diff options
Diffstat (limited to 'vendor/memchr/src/arch/all/twoway.rs')
-rw-r--r-- | vendor/memchr/src/arch/all/twoway.rs | 877 |
1 files changed, 0 insertions, 877 deletions
diff --git a/vendor/memchr/src/arch/all/twoway.rs b/vendor/memchr/src/arch/all/twoway.rs deleted file mode 100644 index 0df3b4a..0000000 --- a/vendor/memchr/src/arch/all/twoway.rs +++ /dev/null @@ -1,877 +0,0 @@ -/*! -An implementation of the [Two-Way substring search algorithm][two-way]. - -[`Finder`] can be built for forward searches, while [`FinderRev`] can be built -for reverse searches. - -Two-Way makes for a nice general purpose substring search algorithm because of -its time and space complexity properties. It also performs well in practice. -Namely, with `m = len(needle)` and `n = len(haystack)`, Two-Way takes `O(m)` -time to create a finder, `O(1)` space and `O(n)` search time. In other words, -the preprocessing step is quick, doesn't require any heap memory and the worst -case search time is guaranteed to be linear in the haystack regardless of the -size of the needle. - -While vector algorithms will usually beat Two-Way handedly, vector algorithms -also usually have pathological or edge cases that are better handled by Two-Way. -Moreover, not all targets support vector algorithms or implementations for them -simply may not exist yet. - -Two-Way can be found in the `memmem` implementations in at least [GNU libc] and -[musl]. - -[two-way]: https://en.wikipedia.org/wiki/Two-way_string-matching_algorithm -[GNU libc]: https://www.gnu.org/software/libc/ -[musl]: https://www.musl-libc.org/ -*/ - -use core::cmp; - -use crate::{ - arch::all::{is_prefix, is_suffix}, - memmem::Pre, -}; - -/// A forward substring searcher that uses the Two-Way algorithm. -#[derive(Clone, Copy, Debug)] -pub struct Finder(TwoWay); - -/// A reverse substring searcher that uses the Two-Way algorithm. -#[derive(Clone, Copy, Debug)] -pub struct FinderRev(TwoWay); - -/// An implementation of the TwoWay substring search algorithm. -/// -/// This searcher supports forward and reverse search, although not -/// simultaneously. It runs in `O(n + m)` time and `O(1)` space, where -/// `n ~ len(needle)` and `m ~ len(haystack)`. -/// -/// The implementation here roughly matches that which was developed by -/// Crochemore and Perrin in their 1991 paper "Two-way string-matching." The -/// changes in this implementation are 1) the use of zero-based indices, 2) a -/// heuristic skip table based on the last byte (borrowed from Rust's standard -/// library) and 3) the addition of heuristics for a fast skip loop. For (3), -/// callers can pass any kind of prefilter they want, but usually it's one -/// based on a heuristic that uses an approximate background frequency of bytes -/// to choose rare bytes to quickly look for candidate match positions. Note -/// though that currently, this prefilter functionality is not exposed directly -/// in the public API. (File an issue if you want it and provide a use case -/// please.) -/// -/// The heuristic for fast skipping is automatically shut off if it's -/// detected to be ineffective at search time. Generally, this only occurs in -/// pathological cases. But this is generally necessary in order to preserve -/// a `O(n + m)` time bound. -/// -/// The code below is fairly complex and not obviously correct at all. It's -/// likely necessary to read the Two-Way paper cited above in order to fully -/// grok this code. The essence of it is: -/// -/// 1. Do something to detect a "critical" position in the needle. -/// 2. For the current position in the haystack, look if `needle[critical..]