diff options
Diffstat (limited to 'vendor/rand/src/distributions/mod.rs')
-rw-r--r-- | vendor/rand/src/distributions/mod.rs | 409 |
1 files changed, 0 insertions, 409 deletions
diff --git a/vendor/rand/src/distributions/mod.rs b/vendor/rand/src/distributions/mod.rs deleted file mode 100644 index 5de8efb..0000000 --- a/vendor/rand/src/distributions/mod.rs +++ /dev/null @@ -1,409 +0,0 @@ -// Copyright 2013 The Rust Project Developers. See the COPYRIGHT -// file at the top-level directory of this distribution and at -// http://rust-lang.org/COPYRIGHT. -// -// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or -// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license -// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your -// option. This file may not be copied, modified, or distributed -// except according to those terms. - -//! Sampling from random distributions. -//! -//! This is a generalization of `Rand` to allow parameters to control the -//! exact properties of the generated values, e.g. the mean and standard -//! deviation of a normal distribution. The `Sample` trait is the most -//! general, and allows for generating values that change some state -//! internally. The `IndependentSample` trait is for generating values -//! that do not need to record state. - -use core::marker; - -use {Rng, Rand}; - -pub use self::range::Range; -#[cfg(feature="std")] -pub use self::gamma::{Gamma, ChiSquared, FisherF, StudentT}; -#[cfg(feature="std")] -pub use self::normal::{Normal, LogNormal}; -#[cfg(feature="std")] -pub use self::exponential::Exp; - -pub mod range; -#[cfg(feature="std")] -pub mod gamma; -#[cfg(feature="std")] -pub mod normal; -#[cfg(feature="std")] -pub mod exponential; - -#[cfg(feature="std")] -mod ziggurat_tables; - -/// Types that can be used to create a random instance of `Support`. -pub trait Sample<Support> { - /// Generate a random value of `Support`, using `rng` as the - /// source of randomness. - fn sample<R: Rng>(&mut self, rng: &mut R) -> Support; -} - -/// `Sample`s that do not require keeping track of state. -/// -/// Since no state is recorded, each sample is (statistically) -/// independent of all others, assuming the `Rng` used has this -/// property. -// FIXME maybe having this separate is overkill (the only reason is to -// take &self rather than &mut self)? or maybe this should be the -// trait called `Sample` and the other should be `DependentSample`. -pub trait IndependentSample<Support>: Sample<Support> { - /// Generate a random value. - fn ind_sample<R: Rng>(&self, &mut R) -> Support; -} - -/// A wrapper for generating types that implement `Rand` via the -/// `Sample` & `IndependentSample` traits. -#[derive(Debug)] -pub struct RandSample<Sup> { - _marker: marker::PhantomData<fn() -> Sup>, -} - -impl<Sup> Copy for RandSample<Sup> {} -impl<Sup> Clone for RandSample<Sup> { - fn clone(&self) -> Self { *self } -} - -impl<Sup: Rand> Sample<Sup> for RandSample<Sup> { - fn sample<R: Rng>(&mut self, rng: &mut R) -> Sup { self.ind_sample(rng) } -} - -impl<Sup: Rand> IndependentSample<Sup> for RandSample<Sup> { - fn ind_sample<R: Rng>(&self, rng: &mut R) -> Sup { - rng.gen() - } -} - -impl<Sup> RandSample<Sup> { - pub fn new() -> RandSample<Sup> { - RandSample { _marker: marker::PhantomData } - } -} - -/// A value with a particular weight for use with `WeightedChoice`. -#[derive(Copy, Clone, Debug)] -pub struct Weighted<T> { - /// The numerical weight of this item - pub weight: u32, - /// The actual item which is being weighted - pub item: T, -} - -/// A distribution that selects from a finite collection of weighted items. -/// -/// Each item has an associated weight that influences how likely it -/// is to be chosen: higher weight is more likely. -/// -/// The `Clone` restriction is a limitation of the `Sample` and -/// `IndependentSample` traits. Note that `&T` is (cheaply) `Clone` for -/// all `T`, as is `u32`, so one can store references or indices into -/// another vector. -/// -/// # Example -/// -/// ```rust -/// use rand::distributions::{Weighted, WeightedChoice, IndependentSample}; -/// -/// let mut items = vec!(Weighted { weight: 2, item: 'a' }, -/// Weighted { weight: 4, item: 'b' }, -/// Weighted { weight: 1, item: 'c' }); -/// let wc = WeightedChoice::new(&mut items); -/// let mut rng = rand::thread_rng(); -/// for _ in 0..16 { -/// // on average prints 'a' 4 times, 'b' 8 and 'c' twice. -/// println!