diff options
Diffstat (limited to 'vendor/half/src/binary16')
-rw-r--r-- | vendor/half/src/binary16/convert.rs | 752 |
1 files changed, 0 insertions, 752 deletions
diff --git a/vendor/half/src/binary16/convert.rs b/vendor/half/src/binary16/convert.rs deleted file mode 100644 index b96910f..0000000 --- a/vendor/half/src/binary16/convert.rs +++ /dev/null @@ -1,752 +0,0 @@ -#![allow(dead_code, unused_imports)] -use crate::leading_zeros::leading_zeros_u16; -use core::mem; - -macro_rules! convert_fn { - (fn $name:ident($($var:ident : $vartype:ty),+) -> $restype:ty { - if feature("f16c") { $f16c:expr } - else { $fallback:expr }}) => { - #[inline] - pub(crate) fn $name($($var: $vartype),+) -> $restype { - // Use CPU feature detection if using std - #[cfg(all( - feature = "use-intrinsics", - feature = "std", - any(target_arch = "x86", target_arch = "x86_64"), - not(target_feature = "f16c") - ))] - { - if is_x86_feature_detected!("f16c") { - $f16c - } else { - $fallback - } - } - // Use intrinsics directly when a compile target or using no_std - #[cfg(all( - feature = "use-intrinsics", - any(target_arch = "x86", target_arch = "x86_64"), - target_feature = "f16c" - ))] - { - $f16c - } - // Fallback to software - #[cfg(any( - not(feature = "use-intrinsics"), - not(any(target_arch = "x86", target_arch = "x86_64")), - all(not(feature = "std"), not(target_feature = "f16c")) - ))] - { - $fallback - } - } - }; -} - -convert_fn! { - fn f32_to_f16(f: f32) -> u16 { - if feature("f16c") { - unsafe { x86::f32_to_f16_x86_f16c(f) } - } else { - f32_to_f16_fallback(f) - } - } -} - -convert_fn! { - fn f64_to_f16(f: f64) -> u16 { - if feature("f16c") { - unsafe { x86::f32_to_f16_x86_f16c(f as f32) } - } else { - f64_to_f16_fallback(f) - } - } -} - -convert_fn! { - fn f16_to_f32(i: u16) -> f32 { - if feature("f16c") { - unsafe { x86::f16_to_f32_x86_f16c(i) } - } else { - f16_to_f32_fallback(i) - } - } -} - -convert_fn! { - fn f16_to_f64(i: u16) -> f64 { - if feature("f16c") { - unsafe { x86::f16_to_f32_x86_f16c(i) as f64 } - } else { - f16_to_f64_fallback(i) - } - } -} - -convert_fn! { - fn f32x4_to_f16x4(f: &[f32; 4]) -> [u16; 4] { - if feature("f16c") { - unsafe { x86::f32x4_to_f16x4_x86_f16c(f) } - } else { - f32x4_to_f16x4_fallback(f) - } - } -} - -convert_fn! { - fn f16x4_to_f32x4(i: &[u16; 4]) -> [f32; 4] { - if feature("f16c") { - unsafe { x86::f16x4_to_f32x4_x86_f16c(i) } - } else { - f16x4_to_f32x4_fallback(i) - } - } -} - -convert_fn! { - fn f64x4_to_f16x4(f: &[f64; 4]) -> [u16; 4] { - if feature("f16c") { - unsafe { x86::f64x4_to_f16x4_x86_f16c(f) } - } else { - f64x4_to_f16x4_fallback(f) - } - } -} - -convert_fn! { - fn f16x4_to_f64x4(i: &[u16; 4]) -> [f64; 4] { - if feature("f16c") { - unsafe { x86::f16x4_to_f64x4_x86_f16c(i) } - } else { - f16x4_to_f64x4_fallback(i) - } - } -} - -convert_fn! { - fn f32x8_to_f16x8(f: &[f32; 8]) -> [u16; 8] { - if feature("f16c") { - unsafe { x86::f32x8_to_f16x8_x86_f16c(f) } - } else { - f32x8_to_f16x8_fallback(f) - } - } -} - -convert_fn! { - fn f16x8_to_f32x8(i: &[u16; 