aboutsummaryrefslogtreecommitdiff
path: root/vendor/exr/src/meta/attribute.rs
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/exr/src/meta/attribute.rs')
-rw-r--r--vendor/exr/src/meta/attribute.rs2226
1 files changed, 0 insertions, 2226 deletions
diff --git a/vendor/exr/src/meta/attribute.rs b/vendor/exr/src/meta/attribute.rs
deleted file mode 100644
index 5b71e82..0000000
--- a/vendor/exr/src/meta/attribute.rs
+++ /dev/null
@@ -1,2226 +0,0 @@
-
-//! Contains all meta data attributes.
-//! Each layer can have any number of [`Attribute`]s, including custom attributes.
-
-use smallvec::SmallVec;
-
-
-/// Contains one of all possible attributes.
-/// Includes a variant for custom attributes.
-#[derive(Debug, Clone, PartialEq)]
-pub enum AttributeValue {
-
- /// Channel meta data.
- ChannelList(ChannelList),
-
- /// Color space definition.
- Chromaticities(Chromaticities),
-
- /// Compression method of this layer.
- Compression(Compression),
-
- /// This image is an environment map.
- EnvironmentMap(EnvironmentMap),
-
- /// Film roll information.
- KeyCode(KeyCode),
-
- /// Order of the bocks in the file.
- LineOrder(LineOrder),
-
- /// A 3x3 matrix of floats.
- Matrix3x3(Matrix3x3),
-
- /// A 4x4 matrix of floats.
- Matrix4x4(Matrix4x4),
-
- /// 8-bit rgba Preview of the image.
- Preview(Preview),
-
- /// An integer dividend and divisor.
- Rational(Rational),
-
- /// Deep or flat and tiled or scan line.
- BlockType(BlockType),
-
- /// List of texts.
- TextVector(Vec<Text>),
-
- /// How to tile up the image.
- TileDescription(TileDescription),
-
- /// Timepoint and more.
- TimeCode(TimeCode),
-
- /// A string of byte-chars.
- Text(Text),
-
- /// 64-bit float
- F64(f64),
-
- /// 32-bit float
- F32(f32),
-
- /// 32-bit signed integer
- I32(i32),
-
- /// 2D integer rectangle.
- IntegerBounds(IntegerBounds),
-
- /// 2D float rectangle.
- FloatRect(FloatRect),
-
- /// 2D integer vector.
- IntVec2(Vec2<i32>),
-
- /// 2D float vector.
- FloatVec2(Vec2<f32>),
-
- /// 3D integer vector.
- IntVec3((i32, i32, i32)),
-
- /// 3D float vector.
- FloatVec3((f32, f32, f32)),
-
- /// A custom attribute.
- /// Contains the type name of this value.
- Custom {
-
- /// The name of the type this attribute is an instance of.
- kind: Text,
-
- /// The value, stored in little-endian byte order, of the value.
- /// Use the `exr::io::Data` trait to extract binary values from this vector.
- bytes: Vec<u8>
- },
-}
-
-/// A byte array with each byte being a char.
-/// This is not UTF an must be constructed from a standard string.
-// TODO is this ascii? use a rust ascii crate?
-#[derive(Clone, PartialEq, Ord, PartialOrd, Default)] // hash implemented manually
-pub struct Text {
- bytes: TextBytes,
-}
-
-/// Contains time information for this frame within a sequence.
-/// Also defined methods to compile this information into a
-/// `TV60`, `TV50` or `Film24` bit sequence, packed into `u32`.
-///
-/// Satisfies the [SMPTE standard 12M-1999](https://en.wikipedia.org/wiki/SMPTE_timecode).
-/// For more in-depth information, see [philrees.co.uk/timecode](http://www.philrees.co.uk/articles/timecode.htm).
-#[derive(Copy, Debug, Clone, Eq, PartialEq, Hash, Default)]
-pub struct TimeCode {
-
- /// Hours 0 - 23 are valid.
- pub hours: u8,
-
- /// Minutes 0 - 59 are valid.
- pub minutes: u8,
-
- /// Seconds 0 - 59 are valid.
- pub seconds: u8,
-
- /// Frame Indices 0 - 29 are valid.
- pub frame: u8,
-
- /// Whether this is a drop frame.
- pub drop_frame: bool,
-
- /// Whether this is a color frame.
- pub color_frame: bool,
-
- /// Field Phase.
- pub field_phase: bool,
-
- /// Flags for `TimeCode.binary_groups`.
- pub binary_group_flags: [bool; 3],
-
- /// The user-defined control codes.
- /// Every entry in this array can use at most 3 bits.
- /// This results in a maximum value of 15, including 0, for each `u8`.
- pub binary_groups: [u8; 8]
-}
-
-/// layer type, specifies block type and deepness.
-#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash)]
-pub enum BlockType {
-
- /// Corresponds to the string value `scanlineimage`.
- ScanLine,
-
- /// Corresponds to the string value `tiledimage`.
- Tile,
-
- /// Corresponds to the string value `deepscanline`.
- DeepScanLine,
-
- /// Corresponds to the string value `deeptile`.
- DeepTile,
-}
-
-/// The string literals used to represent a `BlockType` in a file.
-pub mod block_type_strings {
-
- /// Type attribute text value of flat scan lines
- pub const SCAN_LINE: &'static [u8] = b"scanlineimage";
-
- /// Type attribute text value of flat tiles
- pub const TILE: &'static [u8] = b"tiledimage";
-
- /// Type attribute text value of deep scan lines
- pub const DEEP_SCAN_LINE: &'static [u8] = b"deepscanline";
-
- /// Type attribute text value of deep tiles
- pub const DEEP_TILE: &'static [u8] = b"deeptile";
-}
-
-
-pub use crate::compression::Compression;
-
-/// The integer rectangle describing where an layer is placed on the infinite 2D global space.
-pub type DataWindow = IntegerBounds;
-
-/// The integer rectangle limiting which part of the infinite 2D global space should be displayed.
-pub type DisplayWindow = IntegerBounds;
-
-/// An integer dividend and divisor, together forming a ratio.
-pub type Rational = (i32, u32);
-
-/// A float matrix with four rows and four columns.
-pub type Matrix4x4 = [f32; 4*4];
-
-/// A float matrix with three rows and three columns.
-pub type Matrix3x3 = [f32; 3*3];
-
-/// A rectangular section anywhere in 2D integer space.
-/// Valid from minimum coordinate (including) `-1,073,741,822`
-/// to maximum coordinate (including) `1,073,741,822`, the value of (`i32::MAX/2 -1`).
-#[derive(Clone, Copy, Debug, Eq, PartialEq, Default, Hash)]
-pub struct IntegerBounds {
-
- /// The top left corner of this rectangle.
- /// The `Box2I32` includes this pixel if the size is not zero.
- pub position: Vec2<i32>,
-
- /// How many pixels to include in this `Box2I32`.
- /// Extends to the right and downwards.
- /// Does not include the actual boundary, just like `Vec::len()`.
- pub size: Vec2<usize>,
-}
-
-/// A rectangular section anywhere in 2D float space.
-#[derive(Clone, Copy, Debug, PartialEq)]
-pub struct FloatRect {
-
- /// The top left corner location of the rectangle (inclusive)
- pub min: Vec2<f32>,
-
- /// The bottom right corner location of the rectangle (inclusive)
- pub max: Vec2<f32>
-}
-
-/// A List of channels. Channels must be sorted alphabetically.
-#[derive(Clone, Debug, Eq, PartialEq, Hash)]
-pub struct ChannelList {
-
- /// The channels in this list.
- pub list: SmallVec<[ChannelDescription; 5]>,
-
- /// The number of bytes that one pixel in this image needs.
- // FIXME this needs to account for subsampling anywhere?
- pub bytes_per_pixel: usize, // FIXME only makes sense for flat images!
-
- /// The sample type of all channels, if all channels have the same type.
- pub uniform_sample_type: Option<SampleType>,
-}
-
-/// A single channel in an layer.
-/// Does not contain the actual pixel data,
-/// but instead merely describes it.
-#[derive(Clone, Debug, Eq, PartialEq, Hash)]
-pub struct ChannelDescription {
-
- /// One of "R", "G", or "B" most of the time.
- pub name: Text,
-
- /// U32, F16 or F32.
- pub sample_type: SampleType,
-
- /// This attribute only tells lossy compression methods
- /// whether this value should be quantized exponentially or linearly.
- ///
- /// Should be `false` for red, green, or blue channels.
- /// Should be `true` for hue, chroma, saturation, or alpha channels.
- pub quantize_linearly: bool,
-
- /// How many of the samples are skipped compared to the other channels in this layer.
- ///
- /// Can be used for chroma subsampling for manual lossy data compression.
- /// Values other than 1 are allowed only in flat, scan-line based images.
- /// If an image is deep or tiled, x and y sampling rates for all of its channels must be 1.
- pub sampling: Vec2<usize>,
-}
-
-/// The type of samples in this channel.
-#[derive(Clone, Debug, Eq, PartialEq, Copy, Hash)]
-pub enum SampleType {
-
- /// This channel contains 32-bit unsigned int values.
- U32,
-
- /// This channel contains 16-bit float values.
- F16,
-
- /// This channel contains 32-bit float values.
- F32,
-}
-
-/// The color space of the pixels.
-///
-/// If a file doesn't have a chromaticities attribute, display software
-/// should assume that the file's primaries and the white point match `Rec. ITU-R BT.709-3`.
-#[derive(Debug, Clone, Copy, PartialEq)]
-pub struct Chromaticities {
-
- /// "Red" location on the CIE XY chromaticity diagram.
- pub red: Vec2<f32>,
-
- /// "Green" location on the CIE XY chromaticity diagram.
- pub green: Vec2<f32>,
-
- /// "Blue" location on the CIE XY chromaticity diagram.
- pub blue: Vec2<f32>,
-
- /// "White" location on the CIE XY chromaticity diagram.
