aboutsummaryrefslogtreecommitdiff
path: root/vendor/image/src/codecs/dxt.rs
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/image/src/codecs/dxt.rs')
-rw-r--r--vendor/image/src/codecs/dxt.rs869
1 files changed, 0 insertions, 869 deletions
diff --git a/vendor/image/src/codecs/dxt.rs b/vendor/image/src/codecs/dxt.rs
deleted file mode 100644
index 8737fb3..0000000
--- a/vendor/image/src/codecs/dxt.rs
+++ /dev/null
@@ -1,869 +0,0 @@
-//! Decoding of DXT (S3TC) compression
-//!
-//! DXT is an image format that supports lossy compression
-//!
-//! # Related Links
-//! * <https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_compression_s3tc.txt> - Description of the DXT compression OpenGL extensions.
-//!
-//! Note: this module only implements bare DXT encoding/decoding, it does not parse formats that can contain DXT files like .dds
-
-use std::convert::TryFrom;
-use std::io::{self, Read, Seek, SeekFrom, Write};
-
-use crate::color::ColorType;
-use crate::error::{ImageError, ImageResult, ParameterError, ParameterErrorKind};
-use crate::image::{self, ImageDecoder, ImageDecoderRect, ImageReadBuffer, Progress};
-
-/// What version of DXT compression are we using?
-/// Note that DXT2 and DXT4 are left away as they're
-/// just DXT3 and DXT5 with premultiplied alpha
-#[derive(Clone, Copy, Debug, PartialEq, Eq)]
-pub enum DxtVariant {
- /// The DXT1 format. 48 bytes of RGB data in a 4x4 pixel square is
- /// compressed into an 8 byte block of DXT1 data
- DXT1,
- /// The DXT3 format. 64 bytes of RGBA data in a 4x4 pixel square is
- /// compressed into a 16 byte block of DXT3 data
- DXT3,
- /// The DXT5 format. 64 bytes of RGBA data in a 4x4 pixel square is
- /// compressed into a 16 byte block of DXT5 data
- DXT5,
-}
-
-impl DxtVariant {
- /// Returns the amount of bytes of raw image data
- /// that is encoded in a single DXTn block
- fn decoded_bytes_per_block(self) -> usize {
- match self {
- DxtVariant::DXT1 => 48,
- DxtVariant::DXT3 | DxtVariant::DXT5 => 64,
- }
- }
-
- /// Returns the amount of bytes per block of encoded DXTn data
- fn encoded_bytes_per_block(self) -> usize {
- match self {
- DxtVariant::DXT1 => 8,
- DxtVariant::DXT3 | DxtVariant::DXT5 => 16,
- }
- }
-
- /// Returns the color type that is stored in this DXT variant
- pub fn color_type(self) -> ColorType {
- match self {
- DxtVariant::DXT1 => ColorType::Rgb8,
- DxtVariant::DXT3 | DxtVariant::DXT5 => ColorType::Rgba8,
- }
- }
-}
-
-/// DXT decoder
-pub struct DxtDecoder<R: Read> {
- inner: R,
- width_blocks: u32,
- height_blocks: u32,
- variant: DxtVariant,
- row: u32,
-}
-
-impl<R: Read> DxtDecoder<R> {
- /// Create a new DXT decoder that decodes from the stream ```r```.
- /// As DXT is often stored as raw buffers with the width/height
- /// somewhere else the width and height of the image need
- /// to be passed in ```width``` and ```height```, as well as the
- /// DXT variant in ```variant```.
- /// width and height are required to be powers of 2 and at least 4.
- /// otherwise an error will be returned
- pub fn new(
- r: R,
- width: u32,
- height: u32,
- variant: DxtVariant,
- ) -> Result<DxtDecoder<R>, ImageError> {
- if width % 4 != 0 || height % 4 != 0 {
- // TODO: this is actually a bit of a weird case. We could return `DecodingError` but
- // it's not really the format that is wrong However, the encoder should surely return
- // `EncodingError` so it would be the logical choice for symmetry.
