aboutsummaryrefslogtreecommitdiff
path: root/vendor/image/src/color.rs
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/image/src/color.rs')
-rw-r--r--vendor/image/src/color.rs985
1 files changed, 0 insertions, 985 deletions
diff --git a/vendor/image/src/color.rs b/vendor/image/src/color.rs
deleted file mode 100644
index 57a8511..0000000
--- a/vendor/image/src/color.rs
+++ /dev/null
@@ -1,985 +0,0 @@
-use std::ops::{Index, IndexMut};
-
-use num_traits::{NumCast, ToPrimitive, Zero};
-
-use crate::traits::{Enlargeable, Pixel, Primitive};
-
-/// An enumeration over supported color types and bit depths
-#[derive(Copy, PartialEq, Eq, Debug, Clone, Hash)]
-#[non_exhaustive]
-pub enum ColorType {
- /// Pixel is 8-bit luminance
- L8,
- /// Pixel is 8-bit luminance with an alpha channel
- La8,
- /// Pixel contains 8-bit R, G and B channels
- Rgb8,
- /// Pixel is 8-bit RGB with an alpha channel
- Rgba8,
-
- /// Pixel is 16-bit luminance
- L16,
- /// Pixel is 16-bit luminance with an alpha channel
- La16,
- /// Pixel is 16-bit RGB
- Rgb16,
- /// Pixel is 16-bit RGBA
- Rgba16,
-
- /// Pixel is 32-bit float RGB
- Rgb32F,
- /// Pixel is 32-bit float RGBA
- Rgba32F,
-}
-
-impl ColorType {
- /// Returns the number of bytes contained in a pixel of `ColorType` ```c```
- pub fn bytes_per_pixel(self) -> u8 {
- match self {
- ColorType::L8 => 1,
- ColorType::L16 | ColorType::La8 => 2,
- ColorType::Rgb8 => 3,
- ColorType::Rgba8 | ColorType::La16 => 4,
- ColorType::Rgb16 => 6,
- ColorType::Rgba16 => 8,
- ColorType::Rgb32F => 3 * 4,
- ColorType::Rgba32F => 4 * 4,
- }
- }
-
- /// Returns if there is an alpha channel.
- pub fn has_alpha(self) -> bool {
- use ColorType::*;
- match self {
- L8 | L16 | Rgb8 | Rgb16 | Rgb32F => false,
- La8 | Rgba8 | La16 | Rgba16 | Rgba32F => true,
- }
- }
-
- /// Returns false if the color scheme is grayscale, true otherwise.
- pub fn has_color(self) -> bool {
- use ColorType::*;
- match self {
- L8 | L16 | La8 | La16 => false,
- Rgb8 | Rgb16 | Rgba8 | Rgba16 | Rgb32F | Rgba32F => true,
- }
- }
-
- /// Returns the number of bits contained in a pixel of `ColorType` ```c``` (which will always be
- /// a multiple of 8).
- pub fn bits_per_pixel(self) -> u16 {
- <u16 as From<u8>>::from(self.bytes_per_pixel()) * 8
- }
-
- /// Returns the number of color channels that make up this pixel
- pub fn channel_count(self) -> u8 {
- let e: ExtendedColorType = self.into();
- e.channel_count()
- }
-}
-
-/// An enumeration of color types encountered in image formats.
-///
-/// This is not exhaustive over all existing image formats but should be granular enough to allow
-/// round tripping of decoding and encoding as much as possible. The variants will be extended as
-/// necessary to enable this.
-///
-/// Another purpose is to advise users of a rough estimate of the accuracy and effort of the
-/// decoding from and encoding to such an image format.
-#[derive(Copy, PartialEq, Eq, Debug, Clone, Hash)]
-#[non_exhaustive]
-pub enum ExtendedColorType {
- /// Pixel is 8-bit alpha
- A8,
- /// Pixel is 1-bit luminance
- L1,
- /// Pixel is 1-bit luminance with an alpha channel
- La1,
- /// Pixel contains 1-bit R, G and B channels
- Rgb1,
- /// Pixel is 1-bit RGB with an alpha channel
- Rgba1,
- /// Pixel is 2-bit luminance
- L2,
- /// Pixel is 2-bit luminance with an alpha channel
- La2,
- /// Pixel contains 2-bit R, G and B channels
- Rgb2,
- /// Pixel is 2-bit RGB with an alpha channel
- Rgba2,
- /// Pixel is 4-bit luminance
- L4,
- /// Pixel is 4-bit luminance with an alpha channel
- La4,
- /// Pixel contains 4-bit R, G and B channels
- Rgb4,
- /// Pixel is 4-bit RGB with an alpha channel
- Rgba4,
- /// Pixel is 8-bit luminance
- L8,
- /// Pixel is 8-bit luminance with an alpha channel
- La8,
- /// Pixel contains 8-bit R, G and B channels
- Rgb8,
- /// Pixel is 8-bit RGB with an alpha channel
- Rgba8,
- /// Pixel is 16-bit luminance
- L16,
- /// Pixel is 16-bit luminance with an alpha channel
- La16,
- /// Pixel contains 16-bit R, G and B channels
- Rgb16,
- /// Pixel is 16-bit RGB with an alpha channel
- Rgba16,
- /// Pixel contains 8-bit B, G and R channels
- Bgr8,
- /// Pixel is 8-bit BGR with an alpha channel
- Bgra8,
-
- // TODO f16 types?
