aboutsummaryrefslogtreecommitdiff
path: root/vendor/image/src/imageops/sample.rs
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/image/src/imageops/sample.rs')
-rw-r--r--vendor/image/src/imageops/sample.rs1228
1 files changed, 1228 insertions, 0 deletions
diff --git a/vendor/image/src/imageops/sample.rs b/vendor/image/src/imageops/sample.rs
new file mode 100644
index 0000000..a362f83
--- /dev/null
+++ b/vendor/image/src/imageops/sample.rs
@@ -0,0 +1,1228 @@
+//! Functions and filters for the sampling of pixels.
+
+// See http://cs.brown.edu/courses/cs123/lectures/08_Image_Processing_IV.pdf
+// for some of the theory behind image scaling and convolution
+
+use std::f32;
+
+use num_traits::{NumCast, ToPrimitive, Zero};
+
+use crate::image::{GenericImage, GenericImageView};
+use crate::traits::{Enlargeable, Pixel, Primitive};
+use crate::utils::clamp;
+use crate::{ImageBuffer, Rgba32FImage};
+
+/// Available Sampling Filters.
+///
+/// ## Examples
+///
+/// To test the different sampling filters on a real example, you can find two
+/// examples called
+/// [`scaledown`](https://github.com/image-rs/image/tree/master/examples/scaledown)
+/// and
+/// [`scaleup`](https://github.com/image-rs/image/tree/master/examples/scaleup)
+/// in the `examples` directory of the crate source code.
+///
+/// Here is a 3.58 MiB
+/// [test image](https://github.com/image-rs/image/blob/master/examples/scaledown/test.jpg)
+/// that has been scaled down to 300x225 px:
+///
+/// <!-- NOTE: To test new test images locally, replace the GitHub path with `../../../docs/` -->
+/// <div style="display: flex; flex-wrap: wrap; align-items: flex-start;">
+/// <div style="margin: 0 8px 8px 0;">
+/// <img src="https://raw.githubusercontent.com/image-rs/image/master/examples/scaledown/scaledown-test-near.png" title="Nearest"><br>
+/// Nearest Neighbor
+/// </div>
+/// <div style="margin: 0 8px 8px 0;">
+/// <img src="https://raw.githubusercontent.com/image-rs/image/master/examples/scaledown/scaledown-test-tri.png" title="Triangle"><br>
+/// Linear: Triangle
+/// </div>
+/// <div style="margin: 0 8px 8px 0;">
+/// <img src="https://raw.githubusercontent.com/image-rs/image/master/examples/scaledown/scaledown-test-cmr.png" title="CatmullRom"><br>
+/// Cubic: Catmull-Rom
+/// </div>
+/// <div style="margin: 0 8px 8px 0;">
+/// <img src="https://raw.githubusercontent.com/image-rs/image/master/examples/scaledown/scaledown-test-gauss.png" title="Gaussian"><br>
+/// Gaussian
+/// </div>
+/// <div style="margin: 0 8px 8px 0;">
+/// <img src="https://raw.githubusercontent.com/image-rs/image/master/examples/scaledown/scaledown-test-lcz2.png" title="Lanczos3"><br>
+/// Lanczos with window 3
+/// </div>
+/// </div>
+///
+/// ## Speed
+///
+/// Time required to create each of the examples above, tested on an Intel
+/// i7-4770 CPU with Rust 1.37 in release mode:
+///
+/// <table style="width: auto;">
+/// <tr>
+/// <th>Nearest</th>
+/// <td>31 ms</td>
+/// </tr>
+/// <tr>
+/// <th>Triangle</th>
+/// <td>414 ms</td>
+/// </tr>
+/// <tr>
+/// <th>CatmullRom</th>
+/// <td>817 ms</td>
+/// </tr>
+/// <tr>
+/// <th>Gaussian</th>
+/// <td>1180 ms</td>
+/// </tr>
+/// <tr>
+/// <th>Lanczos3</th>
+/// <td>1170 ms</td>
+/// </tr>
+/// </table>
+#[derive(Clone, Copy, Debug, PartialEq)]
+pub enum FilterType {
+ /// Nearest Neighbor
+ Nearest,
+
+ /// Linear Filter
+ Triangle,
+
+ /// Cubic Filter
+ CatmullRom,
+
+ /// Gaussian Filter
+ Gaussian,
+
+ /// Lanczos with window 3
+ Lanczos3,
+}
+
+/// A Representation of a separable filter.
+pub(crate) struct Filter<'a> {
+ /// The filter's filter function.
+ pub(crate) kernel: Box<dyn Fn(f32) -> f32 + 'a>,
+
+ /// The window on which this filter operates.
+ pub(crate) support: f32,
+}
+
+struct FloatNearest(f32);
+
+// to_i64, to_u64, and to_f64 implicitly affect all other lower conversions.
+// Note that to_f64 by default calls to_i64 and thus needs to be overridden.
+impl ToPrimitive for FloatNearest {
+ // to_{i,u}64 is required, to_{i,u}{8,16} are useful.
+ // If a usecase for full 32 bits is found its trivial to add
+ fn to_i8(&self) -> Option<i8> {
+ self.0.round().to_i8()
+ }
+ fn to_i16(&self) -> Option<i16> {
+ self.0.round().to_i16()
+ }
+ fn to_i64(&self) -> Option<i64> {
+ self.0.round().to_i64()
+ }
+ fn to_u8(&self) -> Option<u8> {
+ self.0.round().to_u8()
+ }
+ fn to_u16(&self) -> Option<u16> {
+ self.0.round().to_u16()
+ }
+ fn to_u64(&self) -> Option<u64> {
+ self.0.round().to_u64()
+ }
+ fn to_f64(&self) -> Option<f64> {
+ self.0.to_f64()
+ }
+}
+
+// sinc function: the ideal sampling filter.
+fn sinc(t: f32) -> f32 {
+ let a = t * f32::consts::PI;
+
+ if t == 0.0 {
+ 1.0
+ } else {
+ a.sin() / a
+ }
+}
+
+// lanczos kernel function. A windowed sinc function.
