aboutsummaryrefslogtreecommitdiff
path: root/vendor/image/src/codecs/openexr.rs
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/image/src/codecs/openexr.rs')
-rw-r--r--vendor/image/src/codecs/openexr.rs592
1 files changed, 592 insertions, 0 deletions
diff --git a/vendor/image/src/codecs/openexr.rs b/vendor/image/src/codecs/openexr.rs
new file mode 100644
index 0000000..52d6ba9
--- /dev/null
+++ b/vendor/image/src/codecs/openexr.rs
@@ -0,0 +1,592 @@
+//! Decoding of OpenEXR (.exr) Images
+//!
+//! OpenEXR is an image format that is widely used, especially in VFX,
+//! because it supports lossless and lossy compression for float data.
+//!
+//! This decoder only supports RGB and RGBA images.
+//! If an image does not contain alpha information,
+//! it is defaulted to `1.0` (no transparency).
+//!
+//! # Related Links
+//! * <https://www.openexr.com/documentation.html> - The OpenEXR reference.
+//!
+//!
+//! Current limitations (July 2021):
+//! - only pixel type `Rgba32F` and `Rgba16F` are supported
+//! - only non-deep rgb/rgba files supported, no conversion from/to YCbCr or similar
+//! - only the first non-deep rgb layer is used
+//! - only the largest mip map level is used
+//! - pixels outside display window are lost
+//! - meta data is lost
+//! - dwaa/dwab compressed images not supported yet by the exr library
+//! - (chroma) subsampling not supported yet by the exr library
+use exr::prelude::*;
+
+use crate::error::{DecodingError, EncodingError, ImageFormatHint};
+use crate::image::decoder_to_vec;
+use crate::{
+ ColorType, ExtendedColorType, ImageDecoder, ImageEncoder, ImageError, ImageFormat, ImageResult,
+ Progress,
+};
+use std::convert::TryInto;
+use std::io::{Cursor, Read, Seek, Write};
+
+/// An OpenEXR decoder. Immediately reads the meta data from the file.
+#[derive(Debug)]
+pub struct OpenExrDecoder<R> {
+ exr_reader: exr::block::reader::Reader<R>,
+
+ // select a header that is rgb and not deep
+ header_index: usize,
+
+ // decode either rgb or rgba.
+ // can be specified to include or discard alpha channels.
+ // if none, the alpha channel will only be allocated where the file contains data for it.
+ alpha_preference: Option<bool>,
+
+ alpha_present_in_file: bool,
+}
+
+impl<R: Read + Seek> OpenExrDecoder<R> {
+ /// Create a decoder. Consumes the first few bytes of the source to extract image dimensions.
+ /// Assumes the reader is buffered. In most cases,
+ /// you should wrap your reader in a `BufReader` for best performance.
+ /// Loads an alpha channel if the file has alpha samples.
+ /// Use `with_alpha_preference` if you want to load or not load alpha unconditionally.
+ pub fn new(source: R) -> ImageResult<Self> {
+ Self::with_alpha_preference(source, None)
+ }
+
+ /// Create a decoder. Consumes the first few bytes of the source to extract image dimensions.
+ /// Assumes the reader is buffered. In most cases,
+ /// you should wrap your reader in a `BufReader` for best performance.
+ /// If alpha preference is specified, an alpha channel will
+ /// always be present or always be not present in the returned image.
+ /// If alpha preference is none, the alpha channel will only be returned if it is found in the file.
