aboutsummaryrefslogtreecommitdiff
path: root/vendor/memchr/src/memmem
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/memchr/src/memmem')
-rw-r--r--vendor/memchr/src/memmem/mod.rs737
-rw-r--r--vendor/memchr/src/memmem/searcher.rs1030
2 files changed, 1767 insertions, 0 deletions
diff --git a/vendor/memchr/src/memmem/mod.rs b/vendor/memchr/src/memmem/mod.rs
new file mode 100644
index 0000000..4f04943
--- /dev/null
+++ b/vendor/memchr/src/memmem/mod.rs
@@ -0,0 +1,737 @@
+/*!
+This module provides forward and reverse substring search routines.
+
+Unlike the standard library's substring search routines, these work on
+arbitrary bytes. For all non-empty needles, these routines will report exactly
+the same values as the corresponding routines in the standard library. For
+the empty needle, the standard library reports matches only at valid UTF-8
+boundaries, where as these routines will report matches at every position.
+
+Other than being able to work on arbitrary bytes, the primary reason to prefer
+these routines over the standard library routines is that these will generally
+be faster. In some cases, significantly so.
+
+# Example: iterating over substring matches
+
+This example shows how to use [`find_iter`] to find occurrences of a substring
+in a haystack.
+
+```
+use memchr::memmem;
+
+let haystack = b"foo bar foo baz foo";
+
+let mut it = memmem::find_iter(haystack, "foo");
+assert_eq!(Some(0), it.next());
+assert_eq!(Some(8), it.next());
+assert_eq!(Some(16), it.next());
+assert_eq!(None, it.next());
+```
+
+# Example: iterating over substring matches in reverse
+
+This example shows how to use [`rfind_iter`] to find occurrences of a substring
+in a haystack starting from the end of the haystack.
+
+**NOTE:** This module does not implement double ended iterators, so reverse
+searches aren't done by calling `rev` on a forward iterator.
+
+```
+use memchr::memmem;
+
+let haystack = b"foo bar foo baz foo";
+
+let mut it = memmem::rfind_iter(haystack, "foo");
+assert_eq!(Some(16), it.next());
+assert_eq!(Some(8), it.next());
+assert_eq!(Some(0), it.next());
+assert_eq!(None, it.next());
+```
+
+# Example: repeating a search for the same needle
+
+It may be possible for the overhead of constructing a substring searcher to be
+measurable in some workloads. In cases where the same needle is used to search
+many haystacks, it is possible to do construction once and thus to avoid it for
+subsequent searches. This can be done with a [`Finder`] (or a [`FinderRev`] for
+reverse searches).
+
+```
+use memchr::memmem;
+
+let finder = memmem::Finder::new("foo");
+
+assert_eq!(Some(4), finder.find(b"baz foo quux"));
+assert_eq!(None, finder.find(b"quux baz bar"));
+```
+*/
+
+pub use crate::memmem::searcher::PrefilterConfig as Prefilter;
+
+// This is exported here for use in the crate::arch::all::twoway
+// implementation. This is essentially an abstraction breaker. Namely, the
+// public API of twoway doesn't support providing a prefilter, but its crate
+// internal API does. The main reason for this is that I didn't want to do the
+// API design required to support it without a concrete use case.
+pub(crate) use crate::memmem::searcher::Pre;
+
+use crate::{
+ arch::all::{
+ packedpair::{DefaultFrequencyRank, HeuristicFrequencyRank},
+ rabinkarp,
+ },
+ cow::CowBytes,
+ memmem::searcher::{PrefilterState, Searcher, SearcherRev},
+};
+
+mod searcher;
+
+/// Returns an iterator over all non-overlapping occurrences of a substring in
+/// a haystack.
+///
+/// # Complexity
+///
+/// This routine is guaranteed to have worst case linear time complexity
+/// with respect to both the needle and the haystack. That is, this runs
+/// in `O(needle.len() + haystack.len())` time.
+///
+/// This routine is also guaranteed to have worst case constant space
+/// complexity.
+///
+/// # Examples
+///
+/// Basic usage:
+///
+/// ```
+/// use memchr::memmem;
+///
+/// let haystack = b"foo bar foo baz foo";
+/// let mut it = memmem::find_iter(haystack, b"foo");
+/// assert_eq!(Some(0), it.next());
+/// assert_eq!(Some(8), it.next());
+/// assert_eq!(Some(16), it.next());
+/// assert_eq!(None, it.next());
+/// ```
+#[inline]
+pub fn find_iter<'h, 'n, N: 'n + ?Sized + AsRef<[u8]>>(
+ haystack: &'h [u8],
+ needle: &'n N,
+) -> FindIter<'h, 'n> {
+ FindIter::new(haystack, Finder::new(needle))
+}
+
+/// Returns a reverse iterator over all non-overlapping occurrences of a
+/// substring in a haystack.
+///
+/// # Complexity
+///
+/// This routine is guaranteed to have worst case linear time complexity
+/// with respect to both the needle and the haystack. That is, this runs
+/// in `O(needle.len() + haystack.len())` time.
+///
+/// This routine is also guaranteed to have worst case constant space
+/// complexity.
+///
+/// # Examples
+///
+/// Basic usage:
+///
+/// ```
+/// use memchr::memmem;
+///
+/// let haystack = b"foo bar foo baz foo";
+/// let mut it = memmem::rfind_iter(haystack, b"foo");
+/// assert_eq!(Some(16), it.next());
+/// assert_eq!(Some(8), it.next());
+/// assert_eq!(Some(0), it.next());
+/// assert_eq!(None, it.next());
+/// ```
+#[inline]
+pub fn rfind_iter<'h, 'n, N: 'n + ?Sized + AsRef<[u8]>>(
+ haystack: &'h [u8],
+ needle: &'n N,
+) -> FindRevIter<'h, 'n> {
+ FindRevIter::new(haystack, FinderRev::new(needle))
+}
+
+/// Returns the index of the first occurrence of the given needle.
+///
+/// Note that if you're are searching for the same needle in many different
+/// small haystacks, it may be faster to initialize a [`Finder`] once,
+/// and reuse it for each search.
+///
+/// # Complexity
+///
+/// This routine is guaranteed to have worst case linear time complexity
+/// with respect to both the needle and the haystack. That is, this runs
+/// in `O(needle.len() + haystack.len())` time.
+///
+/// This routine is also guaranteed to have worst case constant space
+/// complexity.
+///
+/// # Examples
+///
+/// Basic usage:
+///
+/// ```
+/// use memchr::memmem;
+///
+/// let haystack = b"foo bar baz";
+/// assert_eq!(Some(0), memmem::find(haystack, b"foo"));
+/// assert_eq!(Some(4), memmem::find(haystack, b"bar"));
+/// assert_eq!(None, memmem::find(haystack, b"quux"));
+/// ```
+#[inline]
+pub fn find(haystack: &[u8], needle: &[u8]) -> Option<usize> {
+ if haystack.len() < 64 {
+ rabinkarp::Finder::new(needle).find(haystack, needle)
+ } else {
+ Finder::new(needle).find(haystack)
+ }
+}
+
+/// Returns the index of the last occurrence of the given needle.
+///
+/// Note that if you're are searching for the same needle in many different
+/// small haystacks, it may be faster to initialize a [`FinderRev`] once,
+/// and reuse it for each search.
+///
+/// # Complexity
+///
+/// This routine is guaranteed to have worst case linear time complexity
+/// with respect to both the needle and the haystack. That is, this runs
+/// in `O(needle.len() + haystack.len())` time.
+///
+/// This routine is also guaranteed to have worst case constant space
+/// complexity.
+///
+/// # Examples
+///
+/// Basic usage:
+///
+/// ```
+/// use memchr::memmem;
+///
+/// let haystack = b"foo bar baz";
+/// assert_eq!(Some(0), memmem::rfind(haystack, b"foo"));
+/// assert_eq!(Some(4), memmem::rfind(haystack, b"bar"));
+/// assert_eq!(Some(8), memmem::rfind(haystack, b"ba"));
+/// assert_eq!(None, memmem::rfind(haystack, b"quux"));
+/// ```
+#[inline]
+pub fn rfind(haystack: &[u8], needle: &[u8]) -> Option<usize> {
+ if haystack.len() < 64 {
+ rabinkarp::FinderRev::new(needle).rfind(haystack, needle)
+ } else {
+ FinderRev::new(needle).rfind(haystack)
+ }
+}
+
+/// An iterator over non-overlapping substring matches.
