-}
-
-impl<F, P> GetPixel for F where F: Sync + Fn(Vec2<usize>) -> P {
- type Pixel = P;
- fn get_pixel(&self, position: Vec2<usize>) -> P { self(position) }
-}
-
-impl<'samples, Samples> WritableChannels<'samples> for AnyChannels<Samples>
- where Samples: 'samples + WritableSamples<'samples>
-{
- fn infer_channel_list(&self) -> ChannelList {
- ChannelList::new(self.list.iter().map(|channel| ChannelDescription {
- name: channel.name.clone(),
- sample_type: channel.sample_data.sample_type(),
- quantize_linearly: channel.quantize_linearly,
- sampling: channel.sampling
- }).collect())
- }
-
- fn infer_level_modes(&self) -> (LevelMode, RoundingMode) {
- let mode = self.list.iter().next().expect("zero channels in list").sample_data.infer_level_modes();
-
- debug_assert!(
- std::iter::repeat(mode).zip(self.list.iter().skip(1))
- .all(|(first, other)| other.sample_data.infer_level_modes() == first),
-
- "level mode must be the same across all levels (do not nest resolution levels!)"
- );
-
- mode
- }
-
- type Writer = AnyChannelsWriter<Samples::Writer>;
- fn create_writer(&'samples self, header: &Header) -> Self::Writer {
- let channels = self.list.iter()
- .map(|chan| chan.sample_data.create_samples_writer(header))
- .collect();
-
- AnyChannelsWriter { channels }
- }
-}
-
-/// A temporary writer for an arbitrary list of channels
-#[derive(Debug, Clone, Eq, PartialEq)]
-pub struct AnyChannelsWriter<SamplesWriter> {
- channels: SmallVec<[SamplesWriter; 4]>
-}
-
-impl<Samples> ChannelsWriter for AnyChannelsWriter<Samples> where Samples: SamplesWriter {
- fn extract_uncompressed_block(&self, header: &Header, block_index: BlockIndex) -> Vec<u8> {
- UncompressedBlock::collect_block_data_from_lines(&header.channels, block_index, |line_ref| {
- self.channels[line_ref.location.channel].extract_line(line_ref)
- })
- }
-}
-
-
-
-
-
-
-impl<'c, Channels, Storage>
-WritableChannels<'c> for SpecificChannels<Storage, Channels>
-where
- Storage: 'c + GetPixel,
- Storage::Pixel: IntoRecursive,
- Channels: 'c + Sync + Clone + IntoRecursive,
- <Channels as IntoRecursive>::Recursive: WritableChannelsDescription<<Storage::Pixel as IntoRecursive>::Recursive>,
-{
- fn infer_channel_list(&self) -> ChannelList {
- let mut vec = self.channels.clone().into_recursive().channel_descriptions_list();
- vec.sort_unstable_by_key(|channel:&ChannelDescription| channel.name.clone()); // TODO no clone?
-
- debug_assert!(
- // check for equal neighbors in sorted vec
- vec.iter().zip(vec.iter().skip(1)).all(|(prev, next)| prev.name != next.name),
- "specific channels contain duplicate channel names"
- );
-
- ChannelList::new(vec)
- }
-
- fn infer_level_modes(&self) -> (LevelMode, RoundingMode) {
- (LevelMode::Singular, RoundingMode::Down) // TODO
- }
-
- type Writer = SpecificChannelsWriter<
- 'c,
- <<Channels as IntoRecursive>::Recursive as WritableChannelsDescription<<Storage::Pixel as IntoRecursive>::Recursive>>::RecursiveWriter,
- Storage,
- Channels
- >;
-
- fn create_writer(&'c self, header: &Header) -> Self::Writer {
- SpecificChannelsWriter {
- channels: self,
- recursive_channel_writer: self.channels.clone().into_recursive().create_recursive_writer(&header.channels),
- }
- }
-}
-
-
-
-/// A temporary writer for a layer of channels, alpha being optional
-#[derive(Debug, Clone, Eq, PartialEq)]
-pub struct SpecificChannelsWriter<'channels, PixelWriter, Storage, Channels> {
- channels: &'channels SpecificChannels<Storage, Channels>, // TODO this need not be a reference?? impl writer for specific_channels directly?