- pub white: Vec2<f32>
-}
-
-/// If this attribute is present, it describes
-/// how this texture should be projected onto an environment.
-#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash)]
-pub enum EnvironmentMap {
-
- /// This image is an environment map projected like a world map.
- LatitudeLongitude,
-
- /// This image contains the six sides of a cube.
- Cube,
-}
-
-/// Uniquely identifies a motion picture film frame.
-#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash)]
-pub struct KeyCode {
-
- /// Identifies a film manufacturer.
- pub film_manufacturer_code: i32,
-
- /// Identifies a film type.
- pub film_type: i32,
-
- /// Specifies the film roll prefix.
- pub film_roll_prefix: i32,
-
- /// Specifies the film count.
- pub count: i32,
-
- /// Specifies the perforation offset.
- pub perforation_offset: i32,
-
- /// Specifies the perforation count of each single frame.
- pub perforations_per_frame: i32,
-
- /// Specifies the perforation count of each single film.
- pub perforations_per_count: i32,
-}
-
-/// In what order the `Block`s of pixel data appear in a file.
-#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash)]
-pub enum LineOrder {
-
- /// The blocks in the file are ordered in descending rows from left to right.
- /// When compressing in parallel, this option requires potentially large amounts of memory.
- /// In that case, use `LineOrder::Unspecified` for best performance.
- Increasing,
-
- /// The blocks in the file are ordered in ascending rows from right to left.
- /// When compressing in parallel, this option requires potentially large amounts of memory.
- /// In that case, use `LineOrder::Unspecified` for best performance.
- Decreasing,
-
- /// The blocks are not ordered in a specific way inside the file.
- /// In multi-core file writing, this option offers the best performance.
- Unspecified,
-}
-
-/// A small `rgba` image of `i8` values that approximates the real exr image.
-// TODO is this linear?
-#[derive(Clone, Eq, PartialEq)]
-pub struct Preview {
-
- /// The dimensions of the preview image.
- pub size: Vec2<usize>,
-
- /// An array with a length of 4 × width × height.
- /// The pixels are stored in `LineOrder::Increasing`.
- /// Each pixel consists of the four `u8` values red, green, blue, alpha.
- pub pixel_data: Vec<i8>,
-}
-
-/// Describes how the layer is divided into tiles.
-/// Specifies the size of each tile in the image
-/// and whether this image contains multiple resolution levels.
-#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash)]
-pub struct TileDescription {
-
- /// The size of each tile.
- /// Stays the same number of pixels across all levels.
- pub tile_size: Vec2<usize>,
-
- /// Whether to also store smaller versions of the image.
- pub level_mode: LevelMode,
-
- /// Whether to round up or down when calculating Mip/Rip levels.
- pub rounding_mode: RoundingMode,
-}
-
-/// Whether to also store increasingly smaller versions of the original image.
-#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash)]
-pub enum LevelMode {
-
- /// Only a single level.
- Singular,
-
- /// Levels with a similar aspect ratio.
- MipMap,
-
- /// Levels with all possible aspect ratios.
- RipMap,
-}
-
-
-/// The raw bytes that make up a string in an exr file.
-/// Each `u8` is a single char.
-// will mostly be "R", "G", "B" or "deepscanlineimage"
-pub type TextBytes = SmallVec<[u8; 24]>;
-
-/// A byte slice, interpreted as text
-pub type TextSlice = [u8];
-
-
-use crate::io::*;
-use crate::meta::{sequence_end};
-use crate::error::*;
-use crate::math::{RoundingMode, Vec2};
-use half::f16;
-use std::convert::{TryFrom};
-use std::borrow::Borrow;
-use std::hash::{Hash, Hasher};
-use bit_field::BitField;
-
-
-fn invalid_type() -> Error {
- Error::invalid("attribute type mismatch")
-}
-
-
-impl Text {
-
- /// Create a `Text` from an `str` reference.
- /// Returns `None` if this string contains unsupported chars.
- pub fn new_or_none(string: impl AsRef<str>) -> Option<Self> {
- let vec : Option<TextBytes> = string.as_ref().chars()
- .map(|character| u8::try_from(character as u64).ok())
- .collect();
-
- vec.map(Self::from_bytes_unchecked)
- }
-
- /// Create a `Text` from an `str` reference.
- /// Panics if this string contains unsupported chars.
- pub fn new_or_panic(string: impl AsRef<str>) -> Self {
- Self::new_or_none(string).expect("exr::Text contains unsupported characters")
- }
-
- /// Create a `Text` from a slice of bytes,
- /// without checking any of the bytes.
- pub fn from_slice_unchecked(text: &TextSlice) -> Self {
- Self::from_bytes_unchecked(SmallVec::from_slice(text))
- }
-
- /// Create a `Text` from the specified bytes object,
- /// without checking any of the bytes.
- pub fn from_bytes_unchecked(bytes: TextBytes) -> Self {
- Text { bytes }
- }
-
- /// The internal ASCII bytes this text is made of.
- pub fn as_slice(&self) -> &TextSlice {
- self.bytes.as_slice()
- }
-
- /// Check whether this string is valid, adjusting `long_names` if required.
- /// If `long_names` is not provided, text length will be entirely unchecked.
- pub fn validate(&self, null_terminated: bool, long_names: Option<&mut bool>) -> UnitResult {
- Self::validate_bytes(self.as_slice(), null_terminated, long_names)
- }
-
- /// Check whether some bytes are valid, adjusting `long_names` if required.
- /// If `long_names` is not provided, text length will be entirely unchecked.
- pub fn validate_bytes(text: &TextSlice, null_terminated: bool, long_names: Option<&mut bool>) -> UnitResult {
- if null_terminated && text.is_empty() {
- return Err(Error::invalid("text must not be empty"));
- }
-
- if let Some(long) = long_names {
- if text.len() >= 256 { return Err(Error::invalid("text must not be longer than 255")); }
- if text.len() >= 32 { *long = true; }
- }
-
- Ok(())
- }
-
- /// The byte count this string would occupy if it were encoded as a null-terminated string.
- pub fn null_terminated_byte_size(&self) -> usize {
- self.bytes.len() + sequence_end::byte_size()
- }
-
- /// The byte count this string would occupy if it were encoded as a size-prefixed string.
- pub fn i32_sized_byte_size(&self) -> usize {
- self.bytes.len() + i32::BYTE_SIZE
- }
-
- /// Write the length of a string and then the contents with that length.
- pub fn write_i32_sized<W: Write>(&self, write: &mut W) -> UnitResult {
- debug_assert!(self.validate( false, None).is_ok(), "text size bug");
- i32::write(usize_to_i32(self.bytes.len()), write)?;
- Self::write_unsized_bytes(self.bytes.as_slice(), write)
- }
-
- /// Without validation, write this instance to the byte stream.
- fn write_unsized_bytes<W: Write>(bytes: &[u8], write: &mut W) -> UnitResult {
- u8::write_slice(write, bytes)?;
- Ok(())
- }
-
- /// Read the length of a string and then the contents with that length.
- pub fn read_i32_sized<R: Read>(read: &mut R, max_size: usize) -> Result<Self> {
- let size = i32_to_usize(i32::read(read)?, "vector size")?;
- Ok(Text::from_bytes_unchecked(SmallVec::from_vec(u8::read_vec(read, size, 1024, Some(max_size), "text attribute length")?)))
- }
-
- /// Read the contents with that length.
- pub fn read_sized<R: Read>(read: &mut R, size: usize) -> Result<Self> {
- const SMALL_SIZE: usize = 24;
-
- // for small strings, read into small vec without heap allocation
- if size <= SMALL_SIZE {
- let mut buffer = [0_u8; SMALL_SIZE];
- let data = &mut buffer[..size];
-
- read.read_exact(data)?;
- Ok(Text::from_bytes_unchecked(SmallVec::from_slice(data)))
- }
-
- // for large strings, read a dynamic vec of arbitrary size
- else {
- Ok(Text::from_bytes_unchecked(SmallVec::from_vec(u8::read_vec(read, size, 1024, None, "text attribute length")?)))
- }
- }
-
- /// Write the string contents and a null-terminator.
- pub fn write_null_terminated<W: Write>(&self, write: &mut W) -> UnitResult {
- Self::write_null_terminated_bytes(self.as_slice(), write)
- }
-
- /// Write the string contents and a null-terminator.
- fn write_null_terminated_bytes<W: Write>(bytes: &[u8], write: &mut W) -> UnitResult {
- debug_assert!(!bytes.is_empty(), "text is empty bug"); // required to avoid mixup with "sequece_end"
-
- Text::write_unsized_bytes(bytes, write)?;
- sequence_end::write(write)?;
- Ok(())
- }
-
- /// Read a string until the null-terminator is found. Then skips the null-terminator.
- pub fn read_null_terminated<R: Read>(read: &mut R, max_len: usize) -> Result<Self> {
- let mut bytes = smallvec![ u8::read(read)? ]; // null-terminated strings are always at least 1 byte
-
- loop {
- match u8::read(read)? {
- 0 => break,
- non_terminator => bytes.push(non_terminator),
- }
-
- if bytes.len() > max_len {
- return Err(Error::invalid("text too long"))
- }
- }
-
- Ok(Text { bytes })
- }
-
- /// Allows any text length since it is only used for attribute values,
- /// but not attribute names, attribute type names, or channel names.
- fn read_vec_of_i32_sized(
- read: &mut PeekRead<impl Read>,
- total_byte_size: usize
- ) -> Result<Vec<Text>>
- {
- let mut result = Vec::with_capacity(2);
-
- // length of the text-vector can be inferred from attribute size
- let mut processed_bytes = 0;
-
- while processed_bytes < total_byte_size {
- let text = Text::read_i32_sized(read, total_byte_size)?;
- processed_bytes += ::std::mem::size_of::<i32>(); // size i32 of the text
- processed_bytes += text.bytes.len();
- result.push(text);
- }
-
- // the expected byte size did not match the actual text byte size
- if processed_bytes != total_byte_size {
- return Err(Error::invalid("text array byte size"))
- }
-
- Ok(result)
- }
-
- /// Allows any text length since it is only used for attribute values,
- /// but not attribute names, attribute type names, or channel names.