` -/// matches at that position. -/// 3. If so, look if `needle[..critical]` matches. -/// 4. If a mismatch occurs, shift the search by some amount based on the -/// critical position and a pre-computed shift. -/// -/// This type is wrapped in the forward and reverse finders that expose -/// consistent forward or reverse APIs. -#[derive(Clone, Copy, Debug)] -struct TwoWay { - /// A small bitset used as a quick prefilter (in addition to any prefilter - /// given by the caller). Namely, a bit `i` is set if and only if `b%64==i` - /// for any `b == needle[i]`. - /// - /// When used as a prefilter, if the last byte at the current candidate - /// position is NOT in this set, then we can skip that entire candidate - /// position (the length of the needle). This is essentially the shift - /// trick found in Boyer-Moore, but only applied to bytes that don't appear - /// in the needle. - /// - /// N.B. This trick was inspired by something similar in std's - /// implementation of Two-Way. - byteset: ApproximateByteSet, - /// A critical position in needle. Specifically, this position corresponds - /// to beginning of either the minimal or maximal suffix in needle. (N.B. - /// See SuffixType below for why "minimal" isn't quite the correct word - /// here.) - /// - /// This is the position at which every search begins. Namely, search - /// starts by scanning text to the right of this position, and only if - /// there's a match does the text to the left of this position get scanned. - critical_pos: usize, - /// The amount we shift by in the Two-Way search algorithm. This - /// corresponds to the "small period" and "large period" cases. - shift: Shift, -} - -impl Finder { - /// Create a searcher that finds occurrences of the given `needle`. - /// - /// An empty `needle` results in a match at every position in a haystack, - /// including at `haystack.len()`. - #[inline] - pub fn new(needle: &[u8]) -> Finder { - let byteset = ApproximateByteSet::new(needle); - let min_suffix = Suffix::forward(needle, SuffixKind::Minimal); - let max_suffix = Suffix::forward(needle, SuffixKind::Maximal); - let (period_lower_bound, critical_pos) = - if min_suffix.pos > max_suffix.pos { - (min_suffix.period, min_suffix.pos) - } else { - (max_suffix.period, max_suffix.pos) - }; - let shift = Shift::forward(needle, period_lower_bound, critical_pos); - Finder(TwoWay { byteset, critical_pos, shift }) - } - - /// Returns the first occurrence of `needle` in the given `haystack`, or - /// `None` if no such occurrence could be found. - /// - /// The `needle` given must be the same as the `needle` provided to - /// [`Finder::new`]. - /// - /// An empty `needle` results in a match at every position in a haystack, - /// including at `haystack.len()`. - #[inline] - pub fn find(&self, haystack: &[u8], needle: &[u8]) -> Option<usize> { - self.find_with_prefilter(None, haystack, needle) - } - - /// This is like [`Finder::find`], but it accepts a prefilter for - /// accelerating searches. - /// - /// Currently this is not exposed in the public API because, at the time - /// of writing, I didn't want to spend time thinking about how to expose - /// the prefilter infrastructure (if at all). If you have a compelling use - /// case for exposing this routine, please create an issue. Do *not* open - /// a PR that just exposes `Pre` and friends. Exporting this routine will - /// require API design. - #[inline(always)] - pub(crate) fn find_with_prefilter( - &self, - pre: Option<Pre<'_>>, - haystack: &[u8], - needle: &[u8], - ) -> Option<usize> { - match self.0.shift { - Shift::Small { period } => { - self.find_small_imp(pre, haystack, needle, period) - } - Shift::Large { shift } => { - self.find_large_imp(pre, haystack, needle, shift) - } - } - } - - // Each of the two search implementations below can be accelerated by a - // prefilter, but it is not always enabled. To avoid its overhead when - // its disabled, we explicitly inline each search implementation based on - // whether a prefilter will be used or not. The decision on which to use - // is made in the parent meta searcher. - - #[inline(always)] - fn find_small_imp( - &self, - mut pre: Option<Pre<'_>>, - haystack: &[u8], - needle: &[u8], - period: usize, - ) -> Option<usize> { - let mut pos = 0; - let mut shift = 0; - let last_byte_pos = match needle.len().checked_sub(1) { - None => return Some(pos), - Some(last_byte) => last_byte, - }; - while pos + needle.len() <= haystack.len() { - let mut i = cmp::max(self.0.critical_pos, shift); - if let Some(pre) = pre.as_mut() { - if pre.is_effective() { - pos += pre.find(&haystack[pos..])