8]) -> [f32; 8] { - if feature("f16c") { - unsafe { x86::f16x8_to_f32x8_x86_f16c(i) } - } else { - f16x8_to_f32x8_fallback(i) - } - } -} - -convert_fn! { - fn f64x8_to_f16x8(f: &[f64; 8]) -> [u16; 8] { - if feature("f16c") { - unsafe { x86::f64x8_to_f16x8_x86_f16c(f) } - } else { - f64x8_to_f16x8_fallback(f) - } - } -} - -convert_fn! { - fn f16x8_to_f64x8(i: &[u16; 8]) -> [f64; 8] { - if feature("f16c") { - unsafe { x86::f16x8_to_f64x8_x86_f16c(i) } - } else { - f16x8_to_f64x8_fallback(i) - } - } -} - -convert_fn! { - fn f32_to_f16_slice(src: &[f32], dst: &mut [u16]) -> () { - if feature("f16c") { - convert_chunked_slice_8(src, dst, x86::f32x8_to_f16x8_x86_f16c, - x86::f32x4_to_f16x4_x86_f16c) - } else { - slice_fallback(src, dst, f32_to_f16_fallback) - } - } -} - -convert_fn! { - fn f16_to_f32_slice(src: &[u16], dst: &mut [f32]) -> () { - if feature("f16c") { - convert_chunked_slice_8(src, dst, x86::f16x8_to_f32x8_x86_f16c, - x86::f16x4_to_f32x4_x86_f16c) - } else { - slice_fallback(src, dst, f16_to_f32_fallback) - } - } -} - -convert_fn! { - fn f64_to_f16_slice(src: &[f64], dst: &mut [u16]) -> () { - if feature("f16c") { - convert_chunked_slice_8(src, dst, x86::f64x8_to_f16x8_x86_f16c, - x86::f64x4_to_f16x4_x86_f16c) - } else { - slice_fallback(src, dst, f64_to_f16_fallback) - } - } -} - -convert_fn! { - fn f16_to_f64_slice(src: &[u16], dst: &mut [f64]) -> () { - if feature("f16c") { - convert_chunked_slice_8(src, dst, x86::f16x8_to_f64x8_x86_f16c, - x86::f16x4_to_f64x4_x86_f16c) - } else { - slice_fallback(src, dst, f16_to_f64_fallback) - } - } -} - -/// Chunks sliced into x8 or x4 arrays -#[inline] -fn convert_chunked_slice_8<S: Copy + Default, D: Copy>( - src: &[S], - dst: &mut [D], - fn8: unsafe fn(&[S; 8]) -> [D; 8], - fn4: unsafe fn(&[S; 4]) -> [D; 4], -) { - assert_eq!(src.len(), dst.len()); - - // TODO: Can be further optimized with array_chunks when it becomes stabilized - - let src_chunks = src.chunks_exact(8); - let mut dst_chunks = dst.chunks_exact_mut(8); - let src_remainder = src_chunks.remainder(); - for (s, d) in src_chunks.zip(&mut dst_chunks) { - let chunk: &[S; 8] = s.try_into().unwrap(); - d.copy_from_slice(unsafe { &fn8(chunk) }); - } - - // Process remainder - if src_remainder.len() > 4 { - let mut buf: [S; 8] = Default::default(); - buf[..src_remainder.len()].copy_from_slice(src_remainder); - let vec = unsafe { fn8(&buf) }; - let dst_remainder = dst_chunks.into_remainder(); - dst_remainder.copy_from_slice(&vec[..dst_remainder.len()]); - } else if !src_remainder.is_empty() { - let mut buf: [S; 4] = Default::default(); - buf[..src_remainder.len()].copy_from_slice(src_remainder); - let vec = unsafe { fn4(&buf) }; - let dst_remainder = dst_chunks.into_remainder(); - dst_remainder.copy_from_slice(&vec[..dst_remainder.len()]); - } -} - -/// Chunks sliced into x4 arrays -#[inline] -fn convert_chunked_slice_4<S: Copy + Default, D: Copy>( - src: &[S], - dst: &mut [D], - f: unsafe fn(&[S; 4]) -> [D; 4], -) { - assert_eq!