- return Err(ImageError::Parameter(ParameterError::from_kind(
- ParameterErrorKind::DimensionMismatch,
- )));
- }
- let width_blocks = width / 4;
- let height_blocks = height / 4;
- Ok(DxtDecoder {
- inner: r,
- width_blocks,
- height_blocks,
- variant,
- row: 0,
- })
- }
-
- fn read_scanline(&mut self, buf: &mut [u8]) -> io::Result<usize> {
- assert_eq!(u64::try_from(buf.len()), Ok(self.scanline_bytes()));
-
- let mut src =
- vec![0u8; self.variant.encoded_bytes_per_block() * self.width_blocks as usize];
- self.inner.read_exact(&mut src)?;
- match self.variant {
- DxtVariant::DXT1 => decode_dxt1_row(&src, buf),
- DxtVariant::DXT3 => decode_dxt3_row(&src, buf),
- DxtVariant::DXT5 => decode_dxt5_row(&src, buf),
- }
- self.row += 1;
- Ok(buf.len())
- }
-}
-
-// Note that, due to the way that DXT compression works, a scanline is considered to consist out of
-// 4 lines of pixels.
-impl<'a, R: 'a + Read> ImageDecoder<'a> for DxtDecoder<R> {
- type Reader = DxtReader<R>;
-
- fn dimensions(&self) -> (u32, u32) {
- (self.width_blocks * 4, self.height_blocks * 4)
- }
-
- fn color_type(&self) -> ColorType {
- self.variant.color_type()
- }
-
- fn scanline_bytes(&self) -> u64 {
- self.variant.decoded_bytes_per_block() as u64 * u64::from(self.width_blocks)
- }
-
- fn into_reader(self) -> ImageResult<Self::Reader> {
- Ok(DxtReader {
- buffer: ImageReadBuffer::new(self.scanline_bytes(), self.total_bytes()),
- decoder: self,
- })
- }
-
- fn read_image(mut self, buf: &mut [u8]) -> ImageResult<()> {
- assert_eq!(u64::try_from(buf.len()), Ok(self.total_bytes()));
-
- for chunk in buf.chunks_mut(self.scanline_bytes().max(1) as usize) {
- self.read_scanline(chunk)?;
- }
- Ok(())
- }
-}
-
-impl<'a, R: 'a + Read + Seek> ImageDecoderRect<'a> for DxtDecoder<R> {
- fn read_rect_with_progress<F: Fn(Progress)>(
- &mut self,
- x: u32,
- y: u32,
- width: u32,
- height: u32,
- buf: &mut [u8],
- progress_callback: F,
- ) -> ImageResult<()> {
- let encoded_scanline_bytes =
- self.variant.encoded_bytes_per_block() as u64 * u64::from(self.width_blocks);
-
- let start = self.inner.stream_position()?;
- image::load_rect(
- x,
- y,
- width,
- height,
- buf,
- progress_callback,
- self,
- |s, scanline| {
- s.inner
- .seek(SeekFrom::Start(start + scanline * encoded_scanline_bytes))?;
- Ok(())
- },
- |s, buf| s.read_scanline(buf).map(|_| ()),
- )?;
- self.inner.seek(SeekFrom::Start(start))?;
- Ok(())
- }
-}
-
-/// DXT reader
-pub struct DxtReader<R: Read> {
- buffer: ImageReadBuffer,
- decoder: DxtDecoder<R>,
-}
-
-impl<R: Read> Read for DxtReader<R> {
- fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
- let decoder = &mut self.decoder;
- self.buffer.read(buf, |buf| decoder.read_scanline(buf))
- }
-}
-
-/// DXT encoder
-pub struct DxtEncoder<W: Write> {
- w: W,
-}
-
-impl<W: Write> DxtEncoder<W> {
- /// Create a new encoder that writes its output to ```w```
- pub fn new(w: W) -> DxtEncoder<W> {
- DxtEncoder { w }
- }
-
- /// Encodes the image data ```data```
- /// that has dimensions ```width``` and ```height```
- /// in ```DxtVariant``` ```variant```
- /// data is assumed to be in variant.color_type()
- pub fn encode(
- mut self,
- data: &[u8],
- width: u32,
- height: u32,
- variant: DxtVariant,
- ) -> ImageResult<()> {
- if width % 4 != 0 || height % 4 != 0 {
- // TODO: this is not very idiomatic yet. Should return an EncodingError.