+///
+/// Matches are reported by the byte offset at which they begin.
+///
+/// `'h` is the lifetime of the haystack while `'n` is the lifetime of the
+/// needle.
+#[derive(Debug, Clone)]
+pub struct FindIter<'h, 'n> {
+ haystack: &'h [u8],
+ prestate: PrefilterState,
+ finder: Finder<'n>,
+ pos: usize,
+}
+
+impl<'h, 'n> FindIter<'h, 'n> {
+ #[inline(always)]
+ pub(crate) fn new(
+ haystack: &'h [u8],
+ finder: Finder<'n>,
+ ) -> FindIter<'h, 'n> {
+ let prestate = PrefilterState::new();
+ FindIter { haystack, prestate, finder, pos: 0 }
+ }
+
+ /// Convert this iterator into its owned variant, such that it no longer
+ /// borrows the finder and needle.
+ ///
+ /// If this is already an owned iterator, then this is a no-op. Otherwise,
+ /// this copies the needle.
+ ///
+ /// This is only available when the `alloc` feature is enabled.
+ #[cfg(feature = "alloc")]
+ #[inline]
+ pub fn into_owned(self) -> FindIter<'h, 'static> {
+ FindIter {
+ haystack: self.haystack,
+ prestate: self.prestate,
+ finder: self.finder.into_owned(),
+ pos: self.pos,
+ }
+ }
+}
+
+impl<'h, 'n> Iterator for FindIter<'h, 'n> {
+ type Item = usize;
+
+ fn next(&mut self) -> Option<usize> {
+ let needle = self.finder.needle();
+ let haystack = self.haystack.get(self.pos..)?;
+ let idx =
+ self.finder.searcher.find(&mut self.prestate, haystack, needle)?;
+
+ let pos = self.pos + idx;
+ self.pos = pos + needle.len().max(1);
+
+ Some(pos)
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ // The largest possible number of non-overlapping matches is the
+ // quotient of the haystack and the needle (or the length of the
+ // haystack, if the needle is empty)
+ match self.haystack.len().checked_sub(self.pos) {
+ None => (0, Some(0)),
+ Some(haystack_len) => match self.finder.needle().len() {
+ // Empty needles always succeed and match at every point
+ // (including the very end)
+ 0 => (
+ haystack_len.saturating_add(1),
+ haystack_len.checked_add(1),
+ ),
+ needle_len => (0, Some(haystack_len / needle_len)),
+ },
+ }
+ }
+}
+
+/// An iterator over non-overlapping substring matches in reverse.
+///
+/// Matches are reported by the byte offset at which they begin.
+///
+/// `'h` is the lifetime of the haystack while `'n` is the lifetime of the
+/// needle.
+#[derive(Clone, Debug)]
+pub struct FindRevIter<'h, 'n> {
+ haystack: &'h [u8],
+ finder: FinderRev<'n>,
+ /// When searching with an empty needle, this gets set to `None` after
+ /// we've yielded the last element at `0`.
+ pos: Option<usize>,
+}
+
+impl<'h, 'n> FindRevIter<'h, 'n> {
+ #[inline(always)]
+ pub(crate) fn new(
+ haystack: &'h [u8],
+ finder: FinderRev<'n>,
+ ) -> FindRevIter<'h, 'n> {
+ let pos = Some(haystack.len());
+ FindRevIter { haystack, finder, pos }
+ }
+
+ /// Convert this iterator into its owned variant, such that it no longer
+ /// borrows the finder and needle.
+ ///
+ /// If this is already an owned iterator, then this is a no-op. Otherwise,
+ /// this copies the needle.
+ ///
+ /// This is only available when the `std` feature is enabled.
+ #[cfg(feature = "alloc")]
+ #[inline]
+ pub fn into_owned(self) -> FindRevIter<'h, 'static> {
+ FindRevIter {
+ haystack: self.haystack,
+ finder: self.finder.into_owned(),
+ pos: self.pos,
+ }
+ }
+}
+
+impl<'h, 'n> Iterator for FindRevIter<'h, 'n> {
+ type Item = usize;
+
+ fn next(&mut self) -> Option<usize> {
+ let pos = match self.pos {
+ None => return None,
+ Some(pos) => pos,
+ };
+ let result = self.finder.rfind(&self.haystack[..pos]);
+ match result {
+ None => None,
+ Some(i) => {
+ if pos == i {
+ self.pos = pos.checked_sub(1);
+ } else {
+ self.pos = Some(i);
+ }
+ Some(i)
+ }
+ }
+ }
+}
+
+/// A single substring searcher fixed to a particular needle.
+///
+/// The purpose of this type is to permit callers to construct a substring
+/// searcher that can be used to search haystacks without the overhead of
+/// constructing the searcher in the first place. This is a somewhat niche
+/// concern when it's necessary to re-use the same needle to search multiple
+/// different haystacks with as little overhead as possible. In general, using
+/// [`find`] is good enough, but `Finder` is useful when you can meaningfully
+/// observe searcher construction time in a profile.
+///
+/// When the `std` feature is enabled, then this type has an `into_owned`
+/// version which permits building a `Finder` that is not connected to
+/// the lifetime of its needle.
+#[derive(Clone, Debug)]
+pub struct Finder<'n> {
+ needle: CowBytes<'n>,
+ searcher: Searcher,
+}
+
+impl<'n> Finder<'n> {
+ /// Create a new finder for the given needle.
+ #[inline]
+ pub fn new<B: ?Sized + AsRef<[u8]>>(needle: &'n B) -> Finder<'n> {
+ FinderBuilder::new().build_forward(needle)
+ }
+
+ /// Returns the index of the first occurrence of this needle in the given
+ /// haystack.
+ ///
+ /// # Complexity
+ ///
+ /// This routine is guaranteed to have worst case linear time complexity
+ /// with respect to both the needle and the haystack. That is, this runs
+ /// in `O(needle.len() + haystack.len())` time.
+ ///
+ /// This routine is also guaranteed to have worst case constant space
+ /// complexity.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// use memchr::memmem::Finder;
+ ///
+ /// let haystack = b"foo bar baz";
+ /// assert_eq!(Some(0), Finder::new("foo").find(haystack));
+ /// assert_eq!(Some(4), Finder::new("bar").find(haystack));
+ /// assert_eq!(None, Finder::new("quux").find(haystack));
+ /// ```
+ #[inline]
+ pub fn find(&self, haystack: &[u8]) -> Option<usize> {
+ let mut prestate = PrefilterState::new();
+ let needle = self.needle.as_slice();
+ self.searcher.find(&mut prestate, haystack, needle)
+ }
+
+ /// Returns an iterator over all occurrences of a substring in a haystack.
+ ///
+ /// # Complexity
+ ///
+ /// This routine is guaranteed to have worst case linear time complexity
+ /// with respect to both the needle and the haystack. That is, this runs
+ /// in `O(needle.len() + haystack.len())` time.
+ ///
+ /// This routine is also guaranteed to have worst case constant space
+ /// complexity.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// use memchr::memmem::Finder;
+ ///
+ /// let haystack = b"foo bar foo baz foo";
+ /// let finder = Finder::new(b"foo");
+ /// let mut it = finder.find_iter(haystack);
+ /// assert_eq!(Some(0), it.next());
+ /// assert_eq!(Some(8), it.next());
+ /// assert_eq!(Some(16), it.next());
+ /// assert_eq!(None, it.next());
+ /// ```
+ #[inline]
+ pub fn find_iter<'a, 'h>(
+ &'a self,
+ haystack: &'h [u8],
+ ) -> FindIter<'h, 'a> {
+ FindIter::new(haystack, self.as_ref())
+ }
+
+ /// Convert this finder into its owned variant, such that it no longer
+ /// borrows the needle.
+ ///
+ /// If this is already an owned finder, then this is a no-op. Otherwise,
+ /// this copies the needle.
+ ///
+ /// This is only available when the `alloc` feature is enabled.
+ #[cfg(feature = "alloc")]
+ #[inline]
+ pub fn into_owned(self) -> Finder<'static> {
+ Finder {
+ needle: self.needle.into_owned(),
+ searcher: self.searcher.clone(),
+ }
+ }
+
+ /// Convert this finder into its borrowed variant.