+fn lanczos(x: f32, t: f32) -> f32 {
+ if x.abs() < t {
+ sinc(x) * sinc(x / t)
+ } else {
+ 0.0
+ }
+}
+
+// Calculate a splice based on the b and c parameters.
+// from authors Mitchell and Netravali.
+fn bc_cubic_spline(x: f32, b: f32, c: f32) -> f32 {
+ let a = x.abs();
+
+ let k = if a < 1.0 {
+ (12.0 - 9.0 * b - 6.0 * c) * a.powi(3)
+ + (-18.0 + 12.0 * b + 6.0 * c) * a.powi(2)
+ + (6.0 - 2.0 * b)
+ } else if a < 2.0 {
+ (-b - 6.0 * c) * a.powi(3)
+ + (6.0 * b + 30.0 * c) * a.powi(2)
+ + (-12.0 * b - 48.0 * c) * a
+ + (8.0 * b + 24.0 * c)
+ } else {
+ 0.0
+ };
+
+ k / 6.0
+}
+
+/// The Gaussian Function.
+/// ```r``` is the standard deviation.
+pub(crate) fn gaussian(x: f32, r: f32) -> f32 {
+ ((2.0 * f32::consts::PI).sqrt() * r).recip() * (-x.powi(2) / (2.0 * r.powi(2))).exp()
+}
+
+/// Calculate the lanczos kernel with a window of 3
+pub(crate) fn lanczos3_kernel(x: f32) -> f32 {
+ lanczos(x, 3.0)
+}
+
+/// Calculate the gaussian function with a
+/// standard deviation of 0.5
+pub(crate) fn gaussian_kernel(x: f32) -> f32 {
+ gaussian(x, 0.5)
+}
+
+/// Calculate the Catmull-Rom cubic spline.
+/// Also known as a form of `BiCubic` sampling in two dimensions.
+pub(crate) fn catmullrom_kernel(x: f32) -> f32 {
+ bc_cubic_spline(x, 0.0, 0.5)
+}
+
+/// Calculate the triangle function.
+/// Also known as `BiLinear` sampling in two dimensions.
+pub(crate) fn triangle_kernel(x: f32) -> f32 {
+ if x.abs() < 1.0 {
+ 1.0 - x.abs()
+ } else {
+ 0.0
+ }
+}
+
+/// Calculate the box kernel.
+/// Only pixels inside the box should be considered, and those
+/// contribute equally. So this method simply returns 1.
+pub(crate) fn box_kernel(_x: f32) -> f32 {
+ 1.0
+}
+
+// Sample the rows of the supplied image using the provided filter.
+// The height of the image remains unchanged.
+// ```new_width``` is the desired width of the new image
+// ```filter``` is the filter to use for sampling.
+// ```image``` is not necessarily Rgba and the order of channels is passed through.
+fn horizontal_sample<P, S>(
+ image: &Rgba32FImage,
+ new_width: u32,
+ filter: &mut Filter,
+) -> ImageBuffer<P, Vec<S>>
+where
+ P: Pixel<Subpixel = S> + 'static,
+ S: Primitive + 'static,
+{
+ let (width, height) = image.dimensions();
+ let mut out = ImageBuffer::new(new_width, height);
+ let mut ws = Vec::new();
+
+ let max: f32 = NumCast::from(S::DEFAULT_MAX_VALUE).unwrap();
+ let min: f32 = NumCast::from(S::DEFAULT_MIN_VALUE).unwrap();
+ let ratio = width as f32 / new_width as f32;
+ let sratio = if ratio < 1.0 { 1.0 } else { ratio };
+ let src_support = filter.support * sratio;
+
+ for outx in 0..new_width {
+ // Find the point in the input image corresponding to the centre
+ // of the current pixel in the output image.
+ let inputx = (outx as f32 + 0.5) * ratio;
+
+ // Left and right are slice bounds for the input pixels relevant
+ // to the output pixel we are calculating. Pixel x is relevant
+ // if and only if (x >= left) && (x < right).
+
+ // Invariant: 0 <= left < right <= width
+
+ let left = (inputx - src_support).floor() as i64;
+ let left = clamp(left, 0, <i64 as From<_>>::from(width) - 1) as u32;
+
+ let right = (inputx + src_support).ceil() as i64;
+ let right = clamp(
+ right,
+ <i64 as From<_>>::from(left) + 1,
+ <i64 as From<_>>::from(width),
+ ) as u32;
+
+ // Go back to left boundary of pixel, to properly compare with i
+ // below, as the kernel treats the centre of a pixel as 0.
+ let inputx = inputx - 0.5;
+
+ ws.clear();
+ let mut sum = 0.0;
+ for i in left..right {
+ let w = (filter.kernel)((i as f32 - inputx) / sratio);
+ ws.push(w);
+ sum += w;
+ }
+ ws.iter_mut().for_each(|w| *w /= sum);
+
+ for y in 0..height {
+ let mut t = (0.0, 0.0, 0.0, 0.0);
+
+ for (i, w) in ws.iter().enumerate() {
+ let p = image.get_pixel(left + i as u32, y);
+
+ #[allow(deprecated)]
+ let vec = p.channels4();
+
+ t.0 += vec.0 * w;
+ t.1 += vec.1 * w;
+ t.2 += vec.2 * w;
+ t.3 += vec.3 * w;
+ }
+
+ #[allow(deprecated)]
+ let t = Pixel::from_channels(
+ NumCast::from(FloatNearest(clamp(t.0, min, max))).unwrap(),
+ NumCast::from(FloatNearest(clamp(t.1, min, max))).unwrap(),
+ NumCast::from(FloatNearest(clamp(t.2, min, max))).unwrap(),
+ NumCast::from(FloatNearest(clamp(t.3, min, max))).unwrap(),
+ );
+
+ out.put_pixel(outx, y, t);
+ }
+ }
+
+ out
+}
+
+/// Linearly sample from an image using coordinates in [0, 1].