- return Err(ImageError::Parameter(ParameterError::from_kind(
- ParameterErrorKind::DimensionMismatch,
- )));
- }
- let width_blocks = width / 4;
- let height_blocks = height / 4;
-
- let stride = variant.decoded_bytes_per_block();
-
- assert!(data.len() >= width_blocks as usize * height_blocks as usize * stride);
-
- for chunk in data.chunks(width_blocks as usize * stride) {
- let data = match variant {
- DxtVariant::DXT1 => encode_dxt1_row(chunk),
- DxtVariant::DXT3 => encode_dxt3_row(chunk),
- DxtVariant::DXT5 => encode_dxt5_row(chunk),
- };
- self.w.write_all(&data)?;
- }
- Ok(())
- }
-}
-
-/**
- * Actual encoding/decoding logic below.
- */
-use std::mem::swap;
-
-type Rgb = [u8; 3];
-
-/// decodes a 5-bit R, 6-bit G, 5-bit B 16-bit packed color value into 8-bit RGB
-/// mapping is done so min/max range values are preserved. So for 5-bit
-/// values 0x00 -> 0x00 and 0x1F -> 0xFF
-fn enc565_decode(value: u16) -> Rgb {
- let red = (value >> 11) & 0x1F;
- let green = (value >> 5) & 0x3F;
- let blue = (value) & 0x1F;
- [
- (red * 0xFF / 0x1F) as u8,
- (green * 0xFF / 0x3F) as u8,
- (blue * 0xFF / 0x1F) as u8,
- ]
-}
-
-/// encodes an 8-bit RGB value into a 5-bit R, 6-bit G, 5-bit B 16-bit packed color value
-/// mapping preserves min/max values. It is guaranteed that i == encode(decode(i)) for all i
-fn enc565_encode(rgb: Rgb) -> u16 {
- let red = (u16::from(rgb[0]) * 0x1F + 0x7E) / 0xFF;
- let green = (u16::from(rgb[1]) * 0x3F + 0x7E) / 0xFF;
- let blue = (u16::from(rgb[2]) * 0x1F + 0x7E) / 0xFF;
- (red << 11) | (green << 5) | blue
-}
-
-/// utility function: squares a value
-fn square(a: i32) -> i32 {
- a * a
-}
-
-/// returns the squared error between two RGB values
-fn diff(a: Rgb, b: Rgb) -> i32 {
- square(i32::from(a[0]) - i32::from(b[0]))
- + square(i32::from(a[1]) - i32::from(b[1]))
- + square(i32::from(a[2]) - i32::from(b[2]))
-}
-
-/*
- * Functions for decoding DXT compression
- */
-
-/// Constructs the DXT5 alpha lookup table from the two alpha entries
-/// if alpha0 > alpha1, constructs a table of [a0, a1, 6 linearly interpolated values from a0 to a1]
-/// if alpha0 <= alpha1, constructs a table of [a0, a1, 4 linearly interpolated values from a0 to a1, 0, 0xFF]
-fn alpha_table_dxt5(alpha0: u8, alpha1: u8) -> [u8; 8] {
- let mut table = [alpha0, alpha1, 0, 0, 0, 0, 0, 0xFF];
- if alpha0 > alpha1 {
- for i in 2..8u16 {
- table[i as usize] =
- (((8 - i) * u16::from(alpha0) + (i - 1) * u16::from(alpha1)) / 7) as u8;
- }
- } else {
- for i in 2..6u16 {
- table[i as usize] =
- (((6 - i) * u16::from(alpha0) + (i - 1) * u16::from(alpha1)) / 5) as u8;
- }
- }
- table
-}
-
-/// decodes an 8-byte dxt color block into the RGB channels of a 16xRGB or 16xRGBA block.