(src.len(), dst.len()); - - // TODO: Can be further optimized with array_chunks when it becomes stabilized - - let src_chunks = src.chunks_exact(4); - let mut dst_chunks = dst.chunks_exact_mut(4); - let src_remainder = src_chunks.remainder(); - for (s, d) in src_chunks.zip(&mut dst_chunks) { - let chunk: &[S; 4] = s.try_into().unwrap(); - d.copy_from_slice(unsafe { &f(chunk) }); - } - - // Process remainder - if !src_remainder.is_empty() { - let mut buf: [S; 4] = Default::default(); - buf[..src_remainder.len()].copy_from_slice(src_remainder); - let vec = unsafe { f(&buf) }; - let dst_remainder = dst_chunks.into_remainder(); - dst_remainder.copy_from_slice(&vec[..dst_remainder.len()]); - } -} - -/////////////// Fallbacks //////////////// - -// In the below functions, round to nearest, with ties to even. -// Let us call the most significant bit that will be shifted out the round_bit. -// -// Round up if either -// a) Removed part > tie. -// (mantissa & round_bit) != 0 && (mantissa & (round_bit - 1)) != 0 -// b) Removed part == tie, and retained part is odd. -// (mantissa & round_bit) != 0 && (mantissa & (2 * round_bit)) != 0 -// (If removed part == tie and retained part is even, do not round up.) -// These two conditions can be combined into one: -// (mantissa & round_bit) != 0 && (mantissa & ((round_bit - 1) | (2 * round_bit))) != 0 -// which can be simplified into -// (mantissa & round_bit) != 0 && (mantissa & (3 * round_bit - 1)) != 0 - -#[inline] -pub(crate) const fn f32_to_f16_fallback(value: f32) -> u16 { - // TODO: Replace mem::transmute with to_bits() once to_bits is const-stabilized - // Convert to raw bytes - let x: u32 = unsafe { mem::transmute(value) }; - - // Extract IEEE754 components - let sign = x & 0x8000_0000u32; - let exp = x & 0x7F80_0000u32; - let man = x & 0x007F_FFFFu32; - - // Check for all exponent bits being set, which is Infinity or NaN - if exp == 0x7F80_0000u32 { - // Set mantissa MSB for NaN (and also keep shifted mantissa bits) - let nan_bit = if man == 0 { 0 } else { 0x0200u32 }; - return ((sign >> 16) | 0x7C00u32 | nan_bit | (man >> 13)) as u16; - } - - // The number is normalized, start assembling half precision version - let half_sign = sign >> 16; - // Unbias the exponent, then bias for half precision - let unbiased_exp = ((exp >> 23) as i32) - 127; - let half_exp = unbiased_exp + 15; - - // Check for exponent overflow, return +infinity - if half_exp >= 0x1F { - return (half_sign | 0x7C00u32) as u16; - } - - // Check for underflow - if half_exp <= 0 { - // Check mantissa for what we can do - if 14 - half_exp > 24 { - // No rounding possibility, so this is a full underflow, return signed zero - return half_sign as u16; - } - // Don't forget about hidden leading mantissa bit when assembling mantissa - let man = man | 0x0080_0000u32; - let mut half_man = man >> (14 - half_exp); - // Check for rounding (see comment above functions) - let round_bit = 1 << (13 - half_exp); - if (man & round_bit) != 0 && (man & (3 * round_bit - 1)) != 0 { - half_man += 1; - } - // No exponent for subnormals - return (half_sign | half_man) as