aboutsummaryrefslogtreecommitdiff
path: root/vendor/indicatif/src/state.rs
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/indicatif/src/state.rs')
-rw-r--r--vendor/indicatif/src/state.rs798
1 files changed, 0 insertions, 798 deletions
diff --git a/vendor/indicatif/src/state.rs b/vendor/indicatif/src/state.rs
deleted file mode 100644
index 3bcdc44..0000000
--- a/vendor/indicatif/src/state.rs
+++ /dev/null
@@ -1,798 +0,0 @@
-use std::borrow::Cow;
-use std::io;
-use std::sync::Arc;
-use std::time::Duration;
-#[cfg(not(target_arch = "wasm32"))]
-use std::time::Instant;
-
-#[cfg(target_arch = "wasm32")]
-use instant::Instant;
-use portable_atomic::{AtomicU64, AtomicU8, Ordering};
-
-use crate::draw_target::ProgressDrawTarget;
-use crate::style::ProgressStyle;
-
-pub(crate) struct BarState {
- pub(crate) draw_target: ProgressDrawTarget,
- pub(crate) on_finish: ProgressFinish,
- pub(crate) style: ProgressStyle,
- pub(crate) state: ProgressState,
- pub(crate) tab_width: usize,
-}
-
-impl BarState {
- pub(crate) fn new(
- len: Option<u64>,
- draw_target: ProgressDrawTarget,
- pos: Arc<AtomicPosition>,
- ) -> Self {
- Self {
- draw_target,
- on_finish: ProgressFinish::default(),
- style: ProgressStyle::default_bar(),
- state: ProgressState::new(len, pos),
- tab_width: DEFAULT_TAB_WIDTH,
- }
- }
-
- /// Finishes the progress bar using the [`ProgressFinish`] behavior stored
- /// in the [`ProgressStyle`].
- pub(crate) fn finish_using_style(&mut self, now: Instant, finish: ProgressFinish) {
- self.state.status = Status::DoneVisible;
- match finish {
- ProgressFinish::AndLeave => {
- if let Some(len) = self.state.len {
- self.state.pos.set(len);
- }
- }
- ProgressFinish::WithMessage(msg) => {
- if let Some(len) = self.state.len {
- self.state.pos.set(len);
- }
- self.state.message = TabExpandedString::new(msg, self.tab_width);
- }
- ProgressFinish::AndClear => {
- if let Some(len) = self.state.len {
- self.state.pos.set(len);
- }
- self.state.status = Status::DoneHidden;
- }
- ProgressFinish::Abandon => {}
- ProgressFinish::AbandonWithMessage(msg) => {
- self.state.message = TabExpandedString::new(msg, self.tab_width);
- }
- }
-
- // There's no need to update the estimate here; once the `status` is no longer
- // `InProgress`, we will use the length and elapsed time to estimate.
- let _ = self.draw(true, now);
- }
-
- pub(crate) fn reset(&mut self, now: Instant, mode: Reset) {
- // Always reset the estimator; this is the only reset that will occur if mode is
- // `Reset::Eta`.