+pub fn sample_bilinear<P: Pixel>(
+ img: &impl GenericImageView<Pixel = P>,
+ u: f32,
+ v: f32,
+) -> Option<P> {
+ if ![u, v].iter().all(|c| (0.0..=1.0).contains(c)) {
+ return None;
+ }
+
+ let (w, h) = img.dimensions();
+ if w == 0 || h == 0 {
+ return None;
+ }
+
+ let ui = w as f32 * u - 0.5;
+ let vi = h as f32 * v - 0.5;
+ interpolate_bilinear(
+ img,
+ ui.max(0.).min((w - 1) as f32),
+ vi.max(0.).min((h - 1) as f32),
+ )
+}
+
+/// Sample from an image using coordinates in [0, 1], taking the nearest coordinate.
+pub fn sample_nearest<P: Pixel>(
+ img: &impl GenericImageView<Pixel = P>,
+ u: f32,
+ v: f32,
+) -> Option<P> {
+ if ![u, v].iter().all(|c| (0.0..=1.0).contains(c)) {
+ return None;
+ }
+
+ let (w, h) = img.dimensions();
+ let ui = w as f32 * u - 0.5;
+ let ui = ui.max(0.).min((w.saturating_sub(1)) as f32);
+
+ let vi = h as f32 * v - 0.5;
+ let vi = vi.max(0.).min((h.saturating_sub(1)) as f32);
+ interpolate_nearest(img, ui, vi)
+}
+
+/// Sample from an image using coordinates in [0, w-1] and [0, h-1], taking the
+/// nearest pixel.
+///
+/// Coordinates outside the image bounds will return `None`, however the
+/// behavior for points within half a pixel of the image bounds may change in
+/// the future.
+pub fn interpolate_nearest<P: Pixel>(
+ img: &impl GenericImageView<Pixel = P>,
+ x: f32,
+ y: f32,
+) -> Option<P> {
+ let (w, h) = img.dimensions();
+ if w == 0 || h == 0 {
+ return None;
+ }
+ if !(0.0..=((w - 1) as f32)).contains(&x) {
+ return None;
+ }
+ if !(0.0..=((h - 1) as f32)).contains(&y) {
+ return None;
+ }
+
+ Some(img.get_pixel(x.round() as u32, y.round() as u32))
+}
+
+/// Linearly sample from an image using coordinates in [0, w-1] and [0, h-1].
+pub fn interpolate_bilinear<P: Pixel>(
+ img: &impl GenericImageView<Pixel = P>,
+ x: f32,
+ y: f32,
+) -> Option<P> {
+ let (w, h) = img.dimensions();
+ if w == 0 || h == 0 {
+ return None;
+ }
+ if !(0.0..=((w - 1) as f32)).contains(&x) {
+ return None;
+ }
+ if !(0.0..=((h - 1) as f32)).contains(&y) {
+ return None;
+ }
+
+ let uf = x.floor();
+ let vf = y.floor();
+ let uc = (x + 1.).min((w - 1) as f32);
+ let vc = (y + 1.).min((h - 1) as f32);
+
+ // clamp coords to the range of the image
+ let coords = [[uf, vf], [uf, vc], [uc, vf], [uc, vc]];
+
+ assert!(coords
+ .iter()
+ .all(|&[u, v]| { img.in_bounds(u as u32, v as u32) }));
+ let samples = coords.map(|[u, v]| img.get_pixel(u as u32, v as u32));
+ assert!(P::CHANNEL_COUNT <= 4);
+
+ // convert samples to f32
+ // currently rgba is the largest one,
+ // so just store as many items as necessary,
+ // because there's not a simple way to be generic over all of them.
+ let [sff, sfc, scf, scc] = samples.map(|s| {
+ let mut out = [0.; 4];
+ for (i, c) in s.channels().iter().enumerate() {
+ out[i] = c.to_f32().unwrap();
+ }
+ out
+ });
+ // weights
+ let [ufw, vfw] = [x - uf, y - vf];
+ let [ucw, vcw] = [1. - ufw, 1. - vfw];
+
+ // https://en.wikipedia.org/wiki/Bilinear_interpolation#Weighted_mean
+ // the distance between pixels is 1 so there is no denominator
+ let wff = ucw * vcw;
+ let wfc = ucw * vfw;
+ let wcf = ufw * vcw;
+ let wcc = ufw * vfw;
+ assert!(f32::abs((wff + wfc + wcf + wcc) - 1.) < 1e-3);
+
+ // hack to get around not being able to construct a generic Pixel
+ let mut out = samples[0];
+ for (i, c) in out.channels_mut().iter_mut().enumerate() {
+ let v = wff * sff[i] + wfc * sfc[i] + wcf * scf[i] + wcc * scc[i];
+ // this rounding may introduce quantization errors,
+ // but cannot do anything about it.
+ *c = <P::Subpixel as NumCast>::from(v.round()).unwrap_or({
+ if v < 0.0 {
+ P::Subpixel::DEFAULT_MIN_VALUE
+ } else {
+ P::Subpixel::DEFAULT_MAX_VALUE
+ }
+ })
+ }
+ Some(out)
+}
+
+// Sample the columns of the supplied image using the provided filter.
+// The width of the image remains unchanged.
+// ```new_height``` is the desired height of the new image
+// ```filter``` is the filter to use for sampling.
+// The return value is not necessarily Rgba, the underlying order of channels in ```image``` is
+// preserved.
+fn vertical_sample<I, P, S>(image: &I, new_height: u32, filter: &mut Filter) -> Rgba32FImage
+where
+ I: GenericImageView<Pixel = P>,
+ P: Pixel<Subpixel = S> + 'static,
+ S: Primitive + 'static,
+{
+ let (width, height) = image.dimensions();
+ let mut out = ImageBuffer::new(width, new_height);
+ let mut ws = Vec::new();
+
+ let ratio = height as f32 / new_height as f32;
+ let sratio = if ratio < 1.0 { 1.0 } else { ratio };
+ let src_support = filter.support * sratio;
+
+ for outy in 0..new_height {
+ // For an explanation of this algorithm, see the comments
+ // in horizontal_sample.