+ ///
+ /// This is primarily useful if your finder is owned and you'd like to
+ /// store its borrowed variant in some intermediate data structure.
+ ///
+ /// Note that the lifetime parameter of the returned finder is tied to the
+ /// lifetime of `self`, and may be shorter than the `'n` lifetime of the
+ /// needle itself. Namely, a finder's needle can be either borrowed or
+ /// owned, so the lifetime of the needle returned must necessarily be the
+ /// shorter of the two.
+ #[inline]
+ pub fn as_ref(&self) -> Finder<'_> {
+ Finder {
+ needle: CowBytes::new(self.needle()),
+ searcher: self.searcher.clone(),
+ }
+ }
+
+ /// Returns the needle that this finder searches for.
+ ///
+ /// Note that the lifetime of the needle returned is tied to the lifetime
+ /// of the finder, and may be shorter than the `'n` lifetime. Namely, a
+ /// finder's needle can be either borrowed or owned, so the lifetime of the
+ /// needle returned must necessarily be the shorter of the two.
+ #[inline]
+ pub fn needle(&self) -> &[u8] {
+ self.needle.as_slice()
+ }
+}
+
+/// A single substring reverse searcher fixed to a particular needle.
+///
+/// The purpose of this type is to permit callers to construct a substring
+/// searcher that can be used to search haystacks without the overhead of
+/// constructing the searcher in the first place. This is a somewhat niche
+/// concern when it's necessary to re-use the same needle to search multiple
+/// different haystacks with as little overhead as possible. In general,
+/// using [`rfind`] is good enough, but `FinderRev` is useful when you can
+/// meaningfully observe searcher construction time in a profile.
+///
+/// When the `std` feature is enabled, then this type has an `into_owned`
+/// version which permits building a `FinderRev` that is not connected to
+/// the lifetime of its needle.
+#[derive(Clone, Debug)]
+pub struct FinderRev<'n> {
+ needle: CowBytes<'n>,
+ searcher: SearcherRev,
+}
+
+impl<'n> FinderRev<'n> {
+ /// Create a new reverse finder for the given needle.
+ #[inline]
+ pub fn new<B: ?Sized + AsRef<[u8]>>(needle: &'n B) -> FinderRev<'n> {
+ FinderBuilder::new().build_reverse(needle)
+ }
+
+ /// Returns the index of the last occurrence of this needle in the given
+ /// haystack.
+ ///
+ /// The haystack may be any type that can be cheaply converted into a
+ /// `&[u8]`. This includes, but is not limited to, `&str` and `&[u8]`.
+ ///
+ /// # Complexity
+ ///
+ /// This routine is guaranteed to have worst case linear time complexity
+ /// with respect to both the needle and the haystack. That is, this runs
+ /// in `O(needle.len() + haystack.len())` time.
+ ///
+ /// This routine is also guaranteed to have worst case constant space
+ /// complexity.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// use memchr::memmem::FinderRev;
+ ///
+ /// let haystack = b"foo bar baz";
+ /// assert_eq!(Some(0), FinderRev::new("foo").rfind(haystack));
+ /// assert_eq!(Some(4), FinderRev::new("bar").rfind(haystack));
+ /// assert_eq!(None, FinderRev::new("quux").rfind(haystack));
+ /// ```
+ pub fn rfind<B: AsRef<[u8]>>(&self, haystack: B) -> Option<usize> {
+ self.searcher.rfind(haystack.as_ref(), self.needle.as_slice())
+ }
+
+ /// Returns a reverse iterator over all occurrences of a substring in a
+ /// haystack.
+ ///
+ /// # Complexity
+ ///
+ /// This routine is guaranteed to have worst case linear time complexity
+ /// with respect to both the needle and the haystack. That is, this runs
+ /// in `O(needle.len() + haystack.len())` time.
+ ///
+ /// This routine is also guaranteed to have worst case constant space
+ /// complexity.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// use memchr::memmem::FinderRev;
+ ///
+ /// let haystack = b"foo bar foo baz foo";
+ /// let finder = FinderRev::new(b"foo");
+ /// let mut it = finder.rfind_iter(haystack);
+ /// assert_eq!(Some(16), it.next());
+ /// assert_eq!(Some(8), it.next());
+ /// assert_eq!(Some(0), it.next());
+ /// assert_eq!(None, it.next());
+ /// ```
+ #[inline]
+ pub fn rfind_iter<'a, 'h>(
+ &'a self,
+ haystack: &'h [u8],
+ ) -> FindRevIter<'h, 'a> {
+ FindRevIter::new(haystack, self.as_ref())
+ }
+
+ /// Convert this finder into its owned variant, such that it no longer
+ /// borrows the needle.
+ ///
+ /// If this is already an owned finder, then this is a no-op. Otherwise,
+ /// this copies the needle.
+ ///
+ /// This is only available when the `std` feature is enabled.
+ #[cfg(feature = "alloc")]
+ #[inline]
+ pub fn into_owned(self) -> FinderRev<'static> {
+ FinderRev {
+ needle: self.needle.into_owned(),
+ searcher: self.searcher.clone(),
+ }
+ }
+
+ /// Convert this finder into its borrowed variant.
+ ///
+ /// This is primarily useful if your finder is owned and you'd like to
+ /// store its borrowed variant in some intermediate data structure.
+ ///
+ /// Note that the lifetime parameter of the returned finder is tied to the
+ /// lifetime of `self`, and may be shorter than the `'n` lifetime of the
+ /// needle itself. Namely, a finder's needle can be either borrowed or
+ /// owned, so the lifetime of the needle returned must necessarily be the
+ /// shorter of the two.
+ #[inline]
+ pub fn as_ref(&self) -> FinderRev<'_> {
+ FinderRev {
+ needle: CowBytes::new(self.needle()),
+ searcher: self.searcher.clone(),
+ }
+ }
+
+ /// Returns the needle that this finder searches for.
+ ///
+ /// Note that the lifetime of the needle returned is tied to the lifetime
+ /// of the finder, and may be shorter than the `'n` lifetime. Namely, a
+ /// finder's needle can be either borrowed or owned, so the lifetime of the
+ /// needle returned must necessarily be the shorter of the two.
+ #[inline]
+ pub fn needle(&self) -> &[u8] {
+ self.needle.as_slice()
+ }
+}
+
+/// A builder for constructing non-default forward or reverse memmem finders.
+///
+/// A builder is primarily useful for configuring a substring searcher.
+/// Currently, the only configuration exposed is the ability to disable
+/// heuristic prefilters used to speed up certain searches.
+#[derive(Clone, Debug, Default)]
+pub struct FinderBuilder {
+ prefilter: Prefilter,
+}
+
+impl FinderBuilder {
+ /// Create a new finder builder with default settings.
+ pub fn new() -> FinderBuilder {
+ FinderBuilder::default()
+ }
+
+ /// Build a forward finder using the given needle from the current
+ /// settings.
+ pub fn build_forward<'n, B: ?Sized + AsRef<[u8]>>(
+ &self,
+ needle: &'n B,
+ ) -> Finder<'n> {
+ self.build_forward_with_ranker(DefaultFrequencyRank, needle)
+ }
+
+ /// Build a forward finder using the given needle and a custom heuristic for
+ /// determining the frequency of a given byte in the dataset.
+ /// See [`HeuristicFrequencyRank`] for more details.
+ pub fn build_forward_with_ranker<
+ 'n,
+ R: HeuristicFrequencyRank,
+ B: ?Sized + AsRef<[u8]>,
+ >(
+ &self,
+ ranker: R,
+ needle: &'n B,
+ ) -> Finder<'n> {
+ let needle = needle.as_ref();
+ Finder {
+ needle: CowBytes::new(needle),
+ searcher: Searcher::new(self.prefilter, ranker, needle),
+ }
+ }
+
+ /// Build a reverse finder using the given needle from the current
+ /// settings.
+ pub fn build_reverse<'n, B: ?Sized + AsRef<[u8]>>(
+ &self,
+ needle: &'n B,
+ ) -> FinderRev<'n> {
+ let needle = needle.as_ref();
+ FinderRev {
+ needle: CowBytes::new(needle),
+ searcher: SearcherRev::new(needle),
+ }
+ }
+
+ /// Configure the prefilter setting for the finder.