+ pub fn with_alpha_preference(source: R, alpha_preference: Option<bool>) -> ImageResult<Self> {
+ // read meta data, then wait for further instructions, keeping the file open and ready
+ let exr_reader = exr::block::read(source, false).map_err(to_image_err)?;
+
+ let header_index = exr_reader
+ .headers()
+ .iter()
+ .position(|header| {
+ // check if r/g/b exists in the channels
+ let has_rgb = ["R", "G", "B"]
+ .iter()
+ .all(|&required| // alpha will be optional
+ header.channels.find_index_of_channel(&Text::from(required)).is_some());
+
+ // we currently dont support deep images, or images with other color spaces than rgb
+ !header.deep && has_rgb
+ })
+ .ok_or_else(|| {
+ ImageError::Decoding(DecodingError::new(
+ ImageFormatHint::Exact(ImageFormat::OpenExr),
+ "image does not contain non-deep rgb channels",
+ ))
+ })?;
+
+ let has_alpha = exr_reader.headers()[header_index]
+ .channels
+ .find_index_of_channel(&Text::from("A"))
+ .is_some();
+
+ Ok(Self {
+ alpha_preference,
+ exr_reader,
+ header_index,
+ alpha_present_in_file: has_alpha,
+ })
+ }
+
+ // does not leak exrs-specific meta data into public api, just does it for this module
+ fn selected_exr_header(&self) -> &exr::meta::header::Header {
+ &self.exr_reader.meta_data().headers[self.header_index]
+ }
+}
+
+impl<'a, R: 'a + Read + Seek> ImageDecoder<'a> for OpenExrDecoder<R> {
+ type Reader = Cursor<Vec<u8>>;
+
+ fn dimensions(&self) -> (u32, u32) {
+ let size = self
+ .selected_exr_header()
+ .shared_attributes
+ .display_window
+ .size;
+ (size.width() as u32, size.height() as u32)
+ }
+
+ fn color_type(&self) -> ColorType {
+ let returns_alpha = self.alpha_preference.unwrap_or(self.alpha_present_in_file);
+ if returns_alpha {
+ ColorType::Rgba32F
+ } else {
+ ColorType::Rgb32F
+ }
+ }
+
+ fn original_color_type(&self) -> ExtendedColorType {
+ if self.alpha_present_in_file {
+ ExtendedColorType::Rgba32F
+ } else {
+ ExtendedColorType::Rgb32F
+ }
+ }
+
+ /// Use `read_image` instead if possible,
+ /// as this method creates a whole new buffer just to contain the entire image.
+ fn into_reader(self) -> ImageResult<Self::Reader> {
+ Ok(Cursor::new(decoder_to_vec(self)?))
+ }
+
+ fn scanline_bytes(&self) -> u64 {
+ // we cannot always read individual scan lines for every file,
+ // as the tiles or lines in the file could be in random or reversed order.
+ // therefore we currently read all lines at once
+ // Todo: optimize for specific exr.line_order?
+ self.total_bytes()
+ }
+
+ // reads with or without alpha, depending on `self.alpha_preference` and `self.alpha_present_in_file`
+ fn read_image_with_progress<F: Fn(Progress)>(
+ self,
+ unaligned_bytes: &mut [u8],
+ progress_callback: F,
+ ) -> ImageResult<()> {
+ let blocks_in_header = self.selected_exr_header().chunk_count as u64;
+ let channel_count = self.color_type().channel_count() as usize;
+
+ let display_window = self.selected_exr_header().shared_attributes.display_window;
+ let data_window_offset =
+ self.selected_exr_header().own_attributes.layer_position - display_window.position;
+
+ {
+ // check whether the buffer is large enough for the dimensions of the file
+ let (width, height) = self.dimensions();
+ let bytes_per_pixel = self.color_type().bytes_per_pixel() as usize;
+ let expected_byte_count = (width as usize)
+ .checked_mul(height as usize)
+ .and_then(|size| size.checked_mul(bytes_per_pixel));
+
+ // if the width and height does not match the length of the bytes, the arguments are invalid
+ let has_invalid_size_or_overflowed = expected_byte_count
+ .map(|expected_byte_count| unaligned_bytes.len() != expected_byte_count)
+ // otherwise, size calculation overflowed, is bigger than memory,
+ // therefore data is too small, so it is invalid.