- fn write_vec_of_i32_sized_texts<W: Write>(write: &mut W, texts: &[Text]) -> UnitResult {
- // length of the text-vector can be inferred from attribute size
- for text in texts {
- text.write_i32_sized(write)?;
- }
-
- Ok(())
- }
-
- /// The underlying bytes that represent this text.
- pub fn bytes(&self) -> &[u8] {
- self.bytes.as_slice()
- }
-
- /// Iterate over the individual chars in this text, similar to `String::chars()`.
- /// Does not do any heap-allocation but borrows from this instance instead.
- pub fn chars(&self) -> impl '_ + Iterator<Item = char> {
- self.bytes.iter().map(|&byte| byte as char)
- }
-
- /// Compare this `exr::Text` with a plain `&str`.
- pub fn eq(&self, string: &str) -> bool {
- string.chars().eq(self.chars())
- }
-
- /// Compare this `exr::Text` with a plain `&str` ignoring capitalization.
- pub fn eq_case_insensitive(&self, string: &str) -> bool {
- // this is technically not working for a "turkish i", but those cannot be encoded in exr files anyways
- let self_chars = self.chars().map(|char| char.to_ascii_lowercase());
- let string_chars = string.chars().flat_map(|ch| ch.to_lowercase());
-
- string_chars.eq(self_chars)
- }
-}
-
-impl PartialEq<str> for Text {
- fn eq(&self, other: &str) -> bool {
- self.eq(other)
- }
-}
-
-impl PartialEq<Text> for str {
- fn eq(&self, other: &Text) -> bool {
- other.eq(self)
- }
-}
-
-impl Eq for Text {}
-
-impl Borrow<TextSlice> for Text {
- fn borrow(&self) -> &TextSlice {
- self.as_slice()
- }
-}
-
-// forwarding implementation. guarantees `text.borrow().hash() == text.hash()` (required for Borrow)
-impl Hash for Text {
- fn hash<H: Hasher>(&self, state: &mut H) {
- self.bytes.hash(state)
- }
-}
-
-impl Into<String> for Text {
- fn into(self) -> String {
- self.to_string()
- }
-}
-
-impl<'s> From<&'s str> for Text {
-
- /// Panics if the string contains an unsupported character
- fn from(str: &'s str) -> Self {
- Self::new_or_panic(str)
- }
-}
-
-
-/* TODO (currently conflicts with From<&str>)
-impl<'s> TryFrom<&'s str> for Text {
- type Error = String;
-
- fn try_from(value: &'s str) -> std::result::Result<Self, Self::Error> {
- Text::new_or_none(value)
- .ok_or_else(|| format!(
- "exr::Text does not support all characters in the string `{}`",
- value
- ))
- }
-}*/
-
-
-impl ::std::fmt::Debug for Text {
- fn fmt(&self, f: &mut ::std::fmt::Formatter<'_>) -> ::std::fmt::Result {
- write!(f, "exr::Text(\"{}\")", self)
- }
-}
-
-// automatically implements to_string for us
-impl ::std::fmt::Display for Text {
- fn fmt(&self, f: &mut ::std::fmt::Formatter<'_>) -> ::std::fmt::Result {
- use std::fmt::Write;
-
- for &byte in self.bytes.iter() {
- f.write_char(byte as char)?;
- }
-
- Ok(())
- }
-}
-
-
-impl ChannelList {
-
- /// Does not validate channel order.
- pub fn new(channels: SmallVec<[ChannelDescription; 5]>) -> Self {
- let uniform_sample_type = {
- if let Some(first) = channels.first() {
- let has_uniform_types = channels.iter().skip(1)
- .all(|chan| chan.sample_type == first.sample_type);
-
- if has_uniform_types { Some(first.sample_type) } else { None }
- }
- else { None }
- };
-
- ChannelList {
- bytes_per_pixel: channels.iter().map(|channel| channel.sample_type.bytes_per_sample()).sum(),
- list: channels, uniform_sample_type,
- }
- }
-
- /// Iterate over the channels, and adds to each channel the byte offset of the channels sample type.
- /// Assumes the internal channel list is properly sorted.
- pub fn channels_with_byte_offset(&self) -> impl Iterator<Item=(usize, &ChannelDescription)> {
- self.list.iter().scan(0, |byte_position, channel|{
- let previous_position = *byte_position;
- *byte_position += channel.sample_type.bytes_per_sample();
- Some((previous_position, channel))
- })
- }
-
- /// Return the index of the channel with the exact name, case sensitive, or none.
- /// Potentially uses less than linear time.
- pub fn find_index_of_channel(&self, exact_name: &Text) -> Option<usize> {
- self.list.binary_search_by_key(&exact_name.bytes(), |chan| chan.name.bytes()).ok()
- }
-
- // TODO use this in compression methods
- /*pub fn pixel_section_indices(&self, bounds: IntegerBounds) -> impl '_ + Iterator<Item=(&Channel, usize, usize)> {
- (bounds.position.y() .. bounds.end().y()).flat_map(|y| {
- self.list
- .filter(|channel| mod_p(y, usize_to_i32(channel.sampling.1)) == 0)
- .flat_map(|channel|{
- (bounds.position.x() .. bounds.end().x())
- .filter(|x| mod_p(*x, usize_to_i32(channel.sampling.0)) == 0)
- .map(|x| (channel, x, y))
- })
- })
- }*/
-}
-
-impl BlockType {
-
- /// The corresponding attribute type name literal
- const TYPE_NAME: &'static [u8] = type_names::TEXT;
-
- /// Return a `BlockType` object from the specified attribute text value.
- pub fn parse(text: Text) -> Result<Self> {
- match text.as_slice() {
- block_type_strings::SCAN_LINE => Ok(BlockType::ScanLine),
- block_type_strings::TILE => Ok(BlockType::Tile),
-
- block_type_strings::DEEP_SCAN_LINE => Ok(BlockType::DeepScanLine),
- block_type_strings::DEEP_TILE => Ok(BlockType::DeepTile),
-
- _ => Err(Error::invalid("block type attribute value")),
- }
- }
-
- /// Without validation, write this instance to the byte stream.
- pub fn write(&self, write: &mut impl Write) -> UnitResult {
- u8::write_slice(write, self.to_text_bytes())?;
- Ok(())
- }
-
- /// Returns the raw attribute text value this type is represented by in a file.
- pub fn to_text_bytes(&self) -> &[u8] {
- match self {
- BlockType::ScanLine => block_type_strings::SCAN_LINE,
- BlockType::Tile => block_type_strings::TILE,
- BlockType::DeepScanLine => block_type_strings::DEEP_SCAN_LINE,
- BlockType::DeepTile => block_type_strings::DEEP_TILE,
- }
- }
-
- /// Number of bytes this would consume in an exr file.
- pub fn byte_size(&self) -> usize {
- self.to_text_bytes().len()
- }
-}
-
-
-impl IntegerBounds {
-
- /// Create a box with no size located at (0,0).
- pub fn zero() -> Self {
- Self::from_dimensions(Vec2(0, 0))
- }
-
- /// Create a box with a size starting at zero.
- pub fn from_dimensions(size: impl Into<Vec2<usize>>) -> Self {
- Self::new(Vec2(0,0), size)
- }
-
- /// Create a box with a size and an origin point.
- pub fn new(start: impl Into<Vec2<i32>>, size: impl Into<Vec2<usize>>) -> Self {
- Self { position: start.into(), size: size.into() }
- }
-
- /// Returns the top-right coordinate of the rectangle.
- /// The row and column described by this vector are not included in the rectangle,
- /// just like `Vec::len()`.
- pub fn end(self) -> Vec2<i32> {
- self.position + self.size.to_i32() // larger than max int32 is panic
- }
-
- /// Returns the maximum coordinate that a value in this rectangle may have.
- pub fn max(self) -> Vec2<i32> {
- self.end() - Vec2(1,1)
- }
-
- /// Validate this instance.
- pub fn validate(&self, max_size: Option<Vec2<usize>>) -> UnitResult {
- if let Some(max_size) = max_size {
- if self.size.width() > max_size.width() || self.size.height() > max_size.height() {
- return Err(Error::invalid("window attribute dimension value"));
- }
- }
-
- let min_i64 = Vec2(self.position.x() as i64, self.position.y() as i64);
-
- let max_i64 = Vec2(
- self.position.x() as i64 + self.size.width() as i64,
- self.position.y() as i64 + self.size.height() as i64,
- );
-
- Self::validate_min_max_u64(min_i64, max_i64)
- }
-
- fn validate_min_max_u64(min: Vec2<i64>, max: Vec2<i64>) -> UnitResult {
- let max_box_size_as_i64 = (i32::MAX / 2) as i64; // as defined in the original c++ library
-
- if max.x() >= max_box_size_as_i64
- || max.y() >= max_box_size_as_i64
- || min.x() <= -max_box_size_as_i64
- || min.y() <= -max_box_size_as_i64
- {
- return Err(Error::invalid("window size exceeding integer maximum"));
- }
-
- Ok(())
- }
-
- /// Number of bytes this would consume in an exr file.
- pub fn byte_size() -> usize {
- 4 * i32::BYTE_SIZE
- }
-
- /// Without validation, write this instance to the byte stream.
- pub fn write<W: Write>(&self, write: &mut W) -> UnitResult {
- let Vec2(x_min, y_min) = self.position;
- let Vec2(x_max, y_max) = self.max();
-
- x_min.write(write)?;
- y_min.write(write)?;
- x_max.write(write)?;
- y_max.write(write)?;
- Ok(())
- }
-
- /// Read the value without validating.