+ let inputy = (outy as f32 + 0.5) * ratio;
+
+ let left = (inputy - src_support).floor() as i64;
+ let left = clamp(left, 0, <i64 as From<_>>::from(height) - 1) as u32;
+
+ let right = (inputy + src_support).ceil() as i64;
+ let right = clamp(
+ right,
+ <i64 as From<_>>::from(left) + 1,
+ <i64 as From<_>>::from(height),
+ ) as u32;
+
+ let inputy = inputy - 0.5;
+
+ ws.clear();
+ let mut sum = 0.0;
+ for i in left..right {
+ let w = (filter.kernel)((i as f32 - inputy) / sratio);
+ ws.push(w);
+ sum += w;
+ }
+ ws.iter_mut().for_each(|w| *w /= sum);
+
+ for x in 0..width {
+ let mut t = (0.0, 0.0, 0.0, 0.0);
+
+ for (i, w) in ws.iter().enumerate() {
+ let p = image.get_pixel(x, left + i as u32);
+
+ #[allow(deprecated)]
+ let (k1, k2, k3, k4) = p.channels4();
+ let vec: (f32, f32, f32, f32) = (
+ NumCast::from(k1).unwrap(),
+ NumCast::from(k2).unwrap(),
+ NumCast::from(k3).unwrap(),
+ NumCast::from(k4).unwrap(),
+ );
+
+ t.0 += vec.0 * w;
+ t.1 += vec.1 * w;
+ t.2 += vec.2 * w;
+ t.3 += vec.3 * w;
+ }
+
+ #[allow(deprecated)]
+ // This is not necessarily Rgba.
+ let t = Pixel::from_channels(t.0, t.1, t.2, t.3);
+
+ out.put_pixel(x, outy, t);
+ }
+ }
+
+ out
+}
+
+/// Local struct for keeping track of pixel sums for fast thumbnail averaging
+struct ThumbnailSum<S: Primitive + Enlargeable>(S::Larger, S::Larger, S::Larger, S::Larger);
+
+impl<S: Primitive + Enlargeable> ThumbnailSum<S> {
+ fn zeroed() -> Self {
+ ThumbnailSum(
+ S::Larger::zero(),
+ S::Larger::zero(),
+ S::Larger::zero(),
+ S::Larger::zero(),
+ )
+ }
+
+ fn sample_val(val: S) -> S::Larger {
+ <S::Larger as NumCast>::from(val).unwrap()
+ }
+
+ fn add_pixel<P: Pixel<Subpixel = S>>(&mut self, pixel: P) {
+ #[allow(deprecated)]
+ let pixel = pixel.channels4();
+ self.0 += Self::sample_val(pixel.0);
+ self.1 += Self::sample_val(pixel.1);
+ self.2 += Self::sample_val(pixel.2);
+ self.3 += Self::sample_val(pixel.3);
+ }
+}
+
+/// Resize the supplied image to the specific dimensions.
+///
+/// For downscaling, this method uses a fast integer algorithm where each source pixel contributes
+/// to exactly one target pixel. May give aliasing artifacts if new size is close to old size.
+///
+/// In case the current width is smaller than the new width or similar for the height, another
+/// strategy is used instead. For each pixel in the output, a rectangular region of the input is
+/// determined, just as previously. But when no input pixel is part of this region, the nearest
+/// pixels are interpolated instead.
+///
+/// For speed reasons, all interpolation is performed linearly over the colour values. It will not
+/// take the pixel colour spaces into account.
+pub fn thumbnail<I, P, S>(image: &I, new_width: u32, new_height: u32) -> ImageBuffer<P, Vec<S>>
+where
+ I: GenericImageView<Pixel = P>,
+ P: Pixel<Subpixel = S> + 'static,
+ S: Primitive + Enlargeable + 'static,
+{
+ let (width, height) = image.dimensions();
+ let mut out = ImageBuffer::new(new_width, new_height);
+
+ let x_ratio = width as f32 / new_width as f32;
+ let y_ratio = height as f32 / new_height as f32;
+
+ for outy in 0..new_height {
+ let bottomf = outy as f32 * y_ratio;
+ let topf = bottomf + y_ratio;
+
+ let bottom = clamp(bottomf.ceil() as u32, 0, height - 1);
+ let top = clamp(topf.ceil() as u32, bottom, height);
+
+ for outx in 0..new_width {
+ let leftf = outx as f32 * x_ratio;
+ let rightf = leftf + x_ratio;
+
+ let left = clamp(leftf.ceil() as u32, 0, width - 1);
+ let right = clamp(rightf.ceil() as u32, left, width);
+
+ let avg = if bottom != top && left != right {
+ thumbnail_sample_block(image, left, right, bottom, top)
+ } else if bottom != top {
+ // && left == right
+ // In the first column we have left == 0 and right > ceil(y_scale) > 0 so this
+ // assertion can never trigger.
+ debug_assert!(
+ left > 0 && right > 0,
+ "First output column must have corresponding pixels"
+ );
+
+ let fraction_horizontal = (leftf.fract() + rightf.fract()) / 2.;
+ thumbnail_sample_fraction_horizontal(
+ image,
+ right - 1,
+ fraction_horizontal,
+ bottom,
+ top,
+ )
+ } else if left != right {
+ // && bottom == top
+ // In the first line we have bottom == 0 and top > ceil(x_scale) > 0 so this
+ // assertion can never trigger.
+ debug_assert!(
+ bottom > 0 && top > 0,
+ "First output row must have corresponding pixels"
+ );
+
+ let fraction_vertical = (topf.fract() + bottomf.fract()) / 2.;
+ thumbnail_sample_fraction_vertical(image, left, right, top - 1, fraction_vertical)
+ } else {
+ // bottom == top && left == right
+ let fraction_horizontal = (topf.fract() + bottomf.fract()) / 2.;
+ let fraction_vertical = (leftf.fract() + rightf.fract()) / 2.;
+
+ thumbnail_sample_fraction_both(
+ image,
+ right - 1,
+ fraction_horizontal,
+ top - 1,
+ fraction_vertical,
+ )
+ };
+
+ #[allow(deprecated)]
+ let pixel = Pixel::from_channels(avg.0, avg.1, avg.2, avg.3);
+ out.put_pixel(outx, outy, pixel);
+ }
+ }
+
+ out
+}
+
+/// Get a pixel for a thumbnail where the input window encloses at least a full pixel.