-/// source should have a length of 8, dest a length of 48 (RGB) or 64 (RGBA)
-fn decode_dxt_colors(source: &[u8], dest: &mut [u8], is_dxt1: bool) {
- // sanity checks, also enable the compiler to elide all following bound checks
- assert!(source.len() == 8 && (dest.len() == 48 || dest.len() == 64));
- // calculate pitch to store RGB values in dest (3 for RGB, 4 for RGBA)
- let pitch = dest.len() / 16;
-
- // extract color data
- let color0 = u16::from(source[0]) | (u16::from(source[1]) << 8);
- let color1 = u16::from(source[2]) | (u16::from(source[3]) << 8);
- let color_table = u32::from(source[4])
- | (u32::from(source[5]) << 8)
- | (u32::from(source[6]) << 16)
- | (u32::from(source[7]) << 24);
- // let color_table = source[4..8].iter().rev().fold(0, |t, &b| (t << 8) | b as u32);
-
- // decode the colors to rgb format
- let mut colors = [[0; 3]; 4];
- colors[0] = enc565_decode(color0);
- colors[1] = enc565_decode(color1);
-
- // determine color interpolation method
- if color0 > color1 || !is_dxt1 {
- // linearly interpolate the other two color table entries
- for i in 0..3 {
- colors[2][i] = ((u16::from(colors[0][i]) * 2 + u16::from(colors[1][i]) + 1) / 3) as u8;
- colors[3][i] = ((u16::from(colors[0][i]) + u16::from(colors[1][i]) * 2 + 1) / 3) as u8;
- }
- } else {
- // linearly interpolate one other entry, keep the other at 0
- for i in 0..3 {
- colors[2][i] = ((u16::from(colors[0][i]) + u16::from(colors[1][i]) + 1) / 2) as u8;
- }
- }
-
- // serialize the result. Every color is determined by looking up
- // two bits in color_table which identify which color to actually pick from the 4 possible colors
- for i in 0..16 {
- dest[i * pitch..i * pitch + 3]
- .copy_from_slice(&colors[(color_table >> (i * 2)) as usize & 3]);
- }
-}
-
-/// Decodes a 16-byte bock of dxt5 data to a 16xRGBA block
-fn decode_dxt5_block(source: &[u8], dest: &mut [u8]) {
- assert!(source.len() == 16 && dest.len() == 64);
-
- // extract alpha index table (stored as little endian 64-bit value)
- let alpha_table = source[2..8]
- .iter()
- .rev()
- .fold(0, |t, &b| (t << 8) | u64::from(b));
-
- // alhpa level decode
- let alphas = alpha_table_dxt5(source[0], source[1]);
-
- // serialize alpha
- for i in 0..16 {
- dest[i * 4 + 3] = alphas[(alpha_table >> (i * 3)) as usize & 7];
- }
-
- // handle colors
- decode_dxt_colors(&source[8..16], dest, false);
-}
-
-/// Decodes a 16-byte bock of dxt3 data to a 16xRGBA block
-fn decode_dxt3_block(source: &[u8], dest: &mut [u8]) {
- assert!(source.len() == 16 && dest.len() == 64);
-
- // extract alpha index table (stored as little endian 64-bit value)
- let alpha_table = source[0..8]
- .iter()
- .rev()
- .fold(0, |t, &b| (t << 8) | u64::from(b));
-
- // serialize alpha (stored as 4-bit values)
- for i in 0..16 {
- dest[i * 4 + 3] = ((alpha_table >> (i * 4)) as u8 & 0xF) * 0x11;
- }
-
- // handle colors
- decode_dxt_colors(&source[8..16], dest, false);
-}
-
-/// Decodes a 8-byte bock of dxt5 data to a 16xRGB block
-fn decode_dxt1_block(source: &[u8], dest: &mut [u8]) {
- assert!(source.len() == 8 && dest.len() == 48);
- decode_dxt_colors(source, dest, true);
-}
-
-/// Decode a row of DXT1 data to four rows of RGB data.
-/// source.len() should be a multiple of 8, otherwise this panics.
-fn decode_dxt1_row(source: &[u8], dest: &mut [u8]) {
- assert!(source.len() % 8 == 0);
- let block_count = source.len() / 8;
- assert!(dest.len() >= block_count * 48);
-
- // contains the 16 decoded pixels per block
- let mut decoded_block = [0u8; 48];
-
- for (x, encoded_block) in source.chunks(8).enumerate() {
- decode_dxt1_block(encoded_block, &mut decoded_block);
-
- // copy the values from the decoded block to linewise RGB layout
- for line in 0..4 {
- let offset = (block_count * line + x) * 12;
- dest[offset..offset + 12].copy_from_slice(&decoded_block[line * 12..(line + 1) * 12]);
- }
- }
-}
-
-/// Decode a row of DXT3 data to four rows of RGBA data.