("{}", wc.ind_sample(&mut rng)); -/// } -/// ``` -#[derive(Debug)] -pub struct WeightedChoice<'a, T:'a> { - items: &'a mut [Weighted<T>], - weight_range: Range<u32> -} - -impl<'a, T: Clone> WeightedChoice<'a, T> { - /// Create a new `WeightedChoice`. - /// - /// Panics if: - /// - /// - `items` is empty - /// - the total weight is 0 - /// - the total weight is larger than a `u32` can contain. - pub fn new(items: &'a mut [Weighted<T>]) -> WeightedChoice<'a, T> { - // strictly speaking, this is subsumed by the total weight == 0 case - assert!(!items.is_empty(), "WeightedChoice::new called with no items"); - - let mut running_total: u32 = 0; - - // we convert the list from individual weights to cumulative - // weights so we can binary search. This *could* drop elements - // with weight == 0 as an optimisation. - for item in items.iter_mut() { - running_total = match running_total.checked_add(item.weight) { - Some(n) => n, - None => panic!("WeightedChoice::new called with a total weight \ - larger than a u32 can contain") - }; - - item.weight = running_total; - } - assert!(running_total != 0, "WeightedChoice::new called with a total weight of 0"); - - WeightedChoice { - items: items, - // we're likely to be generating numbers in this range - // relatively often, so might as well cache it - weight_range: Range::new(0, running_total) - } - } -} - -impl<'a, T: Clone> Sample<T> for WeightedChoice<'a, T> { - fn sample<R: Rng>(&mut self, rng: &mut R) -> T { self.ind_sample(rng) } -} - -impl<'a, T: Clone> IndependentSample<T> for WeightedChoice<'a, T> { - fn ind_sample<R: Rng>(&self, rng: &mut R) -> T { - // we want to find the first element that has cumulative - // weight > sample_weight, which we do by binary since the - // cumulative weights of self.items are sorted. - - // choose a weight in [0, total_weight) - let sample_weight = self.weight_range.ind_sample(rng); - - // short circuit when it's the first item - if sample_weight < self.items[0].weight { - return self.items[0].item.clone(); - } - - let mut idx = 0; - let mut modifier = self.items.len(); - - // now we know that every possibility has an element to the - // left, so we can just search for the last element that has - // cumulative weight <= sample_weight, then the next one will - // be "it". (Note that this greatest element will never be the - // last element of the vector, since sample_weight is chosen - // in [0, total_weight) and the cumulative weight of the last - // one is exactly the total weight.) - while modifier > 1 { - let i = idx + modifier / 2; - if self.items[i].weight <= sample_weight { - // we're small, so look to the right, but allow this - // exact element still. - idx = i; - // we need the `/ 2` to round up otherwise we'll drop - // the trailing elements when `modifier` is odd. - modifier += 1; - } else { - // otherwise we're too big, so go left. (i.e. do - // nothing) - } - modifier /= 2; - } - return self.items[idx + 1].item.clone(); - } -} - -/// Sample a random number using the Ziggurat method (specifically the -/// ZIGNOR variant from Doornik 2005). Most of the arguments are -/// directly from the paper: -/// -/// * `rng`: source of randomness -/// * `symmetric`: whether this is a symmetric distribution, or one-sided with P(x < 0) = 0. -/// * `X`: the $x_i$ abscissae. -/// * `F`: precomputed values of the PDF at the $x_i$, (i.e. $f(x_i)$) -/// * `F_DIFF`: precomputed values of $f(x_i) - f(x_{i+1})$ -/// * `pdf`: the probability density function -/// * `zero_case`: manual sampling from the tail when we chose the -/// bottom box (i.e. i == 0) - -// the perf improvement (25-50%) is definitely worth the extra code -// size from force-inlining. -#[cfg(feature="std")] -#[inline(always)] -fn ziggurat<R: Rng, P, Z>( - rng: &mut R, - symmetric: bool, - x_tab: ziggurat_tables::ZigTable, - f_tab: ziggurat_tables::ZigTable, - mut pdf: P, - mut zero_case: Z) - -> f64 where P: FnMut(f64) -> f64, Z: FnMut(&mut R, f64) -> f64 { - const SCALE: f64 = (1u64 << 53) as f64; - loop { - // reimplement the f64 generation as an optimisation suggested - // by the Doornik paper: we have a lot of precision-space - // (i.e. there are 11 bits of the 64 of a u64 to use after - // creating a f64), so we might as well reuse some to save - // generating a whole extra random number. (Seems to be 15% - // faster.) - // - // This unfortunately misses out on the benefits of direct - // floating point generation if an RNG like dSMFT is - // used. (That