+fn thumbnail_sample_block<I, P, S>(
+ image: &I,
+ left: u32,
+ right: u32,
+ bottom: u32,
+ top: u32,
+) -> (S, S, S, S)
+where
+ I: GenericImageView<Pixel = P>,
+ P: Pixel<Subpixel = S>,
+ S: Primitive + Enlargeable,
+{
+ let mut sum = ThumbnailSum::zeroed();
+
+ for y in bottom..top {
+ for x in left..right {
+ let k = image.get_pixel(x, y);
+ sum.add_pixel(k);
+ }
+ }
+
+ let n = <S::Larger as NumCast>::from((right - left) * (top - bottom)).unwrap();
+ let round = <S::Larger as NumCast>::from(n / NumCast::from(2).unwrap()).unwrap();
+ (
+ S::clamp_from((sum.0 + round) / n),
+ S::clamp_from((sum.1 + round) / n),
+ S::clamp_from((sum.2 + round) / n),
+ S::clamp_from((sum.3 + round) / n),
+ )
+}
+
+/// Get a thumbnail pixel where the input window encloses at least a vertical pixel.
+fn thumbnail_sample_fraction_horizontal<I, P, S>(
+ image: &I,
+ left: u32,
+ fraction_horizontal: f32,
+ bottom: u32,
+ top: u32,
+) -> (S, S, S, S)
+where
+ I: GenericImageView<Pixel = P>,
+ P: Pixel<Subpixel = S>,
+ S: Primitive + Enlargeable,
+{
+ let fract = fraction_horizontal;
+
+ let mut sum_left = ThumbnailSum::zeroed();
+ let mut sum_right = ThumbnailSum::zeroed();
+ for x in bottom..top {
+ let k_left = image.get_pixel(left, x);
+ sum_left.add_pixel(k_left);
+
+ let k_right = image.get_pixel(left + 1, x);
+ sum_right.add_pixel(k_right);
+ }
+
+ // Now we approximate: left/n*(1-fract) + right/n*fract
+ let fact_right = fract / ((top - bottom) as f32);
+ let fact_left = (1. - fract) / ((top - bottom) as f32);
+
+ let mix_left_and_right = |leftv: S::Larger, rightv: S::Larger| {
+ <S as NumCast>::from(
+ fact_left * leftv.to_f32().unwrap() + fact_right * rightv.to_f32().unwrap(),
+ )
+ .expect("Average sample value should fit into sample type")
+ };
+
+ (
+ mix_left_and_right(sum_left.0, sum_right.0),
+ mix_left_and_right(sum_left.1, sum_right.1),
+ mix_left_and_right(sum_left.2, sum_right.2),
+ mix_left_and_right(sum_left.3, sum_right.3),
+ )
+}
+
+/// Get a thumbnail pixel where the input window encloses at least a horizontal pixel.
+fn thumbnail_sample_fraction_vertical<I, P, S>(
+ image: &I,
+ left: u32,
+ right: u32,
+ bottom: u32,
+ fraction_vertical: f32,
+) -> (S, S, S, S)
+where
+ I: GenericImageView<Pixel = P>,
+ P: Pixel<Subpixel = S>,
+ S: Primitive + Enlargeable,
+{
+ let fract = fraction_vertical;
+
+ let mut sum_bot = ThumbnailSum::zeroed();
+ let mut sum_top = ThumbnailSum::zeroed();
+ for x in left..right {
+ let k_bot = image.get_pixel(x, bottom);
+ sum_bot.add_pixel(k_bot);
+
+ let k_top = image.get_pixel(x, bottom + 1);
+ sum_top.add_pixel(k_top);
+ }
+
+ // Now we approximate: bot/n*fract + top/n*(1-fract)
+ let fact_top = fract / ((right - left) as f32);
+ let fact_bot = (1. - fract) / ((right - left) as f32);
+
+ let mix_bot_and_top = |botv: S::Larger, topv: S::Larger| {
+ <S as NumCast>::from(fact_bot * botv.to_f32().unwrap() + fact_top * topv.to_f32().unwrap())
+ .expect("Average sample value should fit into sample type")
+ };
+
+ (
+ mix_bot_and_top(sum_bot.0, sum_top.0),
+ mix_bot_and_top(sum_bot.1, sum_top.1),
+ mix_bot_and_top(sum_bot.2, sum_top.2),
+ mix_bot_and_top(sum_bot.3, sum_top.3),
+ )
+}
+
+/// Get a single pixel for a thumbnail where the input window does not enclose any full pixel.
+fn thumbnail_sample_fraction_both<I, P, S>(
+ image: &I,
+ left: u32,
+ fraction_vertical: f32,
+ bottom: u32,
+ fraction_horizontal: f32,
+) -> (S, S, S, S)
+where
+ I: GenericImageView<Pixel = P>,
+ P: Pixel<Subpixel = S>,
+ S: Primitive + Enlargeable,
+{
+ #[allow(deprecated)]
+ let k_bl = image.get_pixel(left, bottom).channels4();
+ #[allow(deprecated)]
+ let k_tl = image.get_pixel(left, bottom + 1).channels4();
+ #[allow(deprecated)]
+ let k_br = image.get_pixel(left + 1, bottom).channels4();
+ #[allow(deprecated)]
+ let k_tr = image.get_pixel(left + 1, bottom + 1).channels4();
+
+ let frac_v = fraction_vertical;
+ let frac_h = fraction_horizontal;
+
+ let fact_tr = frac_v * frac_h;
+ let fact_tl = frac_v * (1. - frac_h);
+ let fact_br = (1. - frac_v) * frac_h;
+ let fact_bl = (1. - frac_v) * (1. - frac_h);
+
+ let mix = |br: S, tr: S, bl: S, tl: S| {
+ <S as NumCast>::from(
+ fact_br * br.to_f32().unwrap()
+ + fact_tr * tr.to_f32().unwrap()
+ + fact_bl * bl.to_f32().unwrap()
+ + fact_tl * tl.to_f32().unwrap(),
+ )
+ .expect("Average sample value should fit into sample type")
+ };
+
+ (
+ mix(k_br.0, k_tr.0, k_bl.0, k_tl.0),
+ mix(k_br.1, k_tr.1, k_bl.1, k_tl.1),
+ mix(k_br.2, k_tr.2, k_bl.2, k_tl.2),
+ mix(k_br.3, k_tr.3, k_bl.3, k_tl.3),
+ )
+}
+
+/// Perform a 3x3 box filter on the supplied image.