+ ///
+ /// See the documentation for [`Prefilter`] for more discussion on why
+ /// you might want to configure this.
+ pub fn prefilter(&mut self, prefilter: Prefilter) -> &mut FinderBuilder {
+ self.prefilter = prefilter;
+ self
+ }
+}
+
+#[cfg(test)]
+mod tests {
+ use super::*;
+
+ define_substring_forward_quickcheck!(|h, n| Some(Finder::new(n).find(h)));
+ define_substring_reverse_quickcheck!(|h, n| Some(
+ FinderRev::new(n).rfind(h)
+ ));
+
+ #[test]
+ fn forward() {
+ crate::tests::substring::Runner::new()
+ .fwd(|h, n| Some(Finder::new(n).find(h)))
+ .run();
+ }
+
+ #[test]
+ fn reverse() {
+ crate::tests::substring::Runner::new()
+ .rev(|h, n| Some(FinderRev::new(n).rfind(h)))
+ .run();
+ }
+}
diff --git a/vendor/memchr/src/memmem/searcher.rs b/vendor/memchr/src/memmem/searcher.rs
new file mode 100644
index 0000000..98b9bd6
--- /dev/null
+++ b/vendor/memchr/src/memmem/searcher.rs
@@ -0,0 +1,1030 @@
+use crate::arch::all::{
+ packedpair::{HeuristicFrequencyRank, Pair},
+ rabinkarp, twoway,
+};
+
+#[cfg(target_arch = "aarch64")]
+use crate::arch::aarch64::neon::packedpair as neon;
+#[cfg(target_arch = "wasm32")]
+use crate::arch::wasm32::simd128::packedpair as simd128;
+#[cfg(all(target_arch = "x86_64", target_feature = "sse2"))]
+use crate::arch::x86_64::{
+ avx2::packedpair as avx2, sse2::packedpair as sse2,
+};
+
+/// A "meta" substring searcher.
+///
+/// To a first approximation, this chooses what it believes to be the "best"
+/// substring search implemnetation based on the needle at construction time.
+/// Then, every call to `find` will execute that particular implementation. To
+/// a second approximation, multiple substring search algorithms may be used,
+/// depending on the haystack. For example, for supremely short haystacks,
+/// Rabin-Karp is typically used.
+///
+/// See the documentation on `Prefilter` for an explanation of the dispatching
+/// mechanism. The quick summary is that an enum has too much overhead and
+/// we can't use dynamic dispatch via traits because we need to work in a
+/// core-only environment. (Dynamic dispatch works in core-only, but you
+/// need `&dyn Trait` and we really need a `Box<dyn Trait>` here. The latter
+/// requires `alloc`.) So instead, we use a union and an appropriately paired
+/// free function to read from the correct field on the union and execute the
+/// chosen substring search implementation.
+#[derive(Clone)]
+pub(crate) struct Searcher {
+ call: SearcherKindFn,
+ kind: SearcherKind,
+ rabinkarp: rabinkarp::Finder,
+}
+
+impl Searcher {
+ /// Creates a new "meta" substring searcher that attempts to choose the
+ /// best algorithm based on the needle, heuristics and what the current
+ /// target supports.
+ #[inline]
+ pub(crate) fn new<R: HeuristicFrequencyRank>(
+ prefilter: PrefilterConfig,
+ ranker: R,
+ needle: &[u8],
+ ) -> Searcher {
+ let rabinkarp = rabinkarp::Finder::new(needle);
+ if needle.len() <= 1 {
+ return if needle.is_empty() {
+ trace!("building empty substring searcher");
+ Searcher {
+ call: searcher_kind_empty,
+ kind: SearcherKind { empty: () },
+ rabinkarp,
+ }
+ } else {
+ trace!("building one-byte substring searcher");
+ debug_assert_eq!(1, needle.len());
+ Searcher {
+ call: searcher_kind_one_byte,
+ kind: SearcherKind { one_byte: needle[0] },
+ rabinkarp,
+ }
+ };
+ }
+ let pair = match Pair::with_ranker(needle, &ranker) {
+ Some(pair) => pair,
+ None => return Searcher::twoway(needle, rabinkarp, None),
+ };
+ debug_assert_ne!(
+ pair.index1(),
+ pair.index2(),
+ "pair offsets should not be equivalent"
+ );
+ #[cfg(all(target_arch = "x86_64", target_feature = "sse2"))]
+ {
+ if let Some(pp) = avx2::Finder::with_pair(needle, pair) {
+ if do_packed_search(needle) {
+ trace!("building x86_64 AVX2 substring searcher");
+ let kind = SearcherKind { avx2: pp };
+ Searcher { call: searcher_kind_avx2, kind, rabinkarp }
+ } else if prefilter.is_none() {
+ Searcher::twoway(needle, rabinkarp, None)
+ } else {
+ let prestrat = Prefilter::avx2(pp, needle);
+ Searcher::twoway(needle, rabinkarp, Some(prestrat))
+ }
+ } else if let Some(pp) = sse2::Finder::with_pair(needle, pair) {
+ if do_packed_search(needle) {
+ trace!("building x86_64 SSE2 substring searcher");
+ let kind = SearcherKind { sse2: pp };
+ Searcher { call: searcher_kind_sse2, kind, rabinkarp }
+ } else if prefilter.is_none() {
+ Searcher::twoway(needle, rabinkarp, None)
+ } else {
+ let prestrat = Prefilter::sse2(pp, needle);
+ Searcher::twoway(needle, rabinkarp, Some(prestrat))
+ }
+ } else if prefilter.is_none() {
+ Searcher::twoway(needle, rabinkarp, None)
+ } else {
+ // We're pretty unlikely to get to this point, but it is
+ // possible to be running on x86_64 without SSE2. Namely, it's
+ // really up to the OS whether it wants to support vector
+ // registers or not.
+ let prestrat = Prefilter::fallback(ranker, pair, needle);
+ Searcher::twoway(needle, rabinkarp, prestrat)
+ }
+ }
+ #[cfg(target_arch = "wasm32")]
+ {
+ if let Some(pp) = simd128::Finder::with_pair(needle, pair) {
+ if do_packed_search(needle) {
+ trace!("building wasm32 simd128 substring searcher");
+ let kind = SearcherKind { simd128: pp };
+ Searcher { call: searcher_kind_simd128, kind, rabinkarp }
+ } else if prefilter.is_none() {
+ Searcher::twoway(needle, rabinkarp, None)
+ } else {
+ let prestrat = Prefilter::simd128(pp, needle);
+ Searcher::twoway(needle, rabinkarp, Some(prestrat))
+ }
+ } else if prefilter.is_none() {
+ Searcher::twoway(needle, rabinkarp, None)
+ } else {
+ let prestrat = Prefilter::fallback(ranker, pair, needle);
+ Searcher::twoway(needle, rabinkarp, prestrat)
+ }
+ }
+ #[cfg(target_arch = "aarch64")]
+ {
+ if let Some(pp) = neon::Finder::with_pair(needle, pair) {
+ if do_packed_search(needle) {
+ trace!("building aarch64 neon substring searcher");
+ let kind = SearcherKind { neon: pp };
+ Searcher { call: searcher_kind_neon, kind, rabinkarp }
+ } else if prefilter.is_none() {
+ Searcher::twoway(needle, rabinkarp, None)
+ } else {
+ let prestrat = Prefilter::neon(pp, needle);
+ Searcher::twoway(needle, rabinkarp, Some(prestrat))
+ }
+ } else if prefilter.is_none() {
+ Searcher::twoway(needle, rabinkarp, None)
+ } else {
+ let prestrat = Prefilter::fallback(ranker, pair, needle);
+ Searcher::twoway(needle, rabinkarp, prestrat)
+ }
+ }
+ #[cfg(not(any(
+ all(target_arch = "x86_64", target_feature = "sse2"),
+ target_arch = "wasm32",
+ target_arch = "aarch64"
+ )))]
+ {
+ if prefilter.is_none() {
+ Searcher::twoway(needle, rabinkarp, None)
+ } else {
+ let prestrat = Prefilter::fallback(ranker, pair, needle);
+ Searcher::twoway(needle, rabinkarp, prestrat)
+ }
+ }
+ }
+
+ /// Creates a new searcher that always uses the Two-Way algorithm. This is
+ /// typically used when vector algorithms are unavailable or inappropriate.
