aboutsummaryrefslogtreecommitdiff
path: root/vendor/exr/src/meta/attribute.rs
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/exr/src/meta/attribute.rs')
-rw-r--r--vendor/exr/src/meta/attribute.rs2226
1 files changed, 2226 insertions, 0 deletions
diff --git a/vendor/exr/src/meta/attribute.rs b/vendor/exr/src/meta/attribute.rs
new file mode 100644
index 0000000..5b71e82
--- /dev/null
+++ b/vendor/exr/src/meta/attribute.rs
@@ -0,0 +1,2226 @@
+
+//! Contains all meta data attributes.
+//! Each layer can have any number of [`Attribute`]s, including custom attributes.
+
+use smallvec::SmallVec;
+
+
+/// Contains one of all possible attributes.
+/// Includes a variant for custom attributes.
+#[derive(Debug, Clone, PartialEq)]
+pub enum AttributeValue {
+
+ /// Channel meta data.
+ ChannelList(ChannelList),
+
+ /// Color space definition.
+ Chromaticities(Chromaticities),
+
+ /// Compression method of this layer.
+ Compression(Compression),
+
+ /// This image is an environment map.
+ EnvironmentMap(EnvironmentMap),
+
+ /// Film roll information.
+ KeyCode(KeyCode),
+
+ /// Order of the bocks in the file.
+ LineOrder(LineOrder),
+
+ /// A 3x3 matrix of floats.
+ Matrix3x3(Matrix3x3),
+
+ /// A 4x4 matrix of floats.
+ Matrix4x4(Matrix4x4),
+
+ /// 8-bit rgba Preview of the image.
+ Preview(Preview),
+
+ /// An integer dividend and divisor.
+ Rational(Rational),
+
+ /// Deep or flat and tiled or scan line.
+ BlockType(BlockType),
+
+ /// List of texts.
+ TextVector(Vec<Text>),
+
+ /// How to tile up the image.
+ TileDescription(TileDescription),
+
+ /// Timepoint and more.
+ TimeCode(TimeCode),
+
+ /// A string of byte-chars.
+ Text(Text),
+
+ /// 64-bit float
+ F64(f64),
+
+ /// 32-bit float
+ F32(f32),
+
+ /// 32-bit signed integer
+ I32(i32),
+
+ /// 2D integer rectangle.
+ IntegerBounds(IntegerBounds),
+
+ /// 2D float rectangle.
+ FloatRect(FloatRect),
+
+ /// 2D integer vector.
+ IntVec2(Vec2<i32>),
+
+ /// 2D float vector.
+ FloatVec2(Vec2<f32>),
+
+ /// 3D integer vector.
+ IntVec3((i32, i32, i32)),
+
+ /// 3D float vector.
+ FloatVec3((f32, f32, f32)),
+
+ /// A custom attribute.
+ /// Contains the type name of this value.
+ Custom {
+
+ /// The name of the type this attribute is an instance of.
+ kind: Text,
+
+ /// The value, stored in little-endian byte order, of the value.
+ /// Use the `exr::io::Data` trait to extract binary values from this vector.
+ bytes: Vec<u8>
+ },
+}
+
+/// A byte array with each byte being a char.
+/// This is not UTF an must be constructed from a standard string.
+// TODO is this ascii? use a rust ascii crate?
+#[derive(Clone, PartialEq, Ord, PartialOrd, Default)] // hash implemented manually
+pub struct Text {
+ bytes: TextBytes,
+}
+
+/// Contains time information for this frame within a sequence.
+/// Also defined methods to compile this information into a
+/// `TV60`, `TV50` or `Film24` bit sequence, packed into `u32`.
+///
+/// Satisfies the [SMPTE standard 12M-1999](https://en.wikipedia.org/wiki/SMPTE_timecode).
+/// For more in-depth information, see [philrees.co.uk/timecode](http://www.philrees.co.uk/articles/timecode.htm).
+#[derive(Copy, Debug, Clone, Eq, PartialEq, Hash, Default)]
+pub struct TimeCode {
+
+ /// Hours 0 - 23 are valid.
+ pub hours: u8,
+
+ /// Minutes 0 - 59 are valid.
+ pub minutes: u8,
+
+ /// Seconds 0 - 59 are valid.
+ pub seconds: u8,
+
+ /// Frame Indices 0 - 29 are valid.
+ pub frame: u8,
+
+ /// Whether this is a drop frame.
+ pub drop_frame: bool,
+
+ /// Whether this is a color frame.
+ pub color_frame: bool,
+
+ /// Field Phase.
+ pub field_phase: bool,
+
+ /// Flags for `TimeCode.binary_groups`.
+ pub binary_group_flags: [bool; 3],
+
+ /// The user-defined control codes.
+ /// Every entry in this array can use at most 3 bits.
+ /// This results in a maximum value of 15, including 0, for each `u8`.
+ pub binary_groups: [u8; 8]
+}
+
+/// layer type, specifies block type and deepness.
+#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash)]
+pub enum BlockType {
+
+ /// Corresponds to the string value `scanlineimage`.
+ ScanLine,
+
+ /// Corresponds to the string value `tiledimage`.
+ Tile,
+
+ /// Corresponds to the string value `deepscanline`.
+ DeepScanLine,
+
+ /// Corresponds to the string value `deeptile`.
+ DeepTile,
+}
+
+/// The string literals used to represent a `BlockType` in a file.
+pub mod block_type_strings {
+
+ /// Type attribute text value of flat scan lines
+ pub const SCAN_LINE: &'static [u8] = b"scanlineimage";
+
+ /// Type attribute text value of flat tiles
+ pub const TILE: &'static [u8] = b"tiledimage";
+
+ /// Type attribute text value of deep scan lines
+ pub const DEEP_SCAN_LINE: &'static [u8] = b"deepscanline";
+
+ /// Type attribute text value of deep tiles
+ pub const DEEP_TILE: &'static [u8] = b"deeptile";
+}
+
+
+pub use crate::compression::Compression;
+
+/// The integer rectangle describing where an layer is placed on the infinite 2D global space.
+pub type DataWindow = IntegerBounds;
+
+/// The integer rectangle limiting which part of the infinite 2D global space should be displayed.
+pub type DisplayWindow = IntegerBounds;
+
+/// An integer dividend and divisor, together forming a ratio.
+pub type Rational = (i32, u32);
+
+/// A float matrix with four rows and four columns.
+pub type Matrix4x4 = [f32; 4*4];
+
+/// A float matrix with three rows and three columns.
+pub type Matrix3x3 = [f32; 3*3];
+
+/// A rectangular section anywhere in 2D integer space.
+/// Valid from minimum coordinate (including) `-1,073,741,822`
+/// to maximum coordinate (including) `1,073,741,822`, the value of (`i32::MAX/2 -1`).
+#[derive(Clone, Copy, Debug, Eq, PartialEq, Default, Hash)]
+pub struct IntegerBounds {
+
+ /// The top left corner of this rectangle.
+ /// The `Box2I32` includes this pixel if the size is not zero.
+ pub position: Vec2<i32>,
+
+ /// How many pixels to include in this `Box2I32`.
+ /// Extends to the right and downwards.
+ /// Does not include the actual boundary, just like `Vec::len()`.
+ pub size: Vec2<usize>,
+}
+
+/// A rectangular section anywhere in 2D float space.
+#[derive(Clone, Copy, Debug, PartialEq)]
+pub struct FloatRect {
+
+ /// The top left corner location of the rectangle (inclusive)
+ pub min: Vec2<f32>,
+
+ /// The bottom right corner location of the rectangle (inclusive)
+ pub max: Vec2<f32>
+}
+
+/// A List of channels. Channels must be sorted alphabetically.
+#[derive(Clone, Debug, Eq, PartialEq, Hash)]
+pub struct ChannelList {
+
+ /// The channels in this list.
+ pub list: SmallVec<[ChannelDescription; 5]>,
+
+ /// The number of bytes that one pixel in this image needs.
+ // FIXME this needs to account for subsampling anywhere?
+ pub bytes_per_pixel: usize, // FIXME only makes sense for flat images!
+
+ /// The sample type of all channels, if all channels have the same type.
+ pub uniform_sample_type: Option<SampleType>,
+}
+
+/// A single channel in an layer.
+/// Does not contain the actual pixel data,
+/// but instead merely describes it.
+#[derive(Clone, Debug, Eq, PartialEq, Hash)]
+pub struct ChannelDescription {
+
+ /// One of "R", "G", or "B" most of the time.
+ pub name: Text,
+
+ /// U32, F16 or F32.
+ pub sample_type: SampleType,
+
+ /// This attribute only tells lossy compression methods
+ /// whether this value should be quantized exponentially or linearly.
+ ///
+ /// Should be `false` for red, green, or blue channels.
+ /// Should be `true` for hue, chroma, saturation, or alpha channels.
+ pub quantize_linearly: bool,
+
+ /// How many of the samples are skipped compared to the other channels in this layer.
+ ///
+ /// Can be used for chroma subsampling for manual lossy data compression.
+ /// Values other than 1 are allowed only in flat, scan-line based images.
+ /// If an image is deep or tiled, x and y sampling rates for all of its channels must be 1.
+ pub sampling: Vec2<usize>,
+}
+
+/// The type of samples in this channel.
+#[derive(Clone, Debug, Eq, PartialEq, Copy, Hash)]
+pub enum SampleType {
+
+ /// This channel contains 32-bit unsigned int values.
+ U32,
+
+ /// This channel contains 16-bit float values.
+ F16,
+
+ /// This channel contains 32-bit float values.
+ F32,
+}
+
+/// The color space of the pixels.
+///
+/// If a file doesn't have a chromaticities attribute, display software
+/// should assume that the file's primaries and the white point match `Rec. ITU-R BT.709-3`.
+#[derive(Debug, Clone, Copy, PartialEq)]
+pub struct Chromaticities {
+
+ /// "Red" location on the CIE XY chromaticity diagram.
+ pub red: Vec2<f32>,
+
+ /// "Green" location on the CIE XY chromaticity diagram.
+ pub green: Vec2<f32>,
+
+ /// "Blue" location on the CIE XY chromaticity diagram.
+ pub blue: Vec2<f32>,
+
+ /// "White" location on the CIE XY chromaticity diagram.
+ pub white: Vec2<f32>
+}
+
+/// If this attribute is present, it describes
+/// how this texture should be projected onto an environment.