- recursive_channel_writer: PixelWriter,
-}
-
-
-impl<'channels, PxWriter, Storage, Channels> ChannelsWriter
-for SpecificChannelsWriter<'channels, PxWriter, Storage, Channels>
- where
- Channels: Sync,
- Storage: GetPixel,
- Storage::Pixel: IntoRecursive,
- PxWriter: Sync + RecursivePixelWriter<<Storage::Pixel as IntoRecursive>::Recursive>,
-{
- fn extract_uncompressed_block(&self, header: &Header, block_index: BlockIndex) -> Vec<u8> {
- let block_bytes = block_index.pixel_size.area() * header.channels.bytes_per_pixel;
- let mut block_bytes = vec![0_u8; block_bytes];
-
- let width = block_index.pixel_size.0;
- let line_bytes = width * header.channels.bytes_per_pixel;
- let byte_lines = block_bytes.chunks_exact_mut(line_bytes);
- assert_eq!(byte_lines.len(), block_index.pixel_size.height(), "invalid block line splits");
-
- //dbg!(width, line_bytes, header.channels.bytes_per_pixel, byte_lines.len());
-
- let mut pixel_line = Vec::with_capacity(width);
-
- for (y, line_bytes) in byte_lines.enumerate() {
- pixel_line.clear();
- pixel_line.extend((0 .. width).map(|x|
- self.channels.pixels.get_pixel(block_index.pixel_position + Vec2(x, y)).into_recursive()
- ));
-
- self.recursive_channel_writer.write_pixels(line_bytes, pixel_line.as_slice(), |px| px);
- }
-
- block_bytes
- }
-}
-
-/// A tuple containing either `ChannelsDescription` or `Option<ChannelsDescription>` entries.
-/// Use an `Option` if you want to dynamically omit a single channel (probably only for roundtrip tests).
-/// The number of entries must match the number of channels.
-pub trait WritableChannelsDescription<Pixel>: Sync {
-
- /// A type that has a recursive entry for each channel in the image,
- /// which must accept the desired pixel type.
- type RecursiveWriter: RecursivePixelWriter<Pixel>;
-
- /// Create the temporary writer, accepting the sorted list of channels from `channel_descriptions_list`.
- fn create_recursive_writer(&self, channels: &ChannelList) -> Self::RecursiveWriter;
-
- /// Return all the channels that should actually end up in the image, in any order.
- fn channel_descriptions_list(&self) -> SmallVec<[ChannelDescription; 5]>;
-}
-
-impl WritableChannelsDescription<NoneMore> for NoneMore {
- type RecursiveWriter = NoneMore;
- fn create_recursive_writer(&self, _: &ChannelList) -> Self::RecursiveWriter { NoneMore }
- fn channel_descriptions_list(&self) -> SmallVec<[ChannelDescription; 5]> { SmallVec::new() }
-}
-
-impl<InnerDescriptions, InnerPixel, Sample: IntoNativeSample>
- WritableChannelsDescription<Recursive<InnerPixel, Sample>>
- for Recursive<InnerDescriptions, ChannelDescription>
- where InnerDescriptions: WritableChannelsDescription<InnerPixel>
-{
- type RecursiveWriter = RecursiveWriter<InnerDescriptions::RecursiveWriter, Sample>;
-
- fn create_recursive_writer(&self, channels: &ChannelList) -> Self::RecursiveWriter {
- // this linear lookup is required because the order of the channels changed, due to alphabetical sorting
- let (start_byte_offset, target_sample_type) = channels.channels_with_byte_offset()
- .find(|(_offset, channel)| channel.name == self.value.name)
- .map(|(offset, channel)| (offset, channel.sample_type))
- .expect("a channel has not been put into channel list");
-
- Recursive::new(self.inner.create_recursive_writer(channels), SampleWriter {
- start_byte_offset, target_sample_type,
- px: PhantomData::default()
- })
- }
-
- fn channel_descriptions_list(&self) -> SmallVec<[ChannelDescription; 5]> {
- let mut inner_list = self.inner.channel_descriptions_list();
- inner_list.push(self.value.clone());
- inner_list
- }
-}
-
-impl<InnerDescriptions, InnerPixel, Sample: IntoNativeSample>
-WritableChannelsDescription<Recursive<InnerPixel, Sample>>
-for Recursive<InnerDescriptions, Option<ChannelDescription>>
- where InnerDescriptions: WritableChannelsDescription<InnerPixel>
-{
- type RecursiveWriter = OptionalRecursiveWriter<InnerDescriptions::RecursiveWriter, Sample>;
-
- fn create_recursive_writer(&self, channels: &ChannelList) -> Self::RecursiveWriter {
- // this linear lookup is required because the order of the channels changed, due to alphabetical sorting
-
- let channel = self.value.as_ref().map(|required_channel|
- channels.channels_with_byte_offset()
- .find(|(_offset, channel)| channel == &required_channel)
- .map(|(offset, channel)| (offset, channel.sample_type))
- .expect("a channel has not been put into channel list")
- );
-
- Recursive::new(
- self.inner.create_recursive_writer(channels),
- channel.map(|(start_byte_offset, target_sample_type)| SampleWriter {
- start_byte_offset, target_sample_type,
- px: PhantomData::default(),
- })
- )
- }
-
- fn channel_descriptions_list(&self) -> SmallVec<[ChannelDescription; 5]> {
- let mut inner_list = self.inner.channel_descriptions_list();
- if let Some(value) = &self.value { inner_list.push(value.clone()); }
- inner_list
- }
-}
-
-/// Write pixels to a slice of bytes. The top level writer contains all the other channels,
-/// the most inner channel is `NoneMore`.