+ /// (For example, when the needle is "too long.")
+ ///
+ /// If a prefilter is given, then the searcher returned will be accelerated
+ /// by the prefilter.
+ #[inline]
+ fn twoway(
+ needle: &[u8],
+ rabinkarp: rabinkarp::Finder,
+ prestrat: Option<Prefilter>,
+ ) -> Searcher {
+ let finder = twoway::Finder::new(needle);
+ match prestrat {
+ None => {
+ trace!("building scalar two-way substring searcher");
+ let kind = SearcherKind { two_way: finder };
+ Searcher { call: searcher_kind_two_way, kind, rabinkarp }
+ }
+ Some(prestrat) => {
+ trace!(
+ "building scalar two-way \
+ substring searcher with a prefilter"
+ );
+ let two_way_with_prefilter =
+ TwoWayWithPrefilter { finder, prestrat };
+ let kind = SearcherKind { two_way_with_prefilter };
+ Searcher {
+ call: searcher_kind_two_way_with_prefilter,
+ kind,
+ rabinkarp,
+ }
+ }
+ }
+ }
+
+ /// Searches the given haystack for the given needle. The needle given
+ /// should be the same as the needle that this finder was initialized
+ /// with.
+ ///
+ /// Inlining this can lead to big wins for latency, and #[inline] doesn't
+ /// seem to be enough in some cases.
+ #[inline(always)]
+ pub(crate) fn find(
+ &self,
+ prestate: &mut PrefilterState,
+ haystack: &[u8],
+ needle: &[u8],
+ ) -> Option<usize> {
+ if haystack.len() < needle.len() {
+ None
+ } else {
+ // SAFETY: By construction, we've ensured that the function
+ // in `self.call` is properly paired with the union used in
+ // `self.kind`.
+ unsafe { (self.call)(self, prestate, haystack, needle) }
+ }
+ }
+}
+
+impl core::fmt::Debug for Searcher {
+ fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
+ f.debug_struct("Searcher")
+ .field("call", &"<searcher function>")
+ .field("kind", &"<searcher kind union>")
+ .field("rabinkarp", &self.rabinkarp)
+ .finish()
+ }
+}
+
+/// A union indicating one of several possible substring search implementations
+/// that are in active use.
+///
+/// This union should only be read by one of the functions prefixed with
+/// `searcher_kind_`. Namely, the correct function is meant to be paired with
+/// the union by the caller, such that the function always reads from the
+/// designated union field.
+#[derive(Clone, Copy)]
+union SearcherKind {
+ empty: (),
+ one_byte: u8,
+ two_way: twoway::Finder,
+ two_way_with_prefilter: TwoWayWithPrefilter,
+ #[cfg(all(target_arch = "x86_64", target_feature = "sse2"))]
+ sse2: crate::arch::x86_64::sse2::packedpair::Finder,
+ #[cfg(all(target_arch = "x86_64", target_feature = "sse2"))]
+ avx2: crate::arch::x86_64::avx2::packedpair::Finder,
+ #[cfg(target_arch = "wasm32")]
+ simd128: crate::arch::wasm32::simd128::packedpair::Finder,
+ #[cfg(target_arch = "aarch64")]
+ neon: crate::arch::aarch64::neon::packedpair::Finder,
+}
+
+/// A two-way substring searcher with a prefilter.
+#[derive(Copy, Clone, Debug)]
+struct TwoWayWithPrefilter {
+ finder: twoway::Finder,
+ prestrat: Prefilter,
+}
+
+/// The type of a substring search function.
+///
+/// # Safety
+///
+/// When using a function of this type, callers must ensure that the correct
+/// function is paired with the value populated in `SearcherKind` union.
+type SearcherKindFn = unsafe fn(
+ searcher: &Searcher,
+ prestate: &mut PrefilterState,
+ haystack: &[u8],
+ needle: &[u8],
+) -> Option<usize>;
+
+/// Reads from the `empty` field of `SearcherKind` to handle the case of
+/// searching for the empty needle. Works on all platforms.
+///
+/// # Safety
+///
+/// Callers must ensure that the `searcher.kind.empty` union field is set.
+unsafe fn searcher_kind_empty(
+ _searcher: &Searcher,
+ _prestate: &mut PrefilterState,
+ _haystack: &[u8],
+ _needle: &[u8],
+) -> Option<usize> {
+ Some(0)
+}
+
+/// Reads from the `one_byte` field of `SearcherKind` to handle the case of
+/// searching for a single byte needle. Works on all platforms.
+///
+/// # Safety
+///
+/// Callers must ensure that the `searcher.kind.one_byte` union field is set.
+unsafe fn searcher_kind_one_byte(
+ searcher: &Searcher,
+ _prestate: &mut PrefilterState,
+ haystack: &[u8],
+ _needle: &[u8],
+) -> Option<usize> {
+ let needle = searcher.kind.one_byte;
+ crate::memchr(needle, haystack)
+}
+
+/// Reads from the `two_way` field of `SearcherKind` to handle the case of
+/// searching for an arbitrary needle without prefilter acceleration. Works on
+/// all platforms.
+///
+/// # Safety
+///
+/// Callers must ensure that the `searcher.kind.two_way` union field is set.
+unsafe fn searcher_kind_two_way(
+ searcher: &Searcher,
+ _prestate: &mut PrefilterState,
+ haystack: &[u8],
+ needle: &[u8],
+) -> Option<usize> {
+ if rabinkarp::is_fast(haystack, needle) {
+ searcher.rabinkarp.find(haystack, needle)
+ } else {
+ searcher.kind.two_way.find(haystack, needle)
+ }
+}
+
+/// Reads from the `two_way_with_prefilter` field of `SearcherKind` to handle
+/// the case of searching for an arbitrary needle with prefilter acceleration.
+/// Works on all platforms.
+///
+/// # Safety
+///
+/// Callers must ensure that the `searcher.kind.two_way_with_prefilter` union
+/// field is set.
+unsafe fn searcher_kind_two_way_with_prefilter(
+ searcher: &Searcher,
+ prestate: &mut PrefilterState,
+ haystack: &[u8],
+ needle: &[u8],
+) -> Option<usize> {
+ if rabinkarp::is_fast(haystack, needle) {
+ searcher.rabinkarp.find(haystack, needle)
+ } else {
+ let TwoWayWithPrefilter { ref finder, ref prestrat } =
+ searcher.kind.two_way_with_prefilter;
+ let pre = Pre { prestate, prestrat };
+ finder.find_with_prefilter(Some(pre), haystack, needle)
+ }
+}
+
+/// Reads from the `sse2` field of `SearcherKind` to execute the x86_64 SSE2
+/// vectorized substring search implementation.
+///
+/// # Safety
+///
+/// Callers must ensure that the `searcher.kind.sse2` union field is set.
+#[cfg(all(target_arch = "x86_64", target_feature = "sse2"))]
+unsafe fn searcher_kind_sse2(
+ searcher: &Searcher,
+ _prestate: &mut PrefilterState,
+ haystack: &[u8],
+ needle: &[u8],
+) -> Option<usize> {
+ let finder = &searcher.kind.sse2;
+ if haystack.len() < finder.min_haystack_len() {
+ searcher.rabinkarp.find(haystack, needle)
+ } else {
+ finder.find(haystack, needle)
+ }
+}
+
+/// Reads from the `avx2` field of `SearcherKind` to execute the x86_64 AVX2
+/// vectorized substring search implementation.
+///
+/// # Safety
+///
+/// Callers must ensure that the `searcher.kind.avx2` union field is set.
+#[cfg(all(target_arch = "x86_64", target_feature = "sse2"))]
+unsafe fn searcher_kind_avx2(
+ searcher: &Searcher,
+ _prestate: &mut PrefilterState,
+ haystack: &[u8],
+ needle: &[u8],
+) -> Option<usize> {
+ let finder = &searcher.kind.avx2;
+ if haystack.len() < finder.min_haystack_len() {
+ searcher.rabinkarp.find(haystack, needle)
+ } else {
+ finder.find(haystack, needle)
+ }
+}
+
+/// Reads from the `simd128` field of `SearcherKind` to execute the wasm32
+/// simd128 vectorized substring search implementation.