+#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash)]
+pub enum EnvironmentMap {
+
+ /// This image is an environment map projected like a world map.
+ LatitudeLongitude,
+
+ /// This image contains the six sides of a cube.
+ Cube,
+}
+
+/// Uniquely identifies a motion picture film frame.
+#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash)]
+pub struct KeyCode {
+
+ /// Identifies a film manufacturer.
+ pub film_manufacturer_code: i32,
+
+ /// Identifies a film type.
+ pub film_type: i32,
+
+ /// Specifies the film roll prefix.
+ pub film_roll_prefix: i32,
+
+ /// Specifies the film count.
+ pub count: i32,
+
+ /// Specifies the perforation offset.
+ pub perforation_offset: i32,
+
+ /// Specifies the perforation count of each single frame.
+ pub perforations_per_frame: i32,
+
+ /// Specifies the perforation count of each single film.
+ pub perforations_per_count: i32,
+}
+
+/// In what order the `Block`s of pixel data appear in a file.
+#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash)]
+pub enum LineOrder {
+
+ /// The blocks in the file are ordered in descending rows from left to right.
+ /// When compressing in parallel, this option requires potentially large amounts of memory.
+ /// In that case, use `LineOrder::Unspecified` for best performance.
+ Increasing,
+
+ /// The blocks in the file are ordered in ascending rows from right to left.
+ /// When compressing in parallel, this option requires potentially large amounts of memory.
+ /// In that case, use `LineOrder::Unspecified` for best performance.
+ Decreasing,
+
+ /// The blocks are not ordered in a specific way inside the file.
+ /// In multi-core file writing, this option offers the best performance.
+ Unspecified,
+}
+
+/// A small `rgba` image of `i8` values that approximates the real exr image.
+// TODO is this linear?
+#[derive(Clone, Eq, PartialEq)]
+pub struct Preview {
+
+ /// The dimensions of the preview image.
+ pub size: Vec2<usize>,
+
+ /// An array with a length of 4 × width × height.
+ /// The pixels are stored in `LineOrder::Increasing`.
+ /// Each pixel consists of the four `u8` values red, green, blue, alpha.
+ pub pixel_data: Vec<i8>,
+}
+
+/// Describes how the layer is divided into tiles.
+/// Specifies the size of each tile in the image
+/// and whether this image contains multiple resolution levels.
+#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash)]
+pub struct TileDescription {
+
+ /// The size of each tile.
+ /// Stays the same number of pixels across all levels.
+ pub tile_size: Vec2<usize>,
+
+ /// Whether to also store smaller versions of the image.
+ pub level_mode: LevelMode,
+
+ /// Whether to round up or down when calculating Mip/Rip levels.
+ pub rounding_mode: RoundingMode,
+}
+
+/// Whether to also store increasingly smaller versions of the original image.
+#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash)]
+pub enum LevelMode {
+
+ /// Only a single level.
+ Singular,
+
+ /// Levels with a similar aspect ratio.
+ MipMap,
+
+ /// Levels with all possible aspect ratios.
+ RipMap,
+}
+
+
+/// The raw bytes that make up a string in an exr file.
+/// Each `u8` is a single char.
+// will mostly be "R", "G", "B" or "deepscanlineimage"
+pub type TextBytes = SmallVec<[u8; 24]>;
+
+/// A byte slice, interpreted as text
+pub type TextSlice = [u8];
+
+
+use crate::io::*;
+use crate::meta::{sequence_end};
+use crate::error::*;
+use crate::math::{RoundingMode, Vec2};
+use half::f16;
+use std::convert::{TryFrom};
+use std::borrow::Borrow;
+use std::hash::{Hash, Hasher};
+use bit_field::BitField;
+
+
+fn invalid_type() -> Error {
+ Error::invalid("attribute type mismatch")
+}
+
+
+impl Text {
+
+ /// Create a `Text` from an `str` reference.
+ /// Returns `None` if this string contains unsupported chars.
+ pub fn new_or_none(string: impl AsRef<str>) -> Option<Self> {
+ let vec : Option<TextBytes> = string.as_ref().chars()
+ .map(|character| u8::try_from(character as u64).ok())
+ .collect();
+
+ vec.map(Self::from_bytes_unchecked)
+ }
+
+ /// Create a `Text` from an `str` reference.
+ /// Panics if this string contains unsupported chars.
+ pub fn new_or_panic(string: impl AsRef<str>) -> Self {
+ Self::new_or_none(string).expect("exr::Text contains unsupported characters")
+ }
+
+ /// Create a `Text` from a slice of bytes,
+ /// without checking any of the bytes.
+ pub fn from_slice_unchecked(text: &TextSlice) -> Self {
+ Self::from_bytes_unchecked(SmallVec::from_slice(text))
+ }
+
+ /// Create a `Text` from the specified bytes object,
+ /// without checking any of the bytes.
+ pub fn from_bytes_unchecked(bytes: TextBytes) -> Self {
+ Text { bytes }
+ }
+
+ /// The internal ASCII bytes this text is made of.
+ pub fn as_slice(&self) -> &TextSlice {
+ self.bytes.as_slice()
+ }
+
+ /// Check whether this string is valid, adjusting `long_names` if required.
+ /// If `long_names` is not provided, text length will be entirely unchecked.
+ pub fn validate(&self, null_terminated: bool, long_names: Option<&mut bool>) -> UnitResult {
+ Self::validate_bytes(self.as_slice(), null_terminated, long_names)
+ }
+
+ /// Check whether some bytes are valid, adjusting `long_names` if required.
+ /// If `long_names` is not provided, text length will be entirely unchecked.
+ pub fn validate_bytes(text: &TextSlice, null_terminated: bool, long_names: Option<&mut bool>) -> UnitResult {
+ if null_terminated && text.is_empty() {
+ return Err(Error::invalid("text must not be empty"));
+ }
+
+ if let Some(long) = long_names {
+ if text.len() >= 256 { return Err(Error::invalid("text must not be longer than 255")); }
+ if text.len() >= 32 { *long = true; }
+ }
+
+ Ok(())
+ }
+
+ /// The byte count this string would occupy if it were encoded as a null-terminated string.
+ pub fn null_terminated_byte_size(&self) -> usize {
+ self.bytes.len() + sequence_end::byte_size()
+ }
+
+ /// The byte count this string would occupy if it were encoded as a size-prefixed string.
+ pub fn i32_sized_byte_size(&self) -> usize {
+ self.bytes.len() + i32::BYTE_SIZE
+ }
+
+ /// Write the length of a string and then the contents with that length.
+ pub fn write_i32_sized<W: Write>(&self, write: &mut W) -> UnitResult {
+ debug_assert!(self.validate( false, None).is_ok(), "text size bug");
+ i32::write(usize_to_i32(self.bytes.len()), write)?;
+ Self::write_unsized_bytes(self.bytes.as_slice(), write)
+ }
+
+ /// Without validation, write this instance to the byte stream.
+ fn write_unsized_bytes<W: Write>(bytes: &[u8], write: &mut W) -> UnitResult {
+ u8::write_slice(write, bytes)?;
+ Ok(())
+ }
+
+ /// Read the length of a string and then the contents with that length.
+ pub fn read_i32_sized<R: Read>(read: &mut R, max_size: usize) -> Result<Self> {
+ let size = i32_to_usize(i32::read(read)?, "vector size")?;
+ Ok(Text::from_bytes_unchecked(SmallVec::from_vec(u8::read_vec(read, size, 1024, Some(max_size), "text attribute length")?)))
+ }
+
+ /// Read the contents with that length.
+ pub fn read_sized<R: Read>(read: &mut R, size: usize) -> Result<Self> {
+ const SMALL_SIZE: usize = 24;
+
+ // for small strings, read into small vec without heap allocation
+ if size <= SMALL_SIZE {
+ let mut buffer = [0_u8; SMALL_SIZE];
+ let data = &mut buffer[..size];
+
+ read.read_exact(data)?;
+ Ok(Text::from_bytes_unchecked(SmallVec::from_slice(data)))
+ }
+
+ // for large strings, read a dynamic vec of arbitrary size
+ else {
+ Ok(Text::from_bytes_unchecked(SmallVec::from_vec(u8::read_vec(read, size, 1024, None, "text attribute length")?)))
+ }
+ }
+
+ /// Write the string contents and a null-terminator.
+ pub fn write_null_terminated<W: Write>(&self, write: &mut W) -> UnitResult {
+ Self::write_null_terminated_bytes(self.as_slice(), write)
+ }
+
+ /// Write the string contents and a null-terminator.
+ fn write_null_terminated_bytes<W: Write>(bytes: &[u8], write: &mut W) -> UnitResult {
+ debug_assert!(!bytes.is_empty(), "text is empty bug"); // required to avoid mixup with "sequece_end"
+
+ Text::write_unsized_bytes(bytes, write)?;
+ sequence_end::write(write)?;
+ Ok(())
+ }
+
+ /// Read a string until the null-terminator is found. Then skips the null-terminator.
+ pub fn read_null_terminated<R: Read>(read: &mut R, max_len: usize) -> Result<Self> {
+ let mut bytes = smallvec![ u8::read(read)? ]; // null-terminated strings are always at least 1 byte
+
+ loop {
+ match u8::read(read)? {
+ 0 => break,
+ non_terminator => bytes.push(non_terminator),
+ }
+
+ if bytes.len() > max_len {
+ return Err(Error::invalid("text too long"))
+ }
+ }
+
+ Ok(Text { bytes })
+ }
+
+ /// Allows any text length since it is only used for attribute values,
+ /// but not attribute names, attribute type names, or channel names.
+ fn read_vec_of_i32_sized(
+ read: &mut PeekRead<impl Read>,
+ total_byte_size: usize
+ ) -> Result<Vec<Text>>
+ {
+ let mut result = Vec::with_capacity(2);
+
+ // length of the text-vector can be inferred from attribute size
+ let mut processed_bytes = 0;
+
+ while processed_bytes < total_byte_size {
+ let text = Text::read_i32_sized(read, total_byte_size)?;
+ processed_bytes += ::std::mem::size_of::<i32>(); // size i32 of the text
+ processed_bytes += text.bytes.len();
+ result.push(text);
+ }
+
+ // the expected byte size did not match the actual text byte size
+ if processed_bytes != total_byte_size {
+ return Err(Error::invalid("text array byte size"))
+ }
+
+ Ok(result)
+ }
+
+ /// Allows any text length since it is only used for attribute values,
+ /// but not attribute names, attribute type names, or channel names.