u16; - } - - // Rebias the exponent - let half_exp = (half_exp as u32) << 10; - let half_man = man >> 13; - // Check for rounding (see comment above functions) - let round_bit = 0x0000_1000u32; - if (man & round_bit) != 0 && (man & (3 * round_bit - 1)) != 0 { - // Round it - ((half_sign | half_exp | half_man) + 1) as u16 - } else { - (half_sign | half_exp | half_man) as u16 - } -} - -#[inline] -pub(crate) const fn f64_to_f16_fallback(value: f64) -> u16 { - // Convert to raw bytes, truncating the last 32-bits of mantissa; that precision will always - // be lost on half-precision. - // TODO: Replace mem::transmute with to_bits() once to_bits is const-stabilized - let val: u64 = unsafe { mem::transmute(value) }; - let x = (val >> 32) as u32; - - // Extract IEEE754 components - let sign = x & 0x8000_0000u32; - let exp = x & 0x7FF0_0000u32; - let man = x & 0x000F_FFFFu32; - - // Check for all exponent bits being set, which is Infinity or NaN - if exp == 0x7FF0_0000u32 { - // Set mantissa MSB for NaN (and also keep shifted mantissa bits). - // We also have to check the last 32 bits. - let nan_bit = if man == 0 && (val as u32 == 0) { - 0 - } else { - 0x0200u32 - }; - return ((sign >> 16) | 0x7C00u32 | nan_bit | (man >> 10)) as u16; - } - - // The number is normalized, start assembling half precision version - let half_sign = sign >> 16; - // Unbias the exponent, then bias for half precision - let unbiased_exp = ((exp >> 20) as i64) - 1023; - let half_exp = unbiased_exp + 15; - - // Check for exponent overflow, return +infinity - if half_exp >= 0x1F { - return (half_sign | 0x7C00u32) as u16; - } - - // Check for underflow - if half_exp <= 0 { - // Check mantissa for what we can do - if 10 - half_exp > 21 { - // No rounding possibility, so this is a full underflow, return signed zero - return half_sign as u16; - } - // Don't forget about hidden leading mantissa bit when assembling mantissa - let man = man | 0x0010_0000u32; - let mut half_man = man >> (11 - half_exp); - // Check for rounding (see comment above functions) - let round_bit = 1 << (10 - half_exp); - if (man & round_bit) != 0 && (man & (3 * round_bit - 1)) != 0 { - half_man += 1; - } - // No exponent for subnormals - return (half_sign | half_man) as u16; - } - - // Rebias the exponent - let half_exp = (half_exp as u32) << 10; - let half_man = man >> 10; - // Check for rounding (see comment above functions) - let round_bit = 0x0000_0200u32; - if (man & round_bit) != 0 && (man & (3 * round_bit - 1)) != 0 { - // Round it - ((half_sign | half_exp | half_man) + 1) as u16 - } else { - (half_sign | half_exp | half_man) as u16 - } -} - -#[inline] -pub(crate) const fn f16_to_f32_fallback(i: u16) -> f32 { - // Check for signed zero - // TODO: Replace mem::transmute with from_bits() once from_bits is const-stabilized - if i & 0x7FFFu16 == 0 { - return unsafe { mem::transmute((i as u32) << 16) }; - } - - let half_sign = (i & 0x8000u16) as u32; - let half_exp = (i & 0x7C00u16) as u32; - let half_man = (i & 0x03FFu16) as u32; - - // Check for an infinity