+ .unwrap_or(true);
+
+ if has_invalid_size_or_overflowed {
+ panic!("byte buffer not large enough for the specified dimensions and f32 pixels");
+ }
+ }
+
+ let result = read()
+ .no_deep_data()
+ .largest_resolution_level()
+ .rgba_channels(
+ move |_size, _channels| vec![0_f32; display_window.size.area() * channel_count],
+ move |buffer, index_in_data_window, (r, g, b, a_or_1): (f32, f32, f32, f32)| {
+ let index_in_display_window =
+ index_in_data_window.to_i32() + data_window_offset;
+
+ // only keep pixels inside the data window
+ // TODO filter chunks based on this
+ if index_in_display_window.x() >= 0
+ && index_in_display_window.y() >= 0
+ && index_in_display_window.x() < display_window.size.width() as i32
+ && index_in_display_window.y() < display_window.size.height() as i32
+ {
+ let index_in_display_window =
+ index_in_display_window.to_usize("index bug").unwrap();
+ let first_f32_index =
+ index_in_display_window.flat_index_for_size(display_window.size);
+
+ buffer[first_f32_index * channel_count
+ ..(first_f32_index + 1) * channel_count]
+ .copy_from_slice(&[r, g, b, a_or_1][0..channel_count]);
+
+ // TODO white point chromaticities + srgb/linear conversion?
+ }
+ },
+ )
+ .first_valid_layer() // TODO select exact layer by self.header_index?
+ .all_attributes()
+ .on_progress(|progress| {
+ progress_callback(
+ Progress::new(
+ (progress * blocks_in_header as f64) as u64,
+ blocks_in_header,
+ ), // TODO precision errors?
+ );
+ })
+ .from_chunks(self.exr_reader)
+ .map_err(to_image_err)?;
+
+ // TODO this copy is strictly not necessary, but the exr api is a little too simple for reading into a borrowed target slice
+
+ // this cast is safe and works with any alignment, as bytes are copied, and not f32 values.
+ // note: buffer slice length is checked in the beginning of this function and will be correct at this point
+ unaligned_bytes.copy_from_slice(bytemuck::cast_slice(
+ result.layer_data.channel_data.pixels.as_slice(),
+ ));
+ Ok(())
+ }
+}
+
+/// Write a raw byte buffer of pixels,
+/// returning an Error if it has an invalid length.
+///
+/// Assumes the writer is buffered. In most cases,
+/// you should wrap your writer in a `BufWriter` for best performance.
+// private. access via `OpenExrEncoder`
+fn write_buffer(
+ mut buffered_write: impl Write + Seek,
+ unaligned_bytes: &[u8],
+ width: u32,
+ height: u32,
+ color_type: ColorType,
+) -> ImageResult<()> {
+ let width = width as usize;
+ let height = height as usize;
+
+ {
+ // check whether the buffer is large enough for the specified dimensions
+ let expected_byte_count = width
+ .checked_mul(height)
+ .and_then(|size| size.checked_mul(color_type.bytes_per_pixel() as usize));
+
+ // if the width and height does not match the length of the bytes, the arguments are invalid
+ let has_invalid_size_or_overflowed = expected_byte_count
+ .map(|expected_byte_count| unaligned_bytes.len() < expected_byte_count)
+ // otherwise, size calculation overflowed, is bigger than memory,
+ // therefore data is too small, so it is invalid.
+ .unwrap_or(true);
+
+ if has_invalid_size_or_overflowed {
+ return Err(ImageError::Encoding(EncodingError::new(
+ ImageFormatHint::Exact(ImageFormat::OpenExr),
+ "byte buffer not large enough for the specified dimensions and f32 pixels",
+ )));
+ }
+ }
+
+ // bytes might be unaligned so we cannot cast the whole thing, instead lookup each f32 individually
+ let lookup_f32 = move |f32_index: usize| {
+ let unaligned_f32_bytes_slice = &unaligned_bytes[f32_index * 4..(f32_index + 1) * 4];
+ let f32_bytes_array = unaligned_f32_bytes_slice
+ .try_into()
+ .expect("indexing error");
+ f32::from_ne_bytes(f32_bytes_array)
+ };
+
+ match color_type {
+ ColorType::Rgb32F => {
+ exr::prelude::Image // TODO compression method zip??