+ fn write_vec_of_i32_sized_texts<W: Write>(write: &mut W, texts: &[Text]) -> UnitResult {
+ // length of the text-vector can be inferred from attribute size
+ for text in texts {
+ text.write_i32_sized(write)?;
+ }
+
+ Ok(())
+ }
+
+ /// The underlying bytes that represent this text.
+ pub fn bytes(&self) -> &[u8] {
+ self.bytes.as_slice()
+ }
+
+ /// Iterate over the individual chars in this text, similar to `String::chars()`.
+ /// Does not do any heap-allocation but borrows from this instance instead.
+ pub fn chars(&self) -> impl '_ + Iterator<Item = char> {
+ self.bytes.iter().map(|&byte| byte as char)
+ }
+
+ /// Compare this `exr::Text` with a plain `&str`.
+ pub fn eq(&self, string: &str) -> bool {
+ string.chars().eq(self.chars())
+ }
+
+ /// Compare this `exr::Text` with a plain `&str` ignoring capitalization.
+ pub fn eq_case_insensitive(&self, string: &str) -> bool {
+ // this is technically not working for a "turkish i", but those cannot be encoded in exr files anyways
+ let self_chars = self.chars().map(|char| char.to_ascii_lowercase());
+ let string_chars = string.chars().flat_map(|ch| ch.to_lowercase());
+
+ string_chars.eq(self_chars)
+ }
+}
+
+impl PartialEq<str> for Text {
+ fn eq(&self, other: &str) -> bool {
+ self.eq(other)
+ }
+}
+
+impl PartialEq<Text> for str {
+ fn eq(&self, other: &Text) -> bool {
+ other.eq(self)
+ }
+}
+
+impl Eq for Text {}
+
+impl Borrow<TextSlice> for Text {
+ fn borrow(&self) -> &TextSlice {
+ self.as_slice()
+ }
+}
+
+// forwarding implementation. guarantees `text.borrow().hash() == text.hash()` (required for Borrow)
+impl Hash for Text {
+ fn hash<H: Hasher>(&self, state: &mut H) {
+ self.bytes.hash(state)
+ }
+}
+
+impl Into<String> for Text {
+ fn into(self) -> String {
+ self.to_string()
+ }
+}
+
+impl<'s> From<&'s str> for Text {
+
+ /// Panics if the string contains an unsupported character
+ fn from(str: &'s str) -> Self {
+ Self::new_or_panic(str)
+ }
+}
+
+
+/* TODO (currently conflicts with From<&str>)
+impl<'s> TryFrom<&'s str> for Text {
+ type Error = String;
+
+ fn try_from(value: &'s str) -> std::result::Result<Self, Self::Error> {
+ Text::new_or_none(value)
+ .ok_or_else(|| format!(
+ "exr::Text does not support all characters in the string `{}`",
+ value
+ ))
+ }
+}*/
+
+
+impl ::std::fmt::Debug for Text {
+ fn fmt(&self, f: &mut ::std::fmt::Formatter<'_>) -> ::std::fmt::Result {
+ write!(f, "exr::Text(\"{}\")", self)
+ }
+}
+
+// automatically implements to_string for us
+impl ::std::fmt::Display for Text {
+ fn fmt(&self, f: &mut ::std::fmt::Formatter<'_>) -> ::std::fmt::Result {
+ use std::fmt::Write;
+
+ for &byte in self.bytes.iter() {
+ f.write_char(byte as char)?;
+ }
+
+ Ok(())
+ }
+}
+
+
+impl ChannelList {
+
+ /// Does not validate channel order.
+ pub fn new(channels: SmallVec<[ChannelDescription; 5]>) -> Self {
+ let uniform_sample_type = {
+ if let Some(first) = channels.first() {
+ let has_uniform_types = channels.iter().skip(1)
+ .all(|chan| chan.sample_type == first.sample_type);
+
+ if has_uniform_types { Some(first.sample_type) } else { None }
+ }
+ else { None }
+ };
+
+ ChannelList {
+ bytes_per_pixel: channels.iter().map(|channel| channel.sample_type.bytes_per_sample()).sum(),
+ list: channels, uniform_sample_type,
+ }
+ }
+
+ /// Iterate over the channels, and adds to each channel the byte offset of the channels sample type.
+ /// Assumes the internal channel list is properly sorted.
+ pub fn channels_with_byte_offset(&self) -> impl Iterator<Item=(usize, &ChannelDescription)> {
+ self.list.iter().scan(0, |byte_position, channel|{
+ let previous_position = *byte_position;
+ *byte_position += channel.sample_type.bytes_per_sample();
+ Some((previous_position, channel))
+ })
+ }
+
+ /// Return the index of the channel with the exact name, case sensitive, or none.
+ /// Potentially uses less than linear time.
+ pub fn find_index_of_channel(&self, exact_name: &Text) -> Option<usize> {
+ self.list.binary_search_by_key(&exact_name.bytes(), |chan| chan.name.bytes()).ok()
+ }
+
+ // TODO use this in compression methods
+ /*pub fn pixel_section_indices(&self, bounds: IntegerBounds) -> impl '_ + Iterator<Item=(&Channel, usize, usize)> {
+ (bounds.position.y() .. bounds.end().y()).flat_map(|y| {
+ self.list
+ .filter(|channel| mod_p(y, usize_to_i32(channel.sampling.1)) == 0)
+ .flat_map(|channel|{
+ (bounds.position.x() .. bounds.end().x())
+ .filter(|x| mod_p(*x, usize_to_i32(channel.sampling.0)) == 0)
+ .map(|x| (channel, x, y))
+ })
+ })
+ }*/
+}
+
+impl BlockType {
+
+ /// The corresponding attribute type name literal
+ const TYPE_NAME: &'static [u8] = type_names::TEXT;
+
+ /// Return a `BlockType` object from the specified attribute text value.
+ pub fn parse(text: Text) -> Result<Self> {
+ match text.as_slice() {
+ block_type_strings::SCAN_LINE => Ok(BlockType::ScanLine),
+ block_type_strings::TILE => Ok(BlockType::Tile),
+
+ block_type_strings::DEEP_SCAN_LINE => Ok(BlockType::DeepScanLine),
+ block_type_strings::DEEP_TILE => Ok(BlockType::DeepTile),
+
+ _ => Err(Error::invalid("block type attribute value")),
+ }
+ }
+
+ /// Without validation, write this instance to the byte stream.
+ pub fn write(&self, write: &mut impl Write) -> UnitResult {
+ u8::write_slice(write, self.to_text_bytes())?;
+ Ok(())
+ }
+
+ /// Returns the raw attribute text value this type is represented by in a file.
+ pub fn to_text_bytes(&self) -> &[u8] {
+ match self {
+ BlockType::ScanLine => block_type_strings::SCAN_LINE,
+ BlockType::Tile => block_type_strings::TILE,
+ BlockType::DeepScanLine => block_type_strings::DEEP_SCAN_LINE,
+ BlockType::DeepTile => block_type_strings::DEEP_TILE,
+ }
+ }
+
+ /// Number of bytes this would consume in an exr file.
+ pub fn byte_size(&self) -> usize {
+ self.to_text_bytes().len()
+ }
+}
+
+
+impl IntegerBounds {
+
+ /// Create a box with no size located at (0,0).
+ pub fn zero() -> Self {
+ Self::from_dimensions(Vec2(0, 0))
+ }
+
+ /// Create a box with a size starting at zero.
+ pub fn from_dimensions(size: impl Into<Vec2<usize>>) -> Self {
+ Self::new(Vec2(0,0), size)
+ }
+
+ /// Create a box with a size and an origin point.
+ pub fn new(start: impl Into<Vec2<i32>>, size: impl Into<Vec2<usize>>) -> Self {
+ Self { position: start.into(), size: size.into() }
+ }
+
+ /// Returns the top-right coordinate of the rectangle.
+ /// The row and column described by this vector are not included in the rectangle,
+ /// just like `Vec::len()`.
+ pub fn end(self) -> Vec2<i32> {
+ self.position + self.size.to_i32() // larger than max int32 is panic
+ }
+
+ /// Returns the maximum coordinate that a value in this rectangle may have.
+ pub fn max(self) -> Vec2<i32> {
+ self.end() - Vec2(1,1)
+ }
+
+ /// Validate this instance.
+ pub fn validate(&self, max_size: Option<Vec2<usize>>) -> UnitResult {
+ if let Some(max_size) = max_size {
+ if self.size.width() > max_size.width() || self.size.height() > max_size.height() {
+ return Err(Error::invalid("window attribute dimension value"));
+ }
+ }
+
+ let min_i64 = Vec2(self.position.x() as i64, self.position.y() as i64);
+
+ let max_i64 = Vec2(
+ self.position.x() as i64 + self.size.width() as i64,
+ self.position.y() as i64 + self.size.height() as i64,
+ );
+
+ Self::validate_min_max_u64(min_i64, max_i64)
+ }
+
+ fn validate_min_max_u64(min: Vec2<i64>, max: Vec2<i64>) -> UnitResult {
+ let max_box_size_as_i64 = (i32::MAX / 2) as i64; // as defined in the original c++ library
+
+ if max.x() >= max_box_size_as_i64
+ || max.y() >= max_box_size_as_i64
+ || min.x() <= -max_box_size_as_i64
+ || min.y() <= -max_box_size_as_i64
+ {
+ return Err(Error::invalid("window size exceeding integer maximum"));
+ }
+
+ Ok(())
+ }
+
+ /// Number of bytes this would consume in an exr file.
+ pub fn byte_size() -> usize {
+ 4 * i32::BYTE_SIZE
+ }
+
+ /// Without validation, write this instance to the byte stream.
+ pub fn write<W: Write>(&self, write: &mut W) -> UnitResult {
+ let Vec2(x_min, y_min) = self.position;
+ let Vec2(x_max, y_max) = self.max();
+
+ x_min.write(write)?;
+ y_min.write(write)?;
+ x_max.write(write)?;
+ y_max.write(write)?;
+ Ok(())
+ }
+
+ /// Read the value without validating.