- pub fn read<R: Read>(read: &mut R) -> Result<Self> {
- let x_min = i32::read(read)?;
- let y_min = i32::read(read)?;
- let x_max = i32::read(read)?;
- let y_max = i32::read(read)?;
-
- let min = Vec2(x_min.min(x_max), y_min.min(y_max));
- let max = Vec2(x_min.max(x_max), y_min.max(y_max));
-
- // prevent addition overflow
- Self::validate_min_max_u64(
- Vec2(min.x() as i64, min.y() as i64),
- Vec2(max.x() as i64, max.y() as i64),
- )?;
-
- // add one to max because the max inclusive, but the size is not
- let size = Vec2(max.x() + 1 - min.x(), max.y() + 1 - min.y());
- let size = size.to_usize("box coordinates")?;
-
- Ok(IntegerBounds { position: min, size })
- }
-
- /// Create a new rectangle which is offset by the specified origin.
- pub fn with_origin(self, origin: Vec2<i32>) -> Self { // TODO rename to "move" or "translate"?
- IntegerBounds { position: self.position + origin, .. self }
- }
-
- /// Returns whether the specified rectangle is equal to or inside this rectangle.
- pub fn contains(self, subset: Self) -> bool {
- subset.position.x() >= self.position.x()
- && subset.position.y() >= self.position.y()
- && subset.end().x() <= self.end().x()
- && subset.end().y() <= self.end().y()
- }
-}
-
-
-impl FloatRect {
-
- /// Number of bytes this would consume in an exr file.
- pub fn byte_size() -> usize {
- 4 * f32::BYTE_SIZE
- }
-
- /// Without validation, write this instance to the byte stream.
- pub fn write<W: Write>(&self, write: &mut W) -> UnitResult {
- self.min.x().write(write)?;
- self.min.y().write(write)?;
- self.max.x().write(write)?;
- self.max.y().write(write)?;
- Ok(())
- }
-
- /// Read the value without validating.
- pub fn read<R: Read>(read: &mut R) -> Result<Self> {
- let x_min = f32::read(read)?;
- let y_min = f32::read(read)?;
- let x_max = f32::read(read)?;
- let y_max = f32::read(read)?;
-
- Ok(FloatRect {
- min: Vec2(x_min, y_min),
- max: Vec2(x_max, y_max)
- })
- }
-}
-
-impl SampleType {
-
- /// How many bytes a single sample takes up.
- pub fn bytes_per_sample(&self) -> usize {
- match self {
- SampleType::F16 => f16::BYTE_SIZE,
- SampleType::F32 => f32::BYTE_SIZE,
- SampleType::U32 => u32::BYTE_SIZE,
- }
- }
-
- /// Number of bytes this would consume in an exr file.
- pub fn byte_size() -> usize {
- i32::BYTE_SIZE
- }
-
- /// Without validation, write this instance to the byte stream.
- pub fn write<W: Write>(&self, write: &mut W) -> UnitResult {
- match *self {
- SampleType::U32 => 0_i32,
- SampleType::F16 => 1_i32,
- SampleType::F32 => 2_i32,
- }.write(write)?;
-
- Ok(())
- }
-
- /// Read the value without validating.
- pub fn read<R: Read>(read: &mut R) -> Result<Self> {
- // there's definitely going to be more than 255 different pixel types in the future
- Ok(match i32::read(read)? {
- 0 => SampleType::U32,
- 1 => SampleType::F16,
- 2 => SampleType::F32,
- _ => return Err(Error::invalid("pixel type attribute value")),
- })
- }
-}
-
-impl ChannelDescription {
- /// Choose whether to compress samples linearly or not, based on the channel name.
- /// Luminance-based channels will be compressed differently than linear data such as alpha.
- pub fn guess_quantization_linearity(name: &Text) -> bool {
- !(
- name.eq_case_insensitive("R") || name.eq_case_insensitive("G") ||
- name.eq_case_insensitive("B") || name.eq_case_insensitive("L") ||
- name.eq_case_insensitive("Y") || name.eq_case_insensitive("X") ||
- name.eq_case_insensitive("Z")
- )
- }
-
- /// Create a new channel with the specified properties and a sampling rate of (1,1).
- /// Automatically chooses the linearity for compression based on the channel name.
- pub fn named(name: impl Into<Text>, sample_type: SampleType) -> Self {
- let name = name.into();
- let linearity = Self::guess_quantization_linearity(&name);
- Self::new(name, sample_type, linearity)
- }
-
- /*pub fn from_name<T: Into<Sample> + Default>(name: impl Into<Text>) -> Self {
- Self::named(name, T::default().into().sample_type())
- }*/
-
- /// Create a new channel with the specified properties and a sampling rate of (1,1).
- pub fn new(name: impl Into<Text>, sample_type: SampleType, quantize_linearly: bool) -> Self {
- Self { name: name.into(), sample_type, quantize_linearly, sampling: Vec2(1, 1) }
- }
-
- /// The count of pixels this channel contains, respecting subsampling.
- // FIXME this must be used everywhere
- pub fn subsampled_pixels(&self, dimensions: Vec2<usize>) -> usize {
- self.subsampled_resolution(dimensions).area()
- }
-
- /// The resolution pf this channel, respecting subsampling.
- pub fn subsampled_resolution(&self, dimensions: Vec2<usize>) -> Vec2<usize> {
- dimensions / self.sampling
- }
-
- /// Number of bytes this would consume in an exr file.
- pub fn byte_size(&self) -> usize {
- self.name.null_terminated_byte_size()
- + SampleType::byte_size()
- + 1 // is_linear
- + 3 // reserved bytes
- + 2 * u32::BYTE_SIZE // sampling x, y
- }
-
- /// Without validation, write this instance to the byte stream.
- pub fn write<W: Write>(&self, write: &mut W) -> UnitResult {
- Text::write_null_terminated(&self.name, write)?;
- self.sample_type.write(write)?;
-
- match self.quantize_linearly {
- false => 0_u8,
- true => 1_u8,
- }.write(write)?;
-
- i8::write_slice(write, &[0_i8, 0_i8, 0_i8])?;
- i32::write(usize_to_i32(self.sampling.x()), write)?;
- i32::write(usize_to_i32(self.sampling.y()), write)?;
- Ok(())
- }
-
- /// Read the value without validating.
- pub fn read<R: Read>(read: &mut R) -> Result<Self> {
- let name = Text::read_null_terminated(read, 256)?;
- let sample_type = SampleType::read(read)?;
-
- let is_linear = match u8::read(read)? {
- 1 => true,
- 0 => false,
- _ => return Err(Error::invalid("channel linearity attribute value")),
- };
-
- let mut reserved = [0_i8; 3];
- i8::read_slice(read, &mut reserved)?;
-
- let x_sampling = i32_to_usize(i32::read(read)?, "x channel sampling")?;
- let y_sampling = i32_to_usize(i32::read(read)?, "y channel sampling")?;
-
- Ok(ChannelDescription {
- name, sample_type,
- quantize_linearly: is_linear,
- sampling: Vec2(x_sampling, y_sampling),
- })
- }
-
- /// Validate this instance.
- pub fn validate(&self, allow_sampling: bool, data_window: IntegerBounds, strict: bool) -> UnitResult {
- self.name.validate(true, None)?; // TODO spec says this does not affect `requirements.long_names` but is that true?
-
- if self.sampling.x() == 0 || self.sampling.y() == 0 {
- return Err(Error::invalid("zero sampling factor"));
- }
-
- if strict && !allow_sampling && self.sampling != Vec2(1,1) {
- return Err(Error::invalid("subsampling is only allowed in flat scan line images"));
- }
-
- if data_window.position.x() % self.sampling.x() as i32 != 0 || data_window.position.y() % self.sampling.y() as i32 != 0 {
- return Err(Error::invalid("channel sampling factor not dividing data window position"));
- }
-
- if data_window.size.x() % self.sampling.x() != 0 || data_window.size.y() % self.sampling.y() != 0 {
- return Err(Error::invalid("channel sampling factor not dividing data window size"));
- }
-
- if self.sampling != Vec2(1,1) {
- // TODO this must only be implemented in the crate::image module and child modules,
- // should not be too difficult
-
- return Err(Error::unsupported("channel subsampling not supported yet"));
- }
-
- Ok(())
- }
-}
-
-impl ChannelList {
-
- /// Number of bytes this would consume in an exr file.
- pub fn byte_size(&self) -> usize {
- self.list.iter().map(ChannelDescription::byte_size).sum::<usize>() + sequence_end::byte_size()
- }
-
- /// Without validation, write this instance to the byte stream.
- /// Assumes channels are sorted alphabetically and all values are validated.
- pub fn write(&self, write: &mut impl Write) -> UnitResult {
- for channel in &self.list {
- channel.write(write)?;
- }
-
- sequence_end::write(write)?;
- Ok(())
- }
-
- /// Read the value without validating.
- pub fn read(read: &mut PeekRead<impl Read>) -> Result<Self> {
- let mut channels = SmallVec::new();
- while !sequence_end::has_come(read)? {
- channels.push(ChannelDescription::read(read)?);
- }
-
- Ok(ChannelList::new(channels))
- }
-
- /// Check if channels are valid and sorted.
- pub fn validate(&self, allow_sampling: bool, data_window: IntegerBounds, strict: bool) -> UnitResult {
- let mut iter = self.list.iter().map(|chan| chan.validate(allow_sampling, data_window, strict).map(|_| &chan.name));
- let mut previous = iter.next().ok_or(Error::invalid("at least one channel is required"))??;
-
- for result in iter {
- let value = result?;
- if strict && previous == value { return Err(Error::invalid("channel names are not unique")); }
- else if previous > value { return Err(Error::invalid("channel names are not sorted alphabetically")); }
- else { previous = value; }
- }
-
- Ok(())
- }
-}
-
-fn u8_to_decimal32(binary: u8) -> u32 {
- let units = binary as u32 % 10;
- let tens = (binary as u32 / 10) % 10;
- units | (tens << 4)
-}
-
-// assumes value fits into u8
-fn u8_from_decimal32(coded: u32) -> u8 {
- ((coded & 0x0f) + 10 * ((coded >> 4) & 0x0f)) as u8
-}
-
-// https://github.com/AcademySoftwareFoundation/openexr/blob/master/src/lib/OpenEXR/ImfTimeCode.cpp
-impl TimeCode {
-
- /// Number of bytes this would consume in an exr file.