-/// source.len() should be a multiple of 16, otherwise this panics.
-fn decode_dxt3_row(source: &[u8], dest: &mut [u8]) {
- assert!(source.len() % 16 == 0);
- let block_count = source.len() / 16;
- assert!(dest.len() >= block_count * 64);
-
- // contains the 16 decoded pixels per block
- let mut decoded_block = [0u8; 64];
-
- for (x, encoded_block) in source.chunks(16).enumerate() {
- decode_dxt3_block(encoded_block, &mut decoded_block);
-
- // copy the values from the decoded block to linewise RGB layout
- for line in 0..4 {
- let offset = (block_count * line + x) * 16;
- dest[offset..offset + 16].copy_from_slice(&decoded_block[line * 16..(line + 1) * 16]);
- }
- }
-}
-
-/// Decode a row of DXT5 data to four rows of RGBA data.
-/// source.len() should be a multiple of 16, otherwise this panics.
-fn decode_dxt5_row(source: &[u8], dest: &mut [u8]) {
- assert!(source.len() % 16 == 0);
- let block_count = source.len() / 16;
- assert!(dest.len() >= block_count * 64);
-
- // contains the 16 decoded pixels per block
- let mut decoded_block = [0u8; 64];
-
- for (x, encoded_block) in source.chunks(16).enumerate() {
- decode_dxt5_block(encoded_block, &mut decoded_block);
-
- // copy the values from the decoded block to linewise RGB layout
- for line in 0..4 {
- let offset = (block_count * line + x) * 16;
- dest[offset..offset + 16].copy_from_slice(&decoded_block[line * 16..(line + 1) * 16]);
- }
- }
-}
-
-/*
- * Functions for encoding DXT compression
- */
-
-/// Tries to perform the color encoding part of dxt compression
-/// the approach taken is simple, it picks unique combinations
-/// of the colors present in the block, and attempts to encode the
-/// block with each, picking the encoding that yields the least
-/// squared error out of all of them.
-///
-/// This could probably be faster but is already reasonably fast
-/// and a good reference impl to optimize others against.
-///
-/// Another way to perform this analysis would be to perform a
-/// singular value decomposition of the different colors, and
-/// then pick 2 points on this line as the base colors. But
-/// this is still rather unwieldy math and has issues
-/// with the 3-linear-colors-and-0 case, it's also worse
-/// at conserving the original colors.
-///
-/// source: should be RGBAx16 or RGBx16 bytes of data,
-/// dest 8 bytes of resulting encoded color data
-fn encode_dxt_colors(source: &[u8], dest: &mut [u8], is_dxt1: bool) {
- // sanity checks and determine stride when parsing the source data
- assert!((source.len() == 64 || source.len() == 48) && dest.len() == 8);
- let stride = source.len() / 16;
-
- // reference colors array
- let mut colors = [[0u8; 3]; 4];
-
- // Put the colors we're going to be processing in an array with pure RGB layout
- // note: we reverse the pixel order here. The reason for this is found in the inner quantization loop.
- let mut targets = [[0u8; 3]; 16];
- for (s, d) in source.chunks(stride).rev().zip(&mut targets) {
- *d = [s[0], s[1], s[2]];
- }
-
- // roundtrip all colors through the r5g6b5 encoding
- for rgb in &mut targets {
- *rgb = enc565_decode(enc565_encode(*rgb));
- }
-
- // and deduplicate the set of colors to choose from as the algorithm is O(N^2) in this
- let mut colorspace_ = [[0u8; 3]; 16];
- let mut colorspace_len = 0;
- for color in &targets {
- if !colorspace_[..colorspace_len].contains(color) {
- colorspace_[colorspace_len] = *color;
- colorspace_len += 1;
- }
- }
- let mut colorspace = &colorspace_[..colorspace_len];
-
- // in case of slight gradients it can happen that there's only one entry left in the color table.