+ ::from_channels(
+ (width, height),
+ SpecificChannels::rgb(|pixel: Vec2<usize>| {
+ let pixel_index = 3 * pixel.flat_index_for_size(Vec2(width, height));
+ (
+ lookup_f32(pixel_index),
+ lookup_f32(pixel_index + 1),
+ lookup_f32(pixel_index + 2),
+ )
+ }),
+ )
+ .write()
+ // .on_progress(|progress| todo!())
+ .to_buffered(&mut buffered_write)
+ .map_err(to_image_err)?;
+ }
+
+ ColorType::Rgba32F => {
+ exr::prelude::Image // TODO compression method zip??
+ ::from_channels(
+ (width, height),
+ SpecificChannels::rgba(|pixel: Vec2<usize>| {
+ let pixel_index = 4 * pixel.flat_index_for_size(Vec2(width, height));
+ (
+ lookup_f32(pixel_index),
+ lookup_f32(pixel_index + 1),
+ lookup_f32(pixel_index + 2),
+ lookup_f32(pixel_index + 3),
+ )
+ }),
+ )
+ .write()
+ // .on_progress(|progress| todo!())
+ .to_buffered(&mut buffered_write)
+ .map_err(to_image_err)?;
+ }
+
+ // TODO other color types and channel types
+ unsupported_color_type => {
+ return Err(ImageError::Encoding(EncodingError::new(
+ ImageFormatHint::Exact(ImageFormat::OpenExr),
+ format!(
+ "writing color type {:?} not yet supported",
+ unsupported_color_type
+ ),
+ )))
+ }
+ }
+
+ Ok(())
+}
+
+// TODO is this struct and trait actually used anywhere?
+/// A thin wrapper that implements `ImageEncoder` for OpenEXR images. Will behave like `image::codecs::openexr::write_buffer`.
+#[derive(Debug)]
+pub struct OpenExrEncoder<W>(W);
+
+impl<W> OpenExrEncoder<W> {
+ /// Create an `ImageEncoder`. Does not write anything yet. Writing later will behave like `image::codecs::openexr::write_buffer`.
+ // use constructor, not public field, for future backwards-compatibility
+ pub fn new(write: W) -> Self {
+ Self(write)
+ }
+}
+
+impl<W> ImageEncoder for OpenExrEncoder<W>
+where
+ W: Write + Seek,
+{
+ /// Writes the complete image.
+ ///
+ /// Returns an Error if it has an invalid length.
+ /// Assumes the writer is buffered. In most cases,
+ /// you should wrap your writer in a `BufWriter` for best performance.
+ fn write_image(
+ self,
+ buf: &[u8],
+ width: u32,
+ height: u32,
+ color_type: ColorType,
+ ) -> ImageResult<()> {
+ write_buffer(self.0, buf, width, height, color_type)
+ }
+}
+
+fn to_image_err(exr_error: Error) -> ImageError {
+ ImageError::Decoding(DecodingError::new(
+ ImageFormatHint::Exact(ImageFormat::OpenExr),
+ exr_error.to_string(),
+ ))
+}
+
+#[cfg(test)]
+mod test {
+ use super::*;
+
+ use std::io::BufReader;
+ use std::path::{Path, PathBuf};
+
+ use crate::buffer_::{Rgb32FImage, Rgba32FImage};
+ use crate::error::{LimitError, LimitErrorKind};
+ use crate::{ImageBuffer, Rgb, Rgba};
+
+ const BASE_PATH: &[&str] = &[".", "tests", "images", "exr"];
+
+ /// Write an `Rgb32FImage`.
+ /// Assumes the writer is buffered. In most cases,
+ /// you should wrap your writer in a `BufWriter` for best performance.
+ fn write_rgb_image(write: impl Write + Seek, image: &Rgb32FImage) -> ImageResult<()> {
+ write_buffer(
+ write,
+ bytemuck::cast_slice(image.as_raw().as_slice()),
+ image.width(),
+ image.height(),
+ ColorType::Rgb32F,
+ )
+ }
+
+ /// Write an `Rgba32FImage`.
+ /// Assumes the writer is buffered. In most cases,
+ /// you should wrap your writer in a `BufWriter` for best performance.