-pub trait RecursivePixelWriter<Pixel>: Sync {
-
- /// Write pixels to a slice of bytes. Recursively do this for all channels.
- fn write_pixels<FullPixel>(&self, bytes: &mut [u8], pixels: &[FullPixel], get_pixel: impl Fn(&FullPixel) -> &Pixel);
-}
-
-type RecursiveWriter<Inner, Sample> = Recursive<Inner, SampleWriter<Sample>>;
-type OptionalRecursiveWriter<Inner, Sample> = Recursive<Inner, Option<SampleWriter<Sample>>>;
-
-/// Write the pixels of a single channel, unconditionally. Generic over the concrete sample type (f16, f32, u32).
-#[derive(Debug, Clone)]
-pub struct SampleWriter<Sample> {
- target_sample_type: SampleType,
- start_byte_offset: usize,
- px: PhantomData<Sample>,
-}
-
-impl<Sample> SampleWriter<Sample> where Sample: IntoNativeSample {
- fn write_own_samples(&self, bytes: &mut [u8], samples: impl ExactSizeIterator<Item=Sample>) {
- let byte_start_index = samples.len() * self.start_byte_offset;
- let byte_count = samples.len() * self.target_sample_type.bytes_per_sample();
- let ref mut byte_writer = &mut bytes[byte_start_index..byte_start_index + byte_count];
-
- let write_error_msg = "invalid memory buffer length when writing";
-
- // match outside the loop to avoid matching on every single sample
- match self.target_sample_type {
- // TODO does this boil down to a `memcpy` where the sample type equals the type parameter?
- SampleType::F16 => for sample in samples { sample.to_f16().write(byte_writer).expect(write_error_msg); },
- SampleType::F32 => for sample in samples { sample.to_f32().write(byte_writer).expect(write_error_msg); },
- SampleType::U32 => for sample in samples { sample.to_u32().write(byte_writer).expect(write_error_msg); },
- };
-
- debug_assert!(byte_writer.is_empty(), "all samples are written, but more were expected");
- }
-}
-
-impl RecursivePixelWriter<NoneMore> for NoneMore {
- fn write_pixels<FullPixel>(&self, _: &mut [u8], _: &[FullPixel], _: impl Fn(&FullPixel) -> &NoneMore) {}
-}
-
-impl<Inner, InnerPixel, Sample: IntoNativeSample>
- RecursivePixelWriter<Recursive<InnerPixel, Sample>>
- for RecursiveWriter<Inner, Sample>
- where Inner: RecursivePixelWriter<InnerPixel>
-{
- // TODO impl exact size iterator <item = Self::Pixel>
- fn write_pixels<FullPixel>(&self, bytes: &mut [u8], pixels: &[FullPixel], get_pixel: impl Fn(&FullPixel) -> &Recursive<InnerPixel, Sample>){
- self.value.write_own_samples(bytes, pixels.iter().map(|px| get_pixel(px).value));
- self.inner.write_pixels(bytes, pixels, |px| &get_pixel(px).inner);
- }
-}
-
-impl<Inner, InnerPixel, Sample> RecursivePixelWriter<Recursive<InnerPixel, Sample>>
- for OptionalRecursiveWriter<Inner, Sample>
- where Inner: RecursivePixelWriter<InnerPixel>,
- Sample: IntoNativeSample
-{
- fn write_pixels<FullPixel>(&self, bytes: &mut [u8], pixels: &[FullPixel], get_pixel: impl Fn(&FullPixel) -> &Recursive<InnerPixel, Sample>) {
- if let Some(writer) = &self.value {
- writer.write_own_samples(bytes, pixels.iter().map(|px| get_pixel(px).value));
- }
-
- self.inner.write_pixels(bytes, pixels, |px| &get_pixel(px).inner);
- }
-}
-
-
-
-
-
-
-
-#[cfg(test)]
-pub mod test {
- use crate::image::write::channels::WritableChannels;
- use crate::image::SpecificChannels;
- use crate::prelude::{f16};
- use crate::meta::attribute::{ChannelDescription, SampleType};
- use crate::image::pixel_vec::PixelVec;
-
- #[test]
- fn compiles(){
- let x = 3_f32;
- let y = f16::from_f32(4.0);
- let z = 2_u32;
- let s = 1.3_f32;
- let px = (x,y,z,s);
-
- assert_is_writable_channels(
- SpecificChannels::rgba(|_pos| px)
- );
-
- assert_is_writable_channels(SpecificChannels::rgba(
- PixelVec::new((3, 2), vec![px, px, px, px, px, px])
- ));
-
- let px = (2333_u32, 4_f32);
- assert_is_writable_channels(
- SpecificChannels::build()
- .with_channel("A")
- .with_channel("C")
- .with_pixels(PixelVec::new((3, 2), vec![px, px, px, px, px, px]))
- );
-
- let px = (3_f32, f16::ONE, 2333_u32, 4_f32);
- assert_is_writable_channels(SpecificChannels::new(
- (
- ChannelDescription::named("x", SampleType::F32),
- ChannelDescription::named("y", SampleType::F16),
- Some(ChannelDescription::named("z", SampleType::U32)),
- Some(ChannelDescription::named("p", SampleType::F32)),
- ),
-
- PixelVec::new((3, 2), vec![px, px, px, px, px, px])
- ));
-
-
-
- fn assert_is_writable_channels<'s>(_channels: impl WritableChannels<'s>){}
-
- }
-}
-
-
-
-
diff --git a/vendor/exr/src/image/write/layers.rs b/vendor/exr/src/image/write/layers.rs
deleted file mode 100644
index 85648ff..0000000
--- a/vendor/exr/src/image/write/layers.rs
+++ /dev/null
@@ -1,188 +0,0 @@
-//! How to write either a single or a list of layers.