- pub const BYTE_SIZE: usize = 2 * u32::BYTE_SIZE;
-
- /// Returns an error if this time code is considered invalid.
- pub fn validate(&self, strict: bool) -> UnitResult {
- if strict {
- if self.frame > 29 { Err(Error::invalid("time code frame larger than 29")) }
- else if self.seconds > 59 { Err(Error::invalid("time code seconds larger than 59")) }
- else if self.minutes > 59 { Err(Error::invalid("time code minutes larger than 59")) }
- else if self.hours > 23 { Err(Error::invalid("time code hours larger than 23")) }
- else if self.binary_groups.iter().any(|&group| group > 15) {
- Err(Error::invalid("time code binary group value too large for 3 bits"))
- }
- else { Ok(()) }
- }
- else { Ok(()) }
- }
-
-
- /// Pack the SMPTE time code into a u32 value, according to TV60 packing.
- /// This is the encoding which is used within a binary exr file.
- pub fn pack_time_as_tv60_u32(&self) -> Result<u32> {
- // validate strictly to prevent set_bit panic! below
- self.validate(true)?;
-
- Ok(*0_u32
- .set_bits(0..6, u8_to_decimal32(self.frame))
- .set_bit(6, self.drop_frame)
- .set_bit(7, self.color_frame)
- .set_bits(8..15, u8_to_decimal32(self.seconds))
- .set_bit(15, self.field_phase)
- .set_bits(16..23, u8_to_decimal32(self.minutes))
- .set_bit(23, self.binary_group_flags[0])
- .set_bits(24..30, u8_to_decimal32(self.hours))
- .set_bit(30, self.binary_group_flags[1])
- .set_bit(31, self.binary_group_flags[2])
- )
- }
-
- /// Unpack a time code from one TV60 encoded u32 value and the encoded user data.
- /// This is the encoding which is used within a binary exr file.
- pub fn from_tv60_time(tv60_time: u32, user_data: u32) -> Self {
- Self {
- frame: u8_from_decimal32(tv60_time.get_bits(0..6)), // cast cannot fail, as these are less than 8 bits
- drop_frame: tv60_time.get_bit(6),
- color_frame: tv60_time.get_bit(7),
- seconds: u8_from_decimal32(tv60_time.get_bits(8..15)), // cast cannot fail, as these are less than 8 bits
- field_phase: tv60_time.get_bit(15),
- minutes: u8_from_decimal32(tv60_time.get_bits(16..23)), // cast cannot fail, as these are less than 8 bits
- hours: u8_from_decimal32(tv60_time.get_bits(24..30)), // cast cannot fail, as these are less than 8 bits
- binary_group_flags: [
- tv60_time.get_bit(23),
- tv60_time.get_bit(30),
- tv60_time.get_bit(31),
- ],
-
- binary_groups: Self::unpack_user_data_from_u32(user_data)
- }
- }
-
- /// Pack the SMPTE time code into a u32 value, according to TV50 packing.
- /// This encoding does not support the `drop_frame` flag, it will be lost.
- pub fn pack_time_as_tv50_u32(&self) -> Result<u32> {
- Ok(*self.pack_time_as_tv60_u32()?
-
- // swap some fields by replacing some bits in the packed u32
- .set_bit(6, false)
- .set_bit(15, self.binary_group_flags[0])
- .set_bit(30, self.binary_group_flags[1])
- .set_bit(23, self.binary_group_flags[2])
- .set_bit(31, self.field_phase)
- )
- }
-
- /// Unpack a time code from one TV50 encoded u32 value and the encoded user data.
- /// This encoding does not support the `drop_frame` flag, it will always be false.
- pub fn from_tv50_time(tv50_time: u32, user_data: u32) -> Self {
- Self {
- drop_frame: false, // do not use bit [6]
-
- // swap some fields:
- field_phase: tv50_time.get_bit(31),
- binary_group_flags: [
- tv50_time.get_bit(15),
- tv50_time.get_bit(30),
- tv50_time.get_bit(23),
- ],
-
- .. Self::from_tv60_time(tv50_time, user_data)
- }
- }
-
-
- /// Pack the SMPTE time code into a u32 value, according to FILM24 packing.
- /// This encoding does not support the `drop_frame` and `color_frame` flags, they will be lost.
- pub fn pack_time_as_film24_u32(&self) -> Result<u32> {
- Ok(*self.pack_time_as_tv60_u32()?
- .set_bit(6, false)
- .set_bit(7, false)
- )
- }
-
- /// Unpack a time code from one TV60 encoded u32 value and the encoded user data.
- /// This encoding does not support the `drop_frame` and `color_frame` flags, they will always be `false`.
- pub fn from_film24_time(film24_time: u32, user_data: u32) -> Self {
- Self {
- drop_frame: false, // bit [6]
- color_frame: false, // bit [7]
- .. Self::from_tv60_time(film24_time, user_data)
- }
- }
-
-
- // in rust, group index starts at zero, not at one.
- fn user_data_bit_indices(group_index: usize) -> std::ops::Range<usize> {
- let min_bit = 4 * group_index;
- min_bit .. min_bit + 4 // +4, not +3, as `Range` is exclusive
- }
-
- /// Pack the user data `u8` array into one u32.
- /// User data values are clamped to the valid range (maximum value is 4).
- pub fn pack_user_data_as_u32(&self) -> u32 {
- let packed = self.binary_groups.iter().enumerate().fold(0_u32, |mut packed, (group_index, group_value)|
- *packed.set_bits(Self::user_data_bit_indices(group_index), *group_value.min(&15) as u32)
- );
-
- debug_assert_eq!(Self::unpack_user_data_from_u32(packed), self.binary_groups, "round trip user data encoding");
- packed
- }
-
- // Unpack the encoded u32 user data to an array of bytes, each byte having a value from 0 to 4.
- fn unpack_user_data_from_u32(user_data: u32) -> [u8; 8] {
- (0..8).map(|group_index| user_data.get_bits(Self::user_data_bit_indices(group_index)) as u8)
- .collect::<SmallVec<[u8;8]>>().into_inner().expect("array index bug")
- }
-
-
- /// Write this time code to the byte stream, encoded as TV60 integers.
- /// Returns an `Error::Invalid` if the fields are out of the allowed range.
- pub fn write<W: Write>(&self, write: &mut W) -> UnitResult {
- self.pack_time_as_tv60_u32()?.write(write)?; // will validate
- self.pack_user_data_as_u32().write(write)?;
- Ok(())
- }
-
- /// Read the time code, without validating, extracting from TV60 integers.
- pub fn read<R: Read>(read: &mut R) -> Result<Self> {
- let time_and_flags = u32::read(read)?;
- let user_data = u32::read(read)?;
- Ok(Self::from_tv60_time(time_and_flags, user_data))
- }
-}
-
-impl Chromaticities {
-
- /// Number of bytes this would consume in an exr file.
- pub fn byte_size() -> usize {
- 8 * f32::BYTE_SIZE
- }
-
- /// Without validation, write this instance to the byte stream.
- pub fn write<W: Write>(&self, write: &mut W) -> UnitResult {
- self.red.x().write(write)?;
- self.red.y().write(write)?;
-
- self.green.x().write(write)?;
- self.green.y().write(write)?;
-
- self.blue.x().write(write)?;
- self.blue.y().write(write)?;
-
- self.white.x().write(write)?;
- self.white.y().write(write)?;
- Ok(())
- }
-
- /// Read the value without validating.
- pub fn read<R: Read>(read: &mut R) -> Result<Self> {
- Ok(Chromaticities {
- red: Vec2(f32::read(read)?, f32::read(read)?),
- green: Vec2(f32::read(read)?, f32::read(read)?),
- blue: Vec2(f32::read(read)?, f32::read(read)?),
- white: Vec2(f32::read(read)?, f32::read(read)?),
- })
- }
-}
-
-impl Compression {
-
- /// Number of bytes this would consume in an exr file.
- pub fn byte_size() -> usize { u8::BYTE_SIZE }
-
- /// Without validation, write this instance to the byte stream.
- pub fn write<W: Write>(self, write: &mut W) -> UnitResult {
- use self::Compression::*;
- match self {
- Uncompressed => 0_u8,
- RLE => 1_u8,
- ZIP1 => 2_u8,
- ZIP16 => 3_u8,
- PIZ => 4_u8,
- PXR24 => 5_u8,
- B44 => 6_u8,
- B44A => 7_u8,
- DWAA(_) => 8_u8,
- DWAB(_) => 9_u8,
- }.write(write)?;
- Ok(())
- }
-
- /// Read the value without validating.
- pub fn read<R: Read>(read: &mut R) -> Result<Self> {
- use self::Compression::*;
- Ok(match u8::read(read)? {
- 0 => Uncompressed,
- 1 => RLE,
- 2 => ZIP1,
- 3 => ZIP16,
- 4 => PIZ,
- 5 => PXR24,
- 6 => B44,
- 7 => B44A,
- 8 => DWAA(None),
- 9 => DWAB(None),
- _ => return Err(Error::unsupported("unknown compression method")),
- })
- }
-}
-
-impl EnvironmentMap {
-
- /// Number of bytes this would consume in an exr file.
- pub fn byte_size() -> usize {
- u8::BYTE_SIZE
- }
-
- /// Without validation, write this instance to the byte stream.
- pub fn write<W: Write>(self, write: &mut W) -> UnitResult {
- use self::EnvironmentMap::*;
- match self {
- LatitudeLongitude => 0_u8,
- Cube => 1_u8
- }.write(write)?;
-
- Ok(())
- }
-
- /// Read the value without validating.