+ fn write_rgba_image(write: impl Write + Seek, image: &Rgba32FImage) -> ImageResult<()> {
+ write_buffer(
+ write,
+ bytemuck::cast_slice(image.as_raw().as_slice()),
+ image.width(),
+ image.height(),
+ ColorType::Rgba32F,
+ )
+ }
+
+ /// Read the file from the specified path into an `Rgba32FImage`.
+ fn read_as_rgba_image_from_file(path: impl AsRef<Path>) -> ImageResult<Rgba32FImage> {
+ read_as_rgba_image(BufReader::new(std::fs::File::open(path)?))
+ }
+
+ /// Read the file from the specified path into an `Rgb32FImage`.
+ fn read_as_rgb_image_from_file(path: impl AsRef<Path>) -> ImageResult<Rgb32FImage> {
+ read_as_rgb_image(BufReader::new(std::fs::File::open(path)?))
+ }
+
+ /// Read the file from the specified path into an `Rgb32FImage`.
+ fn read_as_rgb_image(read: impl Read + Seek) -> ImageResult<Rgb32FImage> {
+ let decoder = OpenExrDecoder::with_alpha_preference(read, Some(false))?;
+ let (width, height) = decoder.dimensions();
+ let buffer: Vec<f32> = decoder_to_vec(decoder)?;
+
+ ImageBuffer::from_raw(width, height, buffer)
+ // this should be the only reason for the "from raw" call to fail,
+ // even though such a large allocation would probably cause an error much earlier
+ .ok_or_else(|| {
+ ImageError::Limits(LimitError::from_kind(LimitErrorKind::InsufficientMemory))
+ })
+ }
+
+ /// Read the file from the specified path into an `Rgba32FImage`.
+ fn read_as_rgba_image(read: impl Read + Seek) -> ImageResult<Rgba32FImage> {
+ let decoder = OpenExrDecoder::with_alpha_preference(read, Some(true))?;
+ let (width, height) = decoder.dimensions();
+ let buffer: Vec<f32> = decoder_to_vec(decoder)?;
+
+ ImageBuffer::from_raw(width, height, buffer)
+ // this should be the only reason for the "from raw" call to fail,
+ // even though such a large allocation would probably cause an error much earlier
+ .ok_or_else(|| {
+ ImageError::Limits(LimitError::from_kind(LimitErrorKind::InsufficientMemory))
+ })
+ }
+
+ #[test]
+ fn compare_exr_hdr() {
+ if cfg!(not(feature = "hdr")) {
+ eprintln!("warning: to run all the openexr tests, activate the hdr feature flag");
+ }
+
+ #[cfg(feature = "hdr")]
+ {
+ let folder = BASE_PATH.iter().collect::<PathBuf>();
+ let reference_path = folder.clone().join("overexposed gradient.hdr");
+ let exr_path = folder
+ .clone()
+ .join("overexposed gradient - data window equals display window.exr");
+
+ let hdr: Vec<Rgb<f32>> = crate::codecs::hdr::HdrDecoder::new(std::io::BufReader::new(
+ std::fs::File::open(&reference_path).unwrap(),
+ ))
+ .unwrap()
+ .read_image_hdr()
+ .unwrap();
+
+ let exr_pixels: Rgb32FImage = read_as_rgb_image_from_file(exr_path).unwrap();
+ assert_eq!(
+ exr_pixels.dimensions().0 * exr_pixels.dimensions().1,
+ hdr.len() as u32
+ );
+
+ for (expected, found) in hdr.iter().zip(exr_pixels.pixels()) {
+ for (expected, found) in expected.0.iter().zip(found.0.iter()) {
+ // the large tolerance seems to be caused by
+ // the RGBE u8x4 pixel quantization of the hdr image format
+ assert!(
+ (expected - found).abs() < 0.1,
+ "expected {}, found {}",
+ expected,
+ found
+ );
+ }
+ }
+ }
+ }
+
+ #[test]
+ fn roundtrip_rgba() {
+ let mut next_random = vec![1.0, 0.0, -1.0, -3.14, 27.0, 11.0, 31.0]
+ .into_iter()
+ .cycle();