+ pub fn read<R: Read>(read: &mut R) -> Result<Self> {
+ let x_min = i32::read(read)?;
+ let y_min = i32::read(read)?;
+ let x_max = i32::read(read)?;
+ let y_max = i32::read(read)?;
+
+ let min = Vec2(x_min.min(x_max), y_min.min(y_max));
+ let max = Vec2(x_min.max(x_max), y_min.max(y_max));
+
+ // prevent addition overflow
+ Self::validate_min_max_u64(
+ Vec2(min.x() as i64, min.y() as i64),
+ Vec2(max.x() as i64, max.y() as i64),
+ )?;
+
+ // add one to max because the max inclusive, but the size is not
+ let size = Vec2(max.x() + 1 - min.x(), max.y() + 1 - min.y());
+ let size = size.to_usize("box coordinates")?;
+
+ Ok(IntegerBounds { position: min, size })
+ }
+
+ /// Create a new rectangle which is offset by the specified origin.
+ pub fn with_origin(self, origin: Vec2<i32>) -> Self { // TODO rename to "move" or "translate"?
+ IntegerBounds { position: self.position + origin, .. self }
+ }
+
+ /// Returns whether the specified rectangle is equal to or inside this rectangle.
+ pub fn contains(self, subset: Self) -> bool {
+ subset.position.x() >= self.position.x()
+ && subset.position.y() >= self.position.y()
+ && subset.end().x() <= self.end().x()
+ && subset.end().y() <= self.end().y()
+ }
+}
+
+
+impl FloatRect {
+
+ /// Number of bytes this would consume in an exr file.
+ pub fn byte_size() -> usize {
+ 4 * f32::BYTE_SIZE
+ }
+
+ /// Without validation, write this instance to the byte stream.
+ pub fn write<W: Write>(&self, write: &mut W) -> UnitResult {
+ self.min.x().write(write)?;
+ self.min.y().write(write)?;
+ self.max.x().write(write)?;
+ self.max.y().write(write)?;
+ Ok(())
+ }
+
+ /// Read the value without validating.
+ pub fn read<R: Read>(read: &mut R) -> Result<Self> {
+ let x_min = f32::read(read)?;
+ let y_min = f32::read(read)?;
+ let x_max = f32::read(read)?;
+ let y_max = f32::read(read)?;
+
+ Ok(FloatRect {
+ min: Vec2(x_min, y_min),
+ max: Vec2(x_max, y_max)
+ })
+ }
+}
+
+impl SampleType {
+
+ /// How many bytes a single sample takes up.
+ pub fn bytes_per_sample(&self) -> usize {
+ match self {
+ SampleType::F16 => f16::BYTE_SIZE,
+ SampleType::F32 => f32::BYTE_SIZE,
+ SampleType::U32 => u32::BYTE_SIZE,
+ }
+ }
+
+ /// Number of bytes this would consume in an exr file.
+ pub fn byte_size() -> usize {
+ i32::BYTE_SIZE
+ }
+
+ /// Without validation, write this instance to the byte stream.
+ pub fn write<W: Write>(&self, write: &mut W) -> UnitResult {
+ match *self {
+ SampleType::U32 => 0_i32,
+ SampleType::F16 => 1_i32,
+ SampleType::F32 => 2_i32,
+ }.write(write)?;
+
+ Ok(())
+ }
+
+ /// Read the value without validating.
+ pub fn read<R: Read>(read: &mut R) -> Result<Self> {
+ // there's definitely going to be more than 255 different pixel types in the future
+ Ok(match i32::read(read)? {
+ 0 => SampleType::U32,
+ 1 => SampleType::F16,
+ 2 => SampleType::F32,
+ _ => return Err(Error::invalid("pixel type attribute value")),
+ })
+ }
+}
+
+impl ChannelDescription {
+ /// Choose whether to compress samples linearly or not, based on the channel name.
+ /// Luminance-based channels will be compressed differently than linear data such as alpha.
+ pub fn guess_quantization_linearity(name: &Text) -> bool {
+ !(
+ name.eq_case_insensitive("R") || name.eq_case_insensitive("G") ||
+ name.eq_case_insensitive("B") || name.eq_case_insensitive("L") ||
+ name.eq_case_insensitive("Y") || name.eq_case_insensitive("X") ||
+ name.eq_case_insensitive("Z")
+ )
+ }
+
+ /// Create a new channel with the specified properties and a sampling rate of (1,1).
+ /// Automatically chooses the linearity for compression based on the channel name.
+ pub fn named(name: impl Into<Text>, sample_type: SampleType) -> Self {
+ let name = name.into();
+ let linearity = Self::guess_quantization_linearity(&name);
+ Self::new(name, sample_type, linearity)
+ }
+
+ /*pub fn from_name<T: Into<Sample> + Default>(name: impl Into<Text>) -> Self {
+ Self::named(name, T::default().into().sample_type())
+ }*/
+
+ /// Create a new channel with the specified properties and a sampling rate of (1,1).
+ pub fn new(name: impl Into<Text>, sample_type: SampleType, quantize_linearly: bool) -> Self {
+ Self { name: name.into(), sample_type, quantize_linearly, sampling: Vec2(1, 1) }
+ }
+
+ /// The count of pixels this channel contains, respecting subsampling.
+ // FIXME this must be used everywhere
+ pub fn subsampled_pixels(&self, dimensions: Vec2<usize>) -> usize {
+ self.subsampled_resolution(dimensions).area()
+ }
+
+ /// The resolution pf this channel, respecting subsampling.
+ pub fn subsampled_resolution(&self, dimensions: Vec2<usize>) -> Vec2<usize> {
+ dimensions / self.sampling
+ }
+
+ /// Number of bytes this would consume in an exr file.
+ pub fn byte_size(&self) -> usize {
+ self.name.null_terminated_byte_size()
+ + SampleType::byte_size()
+ + 1 // is_linear
+ + 3 // reserved bytes
+ + 2 * u32::BYTE_SIZE // sampling x, y
+ }
+
+ /// Without validation, write this instance to the byte stream.
+ pub fn write<W: Write>(&self, write: &mut W) -> UnitResult {
+ Text::write_null_terminated(&self.name, write)?;
+ self.sample_type.write(write)?;
+
+ match self.quantize_linearly {
+ false => 0_u8,
+ true => 1_u8,
+ }.write(write)?;
+
+ i8::write_slice(write, &[0_i8, 0_i8, 0_i8])?;
+ i32::write(usize_to_i32(self.sampling.x()), write)?;
+ i32::write(usize_to_i32(self.sampling.y()), write)?;
+ Ok(())
+ }
+
+ /// Read the value without validating.
+ pub fn read<R: Read>(read: &mut R) -> Result<Self> {
+ let name = Text::read_null_terminated(read, 256)?;
+ let sample_type = SampleType::read(read)?;
+
+ let is_linear = match u8::read(read)? {
+ 1 => true,
+ 0 => false,
+ _ => return Err(Error::invalid("channel linearity attribute value")),
+ };
+
+ let mut reserved = [0_i8; 3];
+ i8::read_slice(read, &mut reserved)?;
+
+ let x_sampling = i32_to_usize(i32::read(read)?, "x channel sampling")?;
+ let y_sampling = i32_to_usize(i32::read(read)?, "y channel sampling")?;
+
+ Ok(ChannelDescription {
+ name, sample_type,
+ quantize_linearly: is_linear,
+ sampling: Vec2(x_sampling, y_sampling),
+ })
+ }
+
+ /// Validate this instance.
+ pub fn validate(&self, allow_sampling: bool, data_window: IntegerBounds, strict: bool) -> UnitResult {
+ self.name.validate(true, None)?; // TODO spec says this does not affect `requirements.long_names` but is that true?
+
+ if self.sampling.x() == 0 || self.sampling.y() == 0 {
+ return Err(Error::invalid("zero sampling factor"));
+ }
+
+ if strict && !allow_sampling && self.sampling != Vec2(1,1) {
+ return Err(Error::invalid("subsampling is only allowed in flat scan line images"));
+ }
+
+ if data_window.position.x() % self.sampling.x() as i32 != 0 || data_window.position.y() % self.sampling.y() as i32 != 0 {
+ return Err(Error::invalid("channel sampling factor not dividing data window position"));
+ }
+
+ if data_window.size.x() % self.sampling.x() != 0 || data_window.size.y() % self.sampling.y() != 0 {
+ return Err(Error::invalid("channel sampling factor not dividing data window size"));
+ }
+
+ if self.sampling != Vec2(1,1) {
+ // TODO this must only be implemented in the crate::image module and child modules,
+ // should not be too difficult
+
+ return Err(Error::unsupported("channel subsampling not supported yet"));
+ }
+
+ Ok(())
+ }
+}
+
+impl ChannelList {
+
+ /// Number of bytes this would consume in an exr file.
+ pub fn byte_size(&self) -> usize {
+ self.list.iter().map(ChannelDescription::byte_size).sum::<usize>() + sequence_end::byte_size()
+ }
+
+ /// Without validation, write this instance to the byte stream.
+ /// Assumes channels are sorted alphabetically and all values are validated.
+ pub fn write(&self, write: &mut impl Write) -> UnitResult {
+ for channel in &self.list {
+ channel.write(write)?;
+ }
+
+ sequence_end::write(write)?;
+ Ok(())
+ }
+
+ /// Read the value without validating.
+ pub fn read(read: &mut PeekRead<impl Read>) -> Result<Self> {
+ let mut channels = SmallVec::new();
+ while !sequence_end::has_come(read)? {
+ channels.push(ChannelDescription::read(read)?);
+ }
+
+ Ok(ChannelList::new(channels))
+ }
+
+ /// Check if channels are valid and sorted.
+ pub fn validate(&self, allow_sampling: bool, data_window: IntegerBounds, strict: bool) -> UnitResult {
+ let mut iter = self.list.iter().map(|chan| chan.validate(allow_sampling, data_window, strict).map(|_| &chan.name));
+ let mut previous = iter.next().ok_or(Error::invalid("at least one channel is required"))??;
+
+ for result in iter {
+ let value = result?;
+ if strict && previous == value { return Err(Error::invalid("channel names are not unique")); }
+ else if previous > value { return Err(Error::invalid("channel names are not sorted alphabetically")); }
+ else { previous = value; }
+ }
+
+ Ok(())
+ }
+}
+
+fn u8_to_decimal32(binary: u8) -> u32 {
+ let units = binary as u32 % 10;
+ let tens = (binary as u32 / 10) % 10;
+ units | (tens << 4)
+}
+
+// assumes value fits into u8
+fn u8_from_decimal32(coded: u32) -> u8 {
+ ((coded & 0x0f) + 10 * ((coded >> 4) & 0x0f)) as u8
+}
+
+// https://github.com/AcademySoftwareFoundation/openexr/blob/master/src/lib/OpenEXR/ImfTimeCode.cpp
+impl TimeCode {
+
+ /// Number of bytes this would consume in an exr file.