+///
+/// # Safety
+///
+/// Callers must ensure that the `searcher.kind.simd128` union field is set.
+#[cfg(target_arch = "wasm32")]
+unsafe fn searcher_kind_simd128(
+ searcher: &Searcher,
+ _prestate: &mut PrefilterState,
+ haystack: &[u8],
+ needle: &[u8],
+) -> Option<usize> {
+ let finder = &searcher.kind.simd128;
+ if haystack.len() < finder.min_haystack_len() {
+ searcher.rabinkarp.find(haystack, needle)
+ } else {
+ finder.find(haystack, needle)
+ }
+}
+
+/// Reads from the `neon` field of `SearcherKind` to execute the aarch64 neon
+/// vectorized substring search implementation.
+///
+/// # Safety
+///
+/// Callers must ensure that the `searcher.kind.neon` union field is set.
+#[cfg(target_arch = "aarch64")]
+unsafe fn searcher_kind_neon(
+ searcher: &Searcher,
+ _prestate: &mut PrefilterState,
+ haystack: &[u8],
+ needle: &[u8],
+) -> Option<usize> {
+ let finder = &searcher.kind.neon;
+ if haystack.len() < finder.min_haystack_len() {
+ searcher.rabinkarp.find(haystack, needle)
+ } else {
+ finder.find(haystack, needle)
+ }
+}
+
+/// A reverse substring searcher.
+#[derive(Clone, Debug)]
+pub(crate) struct SearcherRev {
+ kind: SearcherRevKind,
+ rabinkarp: rabinkarp::FinderRev,
+}
+
+/// The kind of the reverse searcher.
+///
+/// For the reverse case, we don't do any SIMD acceleration or prefilters.
+/// There is no specific technical reason why we don't, but rather don't do it
+/// because it's not clear it's worth the extra code to do so. If you have a
+/// use case for it, please file an issue.
+///
+/// We also don't do the union trick as we do with the forward case and
+/// prefilters. Basically for the same reason we don't have prefilters or
+/// vector algorithms for reverse searching: it's not clear it's worth doing.
+/// Please file an issue if you have a compelling use case for fast reverse
+/// substring search.
+#[derive(Clone, Debug)]
+enum SearcherRevKind {
+ Empty,
+ OneByte { needle: u8 },
+ TwoWay { finder: twoway::FinderRev },
+}
+
+impl SearcherRev {
+ /// Creates a new searcher for finding occurrences of the given needle in
+ /// reverse. That is, it reports the last (instead of the first) occurrence
+ /// of a needle in a haystack.
+ #[inline]
+ pub(crate) fn new(needle: &[u8]) -> SearcherRev {
+ let kind = if needle.len() <= 1 {
+ if needle.is_empty() {
+ trace!("building empty reverse substring searcher");
+ SearcherRevKind::Empty
+ } else {
+ trace!("building one-byte reverse substring searcher");
+ debug_assert_eq!(1, needle.len());
+ SearcherRevKind::OneByte { needle: needle[0] }
+ }
+ } else {
+ trace!("building scalar two-way reverse substring searcher");
+ let finder = twoway::FinderRev::new(needle);
+ SearcherRevKind::TwoWay { finder }
+ };
+ let rabinkarp = rabinkarp::FinderRev::new(needle);
+ SearcherRev { kind, rabinkarp }
+ }
+
+ /// Searches the given haystack for the last occurrence of the given
+ /// needle. The needle given should be the same as the needle that this
+ /// finder was initialized with.
+ #[inline]
+ pub(crate) fn rfind(
+ &self,
+ haystack: &[u8],
+ needle: &[u8],
+ ) -> Option<usize> {
+ if haystack.len() < needle.len() {
+ return None;
+ }
+ match self.kind {
+ SearcherRevKind::Empty => Some(haystack.len()),
+ SearcherRevKind::OneByte { needle } => {
+ crate::memrchr(needle, haystack)
+ }
+ SearcherRevKind::TwoWay { ref finder } => {
+ if rabinkarp::is_fast(haystack, needle) {
+ self.rabinkarp.rfind(haystack, needle)
+ } else {
+ finder.rfind(haystack, needle)
+ }
+ }
+ }
+ }
+}
+
+/// Prefilter controls whether heuristics are used to accelerate searching.
+///
+/// A prefilter refers to the idea of detecting candidate matches very quickly,
+/// and then confirming whether those candidates are full matches. This
+/// idea can be quite effective since it's often the case that looking for
+/// candidates can be a lot faster than running a complete substring search
+/// over the entire input. Namely, looking for candidates can be done with
+/// extremely fast vectorized code.
+///
+/// The downside of a prefilter is that it assumes false positives (which are
+/// candidates generated by a prefilter that aren't matches) are somewhat rare
+/// relative to the frequency of full matches. That is, if a lot of false
+/// positives are generated, then it's possible for search time to be worse
+/// than if the prefilter wasn't enabled in the first place.
+///
+/// Another downside of a prefilter is that it can result in highly variable
+/// performance, where some cases are extraordinarily fast and others aren't.
+/// Typically, variable performance isn't a problem, but it may be for your use
+/// case.
+///
+/// The use of prefilters in this implementation does use a heuristic to detect
+/// when a prefilter might not be carrying its weight, and will dynamically
+/// disable its use. Nevertheless, this configuration option gives callers
+/// the ability to disable prefilters if you have knowledge that they won't be
+/// useful.
+#[derive(Clone, Copy, Debug)]
+#[non_exhaustive]
+pub enum PrefilterConfig {
+ /// Never used a prefilter in substring search.
+ None,
+ /// Automatically detect whether a heuristic prefilter should be used. If
+ /// it is used, then heuristics will be used to dynamically disable the
+ /// prefilter if it is believed to not be carrying its weight.
+ Auto,
+}
+
+impl Default for PrefilterConfig {
+ fn default() -> PrefilterConfig {
+ PrefilterConfig::Auto
+ }
+}
+
+impl PrefilterConfig {
+ /// Returns true when this prefilter is set to the `None` variant.
+ fn is_none(&self) -> bool {
+ matches!(*self, PrefilterConfig::None)
+ }
+}
+
+/// The implementation of a prefilter.
+///
+/// This type encapsulates dispatch to one of several possible choices for a
+/// prefilter. Generally speaking, all prefilters have the same approximate
+/// algorithm: they choose a couple of bytes from the needle that are believed
+/// to be rare, use a fast vector algorithm to look for those bytes and return
+/// positions as candidates for some substring search algorithm (currently only
+/// Two-Way) to confirm as a match or not.
+///
+/// The differences between the algorithms are actually at the vector
+/// implementation level. Namely, we need different routines based on both
+/// which target architecture we're on and what CPU features are supported.
+///
+/// The straight-forwardly obvious approach here is to use an enum, and make
+/// `Prefilter::find` do case analysis to determine which algorithm was
+/// selected and invoke it. However, I've observed that this leads to poor
+/// codegen in some cases, especially in latency sensitive benchmarks. That is,
+/// this approach comes with overhead that I wasn't able to eliminate.
+///
+/// The second obvious approach is to use dynamic dispatch with traits. Doing
+/// that in this context where `Prefilter` owns the selection generally
+/// requires heap allocation, and this code is designed to run in core-only
+/// environments.
+///
+/// So we settle on using a union (that's `PrefilterKind`) and a function
+/// pointer (that's `PrefilterKindFn`). We select the right function pointer
+/// based on which field in the union we set, and that function in turn
+/// knows which field of the union to access. The downside of this approach
+/// is that it forces us to think about safety, but the upside is that
+/// there are some nice latency improvements to benchmarks. (Especially the
+/// `memmem/sliceslice/short` benchmark.)
+///
+/// In cases where we've selected a vector algorithm and the haystack given
+/// is too short, we fallback to the scalar version of `memchr` on the
+/// `rarest_byte`. (The scalar version of `memchr` is still better than a naive
+/// byte-at-a-time loop because it will read in `usize`-sized chunks at a
+/// time.)
+#[derive(Clone, Copy)]
+struct Prefilter {
+ call: PrefilterKindFn,
+ kind: PrefilterKind,
+ rarest_byte: u8,
+ rarest_offset: u8,
+}
+
+impl Prefilter {
+ /// Return a "fallback" prefilter, but only if it is believed to be
+ /// effective.