- /// Pixel is 32-bit float RGB
- Rgb32F,
- /// Pixel is 32-bit float RGBA
- Rgba32F,
-
- /// Pixel is of unknown color type with the specified bits per pixel. This can apply to pixels
- /// which are associated with an external palette. In that case, the pixel value is an index
- /// into the palette.
- Unknown(u8),
-}
-
-impl ExtendedColorType {
- /// Get the number of channels for colors of this type.
- ///
- /// Note that the `Unknown` variant returns a value of `1` since pixels can only be treated as
- /// an opaque datum by the library.
- pub fn channel_count(self) -> u8 {
- match self {
- ExtendedColorType::A8
- | ExtendedColorType::L1
- | ExtendedColorType::L2
- | ExtendedColorType::L4
- | ExtendedColorType::L8
- | ExtendedColorType::L16
- | ExtendedColorType::Unknown(_) => 1,
- ExtendedColorType::La1
- | ExtendedColorType::La2
- | ExtendedColorType::La4
- | ExtendedColorType::La8
- | ExtendedColorType::La16 => 2,
- ExtendedColorType::Rgb1
- | ExtendedColorType::Rgb2
- | ExtendedColorType::Rgb4
- | ExtendedColorType::Rgb8
- | ExtendedColorType::Rgb16
- | ExtendedColorType::Rgb32F
- | ExtendedColorType::Bgr8 => 3,
- ExtendedColorType::Rgba1
- | ExtendedColorType::Rgba2
- | ExtendedColorType::Rgba4
- | ExtendedColorType::Rgba8
- | ExtendedColorType::Rgba16
- | ExtendedColorType::Rgba32F
- | ExtendedColorType::Bgra8 => 4,
- }
- }
-}
-impl From<ColorType> for ExtendedColorType {
- fn from(c: ColorType) -> Self {
- match c {
- ColorType::L8 => ExtendedColorType::L8,
- ColorType::La8 => ExtendedColorType::La8,
- ColorType::Rgb8 => ExtendedColorType::Rgb8,
- ColorType::Rgba8 => ExtendedColorType::Rgba8,
- ColorType::L16 => ExtendedColorType::L16,
- ColorType::La16 => ExtendedColorType::La16,
- ColorType::Rgb16 => ExtendedColorType::Rgb16,
- ColorType::Rgba16 => ExtendedColorType::Rgba16,
- ColorType::Rgb32F => ExtendedColorType::Rgb32F,
- ColorType::Rgba32F => ExtendedColorType::Rgba32F,
- }
- }
-}
-
-macro_rules! define_colors {
- {$(
- $(#[$doc:meta])*
- pub struct $ident:ident<T: $($bound:ident)*>([T; $channels:expr, $alphas:expr])
- = $interpretation:literal;
- )*} => {
-
-$( // START Structure definitions
-
-$(#[$doc])*
-#[derive(PartialEq, Eq, Clone, Debug, Copy, Hash)]
-#[repr(C)]
-#[allow(missing_docs)]
-pub struct $ident<T> (pub [T; $channels]);
-
-impl<T: $($bound+)*> Pixel for $ident<T> {
- type Subpixel = T;
-
- const CHANNEL_COUNT: u8 = $channels;
-
- #[inline(always)]
- fn channels(&self) -> &[T] {
- &self.0
- }
-
- #[inline(always)]
- fn channels_mut(&mut self) -> &mut [T] {
- &mut self.0
- }
-
- const COLOR_MODEL: &'static str = $interpretation;
-
- fn channels4(&self) -> (T, T, T, T) {
- const CHANNELS: usize = $channels;
- let mut channels = [T::DEFAULT_MAX_VALUE; 4];
- channels[0..CHANNELS].copy_from_slice(&self.0);
- (channels[0], channels[1], channels[2], channels[3])
- }
-
- fn from_channels(a: T, b: T, c: T, d: T,) -> $ident<T> {
- const CHANNELS: usize = $channels;
- *<$ident<T> as Pixel>::from_slice(&[a, b, c, d][..CHANNELS])
- }
-
- fn from_slice(slice: &[T]) -> &$ident<T> {
- assert_eq!(slice.len(), $channels);