- self.state.est.reset(now);
-
- if let Reset::Elapsed | Reset::All = mode {
- self.state.started = now;
- }
-
- if let Reset::All = mode {
- self.state.pos.reset(now);
- self.state.status = Status::InProgress;
-
- for tracker in self.style.format_map.values_mut() {
- tracker.reset(&self.state, now);
- }
-
- let _ = self.draw(false, now);
- }
- }
-
- pub(crate) fn update(&mut self, now: Instant, f: impl FnOnce(&mut ProgressState), tick: bool) {
- f(&mut self.state);
- if tick {
- self.tick(now);
- }
- }
-
- pub(crate) fn set_length(&mut self, now: Instant, len: u64) {
- self.state.len = Some(len);
- self.update_estimate_and_draw(now);
- }
-
- pub(crate) fn inc_length(&mut self, now: Instant, delta: u64) {
- if let Some(len) = self.state.len {
- self.state.len = Some(len.saturating_add(delta));
- }
- self.update_estimate_and_draw(now);
- }
-
- pub(crate) fn set_tab_width(&mut self, tab_width: usize) {
- self.tab_width = tab_width;
- self.state.message.set_tab_width(tab_width);
- self.state.prefix.set_tab_width(tab_width);
- self.style.set_tab_width(tab_width);
- }
-
- pub(crate) fn set_style(&mut self, style: ProgressStyle) {
- self.style = style;
- self.style.set_tab_width(self.tab_width);
- }
-
- pub(crate) fn tick(&mut self, now: Instant) {
- self.state.tick = self.state.tick.saturating_add(1);
- self.update_estimate_and_draw(now);
- }
-
- pub(crate) fn update_estimate_and_draw(&mut self, now: Instant) {
- let pos = self.state.pos.pos.load(Ordering::Relaxed);
- self.state.est.record(pos, now);
-
- for tracker in self.style.format_map.values_mut() {
- tracker.tick(&self.state, now);
- }
-
- let _ = self.draw(false, now);
- }
-
- pub(crate) fn println(&mut self, now: Instant, msg: &str) {
- let width = self.draw_target.width();
- let mut drawable = match self.draw_target.drawable(true, now) {
- Some(drawable) => drawable,
- None => return,
- };
-
- let mut draw_state = drawable.state();
- let lines: Vec<String> = msg.lines().map(Into::into).collect();
- // Empty msg should trigger newline as we are in println
- if lines.is_empty() {
- draw_state.lines.push(String::new());
- } else {
- draw_state.lines.extend(lines);
- }
- draw_state.orphan_lines_count = draw_state.lines.len();
- if !matches!(self.state.status, Status::DoneHidden) {
- self.style
- .format_state(&self.state, &mut draw_state.lines, width);
- }
-
- drop(draw_state);
- let _ = drawable.draw();
- }
-
- pub(crate) fn suspend<F: FnOnce() -> R, R>(&mut self, now: Instant, f: F) -> R {
- if let Some((state, _)) = self.draw_target.remote() {
- return state.write().unwrap().suspend(f, now);
- }
-
- if let Some(drawable) = self.draw_target.drawable(true, now) {
- let _ = drawable.clear();
- }
-
- let ret = f();
- let _ = self.draw(true, Instant::now());
- ret
- }
-
- pub(crate) fn draw(&mut self, mut force_draw: bool, now: Instant) -> io::Result<()> {
- let width = self.draw_target.width();
-
- // `|= self.is_finished()` should not be needed here, but we used to always draw for
- // finished progress bars, so it's kept as to not cause compatibility issues in weird cases.
- force_draw |= self.state.is_finished();
- let mut drawable = match self.draw_target.drawable(force_draw, now) {
- Some(drawable) => drawable,
- None => return Ok(()),
- };
-
- let mut draw_state = drawable.state();
-
- if !matches!(self.state.status, Status::DoneHidden) {
- self.style
- .format_state(&self.state, &mut draw_state.lines, width);
- }
-
- drop(draw_state);
- drawable.draw()
- }
-}
-
-impl Drop for BarState {
- fn drop(&mut self) {
- // Progress bar is already finished. Do not need to do anything other than notify
- // the `MultiProgress` that we're now a zombie.
- if self.state.is_finished() {
- self.draw_target.mark_zombie();
- return;
- }
-
- self.finish_using_style(Instant::now(), self.on_finish.clone());
-
- // Notify the `MultiProgress` that we're now a zombie.
- self.draw_target.mark_zombie();
- }
-}
-
-pub(crate) enum Reset {
- Eta,
- Elapsed,
- All,
-}
-
-/// The state of a progress bar at a moment in time.