-
-use crate::meta::header::{ImageAttributes, Header};
-use crate::meta::{Headers, compute_chunk_count};
-use crate::block::BlockIndex;
-use crate::image::{Layers, Layer};
-use crate::meta::attribute::{TileDescription};
-use crate::prelude::{SmallVec};
-use crate::image::write::channels::{WritableChannels, ChannelsWriter};
-use crate::image::recursive::{Recursive, NoneMore};
-
-/// Enables an image containing this list of layers to be written to a file.
-pub trait WritableLayers<'slf> {
-
- /// Generate the file meta data for this list of layers
- fn infer_headers(&self, image_attributes: &ImageAttributes) -> Headers;
-
- /// The type of temporary writer
- type Writer: LayersWriter;
-
- /// Create a temporary writer for this list of layers
- fn create_writer(&'slf self, headers: &[Header]) -> Self::Writer;
-}
-
-/// A temporary writer for a list of channels
-pub trait LayersWriter: Sync {
-
- /// Deliver a block of pixels from a single layer to be stored in the file
- fn extract_uncompressed_block(&self, headers: &[Header], block: BlockIndex) -> Vec<u8>;
-}
-
-/// A temporary writer for an arbitrary list of layers
-#[derive(Debug, Clone, Eq, PartialEq)]
-pub struct AllLayersWriter<ChannelsWriter> {
- layers: SmallVec<[LayerWriter<ChannelsWriter>; 2]>
-}
-
-/// A temporary writer for a single layer
-#[derive(Debug, Clone, Eq, PartialEq)]
-pub struct LayerWriter<ChannelsWriter> {
- channels: ChannelsWriter, // impl ChannelsWriter
-}
-
-// impl for smallvec
-impl<'slf, Channels: 'slf> WritableLayers<'slf> for Layers<Channels> where Channels: WritableChannels<'slf> {
- fn infer_headers(&self, image_attributes: &ImageAttributes) -> Headers {
- slice_infer_headers(self.as_slice(), image_attributes)
- }
-
- type Writer = AllLayersWriter<Channels::Writer>;
- fn create_writer(&'slf self, headers: &[Header]) -> Self::Writer {
- slice_create_writer(self.as_slice(), headers)
- }
-}
-
-fn slice_infer_headers<'slf, Channels:'slf + WritableChannels<'slf>>(
- slice: &[Layer<Channels>], image_attributes: &ImageAttributes
-) -> Headers
-{
- slice.iter().map(|layer| layer.infer_headers(image_attributes).remove(0)).collect() // TODO no array-vs-first
-}
-
-fn slice_create_writer<'slf, Channels:'slf + WritableChannels<'slf>>(
- slice: &'slf [Layer<Channels>], headers: &[Header]
-) -> AllLayersWriter<Channels::Writer>
-{
- AllLayersWriter {
- layers: slice.iter().zip(headers.chunks_exact(1)) // TODO no array-vs-first
- .map(|(layer, header)| layer.create_writer(header))
- .collect()
- }
-}
-
-
-impl<'slf, Channels: WritableChannels<'slf>> WritableLayers<'slf> for Layer<Channels> {
- fn infer_headers(&self, image_attributes: &ImageAttributes) -> Headers {
- let blocks = match self.encoding.blocks {
- crate::image::Blocks::ScanLines => crate::meta::BlockDescription::ScanLines,
- crate::image::Blocks::Tiles(tile_size) => {
- let (level_mode, rounding_mode) = self.channel_data.infer_level_modes();
- crate::meta::BlockDescription::Tiles(TileDescription { level_mode, rounding_mode, tile_size, })
- },
- };
-
- let chunk_count = compute_chunk_count(
- self.encoding.compression, self.size, blocks
- );
-
- let header = Header {
- channels: self.channel_data.infer_channel_list(),
- compression: self.encoding.compression,
-
- blocks,
- chunk_count,
-
- line_order: self.encoding.line_order,
- layer_size: self.size,
- shared_attributes: image_attributes.clone(),
- own_attributes: self.attributes.clone(),
-
-
- deep: false, // TODO deep data
- deep_data_version: None,
- max_samples_per_pixel: None,
- };
-
- smallvec![ header ]// TODO no array-vs-first
- }
-
- type Writer = LayerWriter</*'l,*/ Channels::Writer>;
- fn create_writer(&'slf self, headers: &[Header]) -> Self::Writer {
- let channels = self.channel_data
- .create_writer(headers.first().expect("inferred header error")); // TODO no array-vs-first
-
- LayerWriter { channels }