- unsafe { &*(slice.as_ptr() as *const $ident<T>) }
- }
- fn from_slice_mut(slice: &mut [T]) -> &mut $ident<T> {
- assert_eq!(slice.len(), $channels);
- unsafe { &mut *(slice.as_mut_ptr() as *mut $ident<T>) }
- }
-
- fn to_rgb(&self) -> Rgb<T> {
- let mut pix = Rgb([Zero::zero(), Zero::zero(), Zero::zero()]);
- pix.from_color(self);
- pix
- }
-
- fn to_rgba(&self) -> Rgba<T> {
- let mut pix = Rgba([Zero::zero(), Zero::zero(), Zero::zero(), Zero::zero()]);
- pix.from_color(self);
- pix
- }
-
- fn to_luma(&self) -> Luma<T> {
- let mut pix = Luma([Zero::zero()]);
- pix.from_color(self);
- pix
- }
-
- fn to_luma_alpha(&self) -> LumaA<T> {
- let mut pix = LumaA([Zero::zero(), Zero::zero()]);
- pix.from_color(self);
- pix
- }
-
- fn map<F>(& self, f: F) -> $ident<T> where F: FnMut(T) -> T {
- let mut this = (*self).clone();
- this.apply(f);
- this
- }
-
- fn apply<F>(&mut self, mut f: F) where F: FnMut(T) -> T {
- for v in &mut self.0 {
- *v = f(*v)
- }
- }
-
- fn map_with_alpha<F, G>(&self, f: F, g: G) -> $ident<T> where F: FnMut(T) -> T, G: FnMut(T) -> T {
- let mut this = (*self).clone();
- this.apply_with_alpha(f, g);
- this
- }
-
- fn apply_with_alpha<F, G>(&mut self, mut f: F, mut g: G) where F: FnMut(T) -> T, G: FnMut(T) -> T {
- const ALPHA: usize = $channels - $alphas;
- for v in self.0[..ALPHA].iter_mut() {
- *v = f(*v)
- }
- // The branch of this match is `const`. This way ensures that no subexpression fails the
- // `const_err` lint (the expression `self.0[ALPHA]` would).
- if let Some(v) = self.0.get_mut(ALPHA) {
- *v = g(*v)
- }
- }
-
- fn map2<F>(&self, other: &Self, f: F) -> $ident<T> where F: FnMut(T, T) -> T {
- let mut this = (*self).clone();
- this.apply2(other, f);
- this
- }
-
- fn apply2<F>(&mut self, other: &$ident<T>, mut f: F) where F: FnMut(T, T) -> T {
- for (a, &b) in self.0.iter_mut().zip(other.0.iter()) {
- *a = f(*a, b)
- }
- }
-
- fn invert(&mut self) {
- Invert::invert(self)
- }
-
- fn blend(&mut self, other: &$ident<T>) {
- Blend::blend(self, other)
- }
-}
-
-impl<T> Index<usize> for $ident<T> {
- type Output = T;
- #[inline(always)]
- fn index(&self, _index: usize) -> &T {
- &self.0[_index]
- }
-}
-
-impl<T> IndexMut<usize> for $ident<T> {
- #[inline(always)]
- fn index_mut(&mut self, _index: usize) -> &mut T {
- &mut self.0[_index]
- }
-}
-
-impl<T> From<[T; $channels]> for $ident<T> {
- fn from(c: [T; $channels]) -> Self {
- Self(c)
- }
-}
-
-)* // END Structure definitions
-
- }
-}
-
-define_colors! {
- /// RGB colors.
- ///
- /// For the purpose of color conversion, as well as blending, the implementation of `Pixel`
- /// assumes an `sRGB` color space of its data.
- pub struct Rgb<T: Primitive Enlargeable>([T; 3, 0]) = "RGB";
- /// Grayscale colors.
- pub struct Luma<T: Primitive>([T; 1, 0]) = "Y";
- /// RGB colors + alpha channel
- pub struct Rgba<T: Primitive Enlargeable>([T; 4, 1]) = "RGBA";
- /// Grayscale colors + alpha channel
- pub struct LumaA<T: Primitive>([T; 2, 1]) = "YA";
-}
-
-/// Convert from one pixel component type to another. For example, convert from `u8` to `f32` pixel values.