-#[non_exhaustive]
-pub struct ProgressState {
- pos: Arc<AtomicPosition>,
- len: Option<u64>,
- pub(crate) tick: u64,
- pub(crate) started: Instant,
- status: Status,
- est: Estimator,
- pub(crate) message: TabExpandedString,
- pub(crate) prefix: TabExpandedString,
-}
-
-impl ProgressState {
- pub(crate) fn new(len: Option<u64>, pos: Arc<AtomicPosition>) -> Self {
- let now = Instant::now();
- Self {
- pos,
- len,
- tick: 0,
- status: Status::InProgress,
- started: now,
- est: Estimator::new(now),
- message: TabExpandedString::NoTabs("".into()),
- prefix: TabExpandedString::NoTabs("".into()),
- }
- }
-
- /// Indicates that the progress bar finished.
- pub fn is_finished(&self) -> bool {
- match self.status {
- Status::InProgress => false,
- Status::DoneVisible => true,
- Status::DoneHidden => true,
- }
- }
-
- /// Returns the completion as a floating-point number between 0 and 1
- pub fn fraction(&self) -> f32 {
- let pos = self.pos.pos.load(Ordering::Relaxed);
- let pct = match (pos, self.len) {
- (_, None) => 0.0,
- (_, Some(0)) => 1.0,
- (0, _) => 0.0,
- (pos, Some(len)) => pos as f32 / len as f32,
- };
- pct.clamp(0.0, 1.0)
- }
-
- /// The expected ETA
- pub fn eta(&self) -> Duration {
- if self.is_finished() {
- return Duration::new(0, 0);
- }
-
- let len = match self.len {
- Some(len) => len,
- None => return Duration::new(0, 0),
- };
-
- let pos = self.pos.pos.load(Ordering::Relaxed);
-
- let sps = self.est.steps_per_second(Instant::now());
-
- // Infinite duration should only ever happen at the beginning, so in this case it's okay to
- // just show an ETA of 0 until progress starts to occur.
- if sps == 0.0 {
- return Duration::new(0, 0);
- }
-
- secs_to_duration(len.saturating_sub(pos) as f64 / sps)
- }
-
- /// The expected total duration (that is, elapsed time + expected ETA)
- pub fn duration(&self) -> Duration {
- if self.len.is_none() || self.is_finished() {
- return Duration::new(0, 0);
- }
- self.started.elapsed().saturating_add(self.eta())
- }
-
- /// The number of steps per second
- pub fn per_sec(&self) -> f64 {
- if let Status::InProgress = self.status {
- self.est.steps_per_second(Instant::now())
- } else {
- let len = self.len.unwrap_or_else(|| self.pos());
- len as f64 / self.started.elapsed().as_secs_f64()
- }
- }
-
- pub fn elapsed(&self) -> Duration {
- self.started.elapsed()
- }
-
- pub fn pos(&self) -> u64 {
- self.pos.pos.load(Ordering::Relaxed)
- }
-
- pub fn set_pos(&mut self, pos: u64) {
- self.pos.set(pos);
- }
-
- #[allow(clippy::len_without_is_empty)]
- pub fn len(&self) -> Option<u64> {
- self.len
- }
-
- pub fn set_len(&mut self, len: u64) {
- self.len = Some(len);
- }
-}
-
-#[derive(Debug, PartialEq, Eq, Clone)]
-pub(crate) enum TabExpandedString {
- NoTabs(Cow<'static, str>),
- WithTabs {
- original: Cow<'static, str>,
- expanded: String,
- tab_width: usize,
- },
-}
-
-impl TabExpandedString {
- pub(crate) fn new(s: Cow<'static, str>, tab_width: usize) -> Self {
- let expanded = s.replace('\t', &" ".repeat(tab_width));
- if s == expanded {
- Self::NoTabs(s)
- } else {
- Self::WithTabs {
- original: s,
- expanded,
- tab_width,
- }
- }
- }
-
- pub(crate) fn expanded(&self) -> &str {
- match &self {
- Self::NoTabs(s) => {
- debug_assert!(!s.contains('\t'));
- s
- }
- Self::WithTabs { expanded, .. } => expanded,
- }
- }
-
- pub(crate) fn set_tab_width(&mut self, new_tab_width: usize) {
- if let Self::WithTabs {
- original,
- expanded,
- tab_width,
- } = self
- {
- if *tab_width != new_tab_width {
- *tab_width = new_tab_width;
- *expanded = original.replace('\t', &" ".repeat(new_tab_width));
- }
- }
- }
-}
-
-/// Double-smoothed exponentially weighted estimator
-///
-/// This uses an exponentially weighted *time-based* estimator, meaning that it exponentially
-/// downweights old data based on its age. The rate at which this occurs is currently a constant
-/// value of 15 seconds for 90% weighting. This means that all data older than 15 seconds has a
-/// collective weight of 0.1 in the estimate, and all data older than 30 seconds has a collective
-/// weight of 0.01, and so on.