- pub fn read<R: Read>(read: &mut R) -> Result<Self> {
- use self::EnvironmentMap::*;
- Ok(match u8::read(read)? {
- 0 => LatitudeLongitude,
- 1 => Cube,
- _ => return Err(Error::invalid("environment map attribute value")),
- })
- }
-}
-
-impl KeyCode {
-
- /// Number of bytes this would consume in an exr file.
- pub fn byte_size() -> usize {
- 6 * i32::BYTE_SIZE
- }
-
- /// Without validation, write this instance to the byte stream.
- pub fn write<W: Write>(&self, write: &mut W) -> UnitResult {
- self.film_manufacturer_code.write(write)?;
- self.film_type.write(write)?;
- self.film_roll_prefix.write(write)?;
- self.count.write(write)?;
- self.perforation_offset.write(write)?;
- self.perforations_per_count.write(write)?;
- Ok(())
- }
-
- /// Read the value without validating.
- pub fn read<R: Read>(read: &mut R) -> Result<Self> {
- Ok(KeyCode {
- film_manufacturer_code: i32::read(read)?,
- film_type: i32::read(read)?,
- film_roll_prefix: i32::read(read)?,
- count: i32::read(read)?,
- perforation_offset: i32::read(read)?,
- perforations_per_frame: i32::read(read)?,
- perforations_per_count: i32::read(read)?,
- })
- }
-}
-
-impl LineOrder {
-
- /// Number of bytes this would consume in an exr file.
- pub fn byte_size() -> usize {
- u8::BYTE_SIZE
- }
-
- /// Without validation, write this instance to the byte stream.
- pub fn write<W: Write>(self, write: &mut W) -> UnitResult {
- use self::LineOrder::*;
- match self {
- Increasing => 0_u8,
- Decreasing => 1_u8,
- Unspecified => 2_u8,
- }.write(write)?;
-
- Ok(())
- }
-
- /// Read the value without validating.
- pub fn read<R: Read>(read: &mut R) -> Result<Self> {
- use self::LineOrder::*;
- Ok(match u8::read(read)? {
- 0 => Increasing,
- 1 => Decreasing,
- 2 => Unspecified,
- _ => return Err(Error::invalid("line order attribute value")),
- })
- }
-}
-
-
-
-
-impl Preview {
-
- /// Number of bytes this would consume in an exr file.
- pub fn byte_size(&self) -> usize {
- 2 * u32::BYTE_SIZE + self.pixel_data.len()
- }
-
- /// Without validation, write this instance to the byte stream.
- pub fn write<W: Write>(&self, write: &mut W) -> UnitResult {
- u32::write(self.size.width() as u32, write)?;
- u32::write(self.size.height() as u32, write)?;
-
- i8::write_slice(write, &self.pixel_data)?;
- Ok(())
- }
-
- /// Read the value without validating.
- pub fn read<R: Read>(read: &mut R) -> Result<Self> {
- let width = u32::read(read)? as usize;
- let height = u32::read(read)? as usize;
-
- if let Some(pixel_count) = width.checked_mul(height) {
- // Multiply by the number of bytes per pixel.
- if let Some(byte_count) = pixel_count.checked_mul(4) {
- let pixel_data = i8::read_vec(
- read,
- byte_count,
- 1024 * 1024 * 4,
- None,
- "preview attribute pixel count",
- )?;
-
- let preview = Preview {
- size: Vec2(width, height),
- pixel_data,
- };
-
- return Ok(preview);
- }
- }
-
- return Err(Error::invalid(
- format!("Overflow while calculating preview image Attribute size \
- (width: {}, height: {}).",
- width,
- height)));
- }
-
- /// Validate this instance.
- pub fn validate(&self, strict: bool) -> UnitResult {
- if strict && (self.size.area() * 4 != self.pixel_data.len()) {
- return Err(Error::invalid("preview dimensions do not match content length"))
- }
-
- Ok(())
- }
-}
-
-impl ::std::fmt::Debug for Preview {
- fn fmt(&self, f: &mut ::std::fmt::Formatter<'_>) -> ::std::fmt::Result {
- write!(f, "Preview ({}x{} px)", self.size.width(), self.size.height())
- }
-}
-
-impl TileDescription {
-
- /// Number of bytes this would consume in an exr file.
- pub fn byte_size() -> usize {
- 2 * u32::BYTE_SIZE + 1 // size x,y + (level mode + rounding mode)
- }
-
- /// Without validation, write this instance to the byte stream.
- pub fn write<W: Write>(&self, write: &mut W) -> UnitResult {
- u32::write(self.tile_size.width() as u32, write)?;
- u32::write(self.tile_size.height() as u32, write)?;
-
- let level_mode = match self.level_mode {
- LevelMode::Singular => 0_u8,
- LevelMode::MipMap => 1_u8,
- LevelMode::RipMap => 2_u8,
- };
-
- let rounding_mode = match self.rounding_mode {
- RoundingMode::Down => 0_u8,
- RoundingMode::Up => 1_u8,
- };
-
- let mode: u8 = level_mode + (rounding_mode * 16);
- mode.write(write)?;
- Ok(())
- }
-
- /// Read the value without validating.
- pub fn read<R: Read>(read: &mut R) -> Result<Self> {
- let x_size = u32::read(read)? as usize;
- let y_size = u32::read(read)? as usize;
-
- let mode = u8::read(read)?;
-
- // wow you really saved that one byte here
- // mode = level_mode + (rounding_mode * 16)
- let level_mode = mode & 0b00001111; // wow that works
- let rounding_mode = mode >> 4; // wow that works
-
- let level_mode = match level_mode {
- 0 => LevelMode::Singular,
- 1 => LevelMode::MipMap,
- 2 => LevelMode::RipMap,
- _ => return Err(Error::invalid("tile description level mode")),
- };
-
- let rounding_mode = match rounding_mode {
- 0 => RoundingMode::Down,
- 1 => RoundingMode::Up,
- _ => return Err(Error::invalid("tile description rounding mode")),
- };
-
- Ok(TileDescription { tile_size: Vec2(x_size, y_size), level_mode, rounding_mode, })
- }
-
- /// Validate this instance.
- pub fn validate(&self) -> UnitResult {
- let max = i32::MAX as i64 / 2;
-
- if self.tile_size.width() == 0 || self.tile_size.height() == 0
- || self.tile_size.width() as i64 >= max || self.tile_size.height() as i64 >= max
- {
- return Err(Error::invalid("tile size"))
- }
-
- Ok(())
- }
-}
-
-
-/// Number of bytes this attribute would consume in an exr file.
-// TODO instead of pre calculating byte size, write to a tmp buffer whose length is inspected before actually writing?
-pub fn byte_size(name: &Text, value: &AttributeValue) -> usize {
- name.null_terminated_byte_size()
- + value.kind_name().len() + sequence_end::byte_size()
- + i32::BYTE_SIZE // serialized byte size
- + value.byte_size()
-}
-
-/// Without validation, write this attribute to the byte stream.
-pub fn write<W: Write>(name: &[u8], value: &AttributeValue, write: &mut W) -> UnitResult {
- Text::write_null_terminated_bytes(name, write)?;
- Text::write_null_terminated_bytes(value.kind_name(), write)?;
- i32::write(value.byte_size() as i32, write)?;
- value.write(write)
-}
-
-/// Read the attribute without validating. The result may be `Ok` even if this single attribute is invalid.
-pub fn read(read: &mut PeekRead<impl Read>, max_size: usize) -> Result<(Text, Result<AttributeValue>)> {
- let name = Text::read_null_terminated(read, max_size)?;
- let kind = Text::read_null_terminated(read, max_size)?;
- let size = i32_to_usize(i32::read(read)?, "attribute size")?;
- let value = AttributeValue::read(read, kind, size)?;
- Ok((name, value))
-}
-
-/// Validate this attribute.
-pub fn validate(name: &Text, value: &AttributeValue, long_names: &mut bool, allow_sampling: bool, data_window: IntegerBounds, strict: bool) -> UnitResult {
- name.validate(true, Some(long_names))?; // only name text has length restriction
- value.validate(allow_sampling, data_window, strict) // attribute value text length is never restricted
-}
-
-
-impl AttributeValue {
-
- /// Number of bytes this would consume in an exr file.
- pub fn byte_size(&self) -> usize {
- use self::AttributeValue::*;
-
- match *self {
- IntegerBounds(_) => self::IntegerBounds::byte_size(),
- FloatRect(_) => self::FloatRect::byte_size(),
-
- I32(_) => i32::BYTE_SIZE,
- F32(_) => f32::BYTE_SIZE,
- F64(_) => f64::BYTE_SIZE,
-
- Rational(_) => { i32::BYTE_SIZE + u32::BYTE_SIZE },
- TimeCode(_) => self::TimeCode::BYTE_SIZE,
-
- IntVec2(_) => { 2 * i32::BYTE_SIZE },
- FloatVec2(_) => { 2 * f32::BYTE_SIZE },
- IntVec3(_) => { 3 * i32::BYTE_SIZE },
- FloatVec3(_) => { 3 * f32::BYTE_SIZE },
-
- ChannelList(ref channels) => channels.byte_size(),
- Chromaticities(_) => self::Chromaticities::byte_size(),
- Compression(_) => self::Compression::byte_size(),
- EnvironmentMap(_) => self::EnvironmentMap::byte_size(),
-
- KeyCode(_) => self::KeyCode::byte_size(),
- LineOrder(_) => self::LineOrder::byte_size(),
-
- Matrix3x3(ref value) => value.len() * f32::BYTE_SIZE,
- Matrix4x4(ref value) => value.len() * f32::BYTE_SIZE,
-
- Preview(ref value) => value.byte_size(),
-
- // attribute value texts never have limited size.
- // also, don't serialize size, as it can be inferred from attribute size
- Text(ref value) => value.bytes.len(),
-
- TextVector(ref value) => value.iter().map(self::Text::i32_sized_byte_size).sum(),
- TileDescription(_) => self::TileDescription::byte_size(),
- Custom { ref bytes, .. } => bytes.len(),
- BlockType(ref kind) => kind.byte_size()
- }
- }
-
- /// The exr name string of the type that an attribute can have.