-pub trait FromPrimitive<Component> {
- /// Converts from any pixel component type to this type.
- fn from_primitive(component: Component) -> Self;
-}
-
-impl<T: Primitive> FromPrimitive<T> for T {
- fn from_primitive(sample: T) -> Self {
- sample
- }
-}
-
-// from f32:
-// Note that in to-integer-conversion we are performing rounding but NumCast::from is implemented
-// as truncate towards zero. We emulate rounding by adding a bias.
-
-impl FromPrimitive<f32> for u8 {
- fn from_primitive(float: f32) -> Self {
- let inner = (float.clamp(0.0, 1.0) * u8::MAX as f32).round();
- NumCast::from(inner).unwrap()
- }
-}
-
-impl FromPrimitive<f32> for u16 {
- fn from_primitive(float: f32) -> Self {
- let inner = (float.clamp(0.0, 1.0) * u16::MAX as f32).round();
- NumCast::from(inner).unwrap()
- }
-}
-
-// from u16:
-
-impl FromPrimitive<u16> for u8 {
- fn from_primitive(c16: u16) -> Self {
- fn from(c: impl Into<u32>) -> u32 {
- c.into()
- }
- // The input c is the numerator of `c / u16::MAX`.
- // Derive numerator of `num / u8::MAX`, with rounding.
- //
- // This method is based on the inverse (see FromPrimitive<u8> for u16) and was tested
- // exhaustively in Python. It's the same as the reference function:
- // round(c * (2**8 - 1) / (2**16 - 1))
- NumCast::from((from(c16) + 128) / 257).unwrap()
- }
-}
-
-impl FromPrimitive<u16> for f32 {
- fn from_primitive(int: u16) -> Self {
- (int as f32 / u16::MAX as f32).clamp(0.0, 1.0)
- }
-}
-
-// from u8:
-
-impl FromPrimitive<u8> for f32 {
- fn from_primitive(int: u8) -> Self {
- (int as f32 / u8::MAX as f32).clamp(0.0, 1.0)
- }
-}
-
-impl FromPrimitive<u8> for u16 {
- fn from_primitive(c8: u8) -> Self {
- let x = c8.to_u64().unwrap();
- NumCast::from((x << 8) | x).unwrap()
- }
-}
-
-/// Provides color conversions for the different pixel types.
-pub trait FromColor<Other> {
- /// Changes `self` to represent `Other` in the color space of `Self`
- fn from_color(&mut self, _: &Other);
-}
-
-/// Copy-based conversions to target pixel types using `FromColor`.
-// FIXME: this trait should be removed and replaced with real color space models
-// rather than assuming sRGB.
-pub(crate) trait IntoColor<Other> {
- /// Constructs a pixel of the target type and converts this pixel into it.
- fn into_color(&self) -> Other;
-}
-
-impl<O, S> IntoColor<O> for S
-where
- O: Pixel + FromColor<S>,
-{
- fn into_color(&self) -> O {
- // Note we cannot use Pixel::CHANNELS_COUNT here to directly construct
- // the pixel due to a current bug/limitation of consts.
- #[allow(deprecated)]
- let mut pix = O::from_channels(Zero::zero(), Zero::zero(), Zero::zero(), Zero::zero());
- pix.from_color(self);
- pix
- }
-}
-
-/// Coefficients to transform from sRGB to a CIE Y (luminance) value.
