aboutsummaryrefslogtreecommitdiff
path: root/vendor/rand_core/src/impls.rs
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/rand_core/src/impls.rs')
-rw-r--r--vendor/rand_core/src/impls.rs165
1 files changed, 165 insertions, 0 deletions
diff --git a/vendor/rand_core/src/impls.rs b/vendor/rand_core/src/impls.rs
new file mode 100644
index 0000000..57bdd07
--- /dev/null
+++ b/vendor/rand_core/src/impls.rs
@@ -0,0 +1,165 @@
+// Copyright 2018 Developers of the Rand project.
+//
+// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
+// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
+// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
+// option. This file may not be copied, modified, or distributed
+// except according to those terms.
+
+//! Helper functions for implementing `RngCore` functions.
+//!
+//! For cross-platform reproducibility, these functions all use Little Endian:
+//! least-significant part first. For example, `next_u64_via_u32` takes `u32`
+//! values `x, y`, then outputs `(y << 32) | x`. To implement `next_u32`
+//! from `next_u64` in little-endian order, one should use `next_u64() as u32`.
+//!
+//! Byte-swapping (like the std `to_le` functions) is only needed to convert
+//! to/from byte sequences, and since its purpose is reproducibility,
+//! non-reproducible sources (e.g. `OsRng`) need not bother with it.
+
+use core::intrinsics::transmute;
+use core::ptr::copy_nonoverlapping;
+use core::slice;
+use core::cmp::min;
+use core::mem::size_of;
+use RngCore;
+
+
+/// Implement `next_u64` via `next_u32`, little-endian order.
+pub fn next_u64_via_u32<R: RngCore + ?Sized>(rng: &mut R) -> u64 {
+ // Use LE; we explicitly generate one value before the next.
+ let x = u64::from(rng.next_u32());
+ let y = u64::from(rng.next_u32());
+ (y << 32) | x
+}
+
+/// Implement `fill_bytes` via `next_u64` and `next_u32`, little-endian order.
+///
+/// The fastest way to fill a slice is usually to work as long as possible with
+/// integers. That is why this method mostly uses `next_u64`, and only when
+/// there are 4 or less bytes remaining at the end of the slice it uses
+/// `next_u32` once.
+pub fn fill_bytes_via_next<R: RngCore + ?Sized>(rng: &mut R, dest: &mut [u8]) {
+ let mut left = dest;
+ while left.len() >= 8 {
+ let (l, r) = {left}.split_at_mut(8);
+ left = r;
+ let chunk: [u8; 8] = unsafe {
+ transmute(rng.next_u64().to_le())
+ };
+ l.copy_from_slice(&chunk);
+ }
+ let n = left.len();
+ if n > 4 {
+ let chunk: [u8; 8] = unsafe {
+ transmute(rng.next_u64().to_le())
+ };
+ left.copy_from_slice(&chunk[..n]);
+ } else if n > 0 {
+ let chunk: [u8; 4] = unsafe {
+ transmute(rng.next_u32().to_le())
+ };
+ left.copy_from_slice(&chunk[..n]);
+ }
+}
+
+macro_rules! impl_uint_from_fill {
+ ($rng:expr, $ty:ty, $N:expr) => ({
+ debug_assert!($N == size_of::<$ty>());
+
+ let mut int: $ty = 0;
+ unsafe {
+ let ptr = &mut int as *mut $ty as *mut u8;
+ let slice = slice::from_raw_parts_mut(ptr, $N);
+ $rng.fill_bytes(slice);
+ }
+ int
+ });
+}
+
+macro_rules! fill_via_chunks {
+ ($src:expr, $dst:expr, $ty:ty, $size:expr) => ({
+ let chunk_size_u8 = min($src.len() * $size, $dst.len());
+ let chunk_size = (chunk_size_u8 + $size - 1) / $size;
+ if cfg!(target_endian="little") {
+ unsafe {
+ copy_nonoverlapping(
+ $src.as_ptr() as *const u8,
+ $dst.as_mut_ptr(),
+ chunk_size_u8);
+ }
+ } else {
+ for (&n, chunk) in $src.iter().zip($dst.chunks_mut($size)) {
+ let tmp = n.to_le();
+ let src_ptr = &tmp as *const $ty as *const u8;
+ unsafe {
+ copy_nonoverlapping(src_ptr,
+ chunk.as_mut_ptr(),
+ chunk.len());
+ }
+ }
+ }
+
+ (chunk_size, chunk_size_u8)
+ });
+}
+
+/// Implement `fill_bytes` by reading chunks from the output buffer of a block
+/// based RNG.
+///
+/// The return values are `(consumed_u32, filled_u8)`.
+///
+/// `filled_u8` is the number of filled bytes in `dest`, which may be less than
+/// the length of `dest`.
+/// `consumed_u32` is the number of words consumed from `src`, which is the same
+/// as `filled_u8 / 4` rounded up.
+///
+/// # Example
+/// (from `IsaacRng`)
+///
+/// ```ignore
+/// fn fill_bytes(&mut self, dest: &mut [u8]) {
+/// let mut read_len = 0;
+/// while read_len < dest.len() {
+/// if self.index >= self.rsl.len() {
+/// self.isaac();
+/// }
+///
+/// let (consumed_u32, filled_u8) =
+/// impls::fill_via_u32_chunks(&mut self.rsl[self.index..],
+/// &mut dest[read_len..]);
+///
+/// self.index += consumed_u32;
+/// read_len += filled_u8;
+/// }
+/// }
+/// ```
+pub fn fill_via_u32_chunks(src: &[u32], dest: &mut [u8]) -> (usize, usize) {
+ fill_via_chunks!(src, dest, u32, 4)
+}
+
+/// Implement `fill_bytes` by reading chunks from the output buffer of a block
+/// based RNG.
+///
+/// The return values are `(consumed_u64, filled_u8)`.
+/// `filled_u8` is the number of filled bytes in `dest`, which may be less than
+/// the length of `dest`.
+/// `consumed_u64` is the number of words consumed from `src`, which is the same
+/// as `filled_u8 / 8` rounded up.
+///
+/// See `fill_via_u32_chunks` for an example.
+pub fn fill_via_u64_chunks(src: &[u64], dest: &mut [u8]) -> (usize, usize) {
+ fill_via_chunks!(src, dest, u64, 8)
+}
+
+/// Implement `next_u32` via `fill_bytes`, little-endian order.
+pub fn next_u32_via_fill<R: RngCore + ?Sized>(rng: &mut R) -> u32 {
+ impl_uint_from_fill!(rng, u32, 4)
+}
+
+/// Implement `next_u64` via `fill_bytes`, little-endian order.
+pub fn next_u64_via_fill<R: RngCore + ?Sized>(rng: &mut R) -> u64 {
+ impl_uint_from_fill!(rng, u64, 8)
+}
+
+// TODO: implement tests for the above