is, such RNGs create floats directly, highly - // efficiently and overload next_f32/f64, so by not calling it - // this may be slower than it would be otherwise.) - // FIXME: investigate/optimise for the above. - let bits: u64 = rng.gen(); - let i = (bits & 0xff) as usize; - let f = (bits >> 11) as f64 / SCALE; - - // u is either U(-1, 1) or U(0, 1) depending on if this is a - // symmetric distribution or not. - let u = if symmetric {2.0 * f - 1.0} else {f}; - let x = u * x_tab[i]; - - let test_x = if symmetric { x.abs() } else {x}; - - // algebraically equivalent to |u| < x_tab[i+1]/x_tab[i] (or u < x_tab[i+1]/x_tab[i]) - if test_x < x_tab[i + 1] { - return x; - } - if i == 0 { - return zero_case(rng, u); - } - // algebraically equivalent to f1 + DRanU()*(f0 - f1) < 1 - if f_tab[i + 1] + (f_tab[i] - f_tab[i + 1]) * rng.gen::<f64>() < pdf(x) { - return x; - } - } -} - -#[cfg(test)] -mod tests { - - use {Rng, Rand}; - use super::{RandSample, WeightedChoice, Weighted, Sample, IndependentSample}; - - #[derive(PartialEq, Debug)] - struct ConstRand(usize); - impl Rand for ConstRand { - fn rand<R: Rng>(_: &mut R) -> ConstRand { - ConstRand(0) - } - } - - // 0, 1, 2, 3, ... - struct CountingRng { i: u32 } - impl Rng for CountingRng { - fn next_u32(&mut self) -> u32 { - self.i += 1; - self.i - 1 - } - fn next_u64(&mut self) -> u64 { - self.next_u32() as u64 - } - } - - #[test] - fn test_rand_sample() { - let mut rand_sample = RandSample::<ConstRand>::new(); - - assert_eq!(rand_sample.sample(&mut ::test::rng()), ConstRand(0)); - assert_eq!(rand_sample.ind_sample(&mut ::test::rng()), ConstRand(0)); - } - #[test] - fn test_weighted_choice() { - // this makes assumptions about the internal implementation of - // WeightedChoice, specifically: it doesn't reorder the items, - // it doesn't do weird things to the RNG (so 0 maps to 0, 1 to - // 1, internally; modulo a modulo operation). - - macro_rules! t { - ($items:expr, $expected:expr) => {{ - let mut items = $items; - let wc = WeightedChoice::new(&mut items); - let expected = $expected; - - let mut rng = CountingRng { i: 0 }; - - for &val in expected.iter() { - assert_eq!(wc.ind_sample(&mut rng), val) - } - }} - } - - t!(vec!(Weighted { weight: 1, item: 10}), [10]); - - // skip some - t!(vec!(Weighted { weight: 0, item: 20}, - Weighted { weight: 2, item: 21}, - Weighted { weight: 0, item: 22}, - Weighted { weight: 1, item: 23}), - [21,21, 23]); - - // different weights - t!(vec!(Weighted { weight: 4, item: 30}, - Weighted { weight: 3, item: 31}), - [30,30,30,30, 31,31,31]); - - // check that we're binary searching - // correctly with some vectors of odd - // length. - t!(vec!(Weighted { weight: 1, item: 40}, - Weighted { weight: 1, item: 41}, - Weighted { weight: 1, item: 42}, - Weighted { weight: 1, item: 43}, - Weighted { weight: 1, item: 44}), - [40, 41, 42, 43, 44]); - t!(vec!(Weighted { weight: 1, item: 50}, - Weighted { weight: 1, item: 51}, - Weighted { weight: 1, item: 52}, - Weighted { weight: 1, item: 53}, - Weighted { weight: 1, item: 54}, - Weighted { weight: 1, item: 55}, - Weighted { weight: 1, item: 56}), - [50, 51, 52, 53, 54, 55, 56]); - } - - #[test] - fn test_weighted_clone_initialization() { - let initial : Weighted<u32> = Weighted {weight: 1, item: 1}; - let clone = initial.clone(); - assert_eq!(initial.weight, clone.weight); - assert_eq!(initial.item, clone.item); - } - - #[test] #[should_panic] - fn test_weighted_clone_change_weight() { - let initial : Weighted<u32> = Weighted {weight: 1, item: 1}; - let mut clone = initial.clone(); - clone.weight = 5; - assert_eq!(initial.weight, clone.weight); - } - - #[test] #[should_panic] - fn test_weighted_clone_change_item() { - let initial : Weighted<u32> = Weighted {weight: 1, item: 1}; - let mut clone = initial.clone(); - clone.item = 5; - assert_eq!(initial.item, clone.item); - - } - - #[test] #[should_panic] - fn test_weighted_choice_no_items() { - WeightedChoice::<isize>::new(&mut []); - } - #[test] #[should_panic] - fn test_weighted_choice_zero_weight() { - WeightedChoice::new(&mut [Weighted { weight: 0, item: 0}, - Weighted { weight: 0, item: 1}]); - } - #[test] #[should_panic] - fn test_weighted_choice_weight_overflows() { - let x = ::std::u32::MAX / 2; // x + x + 2 is the overflow - WeightedChoice::new(&mut [Weighted { weight: x, item: 0 }, - Weighted { weight: 1, item: 1 }, - Weighted { weight: x, item: 2 }, - Weighted { weight: 1, item: 3 }]); - } -} |