- }
-}
-
-impl<C> LayersWriter for AllLayersWriter<C> where C: ChannelsWriter {
- fn extract_uncompressed_block(&self, headers: &[Header], block: BlockIndex) -> Vec<u8> {
- self.layers[block.layer].extract_uncompressed_block(std::slice::from_ref(&headers[block.layer]), block) // TODO no array-vs-first
- }
-}
-
-impl<C> LayersWriter for LayerWriter<C> where C: ChannelsWriter {
- fn extract_uncompressed_block(&self, headers: &[Header], block: BlockIndex) -> Vec<u8> {
- self.channels.extract_uncompressed_block(headers.first().expect("invalid inferred header"), block) // TODO no array-vs-first
- }
-}
-
-
-
-
-
-impl<'slf> WritableLayers<'slf> for NoneMore {
- fn infer_headers(&self, _: &ImageAttributes) -> Headers { SmallVec::new() }
-
- type Writer = NoneMore;
- fn create_writer(&'slf self, _: &[Header]) -> Self::Writer { NoneMore }
-}
-
-impl<'slf, InnerLayers, Channels> WritableLayers<'slf> for Recursive<InnerLayers, Layer<Channels>>
- where InnerLayers: WritableLayers<'slf>, Channels: WritableChannels<'slf>
-{
- fn infer_headers(&self, image_attributes: &ImageAttributes) -> Headers {
- let mut headers = self.inner.infer_headers(image_attributes);
- headers.push(self.value.infer_headers(image_attributes).remove(0)); // TODO no unwrap
- headers
- }
-
- type Writer = RecursiveLayersWriter<InnerLayers::Writer, Channels::Writer>;
-
- fn create_writer(&'slf self, headers: &[Header]) -> Self::Writer {
- let (own_header, inner_headers) = headers.split_last()
- .expect("header has not been inferred correctly");
-
- let layer_index = inner_headers.len();
- RecursiveLayersWriter {
- inner: self.inner.create_writer(inner_headers),
- value: (layer_index, self.value.create_writer(std::slice::from_ref(own_header))) // TODO no slice
- }
- }
-}
-
-type RecursiveLayersWriter<InnerLayersWriter, ChannelsWriter> = Recursive<InnerLayersWriter, (usize, LayerWriter<ChannelsWriter>)>;
-
-impl LayersWriter for NoneMore {
- fn extract_uncompressed_block(&self, _: &[Header], _: BlockIndex) -> Vec<u8> {
- panic!("recursive length mismatch bug");
- }
-}
-
-impl<InnerLayersWriter, Channels> LayersWriter for RecursiveLayersWriter<InnerLayersWriter, Channels>
- where InnerLayersWriter: LayersWriter, Channels: ChannelsWriter
-{
- fn extract_uncompressed_block(&self, headers: &[Header], block: BlockIndex) -> Vec<u8> {
- let (layer_index, layer) = &self.value;
- if *layer_index == block.layer {
- let header = headers.get(*layer_index).expect("layer index bug");
- layer.extract_uncompressed_block(std::slice::from_ref(header), block) // TODO no slice?
- }
- else {
- self.inner.extract_uncompressed_block(headers, block)
- }
- }
-}
-
-
diff --git a/vendor/exr/src/image/write/mod.rs b/vendor/exr/src/image/write/mod.rs
deleted file mode 100644
index 3c20060..0000000
--- a/vendor/exr/src/image/write/mod.rs
+++ /dev/null
@@ -1,184 +0,0 @@
-
-//! Write an exr image to a file.
-//!
-//! First, call `my_image.write()`. The resulting value can be customized, like this:
-//! ```no_run
-//! use exr::prelude::*;
-//! # let my_image: FlatImage = unimplemented!();
-//!
-//! my_image.write()
-//! .on_progress(|progress| println!("progress: {:.1}", progress*100.0))
-//! .to_file("image.exr").unwrap();
-//! ```
-//!
-
-pub mod layers;
-pub mod samples;
-pub mod channels;
-
-
-
-use crate::meta::Headers;
-use crate::error::UnitResult;
-use std::io::{Seek, BufWriter};
-use crate::io::Write;
-use crate::image::{Image, ignore_progress, SpecificChannels, IntoSample};
-use crate::image::write::layers::{WritableLayers, LayersWriter};
-use crate::math::Vec2;
-use crate::block::writer::ChunksWriter;
-
-/// An oversimplified function for "just write the damn file already" use cases.
-/// Have a look at the examples to see how you can write an image with more flexibility (it's not that hard).
-/// Use `write_rgb_file` if you do not need an alpha channel.