+ #[inline]
+ fn fallback<R: HeuristicFrequencyRank>(
+ ranker: R,
+ pair: Pair,
+ needle: &[u8],
+ ) -> Option<Prefilter> {
+ /// The maximum frequency rank permitted for the fallback prefilter.
+ /// If the rarest byte in the needle has a frequency rank above this
+ /// value, then no prefilter is used if the fallback prefilter would
+ /// otherwise be selected.
+ const MAX_FALLBACK_RANK: u8 = 250;
+
+ trace!("building fallback prefilter");
+ let rarest_offset = pair.index1();
+ let rarest_byte = needle[usize::from(rarest_offset)];
+ let rarest_rank = ranker.rank(rarest_byte);
+ if rarest_rank > MAX_FALLBACK_RANK {
+ None
+ } else {
+ let finder = crate::arch::all::packedpair::Finder::with_pair(
+ needle,
+ pair.clone(),
+ )?;
+ let call = prefilter_kind_fallback;
+ let kind = PrefilterKind { fallback: finder };
+ Some(Prefilter { call, kind, rarest_byte, rarest_offset })
+ }
+ }
+
+ /// Return a prefilter using a x86_64 SSE2 vector algorithm.
+ #[cfg(all(target_arch = "x86_64", target_feature = "sse2"))]
+ #[inline]
+ fn sse2(finder: sse2::Finder, needle: &[u8]) -> Prefilter {
+ trace!("building x86_64 SSE2 prefilter");
+ let rarest_offset = finder.pair().index1();
+ let rarest_byte = needle[usize::from(rarest_offset)];
+ Prefilter {
+ call: prefilter_kind_sse2,
+ kind: PrefilterKind { sse2: finder },
+ rarest_byte,
+ rarest_offset,
+ }
+ }
+
+ /// Return a prefilter using a x86_64 AVX2 vector algorithm.
+ #[cfg(all(target_arch = "x86_64", target_feature = "sse2"))]
+ #[inline]
+ fn avx2(finder: avx2::Finder, needle: &[u8]) -> Prefilter {
+ trace!("building x86_64 AVX2 prefilter");
+ let rarest_offset = finder.pair().index1();
+ let rarest_byte = needle[usize::from(rarest_offset)];
+ Prefilter {
+ call: prefilter_kind_avx2,
+ kind: PrefilterKind { avx2: finder },
+ rarest_byte,
+ rarest_offset,
+ }
+ }
+
+ /// Return a prefilter using a wasm32 simd128 vector algorithm.
+ #[cfg(target_arch = "wasm32")]
+ #[inline]
+ fn simd128(finder: simd128::Finder, needle: &[u8]) -> Prefilter {
+ trace!("building wasm32 simd128 prefilter");
+ let rarest_offset = finder.pair().index1();
+ let rarest_byte = needle[usize::from(rarest_offset)];
+ Prefilter {
+ call: prefilter_kind_simd128,
+ kind: PrefilterKind { simd128: finder },
+ rarest_byte,
+ rarest_offset,
+ }
+ }
+
+ /// Return a prefilter using a aarch64 neon vector algorithm.
+ #[cfg(target_arch = "aarch64")]
+ #[inline]
+ fn neon(finder: neon::Finder, needle: &[u8]) -> Prefilter {
+ trace!("building aarch64 neon prefilter");
+ let rarest_offset = finder.pair().index1();
+ let rarest_byte = needle[usize::from(rarest_offset)];
+ Prefilter {
+ call: prefilter_kind_neon,
+ kind: PrefilterKind { neon: finder },
+ rarest_byte,
+ rarest_offset,
+ }
+ }
+
+ /// Return a *candidate* position for a match.
+ ///
+ /// When this returns an offset, it implies that a match could begin at
+ /// that offset, but it may not. That is, it is possible for a false
+ /// positive to be returned.
+ ///
+ /// When `None` is returned, then it is guaranteed that there are no
+ /// matches for the needle in the given haystack. That is, it is impossible
+ /// for a false negative to be returned.
+ ///
+ /// The purpose of this routine is to look for candidate matching positions
+ /// as quickly as possible before running a (likely) slower confirmation
+ /// step.
+ #[inline]
+ fn find(&self, haystack: &[u8]) -> Option<usize> {
+ // SAFETY: By construction, we've ensured that the function in
+ // `self.call` is properly paired with the union used in `self.kind`.
+ unsafe { (self.call)(self, haystack) }
+ }
+
+ /// A "simple" prefilter that just looks for the occurrence of the rarest
+ /// byte from the needle. This is generally only used for very small
+ /// haystacks.
+ #[inline]
+ fn find_simple(&self, haystack: &[u8]) -> Option<usize> {
+ // We don't use crate::memchr here because the haystack should be small
+ // enough that memchr won't be able to use vector routines anyway. So
+ // we just skip straight to the fallback implementation which is likely
+ // faster. (A byte-at-a-time loop is only used when the haystack is
+ // smaller than `size_of::<usize>()`.)
+ crate::arch::all::memchr::One::new(self.rarest_byte)
+ .find(haystack)
+ .map(|i| i.saturating_sub(usize::from(self.rarest_offset)))
+ }
+}
+
+impl core::fmt::Debug for Prefilter {
+ fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
+ f.debug_struct("Prefilter")
+ .field("call", &"<prefilter function>")
+ .field("kind", &"<prefilter kind union>")
+ .field("rarest_byte", &self.rarest_byte)
+ .field("rarest_offset", &self.rarest_offset)
+ .finish()
+ }
+}
+
+/// A union indicating one of several possible prefilters that are in active
+/// use.
+///
+/// This union should only be read by one of the functions prefixed with
+/// `prefilter_kind_`. Namely, the correct function is meant to be paired with
+/// the union by the caller, such that the function always reads from the
+/// designated union field.
+#[derive(Clone, Copy)]
+union PrefilterKind {
+ fallback: crate::arch::all::packedpair::Finder,
+ #[cfg(all(target_arch = "x86_64", target_feature = "sse2"))]
+ sse2: crate::arch::x86_64::sse2::packedpair::Finder,
+ #[cfg(all(target_arch = "x86_64", target_feature = "sse2"))]
+ avx2: crate::arch::x86_64::avx2::packedpair::Finder,
+ #[cfg(target_arch = "wasm32")]
+ simd128: crate::arch::wasm32::simd128::packedpair::Finder,
+ #[cfg(target_arch = "aarch64")]
+ neon: crate::arch::aarch64::neon::packedpair::Finder,
+}
+
+/// The type of a prefilter function.
+///
+/// # Safety
+///
+/// When using a function of this type, callers must ensure that the correct
+/// function is paired with the value populated in `PrefilterKind` union.
+type PrefilterKindFn =
+ unsafe fn(strat: &Prefilter, haystack: &[u8]) -> Option<usize>;
+
+/// Reads from the `fallback` field of `PrefilterKind` to execute the fallback
+/// prefilter. Works on all platforms.
+///
+/// # Safety
+///
+/// Callers must ensure that the `strat.kind.fallback` union field is set.
+unsafe fn prefilter_kind_fallback(
+ strat: &Prefilter,
+ haystack: &[u8],
+) -> Option<usize> {
+ strat.kind.fallback.find_prefilter(haystack)
+}
+
+/// Reads from the `sse2` field of `PrefilterKind` to execute the x86_64 SSE2
+/// prefilter.
+///
+/// # Safety
+///
+/// Callers must ensure that the `strat.kind.sse2` union field is set.
+#[cfg(all(target_arch = "x86_64", target_feature = "sse2"))]
+unsafe fn prefilter_kind_sse2(
+ strat: &Prefilter,
+ haystack: &[u8],
+) -> Option<usize> {
+ let finder = &strat.kind.sse2;
+ if haystack.len() < finder.min_haystack_len() {
+ strat.find_simple(haystack)
+ } else {
+ finder.find_prefilter(haystack)
+ }
+}
+
+/// Reads from the `avx2` field of `PrefilterKind` to execute the x86_64 AVX2
+/// prefilter.
+///
+/// # Safety
+///
+/// Callers must ensure that the `strat.kind.avx2` union field is set.
