diff options
Diffstat (limited to 'vendor/rayon/src/iter/mod.rs')
-rw-r--r-- | vendor/rayon/src/iter/mod.rs | 3531 |
1 files changed, 0 insertions, 3531 deletions
diff --git a/vendor/rayon/src/iter/mod.rs b/vendor/rayon/src/iter/mod.rs deleted file mode 100644 index 7b5a29a..0000000 --- a/vendor/rayon/src/iter/mod.rs +++ /dev/null @@ -1,3531 +0,0 @@ -//! Traits for writing parallel programs using an iterator-style interface -//! -//! You will rarely need to interact with this module directly unless you have -//! need to name one of the iterator types. -//! -//! Parallel iterators make it easy to write iterator-like chains that -//! execute in parallel: typically all you have to do is convert the -//! first `.iter()` (or `iter_mut()`, `into_iter()`, etc) method into -//! `par_iter()` (or `par_iter_mut()`, `into_par_iter()`, etc). For -//! example, to compute the sum of the squares of a sequence of -//! integers, one might write: -//! -//! ```rust -//! use rayon::prelude::*; -//! fn sum_of_squares(input: &[i32]) -> i32 { -//! input.par_iter() -//! .map(|i| i * i) -//! .sum() -//! } -//! ``` -//! -//! Or, to increment all the integers in a slice, you could write: -//! -//! ```rust -//! use rayon::prelude::*; -//! fn increment_all(input: &mut [i32]) { -//! input.par_iter_mut() -//! .for_each(|p| *p += 1); -//! } -//! ``` -//! -//! To use parallel iterators, first import the traits by adding -//! something like `use rayon::prelude::*` to your module. You can -//! then call `par_iter`, `par_iter_mut`, or `into_par_iter` to get a -//! parallel iterator. Like a [regular iterator][], parallel -//! iterators work by first constructing a computation and then -//! executing it. -//! -//! In addition to `par_iter()` and friends, some types offer other -//! ways to create (or consume) parallel iterators: -//! -//! - Slices (`&[T]`, `&mut [T]`) offer methods like `par_split` and -//! `par_windows`, as well as various parallel sorting -//! operations. See [the `ParallelSlice` trait] for the full list. -//! - Strings (`&str`) offer methods like `par_split` and `par_lines`. -//! See [the `ParallelString` trait] for the full list. -//! - Various collections offer [`par_extend`], which grows a -//! collection given a parallel iterator. (If you don't have a -//! collection to extend, you can use [`collect()`] to create a new -//! one from scratch.) -//! -//! [the `ParallelSlice` trait]: ../slice/trait.ParallelSlice.html -//! [the `ParallelString` trait]: ../str/trait.ParallelString.html -//! [`par_extend`]: trait.ParallelExtend.html -//! [`collect()`]: trait.ParallelIterator.html#method.collect -//! -//! To see the full range of methods available on parallel iterators, -//! check out the [`ParallelIterator`] and [`IndexedParallelIterator`] -//! traits. -//! -//! If you'd like to build a custom parallel iterator, or to write your own -//! combinator, then check out the [split] function and the [plumbing] module. -//! -//! [regular iterator]: https://doc.rust-lang.org/std/iter/trait.Iterator.html -//! [`ParallelIterator`]: trait.ParallelIterator.html -//! [`IndexedParallelIterator`]: trait.IndexedParallelIterator.html -//! [split]: fn.split.html -//! [plumbing]: plumbing/index.html -//! -//! Note: Several of the `ParallelIterator` methods rely on a `Try` trait which -//! has been deliberately obscured from the public API. This trait is intended -//! to mirror the unstable `std::ops::Try` with implementations for `Option` and -//! `Result`, where `Some`/`Ok` values will let those iterators continue, but -//! `None`/`Err` values will exit early. -//! -//! A note about object safety: It is currently _not_ possible to wrap -//! a `ParallelIterator` (or any trait that depends on it) using a -//! `Box<dyn ParallelIterator>` or other kind of dynamic allocation, -//! because `ParallelIterator` is **not object-safe**. -//! (This keeps the implementation simpler and allows extra optimizations.) - -use self::plumbing::*; -use self::private::Try; -pub use either::Either; -use std::cmp::{self, Ordering}; -use std::iter::{Product, Sum}; -use std::ops::{Fn, RangeBounds}; - -pub mod plumbing; - -#[cfg(test)] -mod test; - -// There is a method to the madness here: -// -// - These modules are private but expose certain types to the end-user -// (e.g., `enumerate::Enumerate`) -- specifically, the types that appear in the -// public API surface of the `ParallelIterator` traits. -// - In **this** module, those public types are always used unprefixed, which forces -// us to add a `pub use` and helps identify if we missed anything. -// - In contrast, items that appear **only** in the body of a method, -// e.g. `find::find()`, are always used **prefixed**, so that they -// can be readily distinguished. - -mod chain; -mod chunks; -mod cloned; -mod collect; -mod copied; -mod empty; -mod enumerate; -mod extend; -mod filter; -mod filter_map; -mod find; -mod find_first_last; -mod flat_map; -mod flat_map_iter; -mod flatten; -mod flatten_iter; -mod fold; -mod fold_chunks; -mod fold_chunks_with; -mod for_each; -mod from_par_iter; -mod inspect; -mod interleave; -mod interleave_shortest; -mod intersperse; -mod len; -mod map; -mod map_with; -mod multizip; -mod noop; -mod once; -mod panic_fuse; -mod par_bridge; -mod positions; -mod product; -mod reduce; -mod repeat; -mod rev; -mod skip; -mod skip_any; -mod skip_any_while; -mod splitter; -mod step_by; -mod sum; -mod take; -mod take_any; -mod take_any_while; -mod try_fold; -mod try_reduce; -mod