+ pub const BYTE_SIZE: usize = 2 * u32::BYTE_SIZE;
+
+ /// Returns an error if this time code is considered invalid.
+ pub fn validate(&self, strict: bool) -> UnitResult {
+ if strict {
+ if self.frame > 29 { Err(Error::invalid("time code frame larger than 29")) }
+ else if self.seconds > 59 { Err(Error::invalid("time code seconds larger than 59")) }
+ else if self.minutes > 59 { Err(Error::invalid("time code minutes larger than 59")) }
+ else if self.hours > 23 { Err(Error::invalid("time code hours larger than 23")) }
+ else if self.binary_groups.iter().any(|&group| group > 15) {
+ Err(Error::invalid("time code binary group value too large for 3 bits"))
+ }
+ else { Ok(()) }
+ }
+ else { Ok(()) }
+ }
+
+
+ /// Pack the SMPTE time code into a u32 value, according to TV60 packing.
+ /// This is the encoding which is used within a binary exr file.
+ pub fn pack_time_as_tv60_u32(&self) -> Result<u32> {
+ // validate strictly to prevent set_bit panic! below
+ self.validate(true)?;
+
+ Ok(*0_u32
+ .set_bits(0..6, u8_to_decimal32(self.frame))
+ .set_bit(6, self.drop_frame)
+ .set_bit(7, self.color_frame)
+ .set_bits(8..15, u8_to_decimal32(self.seconds))
+ .set_bit(15, self.field_phase)
+ .set_bits(16..23, u8_to_decimal32(self.minutes))
+ .set_bit(23, self.binary_group_flags[0])
+ .set_bits(24..30, u8_to_decimal32(self.hours))
+ .set_bit(30, self.binary_group_flags[1])
+ .set_bit(31, self.binary_group_flags[2])
+ )
+ }
+
+ /// Unpack a time code from one TV60 encoded u32 value and the encoded user data.
+ /// This is the encoding which is used within a binary exr file.
+ pub fn from_tv60_time(tv60_time: u32, user_data: u32) -> Self {
+ Self {
+ frame: u8_from_decimal32(tv60_time.get_bits(0..6)), // cast cannot fail, as these are less than 8 bits
+ drop_frame: tv60_time.get_bit(6),
+ color_frame: tv60_time.get_bit(7),
+ seconds: u8_from_decimal32(tv60_time.get_bits(8..15)), // cast cannot fail, as these are less than 8 bits
+ field_phase: tv60_time.get_bit(15),
+ minutes: u8_from_decimal32(tv60_time.get_bits(16..23)), // cast cannot fail, as these are less than 8 bits
+ hours: u8_from_decimal32(tv60_time.get_bits(24..30)), // cast cannot fail, as these are less than 8 bits
+ binary_group_flags: [
+ tv60_time.get_bit(23),
+ tv60_time.get_bit(30),
+ tv60_time.get_bit(31),
+ ],
+
+ binary_groups: Self::unpack_user_data_from_u32(user_data)
+ }
+ }
+
+ /// Pack the SMPTE time code into a u32 value, according to TV50 packing.
+ /// This encoding does not support the `drop_frame` flag, it will be lost.
+ pub fn pack_time_as_tv50_u32(&self) -> Result<u32> {
+ Ok(*self.pack_time_as_tv60_u32()?
+
+ // swap some fields by replacing some bits in the packed u32
+ .set_bit(6, false)
+ .set_bit(15, self.binary_group_flags[0])
+ .set_bit(30, self.binary_group_flags[1])
+ .set_bit(23, self.binary_group_flags[2])
+ .set_bit(31, self.field_phase)
+ )
+ }
+
+ /// Unpack a time code from one TV50 encoded u32 value and the encoded user data.
+ /// This encoding does not support the `drop_frame` flag, it will always be false.
+ pub fn from_tv50_time(tv50_time: u32, user_data: u32) -> Self {
+ Self {
+ drop_frame: false, // do not use bit [6]
+
+ // swap some fields:
+ field_phase: tv50_time.get_bit(31),
+ binary_group_flags: [
+ tv50_time.get_bit(15),
+ tv50_time.get_bit(30),
+ tv50_time.get_bit(23),
+ ],
+
+ .. Self::from_tv60_time(tv50_time, user_data)
+ }
+ }
+
+
+ /// Pack the SMPTE time code into a u32 value, according to FILM24 packing.
+ /// This encoding does not support the `drop_frame` and `color_frame` flags, they will be lost.
+ pub fn pack_time_as_film24_u32(&self) -> Result<u32> {
+ Ok(*self.pack_time_as_tv60_u32()?
+ .set_bit(6, false)
+ .set_bit(7, false)
+ )
+ }
+
+ /// Unpack a time code from one TV60 encoded u32 value and the encoded user data.
+ /// This encoding does not support the `drop_frame` and `color_frame` flags, they will always be `false`.
+ pub fn from_film24_time(film24_time: u32, user_data: u32) -> Self {
+ Self {
+ drop_frame: false, // bit [6]
+ color_frame: false, // bit [7]
+ .. Self::from_tv60_time(film24_time, user_data)
+ }
+ }
+
+
+ // in rust, group index starts at zero, not at one.
+ fn user_data_bit_indices(group_index: usize) -> std::ops::Range<usize> {
+ let min_bit = 4 * group_index;
+ min_bit .. min_bit + 4 // +4, not +3, as `Range` is exclusive
+ }
+
+ /// Pack the user data `u8` array into one u32.
+ /// User data values are clamped to the valid range (maximum value is 4).
+ pub fn pack_user_data_as_u32(&self) -> u32 {
+ let packed = self.binary_groups.iter().enumerate().fold(0_u32, |mut packed, (group_index, group_value)|
+ *packed.set_bits(Self::user_data_bit_indices(group_index), *group_value.min(&15) as u32)
+ );
+
+ debug_assert_eq!(Self::unpack_user_data_from_u32(packed), self.binary_groups, "round trip user data encoding");
+ packed
+ }
+
+ // Unpack the encoded u32 user data to an array of bytes, each byte having a value from 0 to 4.
+ fn unpack_user_data_from_u32(user_data: u32) -> [u8; 8] {
+ (0..8).map(|group_index| user_data.get_bits(Self::user_data_bit_indices(group_index)) as u8)
+ .collect::<SmallVec<[u8;8]>>().into_inner().expect("array index bug")
+ }
+
+
+ /// Write this time code to the byte stream, encoded as TV60 integers.
+ /// Returns an `Error::Invalid` if the fields are out of the allowed range.
+ pub fn write<W: Write>(&self, write: &mut W) -> UnitResult {
+ self.pack_time_as_tv60_u32()?.write(write)?; // will validate
+ self.pack_user_data_as_u32().write(write)?;
+ Ok(())
+ }
+
+ /// Read the time code, without validating, extracting from TV60 integers.
+ pub fn read<R: Read>(read: &mut R) -> Result<Self> {
+ let time_and_flags = u32::read(read)?;
+ let user_data = u32::read(read)?;
+ Ok(Self::from_tv60_time(time_and_flags, user_data))
+ }
+}
+
+impl Chromaticities {
+
+ /// Number of bytes this would consume in an exr file.
+ pub fn byte_size() -> usize {
+ 8 * f32::BYTE_SIZE
+ }
+
+ /// Without validation, write this instance to the byte stream.
+ pub fn write<W: Write>(&self, write: &mut W) -> UnitResult {
+ self.red.x().write(write)?;
+ self.red.y().write(write)?;
+
+ self.green.x().write(write)?;
+ self.green.y().write(write)?;
+
+ self.blue.x().write(write)?;
+ self.blue.y().write(write)?;
+
+ self.white.x().write(write)?;
+ self.white.y().write(write)?;
+ Ok(())
+ }
+
+ /// Read the value without validating.
+ pub fn read<R: Read>(read: &mut R) -> Result<Self> {
+ Ok(Chromaticities {
+ red: Vec2(f32::read(read)?, f32::read(read)?),
+ green: Vec2(f32::read(read)?, f32::read(read)?),
+ blue: Vec2(f32::read(read)?, f32::read(read)?),
+ white: Vec2(f32::read(read)?, f32::read(read)?),
+ })
+ }
+}
+
+impl Compression {
+
+ /// Number of bytes this would consume in an exr file.
+ pub fn byte_size() -> usize { u8::BYTE_SIZE }
+
+ /// Without validation, write this instance to the byte stream.
+ pub fn write<W: Write>(self, write: &mut W) -> UnitResult {
+ use self::Compression::*;
+ match self {
+ Uncompressed => 0_u8,
+ RLE => 1_u8,
+ ZIP1 => 2_u8,
+ ZIP16 => 3_u8,
+ PIZ => 4_u8,
+ PXR24 => 5_u8,
+ B44 => 6_u8,
+ B44A => 7_u8,
+ DWAA(_) => 8_u8,
+ DWAB(_) => 9_u8,
+ }.write(write)?;
+ Ok(())
+ }
+
+ /// Read the value without validating.
+ pub fn read<R: Read>(read: &mut R) -> Result<Self> {
+ use self::Compression::*;
+ Ok(match u8::read(read)? {
+ 0 => Uncompressed,
+ 1 => RLE,
+ 2 => ZIP1,
+ 3 => ZIP16,
+ 4 => PIZ,
+ 5 => PXR24,
+ 6 => B44,
+ 7 => B44A,
+ 8 => DWAA(None),
+ 9 => DWAB(None),
+ _ => return Err(Error::unsupported("unknown compression method")),
+ })
+ }
+}
+
+impl EnvironmentMap {
+
+ /// Number of bytes this would consume in an exr file.
+ pub fn byte_size() -> usize {
+ u8::BYTE_SIZE
+ }
+
+ /// Without validation, write this instance to the byte stream.
+ pub fn write<W: Write>(self, write: &mut W) -> UnitResult {
+ use self::EnvironmentMap::*;
+ match self {
+ LatitudeLongitude => 0_u8,
+ Cube => 1_u8
+ }.write(write)?;
+
+ Ok(())
+ }
+
+ /// Read the value without validating.