- // as the resulting banding can be quite bad if we would just left the block at the closest
- // encodable color, we have a special path here that tries to emulate the wanted color
- // using the linear interpolation between gradients
- if colorspace.len() == 1 {
- // the base color we got from colorspace reduction
- let ref_rgb = colorspace[0];
- // the unreduced color in this block that's the furthest away from the actual block
- let mut rgb = targets
- .iter()
- .cloned()
- .max_by_key(|rgb| diff(*rgb, ref_rgb))
- .unwrap();
- // amplify differences by 2.5, which should push them to the next quantized value
- // if possible without overshoot
- for i in 0..3 {
- rgb[i] =
- ((i16::from(rgb[i]) - i16::from(ref_rgb[i])) * 5 / 2 + i16::from(ref_rgb[i])) as u8;
- }
-
- // roundtrip it through quantization
- let encoded = enc565_encode(rgb);
- let rgb = enc565_decode(encoded);
-
- // in case this didn't land us a different color the best way to represent this field is
- // as a single color block
- if rgb == ref_rgb {
- dest[0] = encoded as u8;
- dest[1] = (encoded >> 8) as u8;
-
- for d in dest.iter_mut().take(8).skip(2) {
- *d = 0;
- }
- return;
- }
-
- // we did find a separate value: add it to the options so after one round of quantization
- // we're done
- colorspace_[1] = rgb;
- colorspace = &colorspace_[..2];
- }
-
- // block quantization loop: we basically just try every possible combination, returning
- // the combination with the least squared error
- // stores the best candidate colors
- let mut chosen_colors = [[0; 3]; 4];
- // did this index table use the [0,0,0] variant
- let mut chosen_use_0 = false;
- // error calculated for the last entry
- let mut chosen_error = 0xFFFF_FFFFu32;
-
- // loop through unique permutations of the colorspace, where c1 != c2
- 'search: for (i, &c1) in colorspace.iter().enumerate() {
- colors[0] = c1;
-
- for &c2 in &colorspace[0..i] {
- colors[1] = c2;
-
- if is_dxt1 {
- // what's inside here is ran at most 120 times.
- for use_0 in 0..2 {
- // and 240 times here.
-
- if use_0 != 0 {
- // interpolate one color, set the other to 0
- for i in 0..3 {
- colors[2][i] =
- ((u16::from(colors[0][i]) + u16::from(colors[1][i]) + 1) / 2) as u8;
- }
- colors[3] = [0, 0, 0];
- } else {
- // interpolate to get 2 more colors
- for i in 0..3 {
- colors[2][i] =
- ((u16::from(colors[0][i]) * 2 + u16::from(colors[1][i]) + 1) / 3)
- as u8;
- colors[3][i] =
- ((u16::from(colors[0][i]) + u16::from(colors[1][i]) * 2 + 1) / 3)
- as u8;
- }
- }
-
- // calculate the total error if we were to quantize the block with these color combinations
- // both these loops have statically known iteration counts and are well vectorizable
- // note that the inside of this can be run about 15360 times worst case, i.e. 960 times per
- // pixel.
- let total_error = targets
- .iter()
- .map(|t| colors.iter().map(|c| diff(*c, *t) as u32).min().unwrap())
- .sum();
-
- // update the match if we found a better one
- if total_error < chosen_error {
- chosen_colors = colors;
- chosen_use_0 = use_0 != 0;
- chosen_error = total_error;
-
- // if we've got a perfect or at most 1 LSB off match, we're done
- if total_error < 4 {
- break 'search;
- }
- }
- }
- } else {
- // what's inside here is ran at most 120 times.
-
- // interpolate to get 2 more colors
- for i in 0..3 {
- colors[2][i] =
- ((u16::from(colors[0][i]) * 2 + u16::from(colors[1][i]) + 1) / 3) as u8;
- colors[3][i] =
- ((u16::from(colors[0][i]) + u16::from(colors[1][i]) * 2 + 1) / 3) as u8;
- }
-
- // calculate the total error if we were to quantize the block with these color combinations
- // both these loops have statically known iteration counts and are well vectorizable
- // note that the inside of this can be run about 15360 times worst case, i.e. 960 times per
- // pixel.