try_reduce_with; -mod unzip; -mod update; -mod while_some; -mod zip; -mod zip_eq; - -pub use self::{ - chain::Chain, - chunks::Chunks, - cloned::Cloned, - copied::Copied, - empty::{empty, Empty}, - enumerate::Enumerate, - filter::Filter, - filter_map::FilterMap, - flat_map::FlatMap, - flat_map_iter::FlatMapIter, - flatten::Flatten, - flatten_iter::FlattenIter, - fold::{Fold, FoldWith}, - fold_chunks::FoldChunks, - fold_chunks_with::FoldChunksWith, - inspect::Inspect, - interleave::Interleave, - interleave_shortest::InterleaveShortest, - intersperse::Intersperse, - len::{MaxLen, MinLen}, - map::Map, - map_with::{MapInit, MapWith}, - multizip::MultiZip, - once::{once, Once}, - panic_fuse::PanicFuse, - par_bridge::{IterBridge, ParallelBridge}, - positions::Positions, - repeat::{repeat, repeatn, Repeat, RepeatN}, - rev::Rev, - skip::Skip, - skip_any::SkipAny, - skip_any_while::SkipAnyWhile, - splitter::{split, Split}, - step_by::StepBy, - take::Take, - take_any::TakeAny, - take_any_while::TakeAnyWhile, - try_fold::{TryFold, TryFoldWith}, - update::Update, - while_some::WhileSome, - zip::Zip, - zip_eq::ZipEq, -}; - -/// `IntoParallelIterator` implements the conversion to a [`ParallelIterator`]. -/// -/// By implementing `IntoParallelIterator` for a type, you define how it will -/// transformed into an iterator. This is a parallel version of the standard -/// library's [`std::iter::IntoIterator`] trait. -/// -/// [`ParallelIterator`]: trait.ParallelIterator.html -/// [`std::iter::IntoIterator`]: https://doc.rust-lang.org/std/iter/trait.IntoIterator.html -pub trait IntoParallelIterator { - /// The parallel iterator type that will be created. - type Iter: ParallelIterator<Item = Self::Item>; - - /// The type of item that the parallel iterator will produce. - type Item: Send; - - /// Converts `self` into a parallel iterator. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// println!("counting in parallel:"); - /// (0..100).into_par_iter() - /// .for_each(|i| println!("{}", i)); - /// ``` - /// - /// This conversion is often implicit for arguments to methods like [`zip`]. - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let v: Vec<_> = (0..5).into_par_iter().zip(5..10).collect(); - /// assert_eq!(v, [(0, 5), (1, 6), (2, 7), (3, 8), (4, 9)]); - /// ``` - /// - /// [`zip`]: trait.IndexedParallelIterator.html#method.zip - fn into_par_iter(self) -> Self::Iter; -} - -/// `IntoParallelRefIterator` implements the conversion to a -/// [`ParallelIterator`], providing shared references to the data. -/// -/// This is a parallel version of the `iter()` method -/// defined by various collections. -/// -/// This trait is automatically implemented -/// `for I where &I: IntoParallelIterator`. In most cases, users -/// will want to implement [`IntoParallelIterator`] rather than implement -/// this trait directly. -/// -/// [`ParallelIterator`]: trait.ParallelIterator.html -/// [`IntoParallelIterator`]: trait.IntoParallelIterator.html -pub trait IntoParallelRefIterator<'data> { - /// The type of the parallel iterator that will be returned. - type Iter: ParallelIterator<Item = Self::Item>; - - /// The type of item that the parallel iterator will produce. - /// This will typically be an `&'data T` reference type. - type Item: Send + 'data; - - /// Converts `self` into a parallel iterator. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let v: Vec<_> = (0..100).collect(); - /// assert_eq!(v.par_iter().sum::<i32>(), 100 * 99 / 2); - /// - /// // `v.par_iter()` is shorthand for `(&v).into_par_iter()`, - /// // producing the exact same references. - /// assert!(v.par_iter().zip(&v) - /// .all(|(a, b)| std::ptr::eq(a, b))); - /// ``` - fn par_iter(&'data self) -> Self::Iter; -} - -impl<'data, I: 'data + ?Sized> IntoParallelRefIterator<'data> for I -where - &'data I: IntoParallelIterator, -{ - type Iter = <&'data I as IntoParallelIterator>::Iter; - type Item = <&'data I as IntoParallelIterator>::Item; - - fn par_iter(&'data self) -> Self::Iter { - self.into_par_iter() - } -} - -/// `IntoParallelRefMutIterator` implements the conversion to a -/// [`ParallelIterator`], providing mutable references to the data. -/// -/// This is a parallel version of the `iter_mut()` method -/// defined by various collections. -/// -/// This trait is automatically implemented -/// `for I where &mut I: IntoParallelIterator`. In most cases, users -/// will want to implement [`IntoParallelIterator`] rather than implement -/// this trait directly. -/// -/// [`ParallelIterator`]: trait.ParallelIterator.html -/// [`IntoParallelIterator`]: trait.IntoParallelIterator.html -pub trait IntoParallelRefMutIterator<'data> { - /// The type of iterator that will be created. - type Iter: ParallelIterator<Item = Self::Item>; - - /// The type of item that will be produced; this is typically an - /// `&'data mut T` reference. - type Item: Send + 'data; - - /// Creates the parallel iterator from `self`. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let mut v = vec![0usize; 5]; - /// v.par_iter_mut().enumerate().for_each(|(i, x)| *x = i); - /// assert_eq!