-///
-/// Each of `R`, `G`, `B` and `A` can be either `f16`, `f32`, `u32`, or `Sample`.
-// TODO explain pixel tuple f32,f16,u32
-pub fn write_rgba_file<R,G,B,A>(
- path: impl AsRef<std::path::Path>, width: usize, height: usize,
- colors: impl Sync + Fn(usize, usize) -> (R, G, B, A)
-) -> UnitResult
- where R: IntoSample, G: IntoSample, B: IntoSample, A: IntoSample,
-{
- let channels = SpecificChannels::rgba(|Vec2(x,y)| colors(x,y));
- Image::from_channels((width, height), channels).write().to_file(path)
-}
-
-/// An oversimplified function for "just write the damn file already" use cases.
-/// Have a look at the examples to see how you can write an image with more flexibility (it's not that hard).
-/// Use `write_rgb_file` if you do not need an alpha channel.
-///
-/// Each of `R`, `G`, and `B` can be either `f16`, `f32`, `u32`, or `Sample`.
-// TODO explain pixel tuple f32,f16,u32
-pub fn write_rgb_file<R,G,B>(
- path: impl AsRef<std::path::Path>, width: usize, height: usize,
- colors: impl Sync + Fn(usize, usize) -> (R, G, B)
-) -> UnitResult
- where R: IntoSample, G: IntoSample, B: IntoSample
-{
- let channels = SpecificChannels::rgb(|Vec2(x,y)| colors(x,y));
- Image::from_channels((width, height), channels).write().to_file(path)
-}
-
-
-
-/// Enables an image to be written to a file. Call `image.write()` where this trait is implemented.
-pub trait WritableImage<'img, WritableLayers>: Sized {
-
- /// Create a temporary writer which can be configured and used to write the image to a file.
- fn write(self) -> WriteImageWithOptions<'img, WritableLayers, fn(f64)>;
-}
-
-impl<'img, WritableLayers> WritableImage<'img, WritableLayers> for &'img Image<WritableLayers> {
- fn write(self) -> WriteImageWithOptions<'img, WritableLayers, fn(f64)> {
- WriteImageWithOptions {
- image: self,
- check_compatibility: true,
- parallel: true,
- on_progress: ignore_progress
- }
- }
-}
-
-/// A temporary writer which can be configured and used to write an image to a file.
-// temporary writer with options
-#[derive(Debug, Clone, PartialEq)]
-pub struct WriteImageWithOptions<'img, Layers, OnProgress> {
- image: &'img Image<Layers>,
- on_progress: OnProgress,
- check_compatibility: bool,
- parallel: bool,
-}
-
-
-impl<'img, L, F> WriteImageWithOptions<'img, L, F>
- where L: WritableLayers<'img>, F: FnMut(f64)
-{
- /// Generate file meta data for this image. The meta data structure is close to the data in the file.
- pub fn infer_meta_data(&self) -> Headers { // TODO this should perform all validity checks? and none after that?
- self.image.layer_data.infer_headers(&self.image.attributes)
- }
-
- /// Do not compress multiple pixel blocks on multiple threads at once.
- /// Might use less memory and synchronization, but will be slower in most situations.
- pub fn non_parallel(self) -> Self { Self { parallel: false, ..self } }
-
- /// Skip some checks that ensure a file can be opened by other exr software.
- /// For example, it is no longer checked that no two headers or two attributes have the same name,
- /// which might be an expensive check for images with an exorbitant number of headers.
- ///
- /// If you write an uncompressed file and need maximum speed, it might save a millisecond to disable the checks,
- /// if you know that your file is not invalid any ways. I do not recommend this though,
- /// as the file might not be readably by any other exr library after that.
- /// __You must care for not producing an invalid file yourself.__
- pub fn skip_compatibility_checks(self) -> Self { Self { check_compatibility: false, ..self } }
-
- /// Specify a function to be called regularly throughout the writing process.
- /// Replaces all previously specified progress functions in this reader.
- pub fn on_progress<OnProgress>(self, on_progress: OnProgress) -> WriteImageWithOptions<'img, L, OnProgress>
- where OnProgress: FnMut(f64)
- {
- WriteImageWithOptions {
- on_progress,
- image: self.image,
- check_compatibility: self.check_compatibility,
- parallel: self.parallel
- }
- }
-
- /// Write the exr image to a file.
- /// Use `to_unbuffered` instead, if you do not have a file.
- /// If an error occurs, attempts to delete the partially written file.
- #[inline]
- #[must_use]
- pub fn to_file(self, path: impl AsRef<std::path::Path>) -> UnitResult {
- crate::io::attempt_delete_file_on_write_error(path.as_ref(), move |write|
- self.to_unbuffered(write)
- )
- }
-
- /// Buffer the writer and then write the exr image to it.
- /// Use `to_buffered` instead, if your writer is an in-memory buffer.
- /// Use `to_file` instead, if you have a file path.