+ pub fn read<R: Read>(read: &mut R) -> Result<Self> {
+ use self::EnvironmentMap::*;
+ Ok(match u8::read(read)? {
+ 0 => LatitudeLongitude,
+ 1 => Cube,
+ _ => return Err(Error::invalid("environment map attribute value")),
+ })
+ }
+}
+
+impl KeyCode {
+
+ /// Number of bytes this would consume in an exr file.
+ pub fn byte_size() -> usize {
+ 6 * i32::BYTE_SIZE
+ }
+
+ /// Without validation, write this instance to the byte stream.
+ pub fn write<W: Write>(&self, write: &mut W) -> UnitResult {
+ self.film_manufacturer_code.write(write)?;
+ self.film_type.write(write)?;
+ self.film_roll_prefix.write(write)?;
+ self.count.write(write)?;
+ self.perforation_offset.write(write)?;
+ self.perforations_per_count.write(write)?;
+ Ok(())
+ }
+
+ /// Read the value without validating.
+ pub fn read<R: Read>(read: &mut R) -> Result<Self> {
+ Ok(KeyCode {
+ film_manufacturer_code: i32::read(read)?,
+ film_type: i32::read(read)?,
+ film_roll_prefix: i32::read(read)?,
+ count: i32::read(read)?,
+ perforation_offset: i32::read(read)?,
+ perforations_per_frame: i32::read(read)?,
+ perforations_per_count: i32::read(read)?,
+ })
+ }
+}
+
+impl LineOrder {
+
+ /// Number of bytes this would consume in an exr file.
+ pub fn byte_size() -> usize {
+ u8::BYTE_SIZE
+ }
+
+ /// Without validation, write this instance to the byte stream.
+ pub fn write<W: Write>(self, write: &mut W) -> UnitResult {
+ use self::LineOrder::*;
+ match self {
+ Increasing => 0_u8,
+ Decreasing => 1_u8,
+ Unspecified => 2_u8,
+ }.write(write)?;
+
+ Ok(())
+ }
+
+ /// Read the value without validating.
+ pub fn read<R: Read>(read: &mut R) -> Result<Self> {
+ use self::LineOrder::*;
+ Ok(match u8::read(read)? {
+ 0 => Increasing,
+ 1 => Decreasing,
+ 2 => Unspecified,
+ _ => return Err(Error::invalid("line order attribute value")),
+ })
+ }
+}
+
+
+
+
+impl Preview {
+
+ /// Number of bytes this would consume in an exr file.
+ pub fn byte_size(&self) -> usize {
+ 2 * u32::BYTE_SIZE + self.pixel_data.len()
+ }
+
+ /// Without validation, write this instance to the byte stream.
+ pub fn write<W: Write>(&self, write: &mut W) -> UnitResult {
+ u32::write(self.size.width() as u32, write)?;
+ u32::write(self.size.height() as u32, write)?;
+
+ i8::write_slice(write, &self.pixel_data)?;
+ Ok(())
+ }
+
+ /// Read the value without validating.
+ pub fn read<R: Read>(read: &mut R) -> Result<Self> {
+ let width = u32::read(read)? as usize;
+ let height = u32::read(read)? as usize;
+
+ if let Some(pixel_count) = width.checked_mul(height) {
+ // Multiply by the number of bytes per pixel.
+ if let Some(byte_count) = pixel_count.checked_mul(4) {
+ let pixel_data = i8::read_vec(
+ read,
+ byte_count,
+ 1024 * 1024 * 4,
+ None,
+ "preview attribute pixel count",
+ )?;
+
+ let preview = Preview {
+ size: Vec2(width, height),
+ pixel_data,
+ };
+
+ return Ok(preview);
+ }
+ }
+
+ return Err(Error::invalid(
+ format!("Overflow while calculating preview image Attribute size \
+ (width: {}, height: {}).",
+ width,
+ height)));
+ }
+
+ /// Validate this instance.
+ pub fn validate(&self, strict: bool) -> UnitResult {
+ if strict && (self.size.area() * 4 != self.pixel_data.len()) {
+ return Err(Error::invalid("preview dimensions do not match content length"))
+ }
+
+ Ok(())
+ }
+}
+
+impl ::std::fmt::Debug for Preview {
+ fn fmt(&self, f: &mut ::std::fmt::Formatter<'_>) -> ::std::fmt::Result {
+ write!(f, "Preview ({}x{} px)", self.size.width(), self.size.height())
+ }
+}
+
+impl TileDescription {
+
+ /// Number of bytes this would consume in an exr file.
+ pub fn byte_size() -> usize {
+ 2 * u32::BYTE_SIZE + 1 // size x,y + (level mode + rounding mode)
+ }
+
+ /// Without validation, write this instance to the byte stream.
+ pub fn write<W: Write>(&self, write: &mut W) -> UnitResult {
+ u32::write(self.tile_size.width() as u32, write)?;
+ u32::write(self.tile_size.height() as u32, write)?;
+
+ let level_mode = match self.level_mode {
+ LevelMode::Singular => 0_u8,
+ LevelMode::MipMap => 1_u8,
+ LevelMode::RipMap => 2_u8,
+ };
+
+ let rounding_mode = match self.rounding_mode {
+ RoundingMode::Down => 0_u8,
+ RoundingMode::Up => 1_u8,
+ };
+
+ let mode: u8 = level_mode + (rounding_mode * 16);
+ mode.write(write)?;
+ Ok(())
+ }
+
+ /// Read the value without validating.
+ pub fn read<R: Read>(read: &mut R) -> Result<Self> {
+ let x_size = u32::read(read)? as usize;
+ let y_size = u32::read(read)? as usize;
+
+ let mode = u8::read(read)?;
+
+ // wow you really saved that one byte here
+ // mode = level_mode + (rounding_mode * 16)
+ let level_mode = mode & 0b00001111; // wow that works
+ let rounding_mode = mode >> 4; // wow that works
+
+ let level_mode = match level_mode {
+ 0 => LevelMode::Singular,
+ 1 => LevelMode::MipMap,
+ 2 => LevelMode::RipMap,
+ _ => return Err(Error::invalid("tile description level mode")),
+ };
+
+ let rounding_mode = match rounding_mode {
+ 0 => RoundingMode::Down,
+ 1 => RoundingMode::Up,
+ _ => return Err(Error::invalid("tile description rounding mode")),
+ };
+
+ Ok(TileDescription { tile_size: Vec2(x_size, y_size), level_mode, rounding_mode, })
+ }
+
+ /// Validate this instance.
+ pub fn validate(&self) -> UnitResult {
+ let max = i32::MAX as i64 / 2;
+
+ if self.tile_size.width() == 0 || self.tile_size.height() == 0
+ || self.tile_size.width() as i64 >= max || self.tile_size.height() as i64 >= max
+ {
+ return Err(Error::invalid("tile size"))
+ }
+
+ Ok(())
+ }
+}
+
+
+/// Number of bytes this attribute would consume in an exr file.
+// TODO instead of pre calculating byte size, write to a tmp buffer whose length is inspected before actually writing?
+pub fn byte_size(name: &Text, value: &AttributeValue) -> usize {
+ name.null_terminated_byte_size()
+ + value.kind_name().len() + sequence_end::byte_size()
+ + i32::BYTE_SIZE // serialized byte size
+ + value.byte_size()
+}
+
+/// Without validation, write this attribute to the byte stream.
+pub fn write<W: Write>(name: &[u8], value: &AttributeValue, write: &mut W) -> UnitResult {
+ Text::write_null_terminated_bytes(name, write)?;
+ Text::write_null_terminated_bytes(value.kind_name(), write)?;
+ i32::write(value.byte_size() as i32, write)?;
+ value.write(write)
+}
+
+/// Read the attribute without validating. The result may be `Ok` even if this single attribute is invalid.
+pub fn read(read: &mut PeekRead<impl Read>, max_size: usize) -> Result<(Text, Result<AttributeValue>)> {
+ let name = Text::read_null_terminated(read, max_size)?;
+ let kind = Text::read_null_terminated(read, max_size)?;
+ let size = i32_to_usize(i32::read(read)?, "attribute size")?;
+ let value = AttributeValue::read(read, kind, size)?;
+ Ok((name, value))
+}
+
+/// Validate this attribute.
+pub fn validate(name: &Text, value: &AttributeValue, long_names: &mut bool, allow_sampling: bool, data_window: IntegerBounds, strict: bool) -> UnitResult {
+ name.validate(true, Some(long_names))?; // only name text has length restriction
+ value.validate(allow_sampling, data_window, strict) // attribute value text length is never restricted
+}
+
+
+impl AttributeValue {
+
+ /// Number of bytes this would consume in an exr file.
+ pub fn byte_size(&self) -> usize {
+ use self::AttributeValue::*;
+
+ match *self {
+ IntegerBounds(_) => self::IntegerBounds::byte_size(),
+ FloatRect(_) => self::FloatRect::byte_size(),
+
+ I32(_) => i32::BYTE_SIZE,
+ F32(_) => f32::BYTE_SIZE,
+ F64(_) => f64::BYTE_SIZE,
+
+ Rational(_) => { i32::BYTE_SIZE + u32::BYTE_SIZE },
+ TimeCode(_) => self::TimeCode::BYTE_SIZE,
+
+ IntVec2(_) => { 2 * i32::BYTE_SIZE },
+ FloatVec2(_) => { 2 * f32::BYTE_SIZE },
+ IntVec3(_) => { 3 * i32::BYTE_SIZE },
+ FloatVec3(_) => { 3 * f32::BYTE_SIZE },
+
+ ChannelList(ref channels) => channels.byte_size(),
+ Chromaticities(_) => self::Chromaticities::byte_size(),
+ Compression(_) => self::Compression::byte_size(),
+ EnvironmentMap(_) => self::EnvironmentMap::byte_size(),
+
+ KeyCode(_) => self::KeyCode::byte_size(),
+ LineOrder(_) => self::LineOrder::byte_size(),
+
+ Matrix3x3(ref value) => value.len() * f32::BYTE_SIZE,
+ Matrix4x4(ref value) => value.len() * f32::BYTE_SIZE,
+
+ Preview(ref value) => value.byte_size(),
+
+ // attribute value texts never have limited size.
+ // also, don't serialize size, as it can be inferred from attribute size
+ Text(ref value) => value.bytes.len(),
+
+ TextVector(ref value) => value.iter().map(self::Text::i32_sized_byte_size).sum(),
+ TileDescription(_) => self::TileDescription::byte_size(),
+ Custom { ref bytes, .. } => bytes.len(),
+ BlockType(ref kind) => kind.byte_size()
+ }
+ }
+
+ /// The exr name string of the type that an attribute can have.