(v, [0, 1, 2, 3, 4]); - /// ``` - fn par_iter_mut(&'data mut self) -> Self::Iter; -} - -impl<'data, I: 'data + ?Sized> IntoParallelRefMutIterator<'data> for I -where - &'data mut I: IntoParallelIterator, -{ - type Iter = <&'data mut I as IntoParallelIterator>::Iter; - type Item = <&'data mut I as IntoParallelIterator>::Item; - - fn par_iter_mut(&'data mut self) -> Self::Iter { - self.into_par_iter() - } -} - -/// Parallel version of the standard iterator trait. -/// -/// The combinators on this trait are available on **all** parallel -/// iterators. Additional methods can be found on the -/// [`IndexedParallelIterator`] trait: those methods are only -/// available for parallel iterators where the number of items is -/// known in advance (so, e.g., after invoking `filter`, those methods -/// become unavailable). -/// -/// For examples of using parallel iterators, see [the docs on the -/// `iter` module][iter]. -/// -/// [iter]: index.html -/// [`IndexedParallelIterator`]: trait.IndexedParallelIterator.html -pub trait ParallelIterator: Sized + Send { - /// The type of item that this parallel iterator produces. - /// For example, if you use the [`for_each`] method, this is the type of - /// item that your closure will be invoked with. - /// - /// [`for_each`]: #method.for_each - type Item: Send; - - /// Executes `OP` on each item produced by the iterator, in parallel. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// (0..100).into_par_iter().for_each(|x| println!("{:?}", x)); - /// ``` - fn for_each<OP>(self, op: OP) - where - OP: Fn(Self::Item) + Sync + Send, - { - for_each::for_each(self, &op) - } - - /// Executes `OP` on the given `init` value with each item produced by - /// the iterator, in parallel. - /// - /// The `init` value will be cloned only as needed to be paired with - /// the group of items in each rayon job. It does not require the type - /// to be `Sync`. - /// - /// # Examples - /// - /// ``` - /// use std::sync::mpsc::channel; - /// use rayon::prelude::*; - /// - /// let (sender, receiver) = channel(); - /// - /// (0..5).into_par_iter().for_each_with(sender, |s, x| s.send(x).unwrap()); - /// - /// let mut res: Vec<_> = receiver.iter().collect(); - /// - /// res.sort(); - /// - /// assert_eq!(&res[..], &[0, 1, 2, 3, 4]) - /// ``` - fn for_each_with<OP, T>(self, init: T, op: OP) - where - OP: Fn(&mut T, Self::Item) + Sync + Send, - T: Send + Clone, - { - self.map_with(init, op).collect() - } - - /// Executes `OP` on a value returned by `init` with each item produced by - /// the iterator, in parallel. - /// - /// The `init` function will be called only as needed for a value to be - /// paired with the group of items in each rayon job. There is no - /// constraint on that returned type at all! - /// - /// # Examples - /// - /// ``` - /// use rand::Rng; - /// use rayon::prelude::*; - /// - /// let mut v = vec![0u8; 1_000_000]; - /// - /// v.par_chunks_mut(1000) - /// .for_each_init( - /// || rand::thread_rng(), - /// |rng, chunk| rng.fill(chunk), - /// ); - /// - /// // There's a remote chance that this will fail... - /// for i in 0u8..=255 { - /// assert!(v.contains(&i)); - /// } - /// ``` - fn for_each_init<OP, INIT, T>(self, init: INIT, op: OP) - where - OP: Fn(&mut T, Self::Item) + Sync + Send, - INIT: Fn() -> T + Sync + Send, - { - self.map_init(init, op).collect() - } - - /// Executes a fallible `OP` on each item produced by the iterator, in parallel. - /// - /// If the `OP` returns `Result::Err` or `Option::None`, we will attempt to - /// stop processing the rest of the items in the iterator as soon as - /// possible, and we will return that terminating value. Otherwise, we will - /// return an empty `Result::Ok(())` or `Option::Some(())`. If there are - /// multiple errors in parallel, it is not specified which will be returned. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// use std::io::{self, Write}; - /// - /// // This will stop iteration early if there's any write error, like - /// // having piped output get closed on the other end. - /// (0..100).into_par_iter() - /// .try_for_each(|x| writeln!(io::stdout(), "{:?}", x)) - /// .expect("expected no write errors"); - /// ``` - fn try_for_each<OP, R>(self, op: OP) -> R - where - OP: Fn(Self::Item) -> R + Sync + Send, - R: Try<Output = ()> + Send, - { - fn ok<R: Try<Output = ()>>(_: (), _: ()) -> R { - R::from_output(()) - } - - self.map(op).try_reduce(<()>::default, ok) - } - - /// Executes a fallible `OP` on the given `init` value with each item - /// produced by the iterator, in parallel. - /// - /// This combines the `init` semantics of [`for_each_with()`] and the - /// failure semantics of [`try_for_each()`]. - /// - /// [`for_each_with()`]: #method.for_each_with - /// [`try_for_each()`]: #method.try_for_each - /// - /// # Examples - /// - /// ``` - /// use std::sync::mpsc::channel; - /// use rayon::prelude::*; - /// - /// let (sender, receiver) = channel(); - /// - /// (0..5).into_par_iter() - /// .try_for_each_with(sender, |s, x| s.send(x)) - /// .expect("expected no send errors"); - /// - /// let mut res: Vec<_> = receiver.iter().collect(); - /// - /// res.sort(); - /// - /// assert_eq!(&res[..], &[0, 1, 2, 3, 4]) - /// ``` - fn try_for_each_with<OP, T, R>(self, init: T, op: OP) -> R - where - OP: Fn(&mut T, Self::Item) -> R + Sync + Send, - T: Send + Clone, - R: Try<Output = ()> + Send, - { - fn ok<R: Try<Output = ()>>(_: (), _: ()) -> R { - R::from_output(()) - } - - self.map_with(init, op).try_reduce(<()>::default, ok) - } - - /// Executes a fallible `OP` on a value returned by `init` with each item - /// produced by the iterator, in parallel. - /// - /// This combines the `init` semantics of [`for_each_init()`] and the - /// failure semantics of [`try_for_each()`]. - /// - /// [`for_each_init()`]: #method.for_each_init - /// [`try_for_each()`]: #method.try_for_each - /// - /// # Examples - /// - /// ``` - /// use rand::Rng; - /// use rayon::prelude::*; - /// - /// let mut v = vec![0u8; 1_000_000]; - /// - /// v.par_chunks_mut(1000) - /// .try_for_each_init( - /// || rand::thread_rng(), - /// |rng, chunk| rng.try_fill(chunk), - /// ) - /// .expect("expected no rand errors"); - /// - /// // There's a remote chance that this will fail... - /// for i in 0u8..