diff options
Diffstat (limited to 'vendor/jpeg-decoder/src/arch')
-rw-r--r-- | vendor/jpeg-decoder/src/arch/mod.rs | 46 | ||||
-rw-r--r-- | vendor/jpeg-decoder/src/arch/neon.rs | 221 | ||||
-rw-r--r-- | vendor/jpeg-decoder/src/arch/ssse3.rs | 288 |
3 files changed, 555 insertions, 0 deletions
diff --git a/vendor/jpeg-decoder/src/arch/mod.rs b/vendor/jpeg-decoder/src/arch/mod.rs new file mode 100644 index 0000000..15b46c5 --- /dev/null +++ b/vendor/jpeg-decoder/src/arch/mod.rs @@ -0,0 +1,46 @@ +#![allow(unsafe_code)] + +mod neon; +mod ssse3; + +#[cfg(any(target_arch = "x86", target_arch = "x86_64"))] +use std::is_x86_feature_detected; + +/// Arch-specific implementation of YCbCr conversion. Returns the number of pixels that were +/// converted. +pub fn get_color_convert_line_ycbcr() -> Option<unsafe fn(&[u8], &[u8], &[u8], &mut [u8]) -> usize> +{ + #[cfg(any(target_arch = "x86", target_arch = "x86_64"))] + #[allow(unsafe_code)] + { + if is_x86_feature_detected!("ssse3") { + return Some(ssse3::color_convert_line_ycbcr); + } + } + // Runtime detection is not needed on aarch64. + #[cfg(all(feature = "nightly_aarch64_neon", target_arch = "aarch64"))] + { + return Some(neon::color_convert_line_ycbcr); + } + #[allow(unreachable_code)] + None +} + +/// Arch-specific implementation of 8x8 IDCT. +pub fn get_dequantize_and_idct_block_8x8( +) -> Option<unsafe fn(&[i16; 64], &[u16; 64], usize, &mut [u8])> { + #[cfg(any(target_arch = "x86", target_arch = "x86_64"))] + #[allow(unsafe_code)] + { + if is_x86_feature_detected!("ssse3") { + return Some(ssse3::dequantize_and_idct_block_8x8); + } + } + // Runtime detection is not needed on aarch64. + #[cfg(all(feature = "nightly_aarch64_neon", target_arch = "aarch64"))] + { + return Some(neon::dequantize_and_idct_block_8x8); + } + #[allow(unreachable_code)] + None +} diff --git a/vendor/jpeg-decoder/src/arch/neon.rs b/vendor/jpeg-decoder/src/arch/neon.rs new file mode 100644 index 0000000..4843578 --- /dev/null +++ b/vendor/jpeg-decoder/src/arch/neon.rs @@ -0,0 +1,221 @@ +#[cfg(all(feature = "nightly_aarch64_neon", target_arch = "aarch64"))] +use core::arch::aarch64::*; + +#[cfg(all(feature = "nightly_aarch64_neon", target_arch = "aarch64"))] +#[target_feature(enable = "neon")] +unsafe fn idct8(data: &mut [int16x8_t; 8]) { + // The fixed-point constants here are obtained by taking the fractional part of the constants + // from the non-SIMD implementation and scaling them up by 1<<15. This is because + // vqrdmulhq_n_s16(a, b) is effectively equivalent to (a*b)>>15 (except for possibly some + // slight differences in rounding). + + // The code here is effectively equivalent to the calls to "kernel" in idct.rs, except that it + // doesn't apply any further scaling and fixed point constants have a different precision. + + let p2 = data[2]; + let p3 = data[6]; + let p1 = vqrdmulhq_n_s16(vqaddq_s16(p2, p3), 17734); // 0.5411961 + let t2 = vqsubq_s16( + vqsubq_s16(p1, p3), + vqrdmulhq_n_s16(p3, 27779), // 