+#[cfg(all(target_arch = "x86_64", target_feature = "sse2"))]
+unsafe fn prefilter_kind_avx2(
+ strat: &Prefilter,
+ haystack: &[u8],
+) -> Option<usize> {
+ let finder = &strat.kind.avx2;
+ if haystack.len() < finder.min_haystack_len() {
+ strat.find_simple(haystack)
+ } else {
+ finder.find_prefilter(haystack)
+ }
+}
+
+/// Reads from the `simd128` field of `PrefilterKind` to execute the wasm32
+/// simd128 prefilter.
+///
+/// # Safety
+///
+/// Callers must ensure that the `strat.kind.simd128` union field is set.
+#[cfg(target_arch = "wasm32")]
+unsafe fn prefilter_kind_simd128(
+ strat: &Prefilter,
+ haystack: &[u8],
+) -> Option<usize> {
+ let finder = &strat.kind.simd128;
+ if haystack.len() < finder.min_haystack_len() {
+ strat.find_simple(haystack)
+ } else {
+ finder.find_prefilter(haystack)
+ }
+}
+
+/// Reads from the `neon` field of `PrefilterKind` to execute the aarch64 neon
+/// prefilter.
+///
+/// # Safety
+///
+/// Callers must ensure that the `strat.kind.neon` union field is set.
+#[cfg(target_arch = "aarch64")]
+unsafe fn prefilter_kind_neon(
+ strat: &Prefilter,
+ haystack: &[u8],
+) -> Option<usize> {
+ let finder = &strat.kind.neon;
+ if haystack.len() < finder.min_haystack_len() {
+ strat.find_simple(haystack)
+ } else {
+ finder.find_prefilter(haystack)
+ }
+}
+
+/// PrefilterState tracks state associated with the effectiveness of a
+/// prefilter. It is used to track how many bytes, on average, are skipped by
+/// the prefilter. If this average dips below a certain threshold over time,
+/// then the state renders the prefilter inert and stops using it.
+///
+/// A prefilter state should be created for each search. (Where creating an
+/// iterator is treated as a single search.) A prefilter state should only be
+/// created from a `Freqy`. e.g., An inert `Freqy` will produce an inert
+/// `PrefilterState`.
+#[derive(Clone, Copy, Debug)]
+pub(crate) struct PrefilterState {
+ /// The number of skips that has been executed. This is always 1 greater
+ /// than the actual number of skips. The special sentinel value of 0
+ /// indicates that the prefilter is inert. This is useful to avoid
+ /// additional checks to determine whether the prefilter is still
+ /// "effective." Once a prefilter becomes inert, it should no longer be
+ /// used (according to our heuristics).
+ skips: u32,
+ /// The total number of bytes that have been skipped.
+ skipped: u32,
+}
+
+impl PrefilterState {
+ /// The minimum number of skip attempts to try before considering whether
+ /// a prefilter is effective or not.
+ const MIN_SKIPS: u32 = 50;
+
+ /// The minimum amount of bytes that skipping must average.
+ ///
+ /// This value was chosen based on varying it and checking
+ /// the microbenchmarks. In particular, this can impact the
+ /// pathological/repeated-{huge,small} benchmarks quite a bit if it's set
+ /// too low.
+ const MIN_SKIP_BYTES: u32 = 8;
+
+ /// Create a fresh prefilter state.
+ #[inline]
+ pub(crate) fn new() -> PrefilterState {
+ PrefilterState { skips: 1, skipped: 0 }
+ }
+
+ /// Update this state with the number of bytes skipped on the last
+ /// invocation of the prefilter.
+ #[inline]
+ fn update(&mut self, skipped: usize) {
+ self.skips = self.skips.saturating_add(1);
+ // We need to do this dance since it's technically possible for
+ // `skipped` to overflow a `u32`. (And we use a `u32` to reduce the
+ // size of a prefilter state.)
+ self.skipped = match u32::try_from(skipped) {
+ Err(_) => core::u32::MAX,
+ Ok(skipped) => self.skipped.saturating_add(skipped),
+ };
+ }
+
+ /// Return true if and only if this state indicates that a prefilter is
+ /// still effective.
+ #[inline]
+ fn is_effective(&mut self) -> bool {
+ if self.is_inert() {
+ return false;
+ }
+ if self.skips() < PrefilterState::MIN_SKIPS {
+ return true;
+ }
+ if self.skipped >= PrefilterState::MIN_SKIP_BYTES * self.skips() {
+ return true;
+ }
+
+ // We're inert.
+ self.skips = 0;
+ false
+ }
+
+ /// Returns true if the prefilter this state represents should no longer
+ /// be used.
+ #[inline]
+ fn is_inert(&self) -> bool {
+ self.skips == 0
+ }
+
+ /// Returns the total number of times the prefilter has been used.
+ #[inline]
+ fn skips(&self) -> u32 {
+ // Remember, `0` is a sentinel value indicating inertness, so we
+ // always need to subtract `1` to get our actual number of skips.
+ self.skips.saturating_sub(1)
+ }
+}
+
+/// A combination of prefilter effectiveness state and the prefilter itself.
+#[derive(Debug)]
+pub(crate) struct Pre<'a> {
+ /// State that tracks the effectiveness of a prefilter.
+ prestate: &'a mut PrefilterState,
+ /// The actual prefilter.
+ prestrat: &'a Prefilter,
+}
+
+impl<'a> Pre<'a> {
+ /// Call this prefilter on the given haystack with the given needle.
+ #[inline]
+ pub(crate) fn find(&mut self, haystack: &[u8]) -> Option<usize> {
+ let result = self.prestrat.find(haystack);
+ self.prestate.update(result.unwrap_or(haystack.len()));
+ result
+ }
+
+ /// Return true if and only if this prefilter should be used.
+ #[inline]
+ pub(crate) fn is_effective(&mut self) -> bool {
+ self.prestate.is_effective()
+ }
+}
+
+/// Returns true if the needle has the right characteristics for a vector
+/// algorithm to handle the entirety of substring search.
+///
+/// Vector algorithms can be used for prefilters for other substring search
+/// algorithms (like Two-Way), but they can also be used for substring search
+/// on their own. When used for substring search, vector algorithms will
+/// quickly identify candidate match positions (just like in the prefilter
+/// case), but instead of returning the candidate position they will try to
+/// confirm the match themselves. Confirmation happens via `memcmp`. This
+/// works well for short needles, but can break down when many false candidate
+/// positions are generated for large needles. Thus, we only permit vector
+/// algorithms to own substring search when the needle is of a certain length.
+#[inline]
+fn do_packed_search(needle: &[u8]) -> bool {
+ /// The minimum length of a needle required for this algorithm. The minimum
+ /// is 2 since a length of 1 should just use memchr and a length of 0 isn't
+ /// a case handled by this searcher.
+ const MIN_LEN: usize = 2;
+
+ /// The maximum length of a needle required for this algorithm.
+ ///
+ /// In reality, there is no hard max here. The code below can handle any
+ /// length needle. (Perhaps that suggests there are missing optimizations.)
+ /// Instead, this is a heuristic and a bound guaranteeing our linear time
+ /// complexity.
+ ///
+ /// It is a heuristic because when a candidate match is found, memcmp is
+ /// run. For very large needles with lots of false positives, memcmp can
+ /// make the code run quite slow.
+ ///
+ /// It is a bound because the worst case behavior with memcmp is
+ /// multiplicative in the size of the needle and haystack, and we want
+ /// to keep that additive. This bound ensures we still meet that bound
+ /// theoretically, since it's just a constant. We aren't acting in bad
+ /// faith here, memcmp on tiny needles is so fast that even in pathological
+ /// cases (see pathological vector benchmarks), this is still just as fast
+ /// or faster in practice.
+ ///
+ /// This specific number was chosen by tweaking a bit and running
+ /// benchmarks. The rare-medium-needle, for example, gets about 5% faster
+ /// by using this algorithm instead of a prefilter-accelerated Two-Way.
+ /// There's also a theoretical desire to keep this number reasonably
+ /// low, to mitigate the impact of pathological cases. I did try 64, and
+ /// some benchmarks got a little better, and others (particularly the
+ /// pathological ones), got a lot worse. So... 32 it is?
+ const MAX_LEN: usize = 32;
+ MIN_LEN <= needle.len() && needle.len() <= MAX_LEN
+}