=255 { - /// assert!(v.contains(&i)); - /// } - /// ``` - fn try_for_each_init<OP, INIT, T, R>(self, init: INIT, op: OP) -> R - where - OP: Fn(&mut T, Self::Item) -> R + Sync + Send, - INIT: Fn() -> T + Sync + Send, - R: Try<Output = ()> + Send, - { - fn ok<R: Try<Output = ()>>(_: (), _: ()) -> R { - R::from_output(()) - } - - self.map_init(init, op).try_reduce(<()>::default, ok) - } - - /// Counts the number of items in this parallel iterator. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let count = (0..100).into_par_iter().count(); - /// - /// assert_eq!(count, 100); - /// ``` - fn count(self) -> usize { - fn one<T>(_: T) -> usize { - 1 - } - - self.map(one).sum() - } - - /// Applies `map_op` to each item of this iterator, producing a new - /// iterator with the results. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let mut par_iter = (0..5).into_par_iter().map(|x| x * 2); - /// - /// let doubles: Vec<_> = par_iter.collect(); - /// - /// assert_eq!(&doubles[..], &[0, 2, 4, 6, 8]); - /// ``` - fn map<F, R>(self, map_op: F) -> Map<Self, F> - where - F: Fn(Self::Item) -> R + Sync + Send, - R: Send, - { - Map::new(self, map_op) - } - - /// Applies `map_op` to the given `init` value with each item of this - /// iterator, producing a new iterator with the results. - /// - /// The `init` value will be cloned only as needed to be paired with - /// the group of items in each rayon job. It does not require the type - /// to be `Sync`. - /// - /// # Examples - /// - /// ``` - /// use std::sync::mpsc::channel; - /// use rayon::prelude::*; - /// - /// let (sender, receiver) = channel(); - /// - /// let a: Vec<_> = (0..5) - /// .into_par_iter() // iterating over i32 - /// .map_with(sender, |s, x| { - /// s.send(x).unwrap(); // sending i32 values through the channel - /// x // returning i32 - /// }) - /// .collect(); // collecting the returned values into a vector - /// - /// let mut b: Vec<_> = receiver.iter() // iterating over the values in the channel - /// .collect(); // and collecting them - /// b.sort(); - /// - /// assert_eq!(a, b); - /// ``` - fn map_with<F, T, R>(self, init: T, map_op: F) -> MapWith<Self, T, F> - where - F: Fn(&mut T, Self::Item) -> R + Sync + Send, - T: Send + Clone, - R: Send, - { - MapWith::new(self, init, map_op) - } - - /// Applies `map_op` to a value returned by `init` with each item of this - /// iterator, producing a new iterator with the results. - /// - /// The `init` function will be called only as needed for a value to be - /// paired with the group of items in each rayon job. There is no - /// constraint on that returned type at all! - /// - /// # Examples - /// - /// ``` - /// use rand::Rng; - /// use rayon::prelude::*; - /// - /// let a: Vec<_> = (1i32..1_000_000) - /// .into_par_iter() - /// .map_init( - /// || rand::thread_rng(), // get the thread-local RNG - /// |rng, x| if rng.gen() { // randomly negate items - /// -x - /// } else { - /// x - /// }, - /// ).collect(); - /// - /// // There's a remote chance that this will fail... - /// assert!(a.iter().any(|&x| x < 0)); - /// assert!(a.iter().any(|&x| x > 0)); - /// ``` - fn map_init<F, INIT, T, R>(self, init: INIT, map_op: F) -> MapInit<Self, INIT, F> - where - F: Fn(&mut T, Self::Item) -> R + Sync + Send, - INIT: Fn() -> T + Sync + Send, - R: Send, - { - MapInit::new(self, init, map_op) - } - - /// Creates an iterator which clones all of its elements. This may be - /// useful when you have an iterator over `&T`, but you need `T`, and - /// that type implements `Clone`. See also [`copied()`]. - /// - /// [`copied()`]: #method.copied - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let a = [1, 2, 3]; - /// - /// let v_cloned: Vec<_> = a.par_iter().cloned().collect(); - /// - /// // cloned is the same as .map(|&x| x), for integers - /// let v_map: Vec<_> = a.par_iter().map(|&x| x).collect(); - /// - /// assert_eq!(v_cloned, vec![1, 2, 3]); - /// assert_eq!(v_map, vec![1, 2, 3]); - /// ``` - fn cloned<'a, T>(self) -> Cloned<Self> - where - T: 'a + Clone + Send, - Self: ParallelIterator<Item = &'a T>, - { - Cloned::new(self) - } - - /// Creates an iterator which copies all of its elements. This may be - /// useful when you have an iterator over `&T`, but you need `T`, and - /// that type implements `Copy`. See also [`cloned()`]. - /// - /// [`cloned()`]: #method.cloned - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let a = [1, 2, 3]; - /// - /// let v_copied: Vec<_> = a.par_iter().copied().collect(); - /// - /// // copied is the same as .map(|&x| x), for integers - /// let v_map: Vec<_> = a.par_iter().map(|&x| x).collect(); - /// - /// assert_eq!(v_copied, vec![1, 2, 3]); - /// assert_eq!(v_map, vec![1, 2, 3]); - /// ``` - fn copied<'a, T>(self) -> Copied<Self> - where - T: 'a + Copy + Send, - Self: ParallelIterator<Item = &'a T>, - { - Copied::new(self) - } - - /// Applies `inspect_op` to a reference to each item of this iterator, - /// producing a new iterator passing through the original items. This is - /// often useful for debugging to see what's happening in iterator stages. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let a = [1, 4, 2, 3]; - /// - /// // this iterator sequence is complex. - /// let sum = a.par_iter() - /// .cloned() - /// .filter(|&x| x % 2 == 0) - /// .reduce(|| 0, |sum, i| sum + i); - /// - /// println!("{}", sum); - /// - /// // let's add some inspect() calls to investigate what's happening - /// let sum = a.par_iter() - /// .cloned() - /// .inspect(|x| println!("about to filter: {}", x)) - /// .filter(|&x| x % 2 == 0) - /// .inspect(|x| println!("made it through filter: {}", x)) - /// .reduce(|| 0, |sum, i| sum + i); - /// - /// println!("{}", sum); - /// ``` - fn inspect<OP>(self, inspect_op: OP) -> Inspect<Self, OP> - where - OP: Fn(&Self::Item) + Sync + Send, - { - Inspect::new(self, inspect_op) - } - - /// Mutates each item of this iterator before yielding it. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let par_iter = (0..5).into_par_iter().update(|x| {*x *= 2;}); - /// - /// let doubles: Vec<_> = par_iter.collect(); - /// - /// assert_eq!(&doubles[..], &[0, 2, 4, 6, 8]); - /// ``` - fn update<F>(self, update_op: F) -> Update<Self, F> - where - F: Fn(&mut Self::Item) + Sync + Send, - { - Update::new(self, update_op) - } - - /// Applies `filter_op` to each item of this iterator, producing a new - /// iterator with only the items that gave `true` results. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let mut par_iter = (0..10).into_par_iter().filter(|x| x % 2 == 0); - /// - /// let even_numbers: Vec<_> = par_iter.collect(); - /// - /// assert_eq!(&even_numbers[..], &[0, 2, 4, 6, 8]); - /// ``` - fn filter<P>(self, filter_op: P) -> Filter<Self, P> - where - P: Fn(&Self::Item) -> bool + Sync + Send, - { - Filter::new(self, filter_op) - } - - /// Applies `filter_op` to each item of this iterator to get an `Option`, - /// producing a new iterator with only the items from `Some` results. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let mut par_iter = (0..10).into_par_iter() - /// .filter_map(|x| { - /// if x % 2 == 0 { Some(x * 3) } - /// else { None } - /// }); - /// - /// let even_numbers: Vec<_> = par_iter.collect(); - /// - /// assert_eq!(&even_numbers[..], &[0, 6, 12, 18, 24]); - /// ``` - fn filter_map<P, R>(self, filter_op: P) -> FilterMap<Self, P> - where - P: Fn(Self::Item) -> Option<R> + Sync + Send, - R: Send, - { - FilterMap::new(self, filter_op) - } - - /// Applies `map_op` to each item of this iterator to get nested parallel iterators, - /// producing a new parallel iterator that flattens these back into one. - /// - /// See also [`flat_map_iter`](#method.flat_map_iter). - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let a = [[1, 2], [3, 4], [5, 6], [7, 8]]; - /// - /// let par_iter = a.par_iter().cloned().flat_map(|a| a.to_vec()); - /// - /// let vec: Vec<_> = par_iter.collect(); - /// - /// assert_eq!(&vec[..], &[1, 2, 3, 4, 5, 6, 7, 8]); - /// ``` - fn flat_map<F, PI>(self, map_op: F) -> FlatMap<Self, F> - where - F: Fn(Self::Item) -> PI + Sync + Send, - PI: IntoParallelIterator, - { - FlatMap::new(self, map_op) - } - - /// Applies `map_op` to each item of this iterator to get nested serial iterators, - /// producing a new parallel iterator that flattens these back into one. - /// - /// # `flat_map_iter` versus `flat_map` - /// - /// These two methods are similar but behave slightly differently. With [`flat_map`], - /// each of the nested iterators must be a parallel iterator, and they will be further - /// split up with nested parallelism. With `flat_map_iter`, each nested iterator is a - /// sequential `Iterator`, and we only parallelize _between_ them, while the items - /// produced by each nested iterator are processed sequentially. - /// - /// When choosing between these methods, consider whether nested parallelism suits the - /// potential iterators at hand. If there's little computation involved, or its length - /// is much less than the outer parallel iterator, then it may perform better to avoid - /// the overhead of parallelism, just flattening sequentially with `flat_map_iter`. - /// If there is a lot of computation, potentially outweighing the outer parallel - /// iterator, then the nested parallelism of `flat_map` may be worthwhile. - /// - /// [`flat_map`]: #method.flat_map - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// use std::cell::RefCell; - /// - /// let a = [[1, 2], [3, 4], [5, 6], [7, 8]]; - /// - /// let par_iter = a.par_iter().flat_map_iter(|a| { - /// // The serial iterator doesn't have to be thread-safe, just its items. - /// let cell_iter = RefCell::new(a.iter().cloned()); - /// std::iter::from_fn(move || cell_iter.borrow_mut().next()) - /// }); - /// - /// let vec: Vec<_> = par_iter.collect(); - /// - /// assert_eq!(&vec[..], &[1, 2, 3, 4, 5, 6, 7, 8]); - /// ``` - fn flat_map_iter<F, SI>(self, map_op: F) -> FlatMapIter<Self, F> - where - F: Fn(Self::Item) -> SI + Sync + Send, - SI: IntoIterator, - SI::Item: Send, - { - FlatMapIter::new(self, map_op) - } - - /// An adaptor that flattens parallel-iterable `Item`s into one large iterator. - /// - /// See also [`flatten_iter`](#method.flatten_iter). - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let x: Vec<Vec<_>> = vec![vec![1, 2], vec![3, 4]]; - /// let y: Vec<_> = x.into_par_iter().flatten().collect(); - /// - /// assert_eq!