- /// If your writer cannot seek, you can write to an in-memory vector of bytes first, using `to_buffered`.
- #[inline]
- #[must_use]
- pub fn to_unbuffered(self, unbuffered: impl Write + Seek) -> UnitResult {
- self.to_buffered(BufWriter::new(unbuffered))
- }
-
- /// Write the exr image to a writer.
- /// Use `to_file` instead, if you have a file path.
- /// Use `to_unbuffered` instead, if this is not an in-memory writer.
- /// If your writer cannot seek, you can write to an in-memory vector of bytes first.
- #[must_use]
- pub fn to_buffered(self, write: impl Write + Seek) -> UnitResult {
- let headers = self.infer_meta_data();
- let layers = self.image.layer_data.create_writer(&headers);
-
- crate::block::write(
- write, headers, self.check_compatibility,
- move |meta, chunk_writer|{
-
- let blocks = meta.collect_ordered_block_data(|block_index|
- layers.extract_uncompressed_block(&meta.headers, block_index)
- );
-
- let chunk_writer = chunk_writer.on_progress(self.on_progress);
- if self.parallel { chunk_writer.compress_all_blocks_parallel(&meta, blocks)?; }
- else { chunk_writer.compress_all_blocks_sequential(&meta, blocks)?; }
- /*let blocks_writer = chunk_writer.as_blocks_writer(&meta);
-
- // TODO propagate send requirement further upwards
- if self.parallel {
- blocks_writer.compress_all_blocks_parallel(blocks)?;
- }
- else {
- blocks_writer.compress_all_blocks_sequential(blocks)?;
- }*/
-
- Ok(())
- }
- )
- }
-}
-
diff --git a/vendor/exr/src/image/write/samples.rs b/vendor/exr/src/image/write/samples.rs
deleted file mode 100644
index e74105b..0000000
--- a/vendor/exr/src/image/write/samples.rs
+++ /dev/null
@@ -1,205 +0,0 @@
-//! How to write samples (a grid of `f32`, `f16` or `u32` values).
-
-use crate::meta::attribute::{LevelMode, SampleType, TileDescription};
-use crate::meta::header::Header;
-use crate::block::lines::LineRefMut;
-use crate::image::{FlatSamples, Levels, RipMaps};
-use crate::math::{Vec2, RoundingMode};
-use crate::meta::{rip_map_levels, mip_map_levels, rip_map_indices, mip_map_indices, BlockDescription};
-
-/// Enable an image with this sample grid to be written to a file.
-/// Also can contain multiple resolution levels.
-/// Usually contained within `Channels`.
-pub trait WritableSamples<'slf> {
- // fn is_deep(&self) -> bool;
-
- /// Generate the file meta data regarding the number type of this storage
- fn sample_type(&self) -> SampleType;
-
- /// Generate the file meta data regarding resolution levels
- fn infer_level_modes(&self) -> (LevelMode, RoundingMode);
-
- /// The type of the temporary writer for this sample storage
- type Writer: SamplesWriter;
-
- /// Create a temporary writer for this sample storage
- fn create_samples_writer(&'slf self, header: &Header) -> Self::Writer;
-}
-
-/// Enable an image with this single level sample grid to be written to a file.
-/// Only contained within `Levels`.
-pub trait WritableLevel<'slf> {
-
- /// Generate the file meta data regarding the number type of these samples
- fn sample_type(&self) -> SampleType;
-
- /// The type of the temporary writer for this single level of samples
- type Writer: SamplesWriter;
-
- /// Create a temporary writer for this single level of samples
- fn create_level_writer(&'slf self, size: Vec2<usize>) -> Self::Writer;
-}
-
-/// A temporary writer for one or more resolution levels containing samples
-pub trait SamplesWriter: Sync {
-
- /// Deliver a single short horizontal list of samples for a specific channel.