+/// ```kernel``` is an array of the filter weights of length 9.
+pub fn filter3x3<I, P, S>(image: &I, kernel: &[f32]) -> ImageBuffer<P, Vec<S>>
+where
+ I: GenericImageView<Pixel = P>,
+ P: Pixel<Subpixel = S> + 'static,
+ S: Primitive + 'static,
+{
+ // The kernel's input positions relative to the current pixel.
+ let taps: &[(isize, isize)] = &[
+ (-1, -1),
+ (0, -1),
+ (1, -1),
+ (-1, 0),
+ (0, 0),
+ (1, 0),
+ (-1, 1),
+ (0, 1),
+ (1, 1),
+ ];
+
+ let (width, height) = image.dimensions();
+
+ let mut out = ImageBuffer::new(width, height);
+
+ let max = S::DEFAULT_MAX_VALUE;
+ let max: f32 = NumCast::from(max).unwrap();
+
+ let sum = match kernel.iter().fold(0.0, |s, &item| s + item) {
+ x if x == 0.0 => 1.0,
+ sum => sum,
+ };
+ let sum = (sum, sum, sum, sum);
+
+ for y in 1..height - 1 {
+ for x in 1..width - 1 {
+ let mut t = (0.0, 0.0, 0.0, 0.0);
+
+ // TODO: There is no need to recalculate the kernel for each pixel.
+ // Only a subtract and addition is needed for pixels after the first
+ // in each row.
+ for (&k, &(a, b)) in kernel.iter().zip(taps.iter()) {
+ let k = (k, k, k, k);
+ let x0 = x as isize + a;
+ let y0 = y as isize + b;
+
+ let p = image.get_pixel(x0 as u32, y0 as u32);
+
+ #[allow(deprecated)]
+ let (k1, k2, k3, k4) = p.channels4();
+
+ let vec: (f32, f32, f32, f32) = (
+ NumCast::from(k1).unwrap(),
+ NumCast::from(k2).unwrap(),
+ NumCast::from(k3).unwrap(),
+ NumCast::from(k4).unwrap(),
+ );
+
+ t.0 += vec.0 * k.0;
+ t.1 += vec.1 * k.1;
+ t.2 += vec.2 * k.2;
+ t.3 += vec.3 * k.3;
+ }
+
+ let (t1, t2, t3, t4) = (t.0 / sum.0, t.1 / sum.1, t.2 / sum.2, t.3 / sum.3);
+
+ #[allow(deprecated)]
+ let t = Pixel::from_channels(
+ NumCast::from(clamp(t1, 0.0, max)).unwrap(),
+ NumCast::from(clamp(t2, 0.0, max)).unwrap(),
+ NumCast::from(clamp(t3, 0.0, max)).unwrap(),
+ NumCast::from(clamp(t4, 0.0, max)).unwrap(),
+ );
+
+ out.put_pixel(x, y, t);
+ }
+ }
+
+ out
+}
+
+/// Resize the supplied image to the specified dimensions.
+/// ```nwidth``` and ```nheight``` are the new dimensions.
+/// ```filter``` is the sampling filter to use.
+pub fn resize<I: GenericImageView>(
+ image: &I,
+ nwidth: u32,
+ nheight: u32,
+ filter: FilterType,
+) -> ImageBuffer<I::Pixel, Vec<<I::Pixel as Pixel>::Subpixel>>
+where
+ I::Pixel: 'static,
+ <I::Pixel as Pixel>::Subpixel: 'static,
+{
+ // check if the new dimensions are the same as the old. if they are, make a copy instead of resampling
+ if (nwidth, nheight) == image.dimensions() {
+ let mut tmp = ImageBuffer::new(image.width(), image.height());
+ tmp.copy_from(image, 0, 0).unwrap();
+ return tmp;
+ }
+
+ let mut method = match filter {
+ FilterType::Nearest => Filter {
+ kernel: Box::new(box_kernel),
+ support: 0.0,
+ },
+ FilterType::Triangle => Filter {
+ kernel: Box::new(triangle_kernel),
+ support: 1.0,
+ },
+ FilterType::CatmullRom => Filter {
+ kernel: Box::new(catmullrom_kernel),
+ support: 2.0,
+ },
+ FilterType::Gaussian => Filter {
+ kernel: Box::new(gaussian_kernel),
+ support: 3.0,
+ },
+ FilterType::Lanczos3 => Filter {
+ kernel: Box::new(lanczos3_kernel),
+ support: 3.0,
+ },
+ };
+
+ // Note: tmp is not necessarily actually Rgba
+ let tmp: Rgba32FImage = vertical_sample(image, nheight, &mut method);
+ horizontal_sample(&tmp, nwidth, &mut method)
+}
+
+/// Performs a Gaussian blur on the supplied image.
+/// ```sigma``` is a measure of how much to blur by.
+pub fn blur<I: GenericImageView>(
+ image: &I,
+ sigma: f32,
+) -> ImageBuffer<I::Pixel, Vec<<I::Pixel as Pixel>::Subpixel>>
+where
+ I::Pixel: 'static,
+{
+ let sigma = if sigma <= 0.0 { 1.0 } else { sigma };
+
+ let mut method = Filter {
+ kernel: Box::new(|x| gaussian(x, sigma)),
+ support: 2.0 * sigma,
+ };
+
+ let (width, height) = image.dimensions();
+
+ // Keep width and height the same for horizontal and
+ // vertical sampling.
+ // Note: tmp is not necessarily actually Rgba
+ let tmp: Rgba32FImage = vertical_sample(image, height, &mut method);
+ horizontal_sample(&tmp, width, &mut method)
+}
+
+/// Performs an unsharpen mask on the supplied image.