0.847759065 + ); + let t3 = vqaddq_s16(p1, vqrdmulhq_n_s16(p2, 25079)); // 0.765366865 + + let p2 = data[0]; + let p3 = data[4]; + let t0 = vqaddq_s16(p2, p3); + let t1 = vqsubq_s16(p2, p3); + + let x0 = vqaddq_s16(t0, t3); + let x3 = vqsubq_s16(t0, t3); + let x1 = vqaddq_s16(t1, t2); + let x2 = vqsubq_s16(t1, t2); + + let t0 = data[7]; + let t1 = data[5]; + let t2 = data[3]; + let t3 = data[1]; + + let p3 = vqaddq_s16(t0, t2); + let p4 = vqaddq_s16(t1, t3); + let p1 = vqaddq_s16(t0, t3); + let p2 = vqaddq_s16(t1, t2); + let p5 = vqaddq_s16(p3, p4); + let p5 = vqaddq_s16(p5, vqrdmulhq_n_s16(p5, 5763)); // 0.175875602 + + let t0 = vqrdmulhq_n_s16(t0, 9786); // 0.298631336 + let t1 = vqaddq_s16( + vqaddq_s16(t1, t1), + vqrdmulhq_n_s16(t1, 1741), // 0.053119869 + ); + let t2 = vqaddq_s16( + vqaddq_s16(t2, vqaddq_s16(t2, t2)), + vqrdmulhq_n_s16(t2, 2383), // 0.072711026 + ); + let t3 = vqaddq_s16(t3, vqrdmulhq_n_s16(t3, 16427)); // 0.501321110 + + let p1 = vqsubq_s16(p5, vqrdmulhq_n_s16(p1, 29490)); // 0.899976223 + let p2 = vqsubq_s16( + vqsubq_s16(vqsubq_s16(p5, p2), p2), + vqrdmulhq_n_s16(p2, 18446), // 0.562915447 + ); + + let p3 = vqsubq_s16( + vqrdmulhq_n_s16(p3, -31509), // -0.961570560 + p3, + ); + let p4 = vqrdmulhq_n_s16(p4, -12785); // -0.390180644 + + let t3 = vqaddq_s16(vqaddq_s16(p1, p4), t3); + let t2 = vqaddq_s16(vqaddq_s16(p2, p3), t2); + let t1 = vqaddq_s16(vqaddq_s16(p2, p4), t1); + let t0 = vqaddq_s16(vqaddq_s16(p1, p3), t0); + + data[0] = vqaddq_s16(x0, t3); + data[7] = vqsubq_s16(x0, t3); + data[1] = vqaddq_s16(x1, t2); + data[6] = vqsubq_s16(x1, t2); + data[2] = vqaddq_s16(x2, t1); + data[5] = vqsubq_s16(x2, t1); + data[3] = vqaddq_s16(x3, t0); + data[4] = vqsubq_s16(x3, t0); +} + +#[cfg(all(feature = "nightly_aarch64_neon", target_arch = "aarch64"))] +#[target_feature(enable = "neon")] +unsafe fn transpose8(data: &mut [int16x8_t; 8]) { + // Use NEON's 2x2 matrix transposes (vtrn) to do the transposition in each 4x4 block, then + // combine the 4x4 blocks. + let a01 = vtrnq_s16(data[0], data[1]); + let a23 = vtrnq_s16(data[2], data[3]); + + let four0 = vtrnq_s32(vreinterpretq_s32_s16(a01.0), vreinterpretq_s32_s16(a23.0)); + let four1 = vtrnq_s32(vreinterpretq_s32_s16(a01.1), vreinterpretq_s32_s16(a23.1)); + + let a45 = vtrnq_s16(data[4], data[5]); + let a67 = vtrnq_s16(data[6], data[7]); + + let four2 = vtrnq_s32(vreinterpretq_s32_s16(a45.0), vreinterpretq_s32_s16(a67.0)); + let four3 = vtrnq_s32(vreinterpretq_s32_s16(a45.1), vreinterpretq_s32_s16(a67.1)); + + data[0] = vreinterpretq_s16_s32(vcombine_s32(vget_low_s32(four0.0), vget_low_s32(four2.0))); + data[1] = vreinterpretq_s16_s32(vcombine_s32(vget_low_s32(four1.0), vget_low_s32(four3.0))); + data[2] = vreinterpretq_s16_s32(vcombine_s32(vget_low_s32(four0.1), vget_low_s32(four2.1))); + data[3] = vreinterpretq_s16_s32(vcombine_s32(vget_low_s32(four1.1), vget_low_s32(four3.1))); + data[4] = vreinterpretq_s16_s32(vcombine_s32(vget_high_s32(four0.0), vget_high_s32(four2.0))); + data[5] = vreinterpretq_s16_s32(vcombine_s32(vget_high_s32(four1.0), vget_high_s32(four3.0))); + data[6] = vreinterpretq_s16_s32(vcombine_s32(vget_high_s32(four0.1), vget_high_s32(four2.1))); + data[7] = vreinterpretq_s16_s32(vcombine_s32(vget_high_s32(four1.1), vget_high_s32(four3.1))); +} + +#[cfg(all(feature = "nightly_aarch64_neon", target_arch = "aarch64"))] +#[target_feature(enable = "neon")] +pub unsafe fn dequantize_and_idct_block_8x8( + coefficients: &[i16; 64], + quantization_table: &[u16; 64], + output_linestride: usize, + output: &mut [u8], +) { + // The loop below will write to positions [output_linestride * i, output_linestride * i + 8) + // for 0<=i<8. Thus, the last accessed position is at an offset of output_linestrade * 7 + 7, + // and if that position is in-bounds, so are all other accesses. + assert!( + output.len() + > output_linestride + .checked_mul(7) + .unwrap() + .checked_add(7) + .unwrap() + ); + + const SHIFT: i32 = 3; + + // Read the DCT coefficients, scale them up and dequantize them. + let mut data = [vdupq_n_s16(0); 8]; + for i in 0..8 { + data[i] = vshlq_n_s16( + vmulq_s16( + vld1q_s16(coefficients.as_ptr().wrapping_add(i * 8)), + vreinterpretq_s16_u16(vld1q_u16(quantization_table.as_ptr().wrapping_add(i * 8))), + ), + SHIFT, + ); + } + + // Usual column IDCT - transpose - column IDCT - transpose approach. + idct8(&mut data); + transpose8(&mut data); + idct8(&mut data); + transpose8(&mut data); + + for i in 0..8 { + // The two passes of the IDCT algorithm give us a factor of 8, so the shift here is + // increased by 3. + // As values will be stored in a u8, they need to be 128-centered and not 0-centered. + // We add 128 with the appropriate shift for that purpose. + const OFFSET: i16 = 128 << (SHIFT + 3); + // We want rounding right shift, so we should add (1/2) << (SHIFT+3) before shifting. + const ROUNDING_BIAS: i16 = (1 << (SHIFT + 3)) >> 1; + + let data_with_offset = vqaddq_s16(data[i], vdupq_n_s16(OFFSET + ROUNDING_BIAS)); + + vst1_u8( + output.as_mut_ptr().wrapping_add(output_linestride * i), + vqshrun_n_s16(data_with_offset, SHIFT + 3), + ); + } +} + +#[cfg(all(feature = "nightly_aarch64_neon", target_arch = "aarch64"))] +#[target_feature(enable = "neon")] +pub unsafe fn color_convert_line_ycbcr(y: &[u8], cb: &[u8], cr: &[u8], output: &mut [u8]) -> usize { + assert!(output.len() % 3 == 0); + let num = output.len() / 3; + assert!(num <= y.len()); + assert!(num <= cb.len()); + assert!(num <= cr.len()); + let num_vecs = num / 8; + + for i in 0..num_vecs { + const SHIFT: i32 = 6; + // Load. + let y = vld1_u8(y.as_ptr().wrapping_add(i * 8)); + let cb = vld1_u8(cb.as_ptr().wrapping_add(i * 8)); + let cr = vld1_u8(cr.as_ptr().wrapping_add(i * 8)); + + // Convert to 16 bit and shift. + let y = vreinterpretq_s16_u16(vshll_n_u8(y, SHIFT)); + let cb = vreinterpretq_s16_u16(vshll_n_u8(cb, SHIFT)); + let cr = vreinterpretq_s16_u16(vshll_n_u8(cr, SHIFT)); + + // Add offsets + let y = vqaddq_s16(y, vdupq_n_s16((1 << SHIFT) >> 1)); + let c128 = vdupq_n_s16(128 << SHIFT); + let cb = vqsubq_s16(cb, c128); + let cr = vqsubq_s16(cr, c128); + + // Compute cr * 1.402, cb * 0.34414, cr * 0.71414, cb * 1.772 + let cr_140200 = vqaddq_s16(vqrdmulhq_n_s16(cr, 13173), cr); + let cb_034414 = vqrdmulhq_n_s16(cb, 11276); + let cr_071414 = vqrdmulhq_n_s16(cr, 23401); + let cb_177200 = vqaddq_s16(vqrdmulhq_n_s16(cb, 25297), cb); + + // Last conversion step. + let r = vqaddq_s16(y, cr_140200); + let g = vqsubq_s16(y, vqaddq_s16(cb_034414, cr_071414)); + let b = vqaddq_s16(y, cb_177200); + + // Shift back and convert to u8. + let r = vqshrun_n_s16(r, SHIFT); + let g = vqshrun_n_s16(g, SHIFT); + let b = vqshrun_n_s16(b, SHIFT); + + // Shuffle + store. + vst3_u8( + output.as_mut_ptr().wrapping_add(24 * i), + uint8x8x3_t(r, g, b), + ); + } + + num_vecs * 8 +} diff --git a/vendor/jpeg-decoder/src/arch/ssse3.rs b/vendor/jpeg-decoder/src/arch/ssse3.rs new file mode 100644 index 0000000..374a70c --- /dev/null +++ b/vendor/jpeg-decoder/src/arch/ssse3.rs @@ -0,0 +1,288 @@ +#[cfg(target_arch = "x86")] +use std::arch::x86::*; +#[cfg(target_arch = "x86_64")] +use std::arch::x86_64::*; + +#[cfg(any(target_arch = "x86", target_arch = "x86_64"))] +#[target_feature(enable = "ssse3")] +unsafe fn idct8(data: &mut [__m128i; 8]) { + // The fixed-point constants here are obtained by taking the fractional part of the constants + // from the non-SIMD implementation and scaling them up by 1<<15. This is because + // _mm_mulhrs_epi16(a, b) is effectively equivalent to (a*b)>>15 (except for possibly some + // slight differences in rounding). + + // The code here is effectively equivalent to the calls to "kernel" in idct.rs, except that it + // doesn't apply any further scaling and fixed point constants have a different precision. + + let p2 = data[2]; + let p3 = data[6]; + let p1 = _mm_mulhrs_epi16(_mm_adds_epi16(p2, p3), _mm_set1_epi16(17734)); // 0.5411961 + let t2 = _mm_subs_epi16( + _mm_subs_epi16(p1, p3), + _mm_mulhrs_epi16(p3, _mm_set1_epi16(27779)), // 0.847759065 + ); + let t3 = _mm_adds_epi16(p1, _mm_mulhrs_epi16(p2, _mm_set1_epi16(25079))); // 0.765366865 + + let p2 = data[0]; + let p3 = data[4]; + let t0 = _mm_adds_epi16(p2, p3); + let t1 = _mm_subs_epi16(p2, p3); + + let x0 = _mm_adds_epi16(t0, t3); + let x3 = _mm_subs_epi16(t0, t3); + let x1 = _mm_adds_epi16(t1, t2); + let x2 = _mm_subs_epi16(t1, t2); + + let t0 = data[7]; + let t1 = data[5]; + let t2 = data[3]; + let t3 = data[1]; + + let p3 = _mm_adds_epi16(t0, t2); + let p4 = _mm_adds_epi16(t1, t3); + let p1 = _mm_adds_epi16(t0, t3); + let p2 = _mm_adds_epi16(t1, t2); + let p5 = _mm_adds_epi16(p3, p4); + let p5 = _mm_adds_epi16(p5, _mm_mulhrs_epi16(p5, _mm_set1_epi16(5763))); // 0.175875602 + + let t0 = _mm_mulhrs_epi16(t0, _mm_set1_epi16(9786)); // 0.298631336 + let t1 = _mm_adds_epi16( + _mm_adds_epi16(t1, t1), + _mm_mulhrs_epi16(t1, _mm_set1_epi16(1741)), // 0.053119869 + ); + let t2 = _mm_adds_epi16( + _mm_adds_epi16(t2, _mm_adds_epi16(t2, t2)), + _mm_mulhrs_epi16(t2, _mm_set1_epi16(2383)), // 0.072711026 + ); + let t3 = _mm_adds_epi16(t3, _mm_mulhrs_epi16(t3, _mm_set1_epi16(16427))); // 0.501321110 + + let p1 = _mm_subs_epi16(p5, _mm_mulhrs_epi16(p1, _mm_set1_epi16(29490))); // 0.899976223 + let p2 = _mm_subs_epi16( + _mm_subs_epi16(_mm_subs_epi16(p5, p2), p2), + _mm_mulhrs_epi16(p2, _mm_set1_epi16(18446)), // 0.562915447 + ); + + let p3 = _mm_subs_epi16( + _mm_mulhrs_epi16(p3, _mm_set1_epi16(-31509)), // -0.961570560 + p3, + ); + let p4 = _mm_mulhrs_epi16(p4, _mm_set1_epi16(-12785)); // -0.390180644 + + let t3 = _mm_adds_epi16(_mm_adds_epi16(p1, p4), t3); + let t2 = _mm_adds_epi16(_mm_adds_epi16(p2, p3), t2); + let t1 = _mm_adds_epi16(_mm_adds_epi16(p2, p4), t1); + let t0 = _mm_adds_epi16(_mm_adds_epi16(p1, p3), t0); + + data[0] = _mm_adds_epi16(x0, t3); + data[7] = _mm_subs_epi16(x0, t3); + data[1] = _mm_adds_epi16(x1, t2); + data[6] = _mm_subs_epi16(x1, t2); + data[2] = _mm_adds_epi16(x2, t1); + data[5] = _mm_subs_epi16(x2, t1); + data[3] = _mm_adds_epi16(x3, t0); + data[4] = _mm_subs_epi16(x3, t0); +} + +#[cfg(any(target_arch = "x86", target_arch = "x86_64"))] +#[target_feature(enable = "ssse3")] +unsafe fn transpose8(data: &mut [__m128i; 8]) { + // Transpose a 8x8 matrix with a sequence of interleaving operations. + // Naming: dABl contains elements from the *l*ower halves of vectors A and B, interleaved, i.e. + // A0 B0 A1 B1 ... + // dABCDll contains elements from the lower quarter (ll) of vectors A, B, C, D, interleaved - + // A0 B0 C0 D0 A1 B1 C1 D1 ... + let d01l = _mm_unpacklo_epi16(data[0], data[1]); + let d23l = _mm_unpacklo_epi16(data[2], data[3]); + let d45l = _mm_unpacklo_epi16(data[4], data[5]); + let d67l = _mm_unpacklo_epi16(data[6], data[7]); + let d01h = _mm_unpackhi_epi16(data[0], data[1]); + let d23h = _mm_unpackhi_epi16(data[2], data[3]); + let d45h = _mm_unpackhi_epi16(data[4], data[5]); + let d67h = _mm_unpackhi_epi16(data[6], data[7]); + // Operating on 32-bits will interleave *consecutive pairs* of 16-bit integers. + let d0123ll = _mm_unpacklo_epi32(d01l, d23l); + let d0123lh = _mm_unpackhi_epi32(d01l, d23l); + let d4567ll = _mm_unpacklo_epi32(d45l, d67l); + let d4567lh = _mm_unpackhi_epi32(d45l, d67l); + let d0123hl = _mm_unpacklo_epi32(d01h, d23h); + let d0123hh = _mm_unpackhi_epi32(d01h, d23h); + let d4567hl = _mm_unpacklo_epi32(d45h, d67h); + let d4567hh = _mm_unpackhi_epi32(d45h, d67h); + // Operating on 64-bits will interleave *consecutive quadruples* of 16-bit integers. + data[0] = _mm_unpacklo_epi64(d0123ll, d4567ll); + data[1] = _mm_unpackhi_epi64(d0123ll, d4567ll); + data[2] = _mm_unpacklo_epi64(d0123lh, d4567lh); + data[3] = _mm_unpackhi_epi64(d0123lh, d4567lh); + data[4] = _mm_unpacklo_epi64(d0123hl, d4567hl); + data[5] = _mm_unpackhi_epi64(d0123hl, d4567hl); + data[6] = _mm_unpacklo_epi64(d0123hh, d4567hh); + data[7] = _mm_unpackhi_epi64(d0123hh, d4567hh); +} + +#[cfg(any(target_arch = "x86", target_arch = "x86_64"))] +#[target_feature(enable = "ssse3")] +pub unsafe fn dequantize_and_idct_block_8x8( + coefficients: &[i16; 64], + quantization_table: &[u16; 64], + output_linestride: usize, + output: &mut [u8], +) { + // The loop below will write to positions [output_linestride * i, output_linestride * i + 8) + // for 0<=i<8. Thus, the last accessed position is at an offset of output_linestrade * 7 + 7, + // and if that position is in-bounds, so are all other accesses. + assert!( + output.len() + > output_linestride + .checked_mul(7) + .unwrap() + .checked_add(7) + .unwrap() + ); + + #[cfg(target_arch = "x86")] + use std::arch::x86::*; + #[cfg(target_arch = "x86_64")] + use std::arch::x86_64::*; + + const SHIFT: i32 = 3; + + // Read the DCT coefficients, scale them up and dequantize them. + let mut data = [_mm_setzero_si128(); 8]; + for i in 0..8 { + data[i] = _mm_slli_epi16( + _mm_mullo_epi16( + _mm_loadu_si128(coefficients.as_ptr().wrapping_add(i * 8) as *const _), + _mm_loadu_si128(quantization_table.as_ptr().wrapping_add(i * 8) as *const _), + ), + SHIFT, + ); + } + + // Usual column IDCT - transpose - column IDCT - transpose approach. + idct8(&mut data); + transpose8(&mut data); + idct8(&mut data); + transpose8(&mut data); + + for i in 0..8 { + let mut buf = [0u8; 16]; + // The two passes of the IDCT algorithm give us a factor of 8, so the shift here is + // increased by 3. + // As values will be stored in a u8, they need to be 128-centered and not 0-centered. + // We add 128 with the appropriate shift for that purpose. + const OFFSET: i16 = 128 << (SHIFT + 3); + // We want rounding right shift, so we should add (1/2) << (SHIFT+3) before shifting. + const ROUNDING_BIAS: i16 = (1 << (SHIFT + 3)) >> 1; + + let data_with_offset = _mm_adds_epi16(data[i], _mm_set1_epi16(OFFSET + ROUNDING_BIAS)); + + _mm_storeu_si128( + buf.as_mut_ptr() as *mut _, + _mm_packus_epi16( + _mm_srai_epi16(data_with_offset, SHIFT + 3), + _mm_setzero_si128(), + ), + ); + std::ptr::copy_nonoverlapping::<u8>( + buf.as_ptr(), + output.as_mut_ptr().wrapping_add(output_linestride * i) as *mut _, + 8, + ); + } +} + +#[cfg(any(target_arch = "x86", target_arch = "x86_64"))] +#[target_feature(enable = "ssse3")] +pub unsafe fn color_convert_line_ycbcr(y: &[u8], cb: &[u8], cr: &[u8], output: &mut [u8]) -> usize { + assert!(output.len() % 3 == 0); + let num = output.len() / 3; + assert!(num <= y.len()); + assert!(num <= cb.len()); + assert!(num <= cr.len()); + // _mm_loadu_si64 generates incorrect code for Rust <1.58. To circumvent this, we use a full + // 128-bit load, but that requires leaving an extra vector of border to the scalar code. + // From Rust 1.58 on, the _mm_loadu_si128 can be replaced with _mm_loadu_si64 and this + // .saturating_sub() can be removed. + let num_vecs = (num / 8).saturating_sub(1); + + for i in 0..num_vecs { + const SHIFT: i32 = 6; + // Load. + let y = _mm_loadu_si128(y.as_ptr().wrapping_add(i * 8) as *const _); + let cb = _mm_loadu_si128(cb.as_ptr().wrapping_add(i * 8) as *const _); + let cr = _mm_loadu_si128(cr.as_ptr().wrapping_add(i * 8) as *const _); + + // Convert to 16 bit. + let shuf16 = _mm_setr_epi8( + 0, -0x7F, 1, -0x7F, 2, -0x7F, 3, -0x7F, 4, -0x7F, 5, -0x7F, 6, -0x7F, 7, -0x7F, + ); + let y = _mm_slli_epi16(_mm_shuffle_epi8(y, shuf16), SHIFT); + let cb = _mm_slli_epi16(_mm_shuffle_epi8(cb, shuf16), SHIFT); + let cr = _mm_slli_epi16(_mm_shuffle_epi8(cr, shuf16), SHIFT); + + // Add offsets + let c128 = _mm_set1_epi16(128 << SHIFT); + let y = _mm_adds_epi16(y, _mm_set1_epi16((1 << SHIFT) >> 1)); + let cb = _mm_subs_epi16(cb, c128); + let cr = _mm_subs_epi16(cr, c128); + + // Compute cr * 1.402, cb * 0.34414, cr * 0.71414, cb * 1.772 + let cr_140200 = _mm_adds_epi16(_mm_mulhrs_epi16(cr, _mm_set1_epi16(13173)), cr); + let cb_034414 = _mm_mulhrs_epi16(cb, _mm_set1_epi16(11276)); + let cr_071414 = _mm_mulhrs_epi16(cr, _mm_set1_epi16(23401)); + let cb_177200 = _mm_adds_epi16(_mm_mulhrs_epi16(cb, _mm_set1_epi16(25297)), cb); + + // Last conversion step. + let r = _mm_adds_epi16(y, cr_140200); + let g = _mm_subs_epi16(y, _mm_adds_epi16(cb_034414, cr_071414)); + let b = _mm_adds_epi16(y, cb_177200); + + // Shift back and convert to u8. + let zero = _mm_setzero_si128(); + let r = _mm_packus_epi16(_mm_srai_epi16(r, SHIFT), zero); + let g = _mm_packus_epi16(_mm_srai_epi16(g, SHIFT), zero); + let b = _mm_packus_epi16(_mm_srai_epi16(b, SHIFT), zero); + + // Shuffle rrrrrrrrggggggggbbbbbbbb to rgbrgbrgb... + + // Control vectors for _mm_shuffle_epi8. -0x7F is selected so that the resulting position + // after _mm_shuffle_epi8 will be filled with 0, so that the r, g, and b vectors can then + // be OR-ed together. + let shufr = _mm_setr_epi8( + 0, -0x7F, -0x7F, 1, -0x7F, -0x7F, 2, -0x7F, -0x7F, 3, -0x7F, -0x7F, 4, -0x7F, -0x7F, 5, + ); + let shufg = _mm_setr_epi8( + -0x7F, 0, -0x7F, -0x7F, 1, -0x7F, -0x7F, 2, -0x7F, -0x7F, 3, -0x7F, -0x7F, 4, -0x7F, + -0x7F, + ); + let shufb = _mm_alignr_epi8(shufg, shufg, 15); + + let rgb_low = _mm_or_si128( + _mm_shuffle_epi8(r, shufr), + _mm_or_si128(_mm_shuffle_epi8(g, shufg), _mm_shuffle_epi8(b, shufb)), + ); + + // For the next part of the rgb vectors, we need to select R values from 6 up, G and B from + // 5 up. The highest bit of -0x7F + 6 is still set, so the corresponding location will + // still be 0. + let shufr1 = _mm_add_epi8(shufb, _mm_set1_epi8(6)); + let shufg1 = _mm_add_epi8(shufr, _mm_set1_epi8(5)); + let shufb1 = _mm_add_epi8(shufg, _mm_set1_epi8(5)); + + let rgb_hi = _mm_or_si128( + _mm_shuffle_epi8(r, shufr1), + _mm_or_si128(_mm_shuffle_epi8(g, shufg1), _mm_shuffle_epi8(b, shufb1)), + ); + + let mut data = [0u8; 32]; + _mm_storeu_si128(data.as_mut_ptr() as *mut _, rgb_low); + _mm_storeu_si128(data.as_mut_ptr().wrapping_add(16) as *mut _, rgb_hi); + std::ptr::copy_nonoverlapping::<u8>( + data.as_ptr(), + output.as_mut_ptr().wrapping_add(24 * i), + 24, + ); + } + + num_vecs * 8 +} |