or NaN when all exponent bits set - if half_exp == 0x7C00u32 { - // Check for signed infinity if mantissa is zero - if half_man == 0 { - return unsafe { mem::transmute((half_sign << 16) | 0x7F80_0000u32) }; - } else { - // NaN, keep current mantissa but also set most significiant mantissa bit - return unsafe { - mem::transmute((half_sign << 16) | 0x7FC0_0000u32 | (half_man << 13)) - }; - } - } - - // Calculate single-precision components with adjusted exponent - let sign = half_sign << 16; - // Unbias exponent - let unbiased_exp = ((half_exp as i32) >> 10) - 15; - - // Check for subnormals, which will be normalized by adjusting exponent - if half_exp == 0 { - // Calculate how much to adjust the exponent by - let e = leading_zeros_u16(half_man as u16) - 6; - - // Rebias and adjust exponent - let exp = (127 - 15 - e) << 23; - let man = (half_man << (14 + e)) & 0x7F_FF_FFu32; - return unsafe { mem::transmute(sign | exp | man) }; - } - - // Rebias exponent for a normalized normal - let exp = ((unbiased_exp + 127) as u32) << 23; - let man = (half_man & 0x03FFu32) << 13; - unsafe { mem::transmute(sign | exp | man) } -} - -#[inline] -pub(crate) const fn f16_to_f64_fallback(i: u16) -> f64 { - // Check for signed zero - // TODO: Replace mem::transmute with from_bits() once from_bits is const-stabilized - if i & 0x7FFFu16 == 0 { - return unsafe { mem::transmute((i as u64) << 48) }; - } - - let half_sign = (i & 0x8000u16) as u64; - let half_exp = (i & 0x7C00u16) as u64; - let half_man = (i & 0x03FFu16) as u64; - - // Check for an infinity or NaN when all exponent bits set - if half_exp == 0x7C00u64 { - // Check for signed infinity if mantissa is zero - if half_man == 0 { - return unsafe { mem::transmute((half_sign << 48) | 0x7FF0_0000_0000_0000u64) }; - } else { - // NaN, keep current mantissa but also set most significiant mantissa bit - return unsafe { - mem::transmute((half_sign << 48) | 0x7FF8_0000_0000_0000u64 | (half_man << 42)) - }; - } - } - - // Calculate double-precision components with adjusted exponent - let sign = half_sign << 48; - // Unbias exponent - let unbiased_exp = ((half_exp as i64) >> 10) - 15; - - // Check for subnormals, which will be normalized by adjusting exponent - if half_exp == 0 { - // Calculate how much to adjust the exponent by - let e = leading_zeros_u16(half_man as u16) - 6; - - // Rebias and adjust exponent - let exp = ((1023 - 15 - e) as u64) << 52; - let man = (half_man << (43 + e)) & 0xF_FFFF_FFFF_FFFFu64; - return unsafe { mem::transmute(sign | exp | man) }; - } - - // Rebias exponent for a normalized normal - let exp = ((unbiased_exp + 1023) as u64) << 52; - let man = (half_man & 0x03FFu64) << 42; - unsafe { mem::transmute(sign | exp | man) } -} - -#[inline] -fn f16x4_to_f32x4_fallback(v: &[u16; 4]) -> [f32; 4] { - [ - f16_to_f32_fallback(v[0]), - f16_to_f32_fallback(v[1]), - f16_to_f32_fallback(v[2]), - f16_to_f32_fallback(v[3]), - ] -} - -#[inline] -fn f32x4_to_f16x4_fallback(v: &[f32; 4]) -> [u16; 4] { - [ - f32_to_f16_fallback(v[0]), - f32_to_f16_fallback(v[1]), - f32_to_f16_fallback(v[2]), - f32_to_f16_fallback(v[3]), - ] -} - -#[inline] -fn f16x4_to_f64x4_fallback(v: &[u16; 4]) -> [f64; 4] { - [ - f16_to_f64_fallback(v[0]), - f16_to_f64_fallback(v[1]), - f16_to_f64_fallback(v[2]), - f16_to_f64_fallback(v[3]), - ] -} - -#[inline] -fn f64x4_to_f16x4_fallback(v: &[f64; 4]) -> [u16; 4] { - [ - f64_to_f16_fallback(v[0]), - f64_to_f16_fallback(v[1]), - f64_to_f16_fallback(v[2]), - f64_to_f16_fallback(v[3]), - ] -} - -#[inline] -fn f16x8_to_f32x8_fallback(v: &[u16; 8]) -> [f32; 8] { - [ - f16_to_f32_fallback(v[0]), - f16_to_f32_fallback(v[1]), - f16_to_f32_fallback(v[2]), - f16_to_f32_fallback(v[3]), - f16_to_f32_fallback(v[4]), - f16_to_f32_fallback(v[5]), - f16_to_f32_fallback(v[6]), - f16_to_f32_fallback(v[7]), - ] -} - -#[inline] -fn f32x8_to_f16x8_fallback(v: &[f32; 8]) -> [u16; 8] { - [ - f32_to_f16_fallback(v[0]), - f32_to_f16_fallback(v[1]), - f32_to_f16_fallback(v[2]), - f32_to_f16_fallback(v[3]), - f32_to_f16_fallback(v[4]), - f32_to_f16_fallback(v[5]), - f32_to_f16_fallback(v[6]), - f32_to_f16_fallback(v[7]), - ] -} - -#[inline] -fn f16x8_to_f64x8_fallback(v: &[u16; 8]) -> [f64; 8] { - [ - f16_to_f64_fallback(v[0]), - f16_to_f64_fallback(v[1]), - f16_to_f64_fallback(v[2]), - f16_to_f64_fallback(v[3]), - f16_to_f64_fallback(v[4]), - f16_to_f64_fallback(v[5]), - f16_to_f64_fallback(v[6]), - f16_to_f64_fallback(v[7]), - ] -} - -#[inline] -fn f64x8_to_f16x8_fallback(v: &[f64; 8]) -> [u16; 8] { - [ - f64_to_f16_fallback(v[0]), - f64_to_f16_fallback(v[1]), - f64_to_f16_fallback(v[2]), - f64_to_f16_fallback(v[3]), - f64_to_f16_fallback(v[4]), - f64_to_f16_fallback(v[5]), - f64_to_f16_fallback(v[6]), - f64_to_f16_fallback(v[7]), - ] -} - -#[inline] -fn slice_fallback<S: Copy, D>(src: &[S], dst: &mut [D], f: fn(S) -> D) { - assert_eq!(src.len(), dst.len()); - for (s, d) in src.iter().copied().zip(dst.iter_mut()) { - *d = f(s); - } -} - -/////////////// x86/x86_64 f16c //////////////// -#[cfg(all( - feature = "use-intrinsics", - any(target_arch = "x86", target_arch = "x86_64") -))] -mod x86 { - use core::{mem::MaybeUninit, ptr}; - - #[cfg(target_arch = "x86")] - use core::arch::x86::{ - __m128, __m128i, __m256, _mm256_cvtph_ps, _mm256_cvtps_ph, _mm_cvtph_ps, - _MM_FROUND_TO_NEAREST_INT, - }; - #[cfg(target_arch = "x86_64")] - use core::arch::x86_64::{ - __m128, __m128i, __m256, _mm256_cvtph_ps, _mm256_cvtps_ph, _mm_cvtph_ps, _mm_cvtps_ph, - _MM_FROUND_TO_NEAREST_INT, - }; - - use super::convert_chunked_slice_8; - - #[target_feature(enable = "f16c")] - #[inline] - pub(super) unsafe fn f16_to_f32_x86_f16c(i: u16) -> f32 { - let mut vec = MaybeUninit::<__m128i>::zeroed(); - vec.as_mut_ptr().cast::<u16>().write(i); - let retval = _mm_cvtph_ps(vec.assume_init()); - *(&retval as *const __m128).cast() - } - - #[target_feature(enable = "f16c")] - #[inline] - pub(super) unsafe fn f32_to_f16_x86_f16c(f: f32) -> u16 { - let mut vec = MaybeUninit::<__m128>::zeroed(); - vec.as_mut_ptr().cast::<f32>().write(f); - let retval = _mm_cvtps_ph(vec.assume_init(), _MM_FROUND_TO_NEAREST_INT); - *(&retval