+/// ```sigma``` is the amount to blur the image by.
+/// ```threshold``` is the threshold for minimal brightness change that will be sharpened.
+///
+/// See <https://en.wikipedia.org/wiki/Unsharp_masking#Digital_unsharp_masking>
+pub fn unsharpen<I, P, S>(image: &I, sigma: f32, threshold: i32) -> ImageBuffer<P, Vec<S>>
+where
+ I: GenericImageView<Pixel = P>,
+ P: Pixel<Subpixel = S> + 'static,
+ S: Primitive + 'static,
+{
+ let mut tmp = blur(image, sigma);
+
+ let max = S::DEFAULT_MAX_VALUE;
+ let max: i32 = NumCast::from(max).unwrap();
+ let (width, height) = image.dimensions();
+
+ for y in 0..height {
+ for x in 0..width {
+ let a = image.get_pixel(x, y);
+ let b = tmp.get_pixel_mut(x, y);
+
+ let p = a.map2(b, |c, d| {
+ let ic: i32 = NumCast::from(c).unwrap();
+ let id: i32 = NumCast::from(d).unwrap();
+
+ let diff = (ic - id).abs();
+
+ if diff > threshold {
+ let e = clamp(ic + diff, 0, max); // FIXME what does this do for f32? clamp 0-1 integers??
+
+ NumCast::from(e).unwrap()
+ } else {
+ c
+ }
+ });
+
+ *b = p;
+ }
+ }
+
+ tmp
+}
+
+#[cfg(test)]
+mod tests {
+ use super::{resize, sample_bilinear, sample_nearest, FilterType};
+ use crate::{GenericImageView, ImageBuffer, RgbImage};
+ #[cfg(feature = "benchmarks")]
+ use test;
+
+ #[bench]
+ #[cfg(all(feature = "benchmarks", feature = "png"))]
+ fn bench_resize(b: &mut test::Bencher) {
+ use std::path::Path;
+ let img = crate::open(&Path::new("./examples/fractal.png")).unwrap();
+ b.iter(|| {
+ test::black_box(resize(&img, 200, 200, FilterType::Nearest));
+ });
+ b.bytes = 800 * 800 * 3 + 200 * 200 * 3;
+ }
+
+ #[test]
+ #[cfg(feature = "png")]
+ fn test_resize_same_size() {
+ use std::path::Path;
+ let img = crate::open(&Path::new("./examples/fractal.png")).unwrap();
+ let resize = img.resize(img.width(), img.height(), FilterType::Triangle);
+ assert!(img.pixels().eq(resize.pixels()))
+ }
+
+ #[test]
+ #[cfg(feature = "png")]
+ fn test_sample_bilinear() {
+ use std::path::Path;
+ let img = crate::open(&Path::new("./examples/fractal.png")).unwrap();
+ assert!(sample_bilinear(&img, 0., 0.).is_some());
+ assert!(sample_bilinear(&img, 1., 0.).is_some());
+ assert!(sample_bilinear(&img, 0., 1.).is_some());
+ assert!(sample_bilinear(&img, 1., 1.).is_some());
+ assert!(sample_bilinear(&img, 0.5, 0.5).is_some());
+
+ assert!(sample_bilinear(&img, 1.2, 0.5).is_none());
+ assert!(sample_bilinear(&img, 0.5, 1.2).is_none());
+ assert!(sample_bilinear(&img, 1.2, 1.2).is_none());
+
+ assert!(sample_bilinear(&img, -0.1, 0.2).is_none());
+ assert!(sample_bilinear(&img, 0.2, -0.1).is_none());
+ assert!(sample_bilinear(&img, -0.1, -0.1).is_none());
+ }
+ #[test]
+ #[cfg(feature = "png")]
+ fn test_sample_nearest() {
+ use std::path::Path;
+ let img = crate::open(&Path::new("./examples/fractal.png")).unwrap();
+ assert!(sample_nearest(&img, 0., 0.).is_some());
+ assert!(sample_nearest(&img, 1., 0.).is_some());
+ assert!(sample_nearest(&img, 0., 1.).is_some());
+ assert!(sample_nearest(&img, 1., 1.).is_some());
+ assert!(sample_nearest(&img, 0.5, 0.5).is_some());
+
+ assert!(sample_nearest(&img, 1.2, 0.5).is_none());
+ assert!(sample_nearest(&img, 0.5, 1.2).is_none());
+ assert!(sample_nearest(&img, 1.2, 1.2).is_none());
+
+ assert!(sample_nearest(&img, -0.1, 0.2).is_none());
+ assert!(sample_nearest(&img, 0.2, -0.1).is_none());
+ assert!(sample_nearest(&img, -0.1, -0.1).is_none());
+ }
+ #[test]
+ fn test_sample_bilinear_correctness() {
+ use crate::Rgba;
+ let img = ImageBuffer::from_fn(2, 2, |x, y| match (x, y) {
+ (0, 0) => Rgba([255, 0, 0, 0]),
+ (0, 1) => Rgba([0, 255, 0, 0]),
+ (1, 0) => Rgba([0, 0, 255, 0]),
+ (1, 1) => Rgba([0, 0, 0, 255]),
+ _ => panic!(),
+ });
+ assert_eq!(sample_bilinear(&img, 0.5, 0.5), Some(Rgba([64; 4])));
+ assert_eq!(sample_bilinear(&img, 0.0, 0.0), Some(Rgba([255, 0, 0, 0])));
+ assert_eq!(sample_bilinear(&img, 0.0, 1.0), Some(Rgba([0, 255, 0, 0])));
+ assert_eq!(sample_bilinear(&img, 1.0, 0.0), Some(Rgba([0, 0, 255, 0])));
+ assert_eq!(sample_bilinear(&img, 1.0, 1.0), Some(Rgba([0, 0, 0, 255])));
+
+ assert_eq!(
+ sample_bilinear(&img, 0.5, 0.0),