?; - shift = 0; - i = self.0.critical_pos; - if pos + needle.len() > haystack.len() { - return None; - } - } - } - if !self.0.byteset.contains(haystack[pos + last_byte_pos]) { - pos += needle.len(); - shift = 0; - continue; - } - while i < needle.len() && needle[i] == haystack[pos + i] { - i += 1; - } - if i < needle.len() { - pos += i - self.0.critical_pos + 1; - shift = 0; - } else { - let mut j = self.0.critical_pos; - while j > shift && needle[j] == haystack[pos + j] { - j -= 1; - } - if j <= shift && needle[shift] == haystack[pos + shift] { - return Some(pos); - } - pos += period; - shift = needle.len() - period; - } - } - None - } - - #[inline(always)] - fn find_large_imp( - &self, - mut pre: Option<Pre<'_>>, - haystack: &[u8], - needle: &[u8], - shift: usize, - ) -> Option<usize> { - let mut pos = 0; - let last_byte_pos = match needle.len().checked_sub(1) { - None => return Some(pos), - Some(last_byte) => last_byte, - }; - 'outer: while pos + needle.len() <= haystack.len() { - if let Some(pre) = pre.as_mut() { - if pre.is_effective() { - pos += pre.find(&haystack[pos..])?; - if pos + needle.len() > haystack.len() { - return None; - } - } - } - - if !self.0.byteset.contains(haystack[pos + last_byte_pos]) { - pos += needle.len(); - continue; - } - let mut i = self.0.critical_pos; - while i < needle.len() && needle[i] == haystack[pos + i] { - i += 1; - } - if i < needle.len() { - pos += i - self.0.critical_pos + 1; - } else { - for j in (0..self.0.critical_pos).rev() { - if needle[j] != haystack[pos + j] { - pos += shift; - continue 'outer; - } - } - return Some(pos); - } - } - None - } -} - -impl FinderRev { - /// Create a searcher that finds occurrences of the given `needle`. - /// - /// An empty `needle` results in a match at every position in a haystack, - /// including at `haystack.len()`. - #[inline] - pub fn new(needle: &[u8]) -> FinderRev { - let byteset = ApproximateByteSet::new(needle); - let min_suffix = Suffix::reverse(needle, SuffixKind::Minimal); - let max_suffix = Suffix::reverse(needle, SuffixKind::Maximal); - let (period_lower_bound, critical_pos) = - if min_suffix.pos < max_suffix.pos { - (min_suffix.period, min_suffix.pos) - } else { - (max_suffix.period, max_suffix.pos) - }; - let shift = Shift::reverse(needle, period_lower_bound, critical_pos); - FinderRev(TwoWay { byteset, critical_pos, shift }) - } - - /// Returns the last occurrence of `needle` in the given `haystack`, or - /// `None` if no such occurrence could be found. - /// - /// The `needle` given must be the same as the `needle` provided to - /// [`FinderRev::new`]. - /// - /// An empty `needle` results in a match at every position in a haystack, - /// including at `haystack.len()`. - #[inline] - pub fn rfind(&self, haystack: &[u8], needle: &[u8]) -> Option<usize> { - // For the reverse case, we don't use a prefilter. It's plausible that - // perhaps we should, but it's a lot of additional code to do it, and - // it's not clear that it's actually worth it. If you have a really - // compelling use case for this, please file an issue. - match self.0.shift { - Shift::Small { period } => { - self.rfind_small_imp(haystack, needle, period) - } - Shift::Large { shift } => { - self.rfind_large_imp(haystack, needle, shift) - } - } - } - - #[inline(always)] - fn rfind_small_imp( - &self, - haystack: &[u8], - needle: &[u8], - period: usize, - ) -> Option<usize> { - let nlen = needle.len(); - let mut pos = haystack.len(); - let mut shift = nlen; - let first_byte = match needle.get(0) { - None => return Some(pos), - Some(&first_byte) => first_byte, - }; - while pos >= nlen { - if !self.0.byteset.contains(haystack[pos - nlen]) { - pos -= nlen; - shift = nlen; - continue; - } - let mut i = cmp::min(self.0.critical_pos, shift); - while i > 0 && needle[i - 1] == haystack[pos - nlen + i - 1] { - i -= 1; - } - if i > 0 || first_byte != haystack[pos - nlen] { - pos -= self.0.critical_pos - i + 1; - shift = nlen; - } else { - let mut j = self.0.critical_pos; - while j < shift && needle[j] == haystack[pos - nlen + j] { - j += 1; - } - if j >= shift { - return Some(pos - nlen); - } - pos -= period; - shift = period; - } - } - None - } - - #[inline(always)] - fn rfind_large_imp( - &self, - haystack: &[u8], - needle: &[u8], - shift: usize, - ) -> Option<usize> { - let nlen = needle.len(); - let mut pos = haystack.len(); - let first_byte = match needle.get(0) { - None => return Some(pos), - Some(&first_byte) => first_byte, - }; - while pos >= nlen { - if !self.0.byteset.contains(haystack[pos - nlen]) { - pos -= nlen; - continue; - } - let mut i = self.0.critical_pos; - while i > 0 && needle[i - 1] == haystack[pos - nlen + i - 1] { - i -= 1; - } - if i > 0 || first_byte != haystack[pos - nlen] { - pos -= self.0.critical_pos - i + 1; - } else { - let mut j = self.0.critical_pos; - while j < nlen && needle[j] == haystack[pos - nlen + j] { - j += 1; - } - if j == nlen { - return Some(pos - nlen); - } - pos -= shift; - } - } - None - } -} - -/// A representation of the amount we're allowed to shift by during Two-Way -/// search. -/// -/// When computing a critical factorization of the needle, we find the position -/// of the critical factorization by finding the needle's maximal (or minimal) -/// suffix, along with the period of that suffix. It turns out that the period -/// of that suffix is a lower bound on the period of the needle itself. -/// -/// This lower bound is equivalent to the actual period of the needle in -/// some cases. To describe that case, we denote the needle as `x` where -/// `x = uv` and `v` is the lexicographic maximal suffix of `v`. The lower -/// bound given here is always the period of `v`, which is `<= period(x)`. The -/// case where `period(v) == period(x)` occurs when `len(u) < (len(x) / 2)` and -/// where `u` is a suffix of `v[0..period(v)]`. -/// -/// This case is important because the search algorithm for when the -/// periods are equivalent is slightly different than the search algorithm -/// for when the periods are not equivalent. In particular, when they aren't -/// equivalent, we know that the period of the needle is no less than half its -/// length. In this case, we shift by an amount less than or equal to the -/// period of the needle (determined by the maximum length of the components -/// of the critical factorization of `x`, i.e., `max(len(u), len(v))`).. -/// -/// The above two cases are represented by the variants below. Each entails -/// a different instantiation of the Two-Way search algorithm. -/// -/// N.B. If we could find a way to compute the exact period in all cases, -/// then we could collapse this case analysis and simplify the algorithm. The -/// Two-Way paper suggests this is possible, but more reading is required to -/// grok why the authors didn't pursue that path. -#[derive(Clone, Copy, Debug)] -enum Shift { - Small { period: usize }, - Large { shift: usize }, -} - -impl Shift { - /// Compute the shift for a given needle in the forward direction. - /// - /// This requires a lower bound on the period and a critical position. - /// These can be computed by extracting both the minimal and maximal - /// lexicographic suffixes, and choosing the right-most starting position. - /// The lower bound on the period is then the period of the chosen suffix. - fn forward( - needle: &[u8], - period_lower_bound: usize, - critical_pos: usize, - ) -> Shift { - let large = cmp::max(critical_pos, needle.len() - critical_pos); - if critical_pos * 2 >= needle.len() { - return Shift::Large { shift: large }; - } - - let (u, v) = needle.split_at(critical_pos); - if !is_suffix(&v[..period_lower_bound], u) { - return Shift::Large { shift: large }; - } - Shift::Small { period: period_lower_bound } - } - - /// Compute the shift for a given needle in the reverse direction. - /// - /// This requires a lower bound on the period and a critical position. - /// These can be computed by extracting both the minimal and maximal - /// lexicographic suffixes, and choosing the left-most starting position. - /// The lower bound on the period is then the period of the chosen suffix. - fn reverse( - needle: &[u8], - period_lower_bound: usize, - critical_pos: usize, - ) -> Shift { - let large = cmp::max(critical_pos, needle.len() - critical_pos); - if (needle.len() - critical_pos) * 2 >= needle.len() { - return Shift::Large { shift: large }; - } - - let (v, u) = needle.split_at(critical_pos); - if !is_prefix(&v[v.len() - period_lower_bound..], u) { - return Shift::Large { shift: large }; - } - Shift::Small { period: period_lower_bound } - } -} - -/// A suffix extracted from a needle along with its period. -#[derive(Debug)] -struct Suffix { - /// The starting position of this suffix. - /// - /// If this is a forward suffix, then `&bytes[pos..]