(y, vec![1, 2, 3, 4]); - /// ``` - fn flatten(self) -> Flatten<Self> - where - Self::Item: IntoParallelIterator, - { - Flatten::new(self) - } - - /// An adaptor that flattens serial-iterable `Item`s into one large iterator. - /// - /// See also [`flatten`](#method.flatten) and the analogous comparison of - /// [`flat_map_iter` versus `flat_map`](#flat_map_iter-versus-flat_map). - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let x: Vec<Vec<_>> = vec![vec![1, 2], vec![3, 4]]; - /// let iters: Vec<_> = x.into_iter().map(Vec::into_iter).collect(); - /// let y: Vec<_> = iters.into_par_iter().flatten_iter().collect(); - /// - /// assert_eq!(y, vec![1, 2, 3, 4]); - /// ``` - fn flatten_iter(self) -> FlattenIter<Self> - where - Self::Item: IntoIterator, - <Self::Item as IntoIterator>::Item: Send, - { - FlattenIter::new(self) - } - - /// Reduces the items in the iterator into one item using `op`. - /// The argument `identity` should be a closure that can produce - /// "identity" value which may be inserted into the sequence as - /// needed to create opportunities for parallel execution. So, for - /// example, if you are doing a summation, then `identity()` ought - /// to produce something that represents the zero for your type - /// (but consider just calling `sum()` in that case). - /// - /// # Examples - /// - /// ``` - /// // Iterate over a sequence of pairs `(x0, y0), ..., (xN, yN)` - /// // and use reduce to compute one pair `(x0 + ... + xN, y0 + ... + yN)` - /// // where the first/second elements are summed separately. - /// use rayon::prelude::*; - /// let sums = [(0, 1), (5, 6), (16, 2), (8, 9)] - /// .par_iter() // iterating over &(i32, i32) - /// .cloned() // iterating over (i32, i32) - /// .reduce(|| (0, 0), // the "identity" is 0 in both columns - /// |a, b| (a.0 + b.0, a.1 + b.1)); - /// assert_eq!(sums, (0 + 5 + 16 + 8, 1 + 6 + 2 + 9)); - /// ``` - /// - /// **Note:** unlike a sequential `fold` operation, the order in - /// which `op` will be applied to reduce the result is not fully - /// specified. So `op` should be [associative] or else the results - /// will be non-deterministic. And of course `identity()` should - /// produce a true identity. - /// - /// [associative]: https://en.wikipedia.org/wiki/Associative_property - fn reduce<OP, ID>(self, identity: ID, op: OP) -> Self::Item - where - OP: Fn(Self::Item, Self::Item) -> Self::Item + Sync + Send, - ID: Fn() -> Self::Item + Sync + Send, - { - reduce::reduce(self, identity, op) - } - - /// Reduces the items in the iterator into one item using `op`. - /// If the iterator is empty, `None` is returned; otherwise, - /// `Some` is returned. - /// - /// This version of `reduce` is simple but somewhat less - /// efficient. If possible, it is better to call `reduce()`, which - /// requires an identity element. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// let sums = [(0, 1), (5, 6), (16, 2), (8, 9)] - /// .par_iter() // iterating over &(i32, i32) - /// .cloned() // iterating over (i32, i32) - /// .reduce_with(|a, b| (a.0 + b.0, a.1 + b.1)) - /// .unwrap(); - /// assert_eq!(sums, (0 + 5 + 16 + 8, 1 + 6 + 2 + 9)); - /// ``` - /// - /// **Note:** unlike a sequential `fold` operation, the order in - /// which `op` will be applied to reduce the result is not fully - /// specified. So `op` should be [associative] or else the results - /// will be non-deterministic. - /// - /// [associative]: https://en.wikipedia.org/wiki/Associative_property - fn reduce_with<OP>(self, op: OP) -> Option<Self::Item> - where - OP: Fn(Self::Item, Self::Item) -> Self::Item + Sync + Send, - { - fn opt_fold<T>(op: impl Fn(T, T) -> T) -> impl Fn(Option<T>, T) -> Option<T> { - move |opt_a, b| match opt_a { - Some(a) => Some(op(a, b)), - None => Some(b), - } - } - - fn opt_reduce<T>(op: impl Fn(T, T) -> T) -> impl Fn(Option<T>, Option<T>) -> Option<T> { - move |opt_a, opt_b| match (opt_a, opt_b) { - (Some(a), Some(b)) => Some(op(a, b)), - (Some(v), None) | (None, Some(v)) => Some(v), - (None, None) => None, - } - } - - self.fold(<_>::default, opt_fold(&op)) - .reduce(<_>::default, opt_reduce(&op)) - } - - /// Reduces the items in the iterator into one item using a fallible `op`. - /// The `identity` argument is used the same way as in [`reduce()`]. - /// - /// [`reduce()`]: #method.reduce - /// - /// If a `Result::Err` or `Option::None` item is found, or if `op` reduces - /// to one, we will attempt to stop processing the rest of the items in the - /// iterator as soon as possible, and we will return that terminating value. - /// Otherwise, we will return the final reduced `Result::Ok(T)` or - /// `Option::Some(T)`. If there are multiple errors in parallel, it is not - /// specified which will be returned. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// // Compute the sum of squares, being careful about overflow. - /// fn sum_squares<I: IntoParallelIterator<Item = i32>>(iter: I) -> Option<i32> { - /// iter.into_par_iter() - /// .map(|i| i.checked_mul(i)) // square each item, - /// .try_reduce(|| 0, i32::checked_add) // and add them up! - /// } - /// assert_eq!(sum_squares(0..5), Some(0 + 1 + 4 + 9 + 16)); - /// - /// // The sum might overflow - /// assert_eq!(sum_squares(0..10_000), None); - /// - /// // Or the squares might overflow before it even reaches `try_reduce` - /// assert_eq!