-const SRGB_LUMA: [u32; 3] = [2126, 7152, 722];
-const SRGB_LUMA_DIV: u32 = 10000;
-
-#[inline]
-fn rgb_to_luma<T: Primitive + Enlargeable>(rgb: &[T]) -> T {
- let l = <T::Larger as NumCast>::from(SRGB_LUMA[0]).unwrap() * rgb[0].to_larger()
- + <T::Larger as NumCast>::from(SRGB_LUMA[1]).unwrap() * rgb[1].to_larger()
- + <T::Larger as NumCast>::from(SRGB_LUMA[2]).unwrap() * rgb[2].to_larger();
- T::clamp_from(l / <T::Larger as NumCast>::from(SRGB_LUMA_DIV).unwrap())
-}
-
-// `FromColor` for Luma
-impl<S: Primitive, T: Primitive> FromColor<Luma<S>> for Luma<T>
-where
- T: FromPrimitive<S>,
-{
- fn from_color(&mut self, other: &Luma<S>) {
- let own = self.channels_mut();
- let other = other.channels();
- own[0] = T::from_primitive(other[0]);
- }
-}
-
-impl<S: Primitive, T: Primitive> FromColor<LumaA<S>> for Luma<T>
-where
- T: FromPrimitive<S>,
-{
- fn from_color(&mut self, other: &LumaA<S>) {
- self.channels_mut()[0] = T::from_primitive(other.channels()[0])
- }
-}
-
-impl<S: Primitive + Enlargeable, T: Primitive> FromColor<Rgb<S>> for Luma<T>
-where
- T: FromPrimitive<S>,
-{
- fn from_color(&mut self, other: &Rgb<S>) {
- let gray = self.channels_mut();
- let rgb = other.channels();
- gray[0] = T::from_primitive(rgb_to_luma(rgb));
- }
-}
-
-impl<S: Primitive + Enlargeable, T: Primitive> FromColor<Rgba<S>> for Luma<T>
-where
- T: FromPrimitive<S>,
-{
- fn from_color(&mut self, other: &Rgba<S>) {
- let gray = self.channels_mut();
- let rgb = other.channels();
- let l = rgb_to_luma(rgb);
- gray[0] = T::from_primitive(l);
- }
-}
-
-// `FromColor` for LumaA
-
-impl<S: Primitive, T: Primitive> FromColor<LumaA<S>> for LumaA<T>
-where
- T: FromPrimitive<S>,
-{
- fn from_color(&mut self, other: &LumaA<S>) {
- let own = self.channels_mut();
- let other = other.channels();
- own[0] = T::from_primitive(other[0]);
- own[1] = T::from_primitive(other[1]);
- }
-}
-
-impl<S: Primitive + Enlargeable, T: Primitive> FromColor<Rgb<S>> for LumaA<T>
-where
- T: FromPrimitive<S>,
-{
- fn from_color(&mut self, other: &Rgb<S>) {
- let gray_a = self.channels_mut();
- let rgb = other.channels();
- gray_a[0] = T::from_primitive(rgb_to_luma(rgb));
- gray_a[1] = T::DEFAULT_MAX_VALUE;
- }
-}
-
-impl<S: Primitive + Enlargeable, T: Primitive> FromColor<Rgba<S>> for LumaA<T>
-where
- T: FromPrimitive<S>,
-{
- fn from_color(&mut self, other: &Rgba<S>) {
- let gray_a = self.channels_mut();
- let rgba = other.channels();
- gray_a[0] = T::from_primitive(rgb_to_luma(rgba));
- gray_a[1] = T::from_primitive(rgba[3]);
- }
-}
-
-impl<S: Primitive, T: Primitive> FromColor<Luma<S>> for LumaA<T>
-where
- T: FromPrimitive<S>,
-{
- fn from_color(&mut self, other: &Luma<S>) {
- let gray_a = self.channels_mut();
- gray_a[0] = T::from_primitive(other.channels()[0]);
- gray_a[1] = T::DEFAULT_MAX_VALUE;
- }
-}
-
-// `FromColor` for RGBA
-
-impl<S: Primitive, T: Primitive> FromColor<Rgba<S>> for Rgba<T>
-where
- T: FromPrimitive<S>,
-{
- fn from_color(&mut self, other: &Rgba<S>) {
- let own = &mut self.0;
- let other = &other.0;
- own[0] = T::from_primitive(other[0]);
- own[1] = T::from_primitive(other[1]);
- own[2] = T::from_primitive(other[2]);
- own[3] = T::from_primitive(other[3]);
- }
-}
-
-impl<S: Primitive, T: Primitive> FromColor<Rgb<S>> for Rgba<T>
-where