+ pub fn kind_name(&self) -> &[u8] {
+ use self::AttributeValue::*;
+ use self::type_names as ty;
+
+ match *self {
+ IntegerBounds(_) => ty::I32BOX2,
+ FloatRect(_) => ty::F32BOX2,
+ I32(_) => ty::I32,
+ F32(_) => ty::F32,
+ F64(_) => ty::F64,
+ Rational(_) => ty::RATIONAL,
+ TimeCode(_) => ty::TIME_CODE,
+ IntVec2(_) => ty::I32VEC2,
+ FloatVec2(_) => ty::F32VEC2,
+ IntVec3(_) => ty::I32VEC3,
+ FloatVec3(_) => ty::F32VEC3,
+ ChannelList(_) => ty::CHANNEL_LIST,
+ Chromaticities(_) => ty::CHROMATICITIES,
+ Compression(_) => ty::COMPRESSION,
+ EnvironmentMap(_) => ty::ENVIRONMENT_MAP,
+ KeyCode(_) => ty::KEY_CODE,
+ LineOrder(_) => ty::LINE_ORDER,
+ Matrix3x3(_) => ty::F32MATRIX3X3,
+ Matrix4x4(_) => ty::F32MATRIX4X4,
+ Preview(_) => ty::PREVIEW,
+ Text(_) => ty::TEXT,
+ TextVector(_) => ty::TEXT_VECTOR,
+ TileDescription(_) => ty::TILES,
+ Custom { ref kind, .. } => &kind.bytes,
+ BlockType(_) => super::BlockType::TYPE_NAME,
+ }
+ }
+
+ /// Without validation, write this instance to the byte stream.
+ pub fn write<W: Write>(&self, write: &mut W) -> UnitResult {
+ use self::AttributeValue::*;
+ match *self {
+ IntegerBounds(value) => value.write(write)?,
+ FloatRect(value) => value.write(write)?,
+
+ I32(value) => value.write(write)?,
+ F32(value) => value.write(write)?,
+ F64(value) => value.write(write)?,
+
+ Rational((a, b)) => { a.write(write)?; b.write(write)?; },
+ TimeCode(codes) => { codes.write(write)?; },
+
+ IntVec2(Vec2(x, y)) => { x.write(write)?; y.write(write)?; },
+ FloatVec2(Vec2(x, y)) => { x.write(write)?; y.write(write)?; },
+ IntVec3((x, y, z)) => { x.write(write)?; y.write(write)?; z.write(write)?; },
+ FloatVec3((x, y, z)) => { x.write(write)?; y.write(write)?; z.write(write)?; },
+
+ ChannelList(ref channels) => channels.write(write)?,
+ Chromaticities(ref value) => value.write(write)?,
+ Compression(value) => value.write(write)?,
+ EnvironmentMap(value) => value.write(write)?,
+
+ KeyCode(value) => value.write(write)?,
+ LineOrder(value) => value.write(write)?,
+
+ Matrix3x3(mut value) => f32::write_slice(write, &mut value)?,
+ Matrix4x4(mut value) => f32::write_slice(write, &mut value)?,
+
+ Preview(ref value) => { value.write(write)?; },
+
+ // attribute value texts never have limited size.
+ // also, don't serialize size, as it can be inferred from attribute size
+ Text(ref value) => u8::write_slice(write, value.bytes.as_slice())?,
+
+ TextVector(ref value) => self::Text::write_vec_of_i32_sized_texts(write, value)?,
+ TileDescription(ref value) => value.write(write)?,
+ Custom { ref bytes, .. } => u8::write_slice(write, &bytes)?, // write.write(&bytes).map(|_| ()),
+ BlockType(kind) => kind.write(write)?
+ };
+
+ Ok(())
+ }
+
+ /// Read the value without validating.
+ /// Returns `Ok(Ok(attribute))` for valid attributes.
+ /// Returns `Ok(Err(Error))` for invalid attributes from a valid byte source.
+ /// Returns `Err(Error)` for invalid byte sources, for example for invalid files.
+ pub fn read(read: &mut PeekRead<impl Read>, kind: Text, byte_size: usize) -> Result<Result<Self>> {
+ use self::AttributeValue::*;
+ use self::type_names as ty;
+
+ // always read bytes
+ let attribute_bytes = u8::read_vec(read, byte_size, 128, None, "attribute value size")?;
+ // TODO no allocation for small attributes // : SmallVec<[u8; 64]> = smallvec![0; byte_size];
+
+ let parse_attribute = move || {
+ let reader = &mut attribute_bytes.as_slice();
+
+ Ok(match kind.bytes.as_slice() {
+ ty::I32BOX2 => IntegerBounds(self::IntegerBounds::read(reader)?),
+ ty::F32BOX2 => FloatRect(self::FloatRect::read(reader)?),
+
+ ty::I32 => I32(i32::read(reader)?),
+ ty::F32 => F32(f32::read(reader)?),
+ ty::F64 => F64(f64::read(reader)?),
+
+ ty::RATIONAL => Rational({
+ let a = i32::read(reader)?;
+ let b = u32::read(reader)?;
+ (a, b)
+ }),
+
+ ty::TIME_CODE => TimeCode(self::TimeCode::read(reader)?),
+
+ ty::I32VEC2 => IntVec2({
+ let a = i32::read(reader)?;
+ let b = i32::read(reader)?;
+ Vec2(a, b)
+ }),
+
+ ty::F32VEC2 => FloatVec2({
+ let a = f32::read(reader)?;
+ let b = f32::read(reader)?;
+ Vec2(a, b)
+ }),
+
+ ty::I32VEC3 => IntVec3({
+ let a = i32::read(reader)?;
+ let b = i32::read(reader)?;
+ let c = i32::read(reader)?;
+ (a, b, c)
+ }),
+
+ ty::F32VEC3 => FloatVec3({
+ let a = f32::read(reader)?;
+ let b = f32::read(reader)?;
+ let c = f32::read(reader)?;
+ (a, b, c)
+ }),
+
+ ty::CHANNEL_LIST => ChannelList(self::ChannelList::read(&mut PeekRead::new(attribute_bytes.as_slice()))?),
+ ty::CHROMATICITIES => Chromaticities(self::Chromaticities::read(reader)?),
+ ty::COMPRESSION => Compression(self::Compression::read(reader)?),
+ ty::ENVIRONMENT_MAP => EnvironmentMap(self::EnvironmentMap::read(reader)?),
+
+ ty::KEY_CODE => KeyCode(self::KeyCode::read(reader)?),
+ ty::LINE_ORDER => LineOrder(self::LineOrder::read(reader)?),
+
+ ty::F32MATRIX3X3 => Matrix3x3({
+ let mut result = [0.0_f32; 9];
+ f32::read_slice(reader, &mut result)?;
+ result
+ }),
+
+ ty::F32MATRIX4X4 => Matrix4x4({
+ let mut result = [0.0_f32; 16];
+ f32::read_slice(reader, &mut result)?;
+ result
+ }),
+
+ ty::PREVIEW => Preview(self::Preview::read(reader)?),
+ ty::TEXT => Text(self::Text::read_sized(reader, byte_size)?),
+
+ // the number of strings can be inferred from the total attribute size
+ ty::TEXT_VECTOR => TextVector(self::Text::read_vec_of_i32_sized(
+ &mut PeekRead::new(attribute_bytes.as_slice()),
+ byte_size
+ )?),
+
+ ty::TILES => TileDescription(self::TileDescription::read(reader)?),
+
+ _ => Custom { kind: kind.clone(), bytes: attribute_bytes.clone() } // TODO no clone
+ })
+ };
+
+ Ok(parse_attribute())
+ }
+
+ /// Validate this instance.
+ pub fn validate(&self, allow_sampling: bool, data_window: IntegerBounds, strict: bool) -> UnitResult {
+ use self::AttributeValue::*;
+
+ match *self {
+ ChannelList(ref channels) => channels.validate(allow_sampling, data_window, strict)?,
+ TileDescription(ref value) => value.validate()?,
+ Preview(ref value) => value.validate(strict)?,
+ TimeCode(ref time_code) => time_code.validate(strict)?,
+
+ TextVector(ref vec) => if strict && vec.is_empty() {
+ return Err(Error::invalid("text vector may not be empty"))
+ },
+
+ _ => {}
+ };
+
+ Ok(())
+ }
+
+
+ /// Return `Ok(i32)` if this attribute is an i32.
+ pub fn to_i32(&self) -> Result<i32> {
+ match *self {
+ AttributeValue::I32(value) => Ok(value),
+ _ => Err(invalid_type())
+ }
+ }
+
+ /// Return `Ok(f32)` if this attribute is an f32.
+ pub fn to_f32(&self) -> Result<f32> {
+ match *self {
+ AttributeValue::F32(value) => Ok(value),
+ _ => Err(invalid_type())
+ }
+ }
+
+ /// Return `Ok(Text)` if this attribute is a text.
+ pub fn into_text(self) -> Result<Text> {
+ match self {
+ AttributeValue::Text(value) => Ok(value),
+ _ => Err(invalid_type())
+ }
+ }
+
+ /// Return `Ok(Text)` if this attribute is a text.
+ pub fn to_text(&self) -> Result<&Text> {
+ match self {
+ AttributeValue::Text(value) => Ok(value),
+ _ => Err(invalid_type())
+ }
+ }
+
+ /// Return `Ok(Chromaticities)` if this attribute is a chromaticities attribute.
+ pub fn to_chromaticities(&self) -> Result<Chromaticities> {
+ match *self {
+ AttributeValue::Chromaticities(value) => Ok(value),
+ _ => Err(invalid_type())
+ }
+ }
+
+ /// Return `Ok(TimeCode)` if this attribute is a time code.
+ pub fn to_time_code(&self) -> Result<TimeCode> {
+ match *self {
+ AttributeValue::TimeCode(value) => Ok(value),
+ _ => Err(invalid_type())
+ }
+ }
+}
+
+
+
+/// Contains string literals identifying the type of an attribute.
+pub mod type_names {
+ macro_rules! define_attribute_type_names {
+ ( $($name: ident : $value: expr),* ) => {
+ $(
+ /// The byte-string name of this attribute type as it appears in an exr file.