- pub fn kind_name(&self) -> &[u8] {
- use self::AttributeValue::*;
- use self::type_names as ty;
-
- match *self {
- IntegerBounds(_) => ty::I32BOX2,
- FloatRect(_) => ty::F32BOX2,
- I32(_) => ty::I32,
- F32(_) => ty::F32,
- F64(_) => ty::F64,
- Rational(_) => ty::RATIONAL,
- TimeCode(_) => ty::TIME_CODE,
- IntVec2(_) => ty::I32VEC2,
- FloatVec2(_) => ty::F32VEC2,
- IntVec3(_) => ty::I32VEC3,
- FloatVec3(_) => ty::F32VEC3,
- ChannelList(_) => ty::CHANNEL_LIST,
- Chromaticities(_) => ty::CHROMATICITIES,
- Compression(_) => ty::COMPRESSION,
- EnvironmentMap(_) => ty::ENVIRONMENT_MAP,
- KeyCode(_) => ty::KEY_CODE,
- LineOrder(_) => ty::LINE_ORDER,
- Matrix3x3(_) => ty::F32MATRIX3X3,
- Matrix4x4(_) => ty::F32MATRIX4X4,
- Preview(_) => ty::PREVIEW,
- Text(_) => ty::TEXT,
- TextVector(_) => ty::TEXT_VECTOR,
- TileDescription(_) => ty::TILES,
- Custom { ref kind, .. } => &kind.bytes,
- BlockType(_) => super::BlockType::TYPE_NAME,
- }
- }
-
- /// Without validation, write this instance to the byte stream.
- pub fn write<W: Write>(&self, write: &mut W) -> UnitResult {
- use self::AttributeValue::*;
- match *self {
- IntegerBounds(value) => value.write(write)?,
- FloatRect(value) => value.write(write)?,
-
- I32(value) => value.write(write)?,
- F32(value) => value.write(write)?,
- F64(value) => value.write(write)?,
-
- Rational((a, b)) => { a.write(write)?; b.write(write)?; },
- TimeCode(codes) => { codes.write(write)?; },
-
- IntVec2(Vec2(x, y)) => { x.write(write)?; y.write(write)?; },
- FloatVec2(Vec2(x, y)) => { x.write(write)?; y.write(write)?; },
- IntVec3((x, y, z)) => { x.write(write)?; y.write(write)?; z.write(write)?; },
- FloatVec3((x, y, z)) => { x.write(write)?; y.write(write)?; z.write(write)?; },
-
- ChannelList(ref channels) => channels.write(write)?,
- Chromaticities(ref value) => value.write(write)?,
- Compression(value) => value.write(write)?,
- EnvironmentMap(value) => value.write(write)?,
-
- KeyCode(value) => value.write(write)?,
- LineOrder(value) => value.write(write)?,
-
- Matrix3x3(mut value) => f32::write_slice(write, &mut value)?,
- Matrix4x4(mut value) => f32::write_slice(write, &mut value)?,
-
- Preview(ref value) => { value.write(write)?; },
-
- // attribute value texts never have limited size.
- // also, don't serialize size, as it can be inferred from attribute size
- Text(ref value) => u8::write_slice(write, value.bytes.as_slice())?,
-
- TextVector(ref value) => self::Text::write_vec_of_i32_sized_texts(write, value)?,
- TileDescription(ref value) => value.write(write)?,
- Custom { ref bytes, .. } => u8::write_slice(write, &bytes)?, // write.write(&bytes).map(|_| ()),
- BlockType(kind) => kind.write(write)?
- };
-
- Ok(())
- }
-
- /// Read the value without validating.
- /// Returns `Ok(Ok(attribute))` for valid attributes.
- /// Returns `Ok(Err(Error))` for invalid attributes from a valid byte source.
- /// Returns `Err(Error)` for invalid byte sources, for example for invalid files.
- pub fn read(read: &mut PeekRead<impl Read>, kind: Text, byte_size: usize) -> Result<Result<Self>> {
- use self::AttributeValue::*;
- use self::type_names as ty;
-
- // always read bytes
- let attribute_bytes = u8::read_vec(read, byte_size, 128, None, "attribute value size")?;
- // TODO no allocation for small attributes // : SmallVec<[u8; 64]> = smallvec![0; byte_size];
-
- let parse_attribute = move || {
- let reader = &mut attribute_bytes.as_slice();
-
- Ok(match kind.bytes.as_slice() {
- ty::I32BOX2 => IntegerBounds(self::IntegerBounds::read(reader)?),
- ty::F32BOX2 => FloatRect(self::FloatRect::read(reader)?),
-
- ty::I32 => I32(i32::read(reader)?),
- ty::F32 => F32(f32::read(reader)?),
- ty::F64 => F64(f64::read(reader)?),
-
- ty::RATIONAL => Rational({
- let a = i32::read(reader)?;
- let b = u32::read(reader)?;
- (a, b)
- }),
-
- ty::TIME_CODE => TimeCode(self::TimeCode::read(reader)?),
-
- ty::I32VEC2 => IntVec2({
- let a = i32::read(reader)?;
- let b = i32::read(reader)?;
- Vec2(a, b)
- }),
-
- ty::F32VEC2 => FloatVec2({
- let a = f32::read(reader)?;
- let b = f32::read(reader)?;
- Vec2(a, b)
- }),
-
- ty::I32VEC3 => IntVec3({
- let a = i32::read(reader)?;
- let b = i32::read(reader)?;
- let c = i32::read(reader)?;
- (a, b, c)
- }),
-
- ty::F32VEC3 => FloatVec3({
- let a = f32::read(reader)?;
- let b = f32::read(reader)?;
- let c = f32::read(reader)?;
- (a, b, c)
- }),
-
- ty::CHANNEL_LIST => ChannelList(self::ChannelList::read(&mut PeekRead::new(attribute_bytes.as_slice()))?),
- ty::CHROMATICITIES => Chromaticities(self::Chromaticities::read(reader)?),
- ty::COMPRESSION => Compression(self::Compression::read(reader)?),
- ty::ENVIRONMENT_MAP => EnvironmentMap(self::EnvironmentMap::read(reader)?),
-
- ty::KEY_CODE => KeyCode(self::KeyCode::read(reader)?),
- ty::LINE_ORDER => LineOrder(self::LineOrder::read(reader)?),
-
- ty::F32MATRIX3X3 => Matrix3x3({
- let mut result = [0.0_f32; 9];
- f32::read_slice(reader, &mut result)?;
- result
- }),
-
- ty::F32MATRIX4X4 => Matrix4x4({
- let mut result = [0.0_f32; 16];
- f32::read_slice(reader, &mut result)?;
- result
- }),
-
- ty::PREVIEW => Preview(self::Preview::read(reader)?),
- ty::TEXT => Text(self::Text::read_sized(reader, byte_size)?),
-
- // the number of strings can be inferred from the total attribute size
- ty::TEXT_VECTOR => TextVector(self::Text::read_vec_of_i32_sized(
- &mut PeekRead::new(attribute_bytes.as_slice()),
- byte_size
- )?),
-
- ty::TILES => TileDescription(self::TileDescription::read(reader)?),
-
- _ => Custom { kind: kind.clone(), bytes: attribute_bytes.clone() } // TODO no clone
- })
- };
-
- Ok(parse_attribute())
- }
-
- /// Validate this instance.
- pub fn validate(&self, allow_sampling: bool, data_window: IntegerBounds, strict: bool) -> UnitResult {
- use self::AttributeValue::*;
-
- match *self {
- ChannelList(ref channels) => channels.validate(allow_sampling, data_window, strict)?,
- TileDescription(ref value) => value.validate()?,
- Preview(ref value) => value.validate(strict)?,
- TimeCode(ref time_code) => time_code.validate(strict)?,
-
- TextVector(ref vec) => if strict && vec.is_empty() {
- return Err(Error::invalid("text vector may not be empty"))
- },
-
- _ => {}
- };
-
- Ok(())
- }
-
-
- /// Return `Ok(i32)` if this attribute is an i32.
- pub fn to_i32(&self) -> Result<i32> {
- match *self {
- AttributeValue::I32(value) => Ok(value),
- _ => Err(invalid_type())
- }
- }
-
- /// Return `Ok(f32)` if this attribute is an f32.
- pub fn to_f32(&self) -> Result<f32> {
- match *self {
- AttributeValue::F32(value) => Ok(value),
- _ => Err(invalid_type())
- }
- }
-
- /// Return `Ok(Text)` if this attribute is a text.
- pub fn into_text(self) -> Result<Text> {
- match self {
- AttributeValue::Text(value) => Ok(value),
- _ => Err(invalid_type())
- }
- }
-
- /// Return `Ok(Text)` if this attribute is a text.
- pub fn to_text(&self) -> Result<&Text> {
- match self {
- AttributeValue::Text(value) => Ok(value),
- _ => Err(invalid_type())
- }
- }
-
- /// Return `Ok(Chromaticities)` if this attribute is a chromaticities attribute.
- pub fn to_chromaticities(&self) -> Result<Chromaticities> {
- match *self {
- AttributeValue::Chromaticities(value) => Ok(value),
- _ => Err(invalid_type())
- }
- }
-
- /// Return `Ok(TimeCode)` if this attribute is a time code.
- pub fn to_time_code(&self) -> Result<TimeCode> {
- match *self {
- AttributeValue::TimeCode(value) => Ok(value),
- _ => Err(invalid_type())
- }
- }
-}
-
-
-
-/// Contains string literals identifying the type of an attribute.
-pub mod type_names {
- macro_rules! define_attribute_type_names {
- ( $($name: ident : $value: expr),* ) => {
- $(
- /// The byte-string name of this attribute type as it appears in an exr file.