- T: FromPrimitive<S>,
-{
- fn from_color(&mut self, other: &Rgb<S>) {
- let rgba = &mut self.0;
- let rgb = &other.0;
- rgba[0] = T::from_primitive(rgb[0]);
- rgba[1] = T::from_primitive(rgb[1]);
- rgba[2] = T::from_primitive(rgb[2]);
- rgba[3] = T::DEFAULT_MAX_VALUE;
- }
-}
-
-impl<S: Primitive, T: Primitive> FromColor<LumaA<S>> for Rgba<T>
-where
- T: FromPrimitive<S>,
-{
- fn from_color(&mut self, gray: &LumaA<S>) {
- let rgba = &mut self.0;
- let gray = &gray.0;
- rgba[0] = T::from_primitive(gray[0]);
- rgba[1] = T::from_primitive(gray[0]);
- rgba[2] = T::from_primitive(gray[0]);
- rgba[3] = T::from_primitive(gray[1]);
- }
-}
-
-impl<S: Primitive, T: Primitive> FromColor<Luma<S>> for Rgba<T>
-where
- T: FromPrimitive<S>,
-{
- fn from_color(&mut self, gray: &Luma<S>) {
- let rgba = &mut self.0;
- let gray = gray.0[0];
- rgba[0] = T::from_primitive(gray);
- rgba[1] = T::from_primitive(gray);
- rgba[2] = T::from_primitive(gray);
- rgba[3] = T::DEFAULT_MAX_VALUE;
- }
-}
-
-// `FromColor` for RGB
-
-impl<S: Primitive, T: Primitive> FromColor<Rgb<S>> for Rgb<T>
-where
- T: FromPrimitive<S>,
-{
- fn from_color(&mut self, other: &Rgb<S>) {
- let own = &mut self.0;
- let other = &other.0;
- own[0] = T::from_primitive(other[0]);
- own[1] = T::from_primitive(other[1]);
- own[2] = T::from_primitive(other[2]);
- }
-}
-
-impl<S: Primitive, T: Primitive> FromColor<Rgba<S>> for Rgb<T>
-where
- T: FromPrimitive<S>,
-{
- fn from_color(&mut self, other: &Rgba<S>) {
- let rgb = &mut self.0;
- let rgba = &other.0;
- rgb[0] = T::from_primitive(rgba[0]);
- rgb[1] = T::from_primitive(rgba[1]);
- rgb[2] = T::from_primitive(rgba[2]);
- }
-}
-
-impl<S: Primitive, T: Primitive> FromColor<LumaA<S>> for Rgb<T>
-where
- T: FromPrimitive<S>,
-{
- fn from_color(&mut self, other: &LumaA<S>) {
- let rgb = &mut self.0;
- let gray = other.0[0];
- rgb[0] = T::from_primitive(gray);
- rgb[1] = T::from_primitive(gray);
- rgb[2] = T::from_primitive(gray);
- }
-}
-
-impl<S: Primitive, T: Primitive> FromColor<Luma<S>> for Rgb<T>
-where
- T: FromPrimitive<S>,
-{
- fn from_color(&mut self, other: &Luma<S>) {
- let rgb = &mut self.0;
- let gray = other.0[0];
- rgb[0] = T::from_primitive(gray);
- rgb[1] = T::from_primitive(gray);
- rgb[2] = T::from_primitive(gray);
- }
-}
-
-/// Blends a color inter another one
-pub(crate) trait Blend {
- /// Blends a color in-place.
- fn blend(&mut self, other: &Self);
-}
-
-impl<T: Primitive> Blend for LumaA<T> {
- fn blend(&mut self, other: &LumaA<T>) {
- let max_t = T::DEFAULT_MAX_VALUE;
- let max_t = max_t.to_f32().unwrap();
- let (bg_luma, bg_a) = (self.0[0], self.0[1]);
- let (fg_luma, fg_a) = (other.0[0], other.0[1]);
-
- let (bg_luma, bg_a) = (
- bg_luma.to_f32().unwrap() / max_t,
- bg_a.to_f32().unwrap() / max_t,
- );
- let (fg_luma, fg_a) = (
- fg_luma.to_f32().unwrap() / max_t,
- fg_a.to_f32().unwrap() / max_t,
- );
-
- let alpha_final = bg_a + fg_a - bg_a * fg_a;
- if alpha_final == 0.0 {
- return;
- };
- let bg_luma_a = bg_luma * bg_a;
- let fg_luma_a = fg_luma * fg_a;
-
- let out_luma_a = fg_luma_a + bg_luma_a * (1.0 - fg_a);
- let out_luma = out_luma_a / alpha_final;
-
- *self = LumaA([
- NumCast::from(max_t * out_luma).unwrap(),
- NumCast::from(max_t * alpha_final).unwrap(),
- ])
- }
-}
-