-///
-/// The primary value exposed by `Estimator` is `steps_per_second`. This value is doubly-smoothed,
-/// meaning that is the result of using an exponentially weighted estimator (as described above) to
-/// estimate the value of another exponentially weighted estimator, which estimates the value of
-/// the raw data.
-///
-/// The purpose of this extra smoothing step is to reduce instantaneous fluctations in the estimate
-/// when large updates are received. Without this, estimates might have a large spike followed by a
-/// slow asymptotic approach to zero (until the next spike).
-#[derive(Debug)]
-pub(crate) struct Estimator {
- smoothed_steps_per_sec: f64,
- double_smoothed_steps_per_sec: f64,
- prev_steps: u64,
- prev_time: Instant,
- start_time: Instant,
-}
-
-impl Estimator {
- fn new(now: Instant) -> Self {
- Self {
- smoothed_steps_per_sec: 0.0,
- double_smoothed_steps_per_sec: 0.0,
- prev_steps: 0,
- prev_time: now,
- start_time: now,
- }
- }
-
- fn record(&mut self, new_steps: u64, now: Instant) {
- // sanity check: don't record data if time or steps have not advanced
- if new_steps <= self.prev_steps || now <= self.prev_time {
- // Reset on backwards seek to prevent breakage from seeking to the end for length determination
- // See https://github.com/console-rs/indicatif/issues/480
- if new_steps < self.prev_steps {
- self.prev_steps = new_steps;
- self.reset(now);
- }
- return;
- }
-
- let delta_steps = new_steps - self.prev_steps;
- let delta_t = duration_to_secs(now - self.prev_time);
-
- // the rate of steps we saw in this update
- let new_steps_per_second = delta_steps as f64 / delta_t;
-
- // update the estimate: a weighted average of the old estimate and new data
- let weight = estimator_weight(delta_t);
- self.smoothed_steps_per_sec =
- self.smoothed_steps_per_sec * weight + new_steps_per_second * (1.0 - weight);
-
- // An iterative estimate like `smoothed_steps_per_sec` is supposed to be an exponentially
- // weighted average from t=0 back to t=-inf; Since we initialize it to 0, we neglect the
- // (non-existent) samples in the weighted average prior to the first one, so the resulting
- // average must be normalized. We normalize the single estimate here in order to use it as
- // a source for the double smoothed estimate. See comment on normalization in
- // `steps_per_second` for details.
- let delta_t_start = duration_to_secs(now - self.start_time);
- let total_weight = 1.0 - estimator_weight(delta_t_start);
- let normalized_smoothed_steps_per_sec = self.smoothed_steps_per_sec / total_weight;
-
- // determine the double smoothed value (EWA smoothing of the single EWA)
- self.double_smoothed_steps_per_sec = self.double_smoothed_steps_per_sec * weight
- + normalized_smoothed_steps_per_sec * (1.0 - weight);
-
- self.prev_steps = new_steps;
- self.prev_time = now;
- }
-
- /// Reset the state of the estimator. Once reset, estimates will not depend on any data prior
- /// to `now`. This does not reset the stored position of the progress bar.
- pub(crate) fn reset(&mut self, now: Instant) {
- self.smoothed_steps_per_sec = 0.0;
- self.double_smoothed_steps_per_sec = 0.0;
-
- // only reset prev_time, not prev_steps
- self.prev_time = now;
- self.start_time = now;
- }
-
- /// Average time per step in seconds, using double exponential smoothing
- fn steps_per_second(&self, now: Instant) -> f64 {
- // Because the value stored in the Estimator is only updated when the Estimator receives an
- // update, this value will become stuck if progress stalls. To return an accurate estimate,
- // we determine how much time has passed since the last update, and treat this as a
- // pseudo-update with 0 steps.