+ let mut next_random = move || next_random.next().unwrap();
+
+ let generated_image: Rgba32FImage = ImageBuffer::from_fn(9, 31, |_x, _y| {
+ Rgba([next_random(), next_random(), next_random(), next_random()])
+ });
+
+ let mut bytes = vec![];
+ write_rgba_image(Cursor::new(&mut bytes), &generated_image).unwrap();
+ let decoded_image = read_as_rgba_image(Cursor::new(bytes)).unwrap();
+
+ debug_assert_eq!(generated_image, decoded_image);
+ }
+
+ #[test]
+ fn roundtrip_rgb() {
+ let mut next_random = vec![1.0, 0.0, -1.0, -3.14, 27.0, 11.0, 31.0]
+ .into_iter()
+ .cycle();
+ let mut next_random = move || next_random.next().unwrap();
+
+ let generated_image: Rgb32FImage = ImageBuffer::from_fn(9, 31, |_x, _y| {
+ Rgb([next_random(), next_random(), next_random()])
+ });
+
+ let mut bytes = vec![];
+ write_rgb_image(Cursor::new(&mut bytes), &generated_image).unwrap();
+ let decoded_image = read_as_rgb_image(Cursor::new(bytes)).unwrap();
+
+ debug_assert_eq!(generated_image, decoded_image);
+ }
+
+ #[test]
+ fn compare_rgba_rgb() {
+ let exr_path = BASE_PATH
+ .iter()
+ .collect::<PathBuf>()
+ .join("overexposed gradient - data window equals display window.exr");
+
+ let rgb: Rgb32FImage = read_as_rgb_image_from_file(&exr_path).unwrap();
+ let rgba: Rgba32FImage = read_as_rgba_image_from_file(&exr_path).unwrap();
+
+ assert_eq!(rgba.dimensions(), rgb.dimensions());
+
+ for (Rgb(rgb), Rgba(rgba)) in rgb.pixels().zip(rgba.pixels()) {
+ assert_eq!(rgb, &rgba[..3]);
+ }
+ }
+
+ #[test]
+ fn compare_cropped() {
+ // like in photoshop, exr images may have layers placed anywhere in a canvas.
+ // we don't want to load the pixels from the layer, but we want to load the pixels from the canvas.
+ // a layer might be smaller than the canvas, in that case the canvas should be transparent black
+ // where no layer was covering it. a layer might also be larger than the canvas,
+ // these pixels should be discarded.
+ //
+ // in this test we want to make sure that an
+ // auto-cropped image will be reproduced to the original.
+
+ let exr_path = BASE_PATH.iter().collect::<PathBuf>();
+ let original = exr_path.clone().join("cropping - uncropped original.exr");
+ let cropped = exr_path
+ .clone()
+ .join("cropping - data window differs display window.exr");
+
+ // smoke-check that the exr files are actually not the same
+ {
+ let original_exr = read_first_flat_layer_from_file(&original).unwrap();
+ let cropped_exr = read_first_flat_layer_from_file(&cropped).unwrap();
+ assert_eq!(
+ original_exr.attributes.display_window,
+ cropped_exr.attributes.display_window
+ );
+ assert_ne!(
+ original_exr.layer_data.attributes.layer_position,
+ cropped_exr.layer_data.attributes.layer_position
+ );
+ assert_ne!(original_exr.layer_data.size, cropped_exr.layer_data.size);
+ }
+
+ // check that they result in the same image
+ let original: Rgba32FImage = read_as_rgba_image_from_file(&original).unwrap();
+ let cropped: Rgba32FImage = read_as_rgba_image_from_file(&cropped).unwrap();
+ assert_eq!(original.dimensions(), cropped.dimensions());
+
+ // the following is not a simple assert_eq, as in case of an error,
+ // the whole image would be printed to the console, which takes forever
+ assert!(original.pixels().zip(cropped.pixels()).all(|(a, b)| a == b));
+ }
+}