+ pub const $name: &'static [u8] = $value;
+ )*
+ };
+ }
+
+ define_attribute_type_names! {
+ I32BOX2: b"box2i",
+ F32BOX2: b"box2f",
+ I32: b"int",
+ F32: b"float",
+ F64: b"double",
+ RATIONAL: b"rational",
+ TIME_CODE: b"timecode",
+ I32VEC2: b"v2i",
+ F32VEC2: b"v2f",
+ I32VEC3: b"v3i",
+ F32VEC3: b"v3f",
+ CHANNEL_LIST: b"chlist",
+ CHROMATICITIES: b"chromaticities",
+ COMPRESSION: b"compression",
+ ENVIRONMENT_MAP:b"envmap",
+ KEY_CODE: b"keycode",
+ LINE_ORDER: b"lineOrder",
+ F32MATRIX3X3: b"m33f",
+ F32MATRIX4X4: b"m44f",
+ PREVIEW: b"preview",
+ TEXT: b"string",
+ TEXT_VECTOR: b"stringvector",
+ TILES: b"tiledesc"
+ }
+}
+
+
+#[cfg(test)]
+mod test {
+ use super::*;
+ use ::std::io::Cursor;
+ use rand::{random, thread_rng, Rng};
+
+ #[test]
+ fn text_ord() {
+ for _ in 0..1024 {
+ let text1 = Text::from_bytes_unchecked((0..4).map(|_| rand::random::<u8>()).collect());
+ let text2 = Text::from_bytes_unchecked((0..4).map(|_| rand::random::<u8>()).collect());
+
+ assert_eq!(text1.to_string().cmp(&text2.to_string()), text1.cmp(&text2), "in text {:?} vs {:?}", text1, text2);
+ }
+ }
+
+ #[test]
+ fn rounding_up(){
+ let round_up = RoundingMode::Up;
+ assert_eq!(round_up.divide(10, 10), 1, "divide equal");
+ assert_eq!(round_up.divide(10, 2), 5, "divide even");
+ assert_eq!(round_up.divide(10, 5), 2, "divide even");
+
+ assert_eq!(round_up.divide(8, 5), 2, "round up");
+ assert_eq!(round_up.divide(10, 3), 4, "round up");
+ assert_eq!(round_up.divide(100, 50), 2, "divide even");
+ assert_eq!(round_up.divide(100, 49), 3, "round up");
+ }
+
+ #[test]
+ fn rounding_down(){
+ let round_down = RoundingMode::Down;
+ assert_eq!(round_down.divide(8, 5), 1, "round down");
+ assert_eq!(round_down.divide(10, 3), 3, "round down");
+ assert_eq!(round_down.divide(100, 50), 2, "divide even");
+ assert_eq!(round_down.divide(100, 49), 2, "round down");
+ assert_eq!(round_down.divide(100, 51), 1, "round down");
+ }
+
+ #[test]
+ fn tile_description_write_read_roundtrip(){
+ let tiles = [
+ TileDescription {
+ tile_size: Vec2(31, 7),
+ level_mode: LevelMode::MipMap,
+ rounding_mode: RoundingMode::Down,
+ },
+
+ TileDescription {
+ tile_size: Vec2(0, 0),
+ level_mode: LevelMode::Singular,
+ rounding_mode: RoundingMode::Up,
+ },
+
+ TileDescription {
+ tile_size: Vec2(4294967294, 4294967295),
+ level_mode: LevelMode::RipMap,
+ rounding_mode: RoundingMode::Down,
+ },
+ ];
+
+ for tile in &tiles {
+ let mut bytes = Vec::new();
+ tile.write(&mut bytes).unwrap();
+
+ let new_tile = TileDescription::read(&mut Cursor::new(bytes)).unwrap();
+ assert_eq!(*tile, new_tile, "tile round trip");
+ }
+ }
+
+ #[test]
+ fn attribute_write_read_roundtrip_and_byte_size(){
+ let attributes = [
+ (
+ Text::from("greeting"),
+ AttributeValue::Text(Text::from("hello")),
+ ),
+ (
+ Text::from("age"),
+ AttributeValue::I32(923),
+ ),
+ (
+ Text::from("leg count"),
+ AttributeValue::F64(9.114939599234),
+ ),
+ (
+ Text::from("rabbit area"),
+ AttributeValue::FloatRect(FloatRect {
+ min: Vec2(23.4234, 345.23),
+ max: Vec2(68623.0, 3.12425926538),
+ }),
+ ),
+ (
+ Text::from("rabbit area int"),
+ AttributeValue::IntegerBounds(IntegerBounds {
+ position: Vec2(23, 345),
+ size: Vec2(68623, 3),
+ }),
+ ),
+ (
+ Text::from("rabbit area int"),
+ AttributeValue::IntegerBounds(IntegerBounds {
+ position: Vec2(-(i32::MAX / 2 - 1), -(i32::MAX / 2 - 1)),
+ size: Vec2(i32::MAX as usize - 2, i32::MAX as usize - 2),
+ }),
+ ),
+ (
+ Text::from("rabbit area int 2"),
+ AttributeValue::IntegerBounds(IntegerBounds {
+ position: Vec2(0, 0),
+ size: Vec2(i32::MAX as usize / 2 - 1, i32::MAX as usize / 2 - 1),
+ }),
+ ),
+ (
+ Text::from("tests are difficult"),
+ AttributeValue::TextVector(vec![
+ Text::from("sdoifjpsdv"),
+ Text::from("sdoifjpsdvxxxx"),
+ Text::from("sdoifjasd"),
+ Text::from("sdoifj"),
+ Text::from("sdoifjddddddddasdasd"),
+ ]),
+ ),
+ (
+ Text::from("what should we eat tonight"),
+ AttributeValue::Preview(Preview {
+ size: Vec2(10, 30),
+ pixel_data: vec![31; 10 * 30 * 4],
+ }),
+ ),
+ (
+ Text::from("leg count, again"),
+ AttributeValue::ChannelList(ChannelList::new(smallvec![
+ ChannelDescription {
+ name: Text::from("Green"),
+ sample_type: SampleType::F16,
+ quantize_linearly: false,
+ sampling: Vec2(1,2)
+ },
+ ChannelDescription {
+ name: Text::from("Red"),
+ sample_type: SampleType::F32,
+ quantize_linearly: true,
+ sampling: Vec2(1,2)
+ },
+ ChannelDescription {
+ name: Text::from("Purple"),
+ sample_type: SampleType::U32,
+ quantize_linearly: false,
+ sampling: Vec2(0,0)
+ }
+ ],
+ )),
+ ),
+ ];
+
+ for (name, value) in &attributes {
+ let mut bytes = Vec::new();
+ super::write(name.as_slice(), value, &mut bytes).unwrap();
+ assert_eq!(super::byte_size(name, value), bytes.len(), "attribute.byte_size() for {:?}", (name, value));
+
+ let new_attribute = super::read(&mut PeekRead::new(Cursor::new(bytes)), 300).unwrap();
+ assert_eq!((name.clone(), value.clone()), (new_attribute.0, new_attribute.1.unwrap()), "attribute round trip");
+ }
+
+
+ {
+ let (name, value) = (
+ Text::from("asdkaspfokpaosdkfpaokswdpoakpsfokaposdkf"),
+ AttributeValue::I32(0),
+ );
+
+ let mut long_names = false;
+ super::validate(&name, &value, &mut long_names, false, IntegerBounds::zero(), false).unwrap();
+ assert!(long_names);
+ }
+
+ {
+ let (name, value) = (
+ Text::from("sdöksadöofkaspdolkpöasolfkcöalsod,kfcöaslodkcpöasolkfposdöksadöofkaspdolkpöasolfkcöalsod,kfcöaslodkcpöasolkfposdöksadöofkaspdolkpöasolfkcöalsod,kfcöaslodkcpöasolkfposdöksadöofkaspdolkpöasolfkcöalsod,kfcöaslodkcpöasolkfposdöksadöofkaspdolkpöasolfkcöalsod,kfcöaslodkcpöasolkfposdöksadöofkaspdolkpöasolfkcöalsod,kfcöaslodkcpöasolkfpo"),
+ AttributeValue::I32(0),
+ );
+
+ super::validate(&name, &value, &mut false, false, IntegerBounds::zero(), false).expect_err("name length check failed");
+ }
+ }
+
+ #[test]
+ fn time_code_pack(){
+ let mut rng = thread_rng();
+
+ let codes = std::iter::repeat_with(|| TimeCode {
+ hours: rng.gen_range(0 .. 24),
+ minutes: rng.gen_range(0 .. 60),
+ seconds: rng.gen_range(0 .. 60),
+ frame: rng.gen_range(0 .. 29),
+ drop_frame: random(),
+ color_frame: random(),
+ field_phase: random(),
+ binary_group_flags: [random(),random(),random()],
+ binary_groups: std::iter::repeat_with(|| rng.gen_range(0 .. 16)).take(8)
+ .collect::<SmallVec<[u8;8]>>().into_inner().unwrap()
+ });
+
+ for code in codes.take(500) {
+ code.validate(true).expect("invalid timecode test input");
+
+ { // through tv60 packing, roundtrip
+ let packed_tv60 = code.pack_time_as_tv60_u32().expect("invalid timecode test input");
+ let packed_user = code.pack_user_data_as_u32();
+ assert_eq!(TimeCode::from_tv60_time(packed_tv60, packed_user), code);
+ }
+
+ { // through bytes, roundtrip
+ let mut bytes = Vec::<u8>::new();
+ code.write(&mut bytes).unwrap();
+ let decoded = TimeCode::read(&mut bytes.as_slice()).unwrap();
+ assert_eq!(code, decoded);
+ }
+
+ {
+ let tv50_code = TimeCode {
+ drop_frame: false, // apparently, tv50 does not support drop frame, so do not use this value
+ .. code
+ };
+
+ let packed_tv50 = code.pack_time_as_tv50_u32().expect("invalid timecode test input");
+ let packed_user = code.pack_user_data_as_u32();
+ assert_eq!(TimeCode::from_tv50_time(packed_tv50, packed_user), tv50_code);
+ }
+
+ {
+ let film24_code = TimeCode {
+ // apparently, film24 does not support some flags, so do not use those values
+ color_frame: false,
+ drop_frame: false,
+ .. code
+ };
+
+ let packed_film24 = code.pack_time_as_film24_u32().expect("invalid timecode test input");
+ let packed_user = code.pack_user_data_as_u32();
+ assert_eq!(TimeCode::from_film24_time(packed_film24, packed_user), film24_code);
+ }
+ }
+ }
+
+}