- let delta_t = duration_to_secs(now - self.prev_time);
- let reweight = estimator_weight(delta_t);
-
- // Normalization of estimates:
- //
- // The raw estimate is a single value (smoothed_steps_per_second) that is iteratively
- // updated. At each update, the previous value of the estimate is downweighted according to
- // its age, receiving the iterative weight W(t) = 0.1 ^ (t/15).
- //
- // Since W(Sum(t_n)) = Prod(W(t_n)), the total weight of a sample after a series of
- // iterative steps is simply W(t_e) - W(t_b), where t_e is the time since the end of the
- // sample, and t_b is the time since the beginning. The resulting estimate is therefore a
- // weighted average with sample weights W(t_e) - W(t_b).
- //
- // Notice that the weighting function generates sample weights that sum to 1 only when the
- // sample times span from t=0 to t=inf; but this is not the case. We have a first sample
- // with finite, positive t_b = t_f. In the raw estimate, we handle times prior to t_f by
- // setting an initial value of 0, meaning that these (non-existent) samples have no weight.
- //
- // Therefore, the raw estimate must be normalized by dividing it by the sum of the weights
- // in the weighted average. This sum is just W(0) - W(t_f), where t_f is the time since the
- // first sample, and W(0) = 1.
- let delta_t_start = duration_to_secs(now - self.start_time);
- let total_weight = 1.0 - estimator_weight(delta_t_start);
-
- // Generate updated values for `smoothed_steps_per_sec` and `double_smoothed_steps_per_sec`
- // (sps and dsps) without storing them. Note that we normalize sps when using it as a
- // source to update dsps, and then normalize dsps itself before returning it.
- let sps = self.smoothed_steps_per_sec * reweight / total_weight;
- let dsps = self.double_smoothed_steps_per_sec * reweight + sps * (1.0 - reweight);
- dsps / total_weight
- }
-}
-
-pub(crate) struct AtomicPosition {
- pub(crate) pos: AtomicU64,
- capacity: AtomicU8,
- prev: AtomicU64,
- start: Instant,
-}
-
-impl AtomicPosition {
- pub(crate) fn new() -> Self {
- Self {
- pos: AtomicU64::new(0),
- capacity: AtomicU8::new(MAX_BURST),
- prev: AtomicU64::new(0),
- start: Instant::now(),
- }
- }
-
- pub(crate) fn allow(&self, now: Instant) -> bool {
- if now < self.start {
- return false;
- }
-
- let mut capacity = self.capacity.load(Ordering::Acquire);
- // `prev` is the number of ms after `self.started` we last returned `true`, in ns
- let prev = self.prev.load(Ordering::Acquire);
- // `elapsed` is the number of ns since `self.started`
- let elapsed = (now - self.start).as_nanos() as u64;
- // `diff` is the number of ns since we last returned `true`
- let diff = elapsed.saturating_sub(prev);
-
- // If `capacity` is 0 and not enough time (1ms) has passed since `prev`
- // to add new capacity, return `false`. The goal of this method is to
- // make this decision as efficient as possible.
- if capacity == 0 && diff < INTERVAL {
- return false;
- }
-
- // We now calculate `new`, the number of ms, in ns, since we last returned `true`,
- // and `remainder`, which represents a number of ns less than 1ms which we cannot
- // convert into capacity now, so we're saving it for later. We do this by
- // substracting this from `elapsed` before storing it into `self.prev`.
- let (new, remainder) = ((diff / INTERVAL), (diff % INTERVAL));
- // We add `new` to `capacity`, subtract one for returning `true` from here,
- // then make sure it does not exceed a maximum of `MAX_BURST`.