` can be used. If this - /// is a reverse suffix, then `&bytes[..pos]` can be used. That is, for - /// forward suffixes, this is an inclusive starting position, where as for - /// reverse suffixes, this is an exclusive ending position. - pos: usize, - /// The period of this suffix. - /// - /// Note that this is NOT necessarily the period of the string from which - /// this suffix comes from. (It is always less than or equal to the period - /// of the original string.) - period: usize, -} - -impl Suffix { - fn forward(needle: &[u8], kind: SuffixKind) -> Suffix { - // suffix represents our maximal (or minimal) suffix, along with - // its period. - let mut suffix = Suffix { pos: 0, period: 1 }; - // The start of a suffix in `needle` that we are considering as a - // more maximal (or minimal) suffix than what's in `suffix`. - let mut candidate_start = 1; - // The current offset of our suffixes that we're comparing. - // - // When the characters at this offset are the same, then we mush on - // to the next position since no decision is possible. When the - // candidate's character is greater (or lesser) than the corresponding - // character than our current maximal (or minimal) suffix, then the - // current suffix is changed over to the candidate and we restart our - // search. Otherwise, the candidate suffix is no good and we restart - // our search on the next candidate. - // - // The three cases above correspond to the three cases in the loop - // below. - let mut offset = 0; - - while candidate_start + offset < needle.len() { - let current = needle[suffix.pos + offset]; - let candidate = needle[candidate_start + offset]; - match kind.cmp(current, candidate) { - SuffixOrdering::Accept => { - suffix = Suffix { pos: candidate_start, period: 1 }; - candidate_start += 1; - offset = 0; - } - SuffixOrdering::Skip => { - candidate_start += offset + 1; - offset = 0; - suffix.period = candidate_start - suffix.pos; - } - SuffixOrdering::Push => { - if offset + 1 == suffix.period { - candidate_start += suffix.period; - offset = 0; - } else { - offset += 1; - } - } - } - } - suffix - } - - fn reverse(needle: &[u8], kind: SuffixKind) -> Suffix { - // See the comments in `forward` for how this works. - let mut suffix = Suffix { pos: needle.len(), period: 1 }; - if needle.len() == 1 { - return suffix; - } - let mut candidate_start = match needle.len().checked_sub(1) { - None => return suffix, - Some(candidate_start) => candidate_start, - }; - let mut offset = 0; - - while offset < candidate_start { - let current = needle[suffix.pos - offset - 1]; - let candidate = needle[candidate_start - offset - 1]; - match kind.cmp(current, candidate) { - SuffixOrdering::Accept => { - suffix = Suffix { pos: candidate_start, period: 1 }; - candidate_start -= 1; - offset = 0; - } - SuffixOrdering::Skip => { - candidate_start -= offset + 1; - offset = 0; - suffix.period = suffix.pos - candidate_start; - } - SuffixOrdering::Push => { - if offset + 1 == suffix.period { - candidate_start -= suffix.period; - offset = 0; - } else { - offset += 1; - } - } - } - } - suffix - } -} - -/// The kind of suffix to extract. -#[derive(Clone, Copy, Debug)] -enum SuffixKind { - /// Extract the smallest lexicographic suffix from a string. - /// - /// Technically, this doesn't actually pick the smallest lexicographic - /// suffix. e.g., Given the choice between `a` and `aa`, this will choose - /// the latter over the former, even though `a < aa`. The reasoning for - /// this isn't clear from the paper, but it still smells like a minimal - /// suffix. - Minimal, - /// Extract the largest lexicographic suffix from a string. - /// - /// Unlike `Minimal`, this really does pick the maximum suffix. e.g., Given - /// the choice between `z` and `zz`, this will choose the latter over the - /// former. - Maximal, -} - -/// The