(sum_squares(1_000_000..1_000_001), None); - /// ``` - fn try_reduce<T, OP, ID>(self, identity: ID, op: OP) -> Self::Item - where - OP: Fn(T, T) -> Self::Item + Sync + Send, - ID: Fn() -> T + Sync + Send, - Self::Item: Try<Output = T>, - { - try_reduce::try_reduce(self, identity, op) - } - - /// Reduces the items in the iterator into one item using a fallible `op`. - /// - /// Like [`reduce_with()`], if the iterator is empty, `None` is returned; - /// otherwise, `Some` is returned. Beyond that, it behaves like - /// [`try_reduce()`] for handling `Err`/`None`. - /// - /// [`reduce_with()`]: #method.reduce_with - /// [`try_reduce()`]: #method.try_reduce - /// - /// For instance, with `Option` items, the return value may be: - /// - `None`, the iterator was empty - /// - `Some(None)`, we stopped after encountering `None`. - /// - `Some(Some(x))`, the entire iterator reduced to `x`. - /// - /// With `Result` items, the nesting is more obvious: - /// - `None`, the iterator was empty - /// - `Some(Err(e))`, we stopped after encountering an error `e`. - /// - `Some(Ok(x))`, the entire iterator reduced to `x`. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let files = ["/dev/null", "/does/not/exist"]; - /// - /// // Find the biggest file - /// files.into_par_iter() - /// .map(|path| std::fs::metadata(path).map(|m| (path, m.len()))) - /// .try_reduce_with(|a, b| { - /// Ok(if a.1 >= b.1 { a } else { b }) - /// }) - /// .expect("Some value, since the iterator is not empty") - /// .expect_err("not found"); - /// ``` - fn try_reduce_with<T, OP>(self, op: OP) -> Option<Self::Item> - where - OP: Fn(T, T) -> Self::Item + Sync + Send, - Self::Item: Try<Output = T>, - { - try_reduce_with::try_reduce_with(self, op) - } - - /// Parallel fold is similar to sequential fold except that the - /// sequence of items may be subdivided before it is - /// folded. Consider a list of numbers like `22 3 77 89 46`. If - /// you used sequential fold to add them (`fold(0, |a,b| a+b)`, - /// you would wind up first adding 0 + 22, then 22 + 3, then 25 + - /// 77, and so forth. The **parallel fold** works similarly except - /// that it first breaks up your list into sublists, and hence - /// instead of yielding up a single sum at the end, it yields up - /// multiple sums. The number of results is nondeterministic, as - /// is the point where the breaks occur. - /// - /// So if we did the same parallel fold (`fold(0, |a,b| a+b)`) on - /// our example list, we might wind up with a sequence of two numbers, - /// like so: - /// - /// ```notrust - /// 22 3 77 89 46 - /// | | - /// 102 135 - /// ``` - /// - /// Or perhaps these three numbers: - /// - /// ```notrust - /// 22 3 77 89 46 - /// | | | - /// 102 89 46 - /// ``` - /// - /// In general, Rayon will attempt to find good breaking points - /// that keep all of your cores busy. - /// - /// ### Fold versus reduce - /// - /// The `fold()` and `reduce()` methods each take an identity element - /// and a combining function, but they operate rather differently. - /// - /// `reduce()` requires that the identity function has the same - /// type as the things you are iterating over, and it fully - /// reduces the list of items into a single item. So, for example, - /// imagine we are iterating over a list of bytes `bytes: [128_u8, - /// 64_u8, 64_u8]`. If we used `bytes.reduce(|| 0_u8, |a: u8, b: - /// u8| a + b)`, we would get an overflow. This is because `0`, - /// `a`, and `b` here are all bytes, just like the numbers in the - /// list (I wrote the types explicitly above, but those are the - /// only types you can use). To avoid the overflow, we would need - /// to do something like `bytes.map(|b| b as u32).reduce(|| 0, |a, - /// b| a + b)`, in which case our result would be `256`. - /// - /// In contrast, with `fold()`, the identity function does not - /// have to have the same type as the things you are iterating - /// over, and you potentially get back many results. So, if we - /// continue with the `bytes` example from the previous paragraph, - /// we could do `bytes.fold(|| 0_u32, |a, b| a + (b as u32))` to - /// convert our bytes into `u32`. And of course we might not get - /// back a single sum. - /// - /// There is a more subtle distinction as well, though it's - /// actually implied by the above points. When you use `reduce()`, - /// your reduction function is sometimes called with values that - /// were never part of your original parallel iterator (for - /// example, both the left and right might be a partial sum). With - /// `fold()`, in contrast, the left value in the fold function is - /// always the accumulator, and the right value is always from - /// your original sequence. - /// - /// ### Fold vs Map/Reduce - /// - /// Fold makes sense if you have some operation where it is - /// cheaper to create groups of elements at a time. For example, - /// imagine collecting characters into a string. If you were going - /// to use map/reduce, you might try this: - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let s = - /// ['a', 'b', 'c', 'd', 'e'] - /// .par_iter() - /// .map(|c: &char| format!("{}", c)) - /// .reduce(|| String::new(), - /// |mut a: String, b: String| { a.push_str(&b); a }); - /// - /// assert_eq!(s, "abcde"); - /// ``` - /// - /// Because reduce produces the same type of element as its input, - /// you have to first map each character into a string, and then - /// you can reduce them. This means we create one string per - /// element in our iterator -- not so great. Using `fold`, we can - /// do this instead: - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let s = - /// ['a', 'b', 'c', 'd', 'e'] - /// .par_iter() - /// .fold(|| String::new(), - /// |mut s: String, c: &char| { s.push(*c); s }) - /// .reduce(|| String::new(), - /// |mut a: String, b: String| { a.push_str(&b); a }); - /// - /// assert_eq!