- capacity = Ord::min(MAX_BURST as u128, (capacity as u128) + (new as u128) - 1) as u8;
-
- // Then, we just store `capacity` and `prev` atomically for the next iteration
- self.capacity.store(capacity, Ordering::Release);
- self.prev.store(elapsed - remainder, Ordering::Release);
- true
- }
-
- fn reset(&self, now: Instant) {
- self.set(0);
- let elapsed = (now.saturating_duration_since(self.start)).as_millis() as u64;
- self.prev.store(elapsed, Ordering::Release);
- }
-
- pub(crate) fn inc(&self, delta: u64) {
- self.pos.fetch_add(delta, Ordering::SeqCst);
- }
-
- pub(crate) fn set(&self, pos: u64) {
- self.pos.store(pos, Ordering::Release);
- }
-}
-
-const INTERVAL: u64 = 1_000_000;
-const MAX_BURST: u8 = 10;
-
-/// Behavior of a progress bar when it is finished
-///
-/// This is invoked when a [`ProgressBar`] or [`ProgressBarIter`] completes and
-/// [`ProgressBar::is_finished`] is false.
-///
-/// [`ProgressBar`]: crate::ProgressBar
-/// [`ProgressBarIter`]: crate::ProgressBarIter
-/// [`ProgressBar::is_finished`]: crate::ProgressBar::is_finished
-#[derive(Clone, Debug)]
-pub enum ProgressFinish {
- /// Finishes the progress bar and leaves the current message
- ///
- /// Same behavior as calling [`ProgressBar::finish()`](crate::ProgressBar::finish).
- AndLeave,
- /// Finishes the progress bar and sets a message
- ///
- /// Same behavior as calling [`ProgressBar::finish_with_message()`](crate::ProgressBar::finish_with_message).
- WithMessage(Cow<'static, str>),
- /// Finishes the progress bar and completely clears it (this is the default)
- ///
- /// Same behavior as calling [`ProgressBar::finish_and_clear()`](crate::ProgressBar::finish_and_clear).
- AndClear,
- /// Finishes the progress bar and leaves the current message and progress
- ///
- /// Same behavior as calling [`ProgressBar::abandon()`](crate::ProgressBar::abandon).
- Abandon,
- /// Finishes the progress bar and sets a message, and leaves the current progress
- ///
- /// Same behavior as calling [`ProgressBar::abandon_with_message()`](crate::ProgressBar::abandon_with_message).
- AbandonWithMessage(Cow<'static, str>),
-}
-
-impl Default for ProgressFinish {
- fn default() -> Self {
- Self::AndClear
- }
-}
-
-/// Get the appropriate dilution weight for Estimator data given the data's age (in seconds)
-///
-/// Whenever an update occurs, we will create a new estimate using a weight `w_i` like so:
-///
-/// ```math
-/// <new estimate> = <previous estimate> * w_i + <new data> * (1 - w_i)
-/// ```
-///
-/// In other words, the new estimate is a weighted average of the previous estimate and the new
-/// data. We want to choose weights such that for any set of samples where `t_0, t_1, ...` are
-/// the durations of the samples:
-///
-/// ```math
-/// Sum(t_i) = ews ==> Prod(w_i) = 0.1
-/// ```
-///
-/// With this constraint it is easy to show that
-///
-/// ```math
-/// w_i = 0.1 ^ (t_i / ews)
-/// ```
-///
-/// Notice that the constraint implies that estimates are independent of the durations of the
-/// samples, a very useful feature.