- let total_error = targets
- .iter()
- .map(|t| colors.iter().map(|c| diff(*c, *t) as u32).min().unwrap())
- .sum();
-
- // update the match if we found a better one
- if total_error < chosen_error {
- chosen_colors = colors;
- chosen_error = total_error;
-
- // if we've got a perfect or at most 1 LSB off match, we're done
- if total_error < 4 {
- break 'search;
- }
- }
- }
- }
- }
-
- // calculate the final indices
- // note that targets is already in reverse pixel order, to make the index computation easy.
- let mut chosen_indices = 0u32;
- for t in &targets {
- let (idx, _) = chosen_colors
- .iter()
- .enumerate()
- .min_by_key(|&(_, c)| diff(*c, *t))
- .unwrap();
- chosen_indices = (chosen_indices << 2) | idx as u32;
- }
-
- // encode the colors
- let mut color0 = enc565_encode(chosen_colors[0]);
- let mut color1 = enc565_encode(chosen_colors[1]);
-
- // determine encoding. Note that color0 == color1 is impossible at this point
- if is_dxt1 {
- if color0 > color1 {
- if chosen_use_0 {
- swap(&mut color0, &mut color1);
- // Indexes are packed 2 bits wide, swap index 0/1 but preserve 2/3.
- let filter = (chosen_indices & 0xAAAA_AAAA) >> 1;
- chosen_indices ^= filter ^ 0x5555_5555;
- }
- } else if !chosen_use_0 {
- swap(&mut color0, &mut color1);
- // Indexes are packed 2 bits wide, swap index 0/1 and 2/3.
- chosen_indices ^= 0x5555_5555;
- }
- }
-
- // encode everything.
- dest[0] = color0 as u8;
- dest[1] = (color0 >> 8) as u8;
- dest[2] = color1 as u8;
- dest[3] = (color1 >> 8) as u8;
- for i in 0..4 {
- dest[i + 4] = (chosen_indices >> (i * 8)) as u8;
- }
-}
-
-/// Encodes a buffer of 16 alpha bytes into a dxt5 alpha index table,
-/// where the alpha table they are indexed against is created by
-/// calling alpha_table_dxt5(alpha0, alpha1)
-/// returns the resulting error and alpha table
-fn encode_dxt5_alpha(alpha0: u8, alpha1: u8, alphas: &[u8; 16]) -> (i32, u64) {
- // create a table for the given alpha ranges
- let table = alpha_table_dxt5(alpha0, alpha1);
- let mut indices = 0u64;
- let mut total_error = 0i32;
-
- // least error brute force search
- for (i, &a) in alphas.iter().enumerate() {
- let (index, error) = table
- .iter()
- .enumerate()
- .map(|(i, &e)| (i, square(i32::from(e) - i32::from(a))))
- .min_by_key(|&(_, e)| e)
- .unwrap();
- total_error += error;
- indices |= (index as u64) << (i * 3);
- }
-
- (total_error, indices)
-}
-
-/// Encodes a RGBAx16 sequence of bytes to a 16 bytes DXT5 block
-fn encode_dxt5_block(source: &[u8], dest: &mut [u8]) {
- assert!(source.len() == 64 && dest.len() == 16);
-
- // perform dxt color encoding
- encode_dxt_colors(source, &mut dest[8..16], false);
-
- // copy out the alpha bytes
- let mut alphas = [0; 16];
- for i in 0..16 {
- alphas[i] = source[i * 4 + 3];
- }
-
- // try both alpha compression methods, see which has the least error.
- let alpha07 = alphas.iter().cloned().min().unwrap();
- let alpha17 = alphas.iter().cloned().max().unwrap();
- let (error7, indices7) = encode_dxt5_alpha(alpha07, alpha17, &alphas);
-
- // if all alphas are 0 or 255 it doesn't particularly matter what we do here.