- fn extract_line(&self, line: LineRefMut<'_>);
-}
-
-/// A temporary writer for a predefined non-deep sample storage
-#[derive(Debug, Copy, Clone, PartialEq)]
-pub struct FlatSamplesWriter<'samples> {
- resolution: Vec2<usize>, // respects resolution level
- samples: &'samples FlatSamples
-}
-
-
-
-// used if no layers are used and the flat samples are directly inside the channels
-impl<'samples> WritableSamples<'samples> for FlatSamples {
- fn sample_type(&self) -> SampleType {
- match self {
- FlatSamples::F16(_) => SampleType::F16,
- FlatSamples::F32(_) => SampleType::F32,
- FlatSamples::U32(_) => SampleType::U32,
- }
- }
-
- fn infer_level_modes(&self) -> (LevelMode, RoundingMode) { (LevelMode::Singular, RoundingMode::Down) }
-
- type Writer = FlatSamplesWriter<'samples>; //&'s FlatSamples;
- fn create_samples_writer(&'samples self, header: &Header) -> Self::Writer {
- FlatSamplesWriter {
- resolution: header.layer_size,
- samples: self
- }
- }
-}
-
-// used if layers are used and the flat samples are inside the levels
-impl<'samples> WritableLevel<'samples> for FlatSamples {
- fn sample_type(&self) -> SampleType {
- match self {
- FlatSamples::F16(_) => SampleType::F16,
- FlatSamples::F32(_) => SampleType::F32,
- FlatSamples::U32(_) => SampleType::U32,
- }
- }
-
- type Writer = FlatSamplesWriter<'samples>;
- fn create_level_writer(&'samples self, size: Vec2<usize>) -> Self::Writer {
- FlatSamplesWriter {
- resolution: size,
- samples: self
- }
- }
-}
-
-impl<'samples> SamplesWriter for FlatSamplesWriter<'samples> {
- fn extract_line(&self, line: LineRefMut<'_>) {
- let image_width = self.resolution.width(); // header.layer_size.width();
- debug_assert_ne!(image_width, 0, "image width calculation bug");
-
- let start_index = line.location.position.y() * image_width + line.location.position.x();
- let end_index = start_index + line.location.sample_count;
-
- debug_assert!(
- start_index < end_index && end_index <= self.samples.len(),
- "for resolution {:?}, this is an invalid line: {:?}",
- self.resolution, line.location
- );
-
- match self.samples {
- FlatSamples::F16(samples) => line.write_samples_from_slice(&samples[start_index .. end_index]),
- FlatSamples::F32(samples) => line.write_samples_from_slice(&samples[start_index .. end_index]),
- FlatSamples::U32(samples) => line.write_samples_from_slice(&samples[start_index .. end_index]),
- }.expect("writing line bytes failed");
- }
-}
-
-
-impl<'samples, LevelSamples> WritableSamples<'samples> for Levels<LevelSamples>
- where LevelSamples: WritableLevel<'samples>
-{
- fn sample_type(&self) -> SampleType {
- let sample_type = self.levels_as_slice().first().expect("no levels found").sample_type();
-
- debug_assert!(
- self.levels_as_slice().iter().skip(1).all(|ty| ty.sample_type() == sample_type),
- "sample types must be the same across all levels"
- );
-
- sample_type
- }
-
- fn infer_level_modes(&self) -> (LevelMode, RoundingMode) {
- match self {
- Levels::Singular(_) => (LevelMode::Singular, RoundingMode::Down),
- Levels::Mip { rounding_mode, .. } => (LevelMode::MipMap, *rounding_mode),
- Levels::Rip { rounding_mode, .. } => (LevelMode::RipMap, *rounding_mode),
- }
- }
-
- type Writer = LevelsWriter<LevelSamples::Writer>;
- fn create_samples_writer(&'samples self, header: &Header) -> Self::Writer {
- let rounding = match header.blocks {
- BlockDescription::Tiles(TileDescription { rounding_mode, .. }) => Some(rounding_mode),
- BlockDescription::ScanLines => None,
- };
-
- LevelsWriter {
- levels: match self {
- Levels::Singular(level) => Levels::Singular(level.create_level_writer(header.layer_size)),
- Levels::Mip { level_data, rounding_mode } => {
- debug_assert_eq!(
- level_data.len(),
- mip_map_indices(rounding.expect("mip maps only with tiles"), header.layer_size).count(),
- "invalid mip map count"
- );
-
- Levels::Mip { // TODO store level size in image??
- rounding_mode: *rounding_mode,
- level_data: level_data.iter()
- .zip(mip_map_levels(rounding.expect("mip maps only with tiles"), header.layer_size))
- // .map(|level| level.create_samples_writer(header))
- .map(|(level, (_level_index, level_size))| level.create_level_writer(level_size))
- .collect()
- }
- },
- Levels::Rip { level_data, rounding_mode } => {
- debug_assert_eq!(level_data.map_data.len(), level_data.level_count.area(), "invalid rip level count");
- debug_assert_eq!(
- level_data.map_data.len(),
- rip_map_indices(rounding.expect("rip maps only with tiles"), header.layer_size).count(),
- "invalid rip map count"
- );
-
- Levels::Rip {
- rounding_mode: *rounding_mode,
- level_data: RipMaps {
- level_count: level_data.level_count,
- map_data: level_data.map_data.iter()
- .zip(rip_map_levels(rounding.expect("rip maps only with tiles"), header.layer_size))
- .map(|(level, (_level_index, level_size))| level.create_level_writer(level_size))
- .collect(),
- }
- }
- }
- }
- }
- }
-}
-
-/// A temporary writer for multiple resolution levels
-#[derive(Debug, Clone, Eq, PartialEq)]
-pub struct LevelsWriter<SamplesWriter> {
- levels: Levels<SamplesWriter>,
-}
-
-impl<Samples> SamplesWriter for LevelsWriter<Samples> where Samples: SamplesWriter {
- fn extract_line(&self, line: LineRefMut<'_>) {
- self.levels.get_level(line.location.level).expect("invalid level index") // TODO compute level size from line index??
- .extract_line(line)
- }
-}