-impl<T: Primitive> Blend for Luma<T> {
- fn blend(&mut self, other: &Luma<T>) {
- *self = *other
- }
-}
-
-impl<T: Primitive> Blend for Rgba<T> {
- fn blend(&mut self, other: &Rgba<T>) {
- // http://stackoverflow.com/questions/7438263/alpha-compositing-algorithm-blend-modes#answer-11163848
-
- if other.0[3].is_zero() {
- return;
- }
- if other.0[3] == T::DEFAULT_MAX_VALUE {
- *self = *other;
- return;
- }
-
- // First, as we don't know what type our pixel is, we have to convert to floats between 0.0 and 1.0
- let max_t = T::DEFAULT_MAX_VALUE;
- let max_t = max_t.to_f32().unwrap();
- let (bg_r, bg_g, bg_b, bg_a) = (self.0[0], self.0[1], self.0[2], self.0[3]);
- let (fg_r, fg_g, fg_b, fg_a) = (other.0[0], other.0[1], other.0[2], other.0[3]);
- let (bg_r, bg_g, bg_b, bg_a) = (
- bg_r.to_f32().unwrap() / max_t,
- bg_g.to_f32().unwrap() / max_t,
- bg_b.to_f32().unwrap() / max_t,
- bg_a.to_f32().unwrap() / max_t,
- );
- let (fg_r, fg_g, fg_b, fg_a) = (
- fg_r.to_f32().unwrap() / max_t,
- fg_g.to_f32().unwrap() / max_t,
- fg_b.to_f32().unwrap() / max_t,
- fg_a.to_f32().unwrap() / max_t,
- );
-
- // Work out what the final alpha level will be
- let alpha_final = bg_a + fg_a - bg_a * fg_a;
- if alpha_final == 0.0 {
- return;
- };
-
- // We premultiply our channels by their alpha, as this makes it easier to calculate
- let (bg_r_a, bg_g_a, bg_b_a) = (bg_r * bg_a, bg_g * bg_a, bg_b * bg_a);
- let (fg_r_a, fg_g_a, fg_b_a) = (fg_r * fg_a, fg_g * fg_a, fg_b * fg_a);
-
- // Standard formula for src-over alpha compositing
- let (out_r_a, out_g_a, out_b_a) = (
- fg_r_a + bg_r_a * (1.0 - fg_a),
- fg_g_a + bg_g_a * (1.0 - fg_a),
- fg_b_a + bg_b_a * (1.0 - fg_a),
- );
-
- // Unmultiply the channels by our resultant alpha channel
- let (out_r, out_g, out_b) = (
- out_r_a / alpha_final,
- out_g_a / alpha_final,
- out_b_a / alpha_final,
- );
-
- // Cast back to our initial type on return
- *self = Rgba([
- NumCast::from(max_t * out_r).unwrap(),
- NumCast::from(max_t * out_g).unwrap(),
- NumCast::from(max_t * out_b).unwrap(),
- NumCast::from(max_t * alpha_final).unwrap(),
- ])
- }
-}
-
-impl<T: Primitive> Blend for Rgb<T> {
- fn blend(&mut self, other: &Rgb<T>) {
- *self = *other
- }
-}
-
-/// Invert a color
-pub(crate) trait Invert {
- /// Inverts a color in-place.
- fn invert(&mut self);
-}
-
-impl<T: Primitive> Invert for LumaA<T> {
- fn invert(&mut self) {
- let l = self.0;
- let max = T::DEFAULT_MAX_VALUE;
-
- *self = LumaA([max - l[0], l[1]])
- }
-}
-
-impl<T: Primitive> Invert for Luma<T> {
- fn invert(&mut self) {
- let l = self.0;
-
- let max = T::DEFAULT_MAX_VALUE;
- let l1 = max - l[0];
-
- *self = Luma([l1])
- }
-}
-
-impl<T: Primitive> Invert for Rgba<T> {
- fn invert(&mut self) {
- let rgba = self.0;
-
- let max = T::DEFAULT_MAX_VALUE;
-
- *self = Rgba([max - rgba[0], max - rgba[1], max - rgba[2], rgba[3]])
- }
-}
-
-impl<T: Primitive> Invert for Rgb<T> {
- fn invert(&mut self) {
- let rgb = self.0;
-
- let max = T::DEFAULT_MAX_VALUE;
-
- let r1 = max - rgb[0];
- let g1 = max - rgb[1];
- let b1 = max - rgb[2];
-
- *self = Rgb([r1, g1, b1])
- }
-}
-
-#[cfg(test)]
-mod tests {
- use super::{Luma, LumaA, Pixel, Rgb, Rgba};
-
- #[test]
- fn test_apply_with_alpha_rgba() {
- let mut rgba = Rgba([0, 0, 0, 0]);
- rgba.apply_with_alpha(|s| s, |_| 0xFF);