+ Some(Rgba([128, 0, 128, 0]))
+ );
+ assert_eq!(
+ sample_bilinear(&img, 0.0, 0.5),
+ Some(Rgba([128, 128, 0, 0]))
+ );
+ assert_eq!(
+ sample_bilinear(&img, 0.5, 1.0),
+ Some(Rgba([0, 128, 0, 128]))
+ );
+ assert_eq!(
+ sample_bilinear(&img, 1.0, 0.5),
+ Some(Rgba([0, 0, 128, 128]))
+ );
+ }
+ #[test]
+ fn test_sample_nearest_correctness() {
+ use crate::Rgba;
+ let img = ImageBuffer::from_fn(2, 2, |x, y| match (x, y) {
+ (0, 0) => Rgba([255, 0, 0, 0]),
+ (0, 1) => Rgba([0, 255, 0, 0]),
+ (1, 0) => Rgba([0, 0, 255, 0]),
+ (1, 1) => Rgba([0, 0, 0, 255]),
+ _ => panic!(),
+ });
+
+ assert_eq!(sample_nearest(&img, 0.0, 0.0), Some(Rgba([255, 0, 0, 0])));
+ assert_eq!(sample_nearest(&img, 0.0, 1.0), Some(Rgba([0, 255, 0, 0])));
+ assert_eq!(sample_nearest(&img, 1.0, 0.0), Some(Rgba([0, 0, 255, 0])));
+ assert_eq!(sample_nearest(&img, 1.0, 1.0), Some(Rgba([0, 0, 0, 255])));
+
+ assert_eq!(sample_nearest(&img, 0.5, 0.5), Some(Rgba([0, 0, 0, 255])));
+ assert_eq!(sample_nearest(&img, 0.5, 0.0), Some(Rgba([0, 0, 255, 0])));
+ assert_eq!(sample_nearest(&img, 0.0, 0.5), Some(Rgba([0, 255, 0, 0])));
+ assert_eq!(sample_nearest(&img, 0.5, 1.0), Some(Rgba([0, 0, 0, 255])));
+ assert_eq!(sample_nearest(&img, 1.0, 0.5), Some(Rgba([0, 0, 0, 255])));
+ }
+
+ #[bench]
+ #[cfg(all(feature = "benchmarks", feature = "tiff"))]
+ fn bench_resize_same_size(b: &mut test::Bencher) {
+ let path = concat!(
+ env!("CARGO_MANIFEST_DIR"),
+ "/tests/images/tiff/testsuite/mandrill.tiff"
+ );
+ let image = crate::open(path).unwrap();
+ b.iter(|| {
+ test::black_box(image.resize(image.width(), image.height(), FilterType::CatmullRom));
+ });
+ b.bytes = (image.width() * image.height() * 3) as u64;
+ }
+
+ #[test]
+ fn test_issue_186() {
+ let img: RgbImage = ImageBuffer::new(100, 100);
+ let _ = resize(&img, 50, 50, FilterType::Lanczos3);
+ }
+
+ #[bench]
+ #[cfg(all(feature = "benchmarks", feature = "tiff"))]
+ fn bench_thumbnail(b: &mut test::Bencher) {
+ let path = concat!(
+ env!("CARGO_MANIFEST_DIR"),
+ "/tests/images/tiff/testsuite/mandrill.tiff"
+ );
+ let image = crate::open(path).unwrap();
+ b.iter(|| {
+ test::black_box(image.thumbnail(256, 256));
+ });
+ b.bytes = 512 * 512 * 4 + 256 * 256 * 4;
+ }
+
+ #[bench]
+ #[cfg(all(feature = "benchmarks", feature = "tiff"))]
+ fn bench_thumbnail_upsize(b: &mut test::Bencher) {
+ let path = concat!(
+ env!("CARGO_MANIFEST_DIR"),
+ "/tests/images/tiff/testsuite/mandrill.tiff"
+ );
+ let image = crate::open(path).unwrap().thumbnail(256, 256);
+ b.iter(|| {
+ test::black_box(image.thumbnail(512, 512));
+ });
+ b.bytes = 512 * 512 * 4 + 256 * 256 * 4;
+ }
+
+ #[bench]
+ #[cfg(all(feature = "benchmarks", feature = "tiff"))]
+ fn bench_thumbnail_upsize_irregular(b: &mut test::Bencher) {
+ let path = concat!(
+ env!("CARGO_MANIFEST_DIR"),
+ "/tests/images/tiff/testsuite/mandrill.tiff"
+ );
+ let image = crate::open(path).unwrap().thumbnail(193, 193);
+ b.iter(|| {
+ test::black_box(image.thumbnail(256, 256));
+ });
+ b.bytes = 193 * 193 * 4 + 256 * 256 * 4;
+ }
+
+ #[test]
+ #[cfg(feature = "png")]
+ fn resize_transparent_image() {
+ use super::FilterType::{CatmullRom, Gaussian, Lanczos3, Nearest, Triangle};
+ use crate::imageops::crop_imm;
+ use crate::RgbaImage;
+
+ fn assert_resize(image: &RgbaImage, filter: FilterType) {
+ let resized = resize(image, 16, 16, filter);
+ let cropped = crop_imm(&resized, 5, 5, 6, 6).to_image();
+ for pixel in cropped.pixels() {
+ let alpha = pixel.0[3];
+ assert!(
+ alpha != 254 && alpha != 253,
+ "alpha value: {}, {:?}",
+ alpha,
+ filter
+ );
+ }
+ }
+
+ let path = concat!(
+ env!("CARGO_MANIFEST_DIR"),
+ "/tests/images/png/transparency/tp1n3p08.png"
+ );
+ let img = crate::open(path).unwrap();
+ let rgba8 = img.as_rgba8().unwrap();
+ let filters = &[Nearest, Triangle, CatmullRom, Gaussian, Lanczos3];
+ for filter in filters {
+ assert_resize(rgba8, *filter);
+ }
+ }
+
+ #[test]
+ fn bug_1600() {
+ let image = crate::RgbaImage::from_raw(629, 627, vec![255; 629 * 627 * 4]).unwrap();
+ let result = resize(&image, 22, 22, FilterType::Lanczos3);
+ assert!(result.into_raw().into_iter().any(|c| c != 0));
+ }
+}