- pub const $name: &'static [u8] = $value;
- )*
- };
- }
-
- define_attribute_type_names! {
- I32BOX2: b"box2i",
- F32BOX2: b"box2f",
- I32: b"int",
- F32: b"float",
- F64: b"double",
- RATIONAL: b"rational",
- TIME_CODE: b"timecode",
- I32VEC2: b"v2i",
- F32VEC2: b"v2f",
- I32VEC3: b"v3i",
- F32VEC3: b"v3f",
- CHANNEL_LIST: b"chlist",
- CHROMATICITIES: b"chromaticities",
- COMPRESSION: b"compression",
- ENVIRONMENT_MAP:b"envmap",
- KEY_CODE: b"keycode",
- LINE_ORDER: b"lineOrder",
- F32MATRIX3X3: b"m33f",
- F32MATRIX4X4: b"m44f",
- PREVIEW: b"preview",
- TEXT: b"string",
- TEXT_VECTOR: b"stringvector",
- TILES: b"tiledesc"
- }
-}
-
-
-#[cfg(test)]
-mod test {
- use super::*;
- use ::std::io::Cursor;
- use rand::{random, thread_rng, Rng};
-
- #[test]
- fn text_ord() {
- for _ in 0..1024 {
- let text1 = Text::from_bytes_unchecked((0..4).map(|_| rand::random::<u8>()).collect());
- let text2 = Text::from_bytes_unchecked((0..4).map(|_| rand::random::<u8>()).collect());
-
- assert_eq!(text1.to_string().cmp(&text2.to_string()), text1.cmp(&text2), "in text {:?} vs {:?}", text1, text2);
- }
- }
-
- #[test]
- fn rounding_up(){
- let round_up = RoundingMode::Up;
- assert_eq!(round_up.divide(10, 10), 1, "divide equal");
- assert_eq!(round_up.divide(10, 2), 5, "divide even");
- assert_eq!(round_up.divide(10, 5), 2, "divide even");
-
- assert_eq!(round_up.divide(8, 5), 2, "round up");
- assert_eq!(round_up.divide(10, 3), 4, "round up");
- assert_eq!(round_up.divide(100, 50), 2, "divide even");
- assert_eq!(round_up.divide(100, 49), 3, "round up");
- }
-
- #[test]
- fn rounding_down(){
- let round_down = RoundingMode::Down;
- assert_eq!(round_down.divide(8, 5), 1, "round down");
- assert_eq!(round_down.divide(10, 3), 3, "round down");
- assert_eq!(round_down.divide(100, 50), 2, "divide even");
- assert_eq!(round_down.divide(100, 49), 2, "round down");
- assert_eq!(round_down.divide(100, 51), 1, "round down");
- }
-
- #[test]
- fn tile_description_write_read_roundtrip(){
- let tiles = [
- TileDescription {
- tile_size: Vec2(31, 7),
- level_mode: LevelMode::MipMap,
- rounding_mode: RoundingMode::Down,
- },
-
- TileDescription {
- tile_size: Vec2(0, 0),
- level_mode: LevelMode::Singular,
- rounding_mode: RoundingMode::Up,
- },
-
- TileDescription {
- tile_size: Vec2(4294967294, 4294967295),
- level_mode: LevelMode::RipMap,
- rounding_mode: RoundingMode::Down,
- },
- ];
-
- for tile in &tiles {
- let mut bytes = Vec::new();
- tile.write(&mut bytes).unwrap();
-
- let new_tile = TileDescription::read(&mut Cursor::new(bytes)).unwrap();
- assert_eq!(*tile, new_tile, "tile round trip");
- }
- }
-
- #[test]
- fn attribute_write_read_roundtrip_and_byte_size(){
- let attributes = [
- (
- Text::from("greeting"),
- AttributeValue::Text(Text::from("hello")),
- ),
- (
- Text::from("age"),
- AttributeValue::I32(923),
- ),
- (
- Text::from("leg count"),
- AttributeValue::F64(9.114939599234),
- ),
- (
- Text::from("rabbit area"),
- AttributeValue::FloatRect(FloatRect {
- min: Vec2(23.4234, 345.23),
- max: Vec2(68623.0, 3.12425926538),
- }),
- ),
- (
- Text::from("rabbit area int"),
- AttributeValue::IntegerBounds(IntegerBounds {
- position: Vec2(23, 345),
- size: Vec2(68623, 3),
- }),
- ),
- (
- Text::from("rabbit area int"),
- AttributeValue::IntegerBounds(IntegerBounds {
- position: Vec2(-(i32::MAX / 2 - 1), -(i32::MAX / 2 - 1)),
- size: Vec2(i32::MAX as usize - 2, i32::MAX as usize - 2),
- }),
- ),
- (
- Text::from("rabbit area int 2"),
- AttributeValue::IntegerBounds(IntegerBounds {
- position: Vec2(0, 0),
- size: Vec2(i32::MAX as usize / 2 - 1, i32::MAX as usize / 2 - 1),
- }),
- ),
- (
- Text::from("tests are difficult"),
- AttributeValue::TextVector(vec![
- Text::from("sdoifjpsdv"),
- Text::from("sdoifjpsdvxxxx"),
- Text::from("sdoifjasd"),
- Text::from("sdoifj"),
- Text::from("sdoifjddddddddasdasd"),
- ]),
- ),
- (
- Text::from("what should we eat tonight"),
- AttributeValue::Preview(Preview {
- size: Vec2(10, 30),
- pixel_data: vec![31; 10 * 30 * 4],
- }),
- ),
- (
- Text::from("leg count, again"),
- AttributeValue::ChannelList(ChannelList::new(smallvec![
- ChannelDescription {
- name: Text::from("Green"),
- sample_type: SampleType::F16,
- quantize_linearly: false,
- sampling: Vec2(1,2)
- },
- ChannelDescription {
- name: Text::from("Red"),
- sample_type: SampleType::F32,
- quantize_linearly: true,
- sampling: Vec2(1,2)
- },
- ChannelDescription {
- name: Text::from("Purple"),
- sample_type: SampleType::U32,
- quantize_linearly: false,
- sampling: Vec2(0,0)
- }
- ],
- )),
- ),
- ];
-
- for (name, value) in &attributes {
- let mut bytes = Vec::new();
- super::write(name.as_slice(), value, &mut bytes).unwrap();
- assert_eq!(super::byte_size(name, value), bytes.len(), "attribute.byte_size() for {:?}", (name, value));
-
- let new_attribute = super::read(&mut PeekRead::new(Cursor::new(bytes)), 300).unwrap();
- assert_eq!((name.clone(), value.clone()), (new_attribute.0, new_attribute.1.unwrap()), "attribute round trip");
- }
-
-
- {
- let (name, value) = (
- Text::from("asdkaspfokpaosdkfpaokswdpoakpsfokaposdkf"),
- AttributeValue::I32(0),
- );
-
- let mut long_names = false;
- super::validate(&name, &value, &mut long_names, false, IntegerBounds::zero(), false).unwrap();
- assert!(long_names);
- }
-
- {
- let (name, value) = (
- Text::from("sdöksadöofkaspdolkpöasolfkcöalsod,kfcöaslodkcpöasolkfposdöksadöofkaspdolkpöasolfkcöalsod,kfcöaslodkcpöasolkfposdöksadöofkaspdolkpöasolfkcöalsod,kfcöaslodkcpöasolkfposdöksadöofkaspdolkpöasolfkcöalsod,kfcöaslodkcpöasolkfposdöksadöofkaspdolkpöasolfkcöalsod,kfcöaslodkcpöasolkfposdöksadöofkaspdolkpöasolfkcöalsod,kfcöaslodkcpöasolkfpo"),
- AttributeValue::I32(0),
- );
-
- super::validate(&name, &value, &mut false, false, IntegerBounds::zero(), false).expect_err("name length check failed");
- }
- }
-
- #[test]
- fn time_code_pack(){
- let mut rng = thread_rng();
-
- let codes = std::iter::repeat_with(|| TimeCode {
- hours: rng.gen_range(0 .. 24),
- minutes: rng.gen_range(0 .. 60),
- seconds: rng.gen_range(0 .. 60),
- frame: rng.gen_range(0 .. 29),
- drop_frame: random(),
- color_frame: random(),
- field_phase: random(),
- binary_group_flags: [random(),random(),random()],
- binary_groups: std::iter::repeat_with(|| rng.gen_range(0 .. 16)).take(8)
- .collect::<SmallVec<[u8;8]>>().into_inner().unwrap()
- });
-
- for code in codes.take(500) {
- code.validate(true).expect("invalid timecode test input");
-
- { // through tv60 packing, roundtrip
- let packed_tv60 = code.pack_time_as_tv60_u32().expect("invalid timecode test input");
- let packed_user = code.pack_user_data_as_u32();
- assert_eq!(TimeCode::from_tv60_time(packed_tv60, packed_user), code);
- }
-
- { // through bytes, roundtrip
- let mut bytes = Vec::<u8>::new();
- code.write(&mut bytes).unwrap();
- let decoded = TimeCode::read(&mut bytes.as_slice()).unwrap();
- assert_eq!(code, decoded);
- }
-
- {
- let tv50_code = TimeCode {
- drop_frame: false, // apparently, tv50 does not support drop frame, so do not use this value
- .. code
- };
-
- let packed_tv50 = code.pack_time_as_tv50_u32().expect("invalid timecode test input");
- let packed_user = code.pack_user_data_as_u32();
- assert_eq!(TimeCode::from_tv50_time(packed_tv50, packed_user), tv50_code);
- }
-
- {
- let film24_code = TimeCode {
- // apparently, film24 does not support some flags, so do not use those values
- color_frame: false,
- drop_frame: false,
- .. code
- };
-
- let packed_film24 = code.pack_time_as_film24_u32().expect("invalid timecode test input");
- let packed_user = code.pack_user_data_as_u32();
- assert_eq!(TimeCode::from_film24_time(packed_film24, packed_user), film24_code);
- }
- }
- }
-
-}