(s, "abcde"); - /// ``` - /// - /// Now `fold` will process groups of our characters at a time, - /// and we only make one string per group. We should wind up with - /// some small-ish number of strings roughly proportional to the - /// number of CPUs you have (it will ultimately depend on how busy - /// your processors are). Note that we still need to do a reduce - /// afterwards to combine those groups of strings into a single - /// string. - /// - /// You could use a similar trick to save partial results (e.g., a - /// cache) or something similar. - /// - /// ### Combining fold with other operations - /// - /// You can combine `fold` with `reduce` if you want to produce a - /// single value. This is then roughly equivalent to a map/reduce - /// combination in effect: - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let bytes = 0..22_u8; - /// let sum = bytes.into_par_iter() - /// .fold(|| 0_u32, |a: u32, b: u8| a + (b as u32)) - /// .sum::<u32>(); - /// - /// assert_eq!(sum, (0..22).sum()); // compare to sequential - /// ``` - fn fold<T, ID, F>(self, identity: ID, fold_op: F) -> Fold<Self, ID, F> - where - F: Fn(T, Self::Item) -> T + Sync + Send, - ID: Fn() -> T + Sync + Send, - T: Send, - { - Fold::new(self, identity, fold_op) - } - - /// Applies `fold_op` to the given `init` value with each item of this - /// iterator, finally producing the value for further use. - /// - /// This works essentially like `fold(|| init.clone(), fold_op)`, except - /// it doesn't require the `init` type to be `Sync`, nor any other form - /// of added synchronization. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let bytes = 0..22_u8; - /// let sum = bytes.into_par_iter() - /// .fold_with(0_u32, |a: u32, b: u8| a + (b as u32)) - /// .sum::<u32>(); - /// - /// assert_eq!(sum, (0..22).sum()); // compare to sequential - /// ``` - fn fold_with<F, T>(self, init: T, fold_op: F) -> FoldWith<Self, T, F> - where - F: Fn(T, Self::Item) -> T + Sync + Send, - T: Send + Clone, - { - FoldWith::new(self, init, fold_op) - } - - /// Performs a fallible parallel fold. - /// - /// This is a variation of [`fold()`] for operations which can fail with - /// `Option::None` or `Result::Err`. The first such failure stops - /// processing the local set of items, without affecting other folds in the - /// iterator's subdivisions. - /// - /// Often, `try_fold()` will be followed by [`try_reduce()`] - /// for a final reduction and global short-circuiting effect. - /// - /// [`fold()`]: #method.fold - /// [`try_reduce()`]: #method.try_reduce - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let bytes = 0..22_u8; - /// let sum = bytes.into_par_iter() - /// .try_fold(|| 0_u32, |a: u32, b: u8| a.checked_add(b as u32)) - /// .try_reduce(|| 0, u32::checked_add); - /// - /// assert_eq!(sum, Some((0..22).sum())); // compare to sequential - /// ``` - fn try_fold<T, R, ID, F>(self, identity: ID, fold_op: F) -> TryFold<Self, R, ID, F> - where - F: Fn(T, Self::Item) -> R + Sync + Send, - ID: Fn() -> T + Sync + Send, - R: Try<Output = T> + Send, - { - TryFold::new(self, identity, fold_op) - } - - /// Performs a fallible parallel fold with a cloneable `init` value. - /// - /// This combines the `init` semantics of [`fold_with()`] and the failure - /// semantics of [`try_fold()`]. - /// - /// [`fold_with()`]: #method.fold_with - /// [`try_fold()`]: #method.try_fold - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let bytes = 0..22_u8; - /// let sum = bytes.into_par_iter() - /// .try_fold_with(0_u32, |a: u32, b: u8| a.checked_add(b as u32)) - /// .try_reduce(|| 0, u32::checked_add); - /// - /// assert_eq!(sum, Some((0..22).sum())); // compare to sequential - /// ``` - fn try_fold_with<F, T, R>(self, init: T, fold_op: F) -> TryFoldWith<Self, R, F> - where - F: Fn(T, Self::Item) -> R + Sync + Send, - R: Try<Output = T> + Send, - T: Clone + Send, - { - TryFoldWith::new(self, init, fold_op) - } - - /// Sums up the items in the iterator. - /// - /// Note that the order in items will be reduced is not specified, - /// so if the `+` operator is not truly [associative] \(as is the - /// case for floating point numbers), then the results are not - /// fully deterministic. - /// - /// [associative]: https://en.wikipedia.org/wiki/Associative_property - /// - /// Basically equivalent to `self.reduce(|| 0, |a, b| a + b)`, - /// except that the type of `0` and the `+` operation may vary - /// depending on the type of value being produced. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let a = [1, 5, 7]; - /// - /// let sum: i32 = a.par_iter().sum(); - /// - /// assert_eq!(sum, 13); - /// ``` - fn sum<S>(self) -> S - where - S: Send + Sum<Self::Item> + Sum<S>, - { - sum::sum(self) - } - - /// Multiplies all the items in the iterator. - /// - /// Note that the order in items will be reduced is not specified, - /// so if the `*` operator is not truly [associative] \(as is the - /// case for floating point numbers), then the results are not - /// fully deterministic. - /// - /// [associative]: https://en.wikipedia.org/wiki/Associative_property - /// - /// Basically equivalent to `self.reduce(|| 1, |a, b| a * b)`, - /// except that the type of `1` and the `*` operation may vary - /// depending on the type of value being produced. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// fn factorial(n: u32) -> u32 { - /// (1..n+1).into_par_iter().product() - /// } - /// - /// assert_eq!(factorial(0), 1); - /// assert_eq!