result of comparing corresponding bytes between two suffixes. -#[derive(Clone, Copy, Debug)] -enum SuffixOrdering { - /// This occurs when the given candidate byte indicates that the candidate - /// suffix is better than the current maximal (or minimal) suffix. That is, - /// the current candidate suffix should supplant the current maximal (or - /// minimal) suffix. - Accept, - /// This occurs when the given candidate byte excludes the candidate suffix - /// from being better than the current maximal (or minimal) suffix. That - /// is, the current candidate suffix should be dropped and the next one - /// should be considered. - Skip, - /// This occurs when no decision to accept or skip the candidate suffix - /// can be made, e.g., when corresponding bytes are equivalent. In this - /// case, the next corresponding bytes should be compared. - Push, -} - -impl SuffixKind { - /// Returns true if and only if the given candidate byte indicates that - /// it should replace the current suffix as the maximal (or minimal) - /// suffix. - fn cmp(self, current: u8, candidate: u8) -> SuffixOrdering { - use self::SuffixOrdering::*; - - match self { - SuffixKind::Minimal if candidate < current => Accept, - SuffixKind::Minimal if candidate > current => Skip, - SuffixKind::Minimal => Push, - SuffixKind::Maximal if candidate > current => Accept, - SuffixKind::Maximal if candidate < current => Skip, - SuffixKind::Maximal => Push, - } - } -} - -/// A bitset used to track whether a particular byte exists in a needle or not. -/// -/// Namely, bit 'i' is set if and only if byte%64==i for any byte in the -/// needle. If a particular byte in the haystack is NOT in this set, then one -/// can conclude that it is also not in the needle, and thus, one can advance -/// in the haystack by needle.len() bytes. -#[derive(Clone, Copy, Debug)] -struct ApproximateByteSet(u64); - -impl ApproximateByteSet { - /// Create a new set from the given needle. - fn new(needle: &[u8]) -> ApproximateByteSet { - let mut bits = 0; - for &b in needle { - bits |= 1 << (b % 64); - } - ApproximateByteSet(bits) - } - - /// Return true if and only if the given byte might be in this set. This - /// may return a false positive, but will never return a false negative. - #[inline(always)] - fn contains(&self, byte: u8) -> bool { - self.0 & (1 << (byte % 64)) != 0 - } -} - -#[cfg(test)] -mod tests { - use alloc::vec::Vec; - - use super::*; - - /// Convenience wrapper for computing the suffix as a byte string. - fn get_suffix_forward(needle: &[u8], kind: SuffixKind) -> (&[u8], usize) { - let s = Suffix::forward(needle, kind); - (&needle[s.pos..], s.period) - } - - /// Convenience wrapper for computing the reverse suffix as a byte string. - fn get_suffix_reverse(needle: &[u8], kind: SuffixKind) -> (&[u8], usize) { - let s = Suffix::reverse(needle, kind); - (&needle[..s.pos], s.period) - } - - /// Return all of the non-empty suffixes in the given byte string. - fn suffixes(bytes: &[u8]) -> Vec<&[u8]> { - (0..bytes.len()).map(|i| &bytes[i..]).collect() - } - - /// Return the lexicographically maximal suffix of the given byte string. - fn naive_maximal_suffix_forward(needle: &[u8]) -> &[u8] { - let mut sufs = suffixes(needle); - sufs.sort(); - sufs.pop().unwrap() - } - - /// Return the lexicographically maximal suffix of the reverse of the given - /// byte string. - fn naive_maximal_suffix_reverse(needle: &[u8]) -> Vec<u8> { - let mut reversed = needle.to_vec(); - reversed.reverse(); - let mut got = naive_maximal_suffix_forward(&reversed).to_vec(); - got.reverse(); - got - } - - define_substring_forward_quickcheck!(|h, n| Some( - Finder::new(n).find(h, n) - )); - define_substring_reverse_quickcheck!(|h, n| Some( - FinderRev::new(n).rfind(h, n) - )); - - #[test] - fn forward() { - crate::tests::substring::Runner::new() - .fwd(|h, n| Some(Finder::new(n).find(h, n))) - .run(); - } - - #[test] - fn reverse() { - crate::tests::substring::Runner::new() - .rev(|h, n| Some(FinderRev::new(n).rfind(h, n))) - .run(); - } - - #[test] - fn suffix_forward() { - macro_rules! assert_suffix_min { - ($given:expr, $expected:expr, $period:expr) => { - let (got_suffix, got_period) = - get_suffix_forward($given.as_bytes(), SuffixKind::Minimal); - let got_suffix = core::str::from_utf8(got_suffix).unwrap(); - assert_eq!