- assert_eq!(rgba, Rgba([0, 0, 0, 0xFF]));
- }
-
- #[test]
- fn test_apply_with_alpha_rgb() {
- let mut rgb = Rgb([0, 0, 0]);
- rgb.apply_with_alpha(|s| s, |_| panic!("bug"));
- assert_eq!(rgb, Rgb([0, 0, 0]));
- }
-
- #[test]
- fn test_map_with_alpha_rgba() {
- let rgba = Rgba([0, 0, 0, 0]).map_with_alpha(|s| s, |_| 0xFF);
- assert_eq!(rgba, Rgba([0, 0, 0, 0xFF]));
- }
-
- #[test]
- fn test_map_with_alpha_rgb() {
- let rgb = Rgb([0, 0, 0]).map_with_alpha(|s| s, |_| panic!("bug"));
- assert_eq!(rgb, Rgb([0, 0, 0]));
- }
-
- #[test]
- fn test_blend_luma_alpha() {
- let ref mut a = LumaA([255 as u8, 255]);
- let b = LumaA([255 as u8, 255]);
- a.blend(&b);
- assert_eq!(a.0[0], 255);
- assert_eq!(a.0[1], 255);
-
- let ref mut a = LumaA([255 as u8, 0]);
- let b = LumaA([255 as u8, 255]);
- a.blend(&b);
- assert_eq!(a.0[0], 255);
- assert_eq!(a.0[1], 255);
-
- let ref mut a = LumaA([255 as u8, 255]);
- let b = LumaA([255 as u8, 0]);
- a.blend(&b);
- assert_eq!(a.0[0], 255);
- assert_eq!(a.0[1], 255);
-
- let ref mut a = LumaA([255 as u8, 0]);
- let b = LumaA([255 as u8, 0]);
- a.blend(&b);
- assert_eq!(a.0[0], 255);
- assert_eq!(a.0[1], 0);
- }
-
- #[test]
- fn test_blend_rgba() {
- let ref mut a = Rgba([255 as u8, 255, 255, 255]);
- let b = Rgba([255 as u8, 255, 255, 255]);
- a.blend(&b);
- assert_eq!(a.0, [255, 255, 255, 255]);
-
- let ref mut a = Rgba([255 as u8, 255, 255, 0]);
- let b = Rgba([255 as u8, 255, 255, 255]);
- a.blend(&b);
- assert_eq!(a.0, [255, 255, 255, 255]);
-
- let ref mut a = Rgba([255 as u8, 255, 255, 255]);
- let b = Rgba([255 as u8, 255, 255, 0]);
- a.blend(&b);
- assert_eq!(a.0, [255, 255, 255, 255]);
-
- let ref mut a = Rgba([255 as u8, 255, 255, 0]);
- let b = Rgba([255 as u8, 255, 255, 0]);
- a.blend(&b);
- assert_eq!(a.0, [255, 255, 255, 0]);
- }
-
- #[test]
- fn test_apply_without_alpha_rgba() {
- let mut rgba = Rgba([0, 0, 0, 0]);
- rgba.apply_without_alpha(|s| s + 1);
- assert_eq!(rgba, Rgba([1, 1, 1, 0]));
- }
-
- #[test]
- fn test_apply_without_alpha_rgb() {
- let mut rgb = Rgb([0, 0, 0]);
- rgb.apply_without_alpha(|s| s + 1);
- assert_eq!(rgb, Rgb([1, 1, 1]));
- }
-
- #[test]
- fn test_map_without_alpha_rgba() {
- let rgba = Rgba([0, 0, 0, 0]).map_without_alpha(|s| s + 1);
- assert_eq!(rgba, Rgba([1, 1, 1, 0]));
- }
-
- #[test]
- fn test_map_without_alpha_rgb() {
- let rgb = Rgb([0, 0, 0]).map_without_alpha(|s| s + 1);
- assert_eq!(rgb, Rgb([1, 1, 1]));
- }
-
- macro_rules! test_lossless_conversion {
- ($a:ty, $b:ty, $c:ty) => {
- let a: $a = [<$a as Pixel>::Subpixel::DEFAULT_MAX_VALUE >> 2;
- <$a as Pixel>::CHANNEL_COUNT as usize]
- .into();
- let b: $b = a.into_color();
- let c: $c = b.into_color();
- assert_eq!(a.channels(), c.channels());
- };
- }
-
- #[test]
- fn test_lossless_conversions() {
- use super::IntoColor;
- use crate::traits::Primitive;
-
- test_lossless_conversion!(Luma<u8>, Luma<u16>, Luma<u8>);
- test_lossless_conversion!(LumaA<u8>, LumaA<u16>, LumaA<u8>);
- test_lossless_conversion!(Rgb<u8>, Rgb<u16>, Rgb<u8>);
- test_lossless_conversion!(Rgba<u8>, Rgba<u16>, Rgba<u8>);
- }
-
- #[test]
- fn accuracy_conversion() {
- use super::{Luma, Pixel, Rgb};
- let pixel = Rgb::from([13, 13, 13]);
- let Luma([luma]) = pixel.to_luma();
- assert_eq!(luma, 13);
- }
-}