- let alpha05 = alphas
- .iter()
- .cloned()
- .filter(|&i| i != 255)
- .max()
- .unwrap_or(255);
- let alpha15 = alphas
- .iter()
- .cloned()
- .filter(|&i| i != 0)
- .min()
- .unwrap_or(0);
- let (error5, indices5) = encode_dxt5_alpha(alpha05, alpha15, &alphas);
-
- // pick the best one, encode the min/max values
- let mut alpha_table = if error5 < error7 {
- dest[0] = alpha05;
- dest[1] = alpha15;
- indices5
- } else {
- dest[0] = alpha07;
- dest[1] = alpha17;
- indices7
- };
-
- // encode the alphas
- for byte in dest[2..8].iter_mut() {
- *byte = alpha_table as u8;
- alpha_table >>= 8;
- }
-}
-
-/// Encodes a RGBAx16 sequence of bytes into a 16 bytes DXT3 block
-fn encode_dxt3_block(source: &[u8], dest: &mut [u8]) {
- assert!(source.len() == 64 && dest.len() == 16);
-
- // perform dxt color encoding
- encode_dxt_colors(source, &mut dest[8..16], false);
-
- // DXT3 alpha compression is very simple, just round towards the nearest value
-
- // index the alpha values into the 64bit alpha table
- let mut alpha_table = 0u64;
- for i in 0..16 {
- let alpha = u64::from(source[i * 4 + 3]);
- let alpha = (alpha + 0x8) / 0x11;
- alpha_table |= alpha << (i * 4);
- }
-
- // encode the alpha values
- for byte in &mut dest[0..8] {
- *byte = alpha_table as u8;
- alpha_table >>= 8;
- }
-}
-
-/// Encodes a RGBx16 sequence of bytes into a 8 bytes DXT1 block
-fn encode_dxt1_block(source: &[u8], dest: &mut [u8]) {
- assert!(source.len() == 48 && dest.len() == 8);
-
- // perform dxt color encoding
- encode_dxt_colors(source, dest, true);
-}
-
-/// Decode a row of DXT1 data to four rows of RGBA data.
-/// source.len() should be a multiple of 8, otherwise this panics.
-fn encode_dxt1_row(source: &[u8]) -> Vec<u8> {
- assert!(source.len() % 48 == 0);
- let block_count = source.len() / 48;
-
- let mut dest = vec![0u8; block_count * 8];
- // contains the 16 decoded pixels per block
- let mut decoded_block = [0u8; 48];
-
- for (x, encoded_block) in dest.chunks_mut(8).enumerate() {
- // copy the values from the decoded block to linewise RGB layout
- for line in 0..4 {
- let offset = (block_count * line + x) * 12;
- decoded_block[line * 12..(line + 1) * 12].copy_from_slice(&source[offset..offset + 12]);
- }
-
- encode_dxt1_block(&decoded_block, encoded_block);
- }
- dest
-}
-
-/// Decode a row of DXT3 data to four rows of RGBA data.
-/// source.len() should be a multiple of 16, otherwise this panics.
-fn encode_dxt3_row(source: &[u8]) -> Vec<u8> {
- assert!(source.len() % 64 == 0);
- let block_count = source.len() / 64;
-
- let mut dest = vec![0u8; block_count * 16];
- // contains the 16 decoded pixels per block
- let mut decoded_block = [0u8; 64];
-
- for (x, encoded_block) in dest.chunks_mut(16).enumerate() {
- // copy the values from the decoded block to linewise RGB layout
- for line in 0..4 {
- let offset = (block_count * line + x) * 16;
- decoded_block[line * 16..(line + 1) * 16].copy_from_slice(&source[offset..offset + 16]);
- }
-
- encode_dxt3_block(&decoded_block, encoded_block);
- }
- dest
-}
-
-/// Decode a row of DXT5 data to four rows of RGBA data.
-/// source.len() should be a multiple of 16, otherwise this panics.
-fn encode_dxt5_row(source: &[u8]) -> Vec<u8> {
- assert!(source.len() % 64 == 0);
- let block_count = source.len() / 64;
-
- let mut dest = vec![0u8; block_count * 16];
- // contains the 16 decoded pixels per block
- let mut decoded_block = [0u8; 64];
-
- for (x, encoded_block) in dest.chunks_mut(16).enumerate() {
- // copy the values from the decoded block to linewise RGB layout
- for line in 0..4 {
- let offset = (block_count * line + x) * 16;
- decoded_block[line * 16..(line + 1) * 16].copy_from_slice(&source[offset..offset + 16]);
- }
-
- encode_dxt5_block(&decoded_block, encoded_block);
- }
- dest
-}