as *const __m128i).cast() - } - - #[target_feature(enable = "f16c")] - #[inline] - pub(super) unsafe fn f16x4_to_f32x4_x86_f16c(v: &[u16; 4]) -> [f32; 4] { - let mut vec = MaybeUninit::<__m128i>::zeroed(); - ptr::copy_nonoverlapping(v.as_ptr(), vec.as_mut_ptr().cast(), 4); - let retval = _mm_cvtph_ps(vec.assume_init()); - *(&retval as *const __m128).cast() - } - - #[target_feature(enable = "f16c")] - #[inline] - pub(super) unsafe fn f32x4_to_f16x4_x86_f16c(v: &[f32; 4]) -> [u16; 4] { - let mut vec = MaybeUninit::<__m128>::uninit(); - ptr::copy_nonoverlapping(v.as_ptr(), vec.as_mut_ptr().cast(), 4); - let retval = _mm_cvtps_ph(vec.assume_init(), _MM_FROUND_TO_NEAREST_INT); - *(&retval as *const __m128i).cast() - } - - #[target_feature(enable = "f16c")] - #[inline] - pub(super) unsafe fn f16x4_to_f64x4_x86_f16c(v: &[u16; 4]) -> [f64; 4] { - let array = f16x4_to_f32x4_x86_f16c(v); - // Let compiler vectorize this regular cast for now. - // TODO: investigate auto-detecting sse2/avx convert features - [ - array[0] as f64, - array[1] as f64, - array[2] as f64, - array[3] as f64, - ] - } - - #[target_feature(enable = "f16c")] - #[inline] - pub(super) unsafe fn f64x4_to_f16x4_x86_f16c(v: &[f64; 4]) -> [u16; 4] { - // Let compiler vectorize this regular cast for now. - // TODO: investigate auto-detecting sse2/avx convert features - let v = [v[0] as f32, v[1] as f32, v[2] as f32, v[3] as f32]; - f32x4_to_f16x4_x86_f16c(&v) - } - - #[target_feature(enable = "f16c")] - #[inline] - pub(super) unsafe fn f16x8_to_f32x8_x86_f16c(v: &[u16; 8]) -> [f32; 8] { - let mut vec = MaybeUninit::<__m128i>::zeroed(); - ptr::copy_nonoverlapping(v.as_ptr(), vec.as_mut_ptr().cast(), 8); - let retval = _mm256_cvtph_ps(vec.assume_init()); - *(&retval as *const __m256).cast() - } - - #[target_feature(enable = "f16c")] - #[inline] - pub(super) unsafe fn f32x8_to_f16x8_x86_f16c(v: &[f32; 8]) -> [u16; 8] { - let mut vec = MaybeUninit::<__m256>::uninit(); - ptr::copy_nonoverlapping(v.as_ptr(), vec.as_mut_ptr().cast(), 8); - let retval = _mm256_cvtps_ph(vec.assume_init(), _MM_FROUND_TO_NEAREST_INT); - *(&retval as *const __m128i).cast() - } - - #[target_feature(enable = "f16c")] - #[inline] - pub(super) unsafe fn f16x8_to_f64x8_x86_f16c(v: &[u16; 8]) -> [f64; 8] { - let array = f16x8_to_f32x8_x86_f16c(v); - // Let compiler vectorize this regular cast for now. - // TODO: investigate auto-detecting sse2/avx convert features - [ - array[0] as f64, - array[1] as f64, - array[2] as f64, - array[3] as f64, - array[4] as f64, - array[5] as f64, - array[6] as f64, - array[7] as f64, - ] - } - - #[target_feature(enable = "f16c")] - #[inline] - pub(super) unsafe fn f64x8_to_f16x8_x86_f16c(v: &[f64; 8]) -> [u16; 8] { - // Let compiler vectorize this regular cast for now. - // TODO: investigate auto-detecting sse2/avx convert features - let v = [ - v[0] as f32, - v[1] as f32, - v[2] as f32, - v[3] as f32, - v[4] as f32, - v[5] as f32, - v[6] as f32, - v[7] as f32, - ]; - f32x8_to_f16x8_x86_f16c(&v) - } -} |