-fn estimator_weight(age: f64) -> f64 {
- const EXPONENTIAL_WEIGHTING_SECONDS: f64 = 15.0;
- 0.1_f64.powf(age / EXPONENTIAL_WEIGHTING_SECONDS)
-}
-
-fn duration_to_secs(d: Duration) -> f64 {
- d.as_secs() as f64 + f64::from(d.subsec_nanos()) / 1_000_000_000f64
-}
-
-fn secs_to_duration(s: f64) -> Duration {
- let secs = s.trunc() as u64;
- let nanos = (s.fract() * 1_000_000_000f64) as u32;
- Duration::new(secs, nanos)
-}
-
-#[derive(Debug)]
-pub(crate) enum Status {
- InProgress,
- DoneVisible,
- DoneHidden,
-}
-
-pub(crate) const DEFAULT_TAB_WIDTH: usize = 8;
-
-#[cfg(test)]
-mod tests {
- use super::*;
- use crate::ProgressBar;
-
- // https://github.com/rust-lang/rust-clippy/issues/10281
- #[allow(clippy::uninlined_format_args)]
- #[test]
- fn test_steps_per_second() {
- let test_rate = |items_per_second| {
- let mut now = Instant::now();
- let mut est = Estimator::new(now);
- let mut pos = 0;
-
- for _ in 0..20 {
- pos += items_per_second;
- now += Duration::from_secs(1);
- est.record(pos, now);
- }
- let avg_steps_per_second = est.steps_per_second(now);
-
- assert!(avg_steps_per_second > 0.0);
- assert!(avg_steps_per_second.is_finite());
-
- let absolute_error = (avg_steps_per_second - items_per_second as f64).abs();
- let relative_error = absolute_error / items_per_second as f64;
- assert!(
- relative_error < 1.0 / 1e9,
- "Expected rate: {}, actual: {}, relative error: {}",
- items_per_second,
- avg_steps_per_second,
- relative_error
- );
- };
-
- test_rate(1);
- test_rate(1_000);
- test_rate(1_000_000);
- test_rate(1_000_000_000);
- test_rate(1_000_000_001);
- test_rate(100_000_000_000);
- test_rate(1_000_000_000_000);
- test_rate(100_000_000_000_000);
- test_rate(1_000_000_000_000_000);
- }
-
- #[test]
- fn test_double_exponential_ave() {
- let mut now = Instant::now();
- let mut est = Estimator::new(now);
- let mut pos = 0;
-
- // note: this is the default weight set in the Estimator
- let weight = 15;
-
- for _ in 0..weight {
- pos += 1;
- now += Duration::from_secs(1);
- est.record(pos, now);
- }
- now += Duration::from_secs(weight);
-
- // The first level EWA:
- // -> 90% weight @ 0 eps, 9% weight @ 1 eps, 1% weight @ 0 eps
- // -> then normalized by deweighting the 1% weight (before -30 seconds)
- let single_target = 0.09 / 0.99;
-
- // The second level EWA:
- // -> same logic as above, but using the first level EWA as the source
- let double_target = (0.9 * single_target + 0.09) / 0.99;
- assert_eq!(est.steps_per_second(now), double_target);
- }
-
- #[test]
- fn test_estimator_rewind_position() {
- let mut now = Instant::now();
- let mut est = Estimator::new(now);
-
- now += Duration::from_secs(1);
- est.record(1, now);
-
- // should not panic
- now += Duration::from_secs(1);
- est.record(0, now);
-
- // check that reset occurred (estimator at 1 event per sec)
- now += Duration::from_secs(1);
- est.record(1, now);
- assert_eq!(est.steps_per_second(now), 1.0);
-
- // check that progress bar handles manual seeking
- let pb = ProgressBar::hidden();
- pb.set_length(10);
- pb.set_position(1);
- pb.tick();
- // Should not panic.
- pb.set_position(0);
- }
-
- #[test]
- fn test_reset_eta() {
- let mut now = Instant::now();
- let mut est = Estimator::new(now);
-
- // two per second, then reset
- now += Duration::from_secs(1);
- est.record(2, now);
- est.reset(now);
-
- // now one per second, and verify
- now += Duration::from_secs(1);
- est.record(3, now);
- assert_eq!(est.steps_per_second(now), 1.0);
- }
-
- #[test]
- fn test_duration_stuff() {
- let duration = Duration::new(42, 100_000_000);
- let secs = duration_to_secs(duration);
- assert_eq!(secs_to_duration(secs), duration);
- }
-
- #[test]
- fn test_atomic_position_large_time_difference() {
- let atomic_position = AtomicPosition::new();
- let later = atomic_position.start + Duration::from_nanos(INTERVAL * u64::from(u8::MAX));
- // Should not panic.
- atomic_position.allow(later);
- }
-}