(($expected, $period), (got_suffix, got_period)); - }; - } - - macro_rules! assert_suffix_max { - ($given:expr, $expected:expr, $period:expr) => { - let (got_suffix, got_period) = - get_suffix_forward($given.as_bytes(), SuffixKind::Maximal); - let got_suffix = core::str::from_utf8(got_suffix).unwrap(); - assert_eq!(($expected, $period), (got_suffix, got_period)); - }; - } - - assert_suffix_min!("a", "a", 1); - assert_suffix_max!("a", "a", 1); - - assert_suffix_min!("ab", "ab", 2); - assert_suffix_max!("ab", "b", 1); - - assert_suffix_min!("ba", "a", 1); - assert_suffix_max!("ba", "ba", 2); - - assert_suffix_min!("abc", "abc", 3); - assert_suffix_max!("abc", "c", 1); - - assert_suffix_min!("acb", "acb", 3); - assert_suffix_max!("acb", "cb", 2); - - assert_suffix_min!("cba", "a", 1); - assert_suffix_max!("cba", "cba", 3); - - assert_suffix_min!("abcabc", "abcabc", 3); - assert_suffix_max!("abcabc", "cabc", 3); - - assert_suffix_min!("abcabcabc", "abcabcabc", 3); - assert_suffix_max!("abcabcabc", "cabcabc", 3); - - assert_suffix_min!("abczz", "abczz", 5); - assert_suffix_max!("abczz", "zz", 1); - - assert_suffix_min!("zzabc", "abc", 3); - assert_suffix_max!("zzabc", "zzabc", 5); - - assert_suffix_min!("aaa", "aaa", 1); - assert_suffix_max!("aaa", "aaa", 1); - - assert_suffix_min!("foobar", "ar", 2); - assert_suffix_max!("foobar", "r", 1); - } - - #[test] - fn suffix_reverse() { - macro_rules! assert_suffix_min { - ($given:expr, $expected:expr, $period:expr) => { - let (got_suffix, got_period) = - get_suffix_reverse($given.as_bytes(), SuffixKind::Minimal); - let got_suffix = core::str::from_utf8(got_suffix).unwrap(); - assert_eq!(($expected, $period), (got_suffix, got_period)); - }; - } - - macro_rules! assert_suffix_max { - ($given:expr, $expected:expr, $period:expr) => { - let (got_suffix, got_period) = - get_suffix_reverse($given.as_bytes(), SuffixKind::Maximal); - let got_suffix = core::str::from_utf8(got_suffix).unwrap(); - assert_eq!(($expected, $period), (got_suffix, got_period)); - }; - } - - assert_suffix_min!("a", "a", 1); - assert_suffix_max!("a", "a", 1); - - assert_suffix_min!("ab", "a", 1); - assert_suffix_max!("ab", "ab", 2); - - assert_suffix_min!("ba", "ba", 2); - assert_suffix_max!("ba", "b", 1); - - assert_suffix_min!("abc", "a", 1); - assert_suffix_max!("abc", "abc", 3); - - assert_suffix_min!("acb", "a", 1); - assert_suffix_max!("acb", "ac", 2); - - assert_suffix_min!("cba", "cba", 3); - assert_suffix_max!("cba", "c", 1); - - assert_suffix_min!("abcabc", "abca", 3); - assert_suffix_max!("abcabc", "abcabc", 3); - - assert_suffix_min!("abcabcabc", "abcabca", 3); - assert_suffix_max!("abcabcabc", "abcabcabc", 3); - - assert_suffix_min!("abczz", "a", 1); - assert_suffix_max!("abczz", "abczz", 5); - - assert_suffix_min!("zzabc", "zza", 3); - assert_suffix_max!("zzabc", "zz", 1); - - assert_suffix_min!("aaa", "aaa", 1); - assert_suffix_max!("aaa", "aaa", 1); - } - - #[cfg(not(miri))] - quickcheck::quickcheck! { - fn qc_suffix_forward_maximal(bytes: Vec<u8>) -> bool { - if bytes.is_empty() { - return true; - } - - let (got, _) = get_suffix_forward(&bytes, SuffixKind::Maximal); - let expected = naive_maximal_suffix_forward(&bytes); - got == expected - } - - fn qc_suffix_reverse_maximal(bytes: Vec<u8>) -> bool { - if bytes.is_empty() { - return true; - } - - let (got, _) = get_suffix_reverse(&bytes, SuffixKind::Maximal); - let expected = naive_maximal_suffix_reverse(&bytes); - expected == got - } - } - - // This is a regression test caught by quickcheck that exercised a bug in - // the reverse small period handling. The bug was that we were using 'if j - // == shift' to determine if a match occurred, but the correct guard is 'if - // j >= shift', which matches the corresponding guard in the forward impl. - #[test] - fn regression_rev_small_period() { - let rfind = |h, n| FinderRev::new(n).rfind(h, n); - let haystack = "ababaz"; - let needle = "abab"; - assert_eq!(Some(0), rfind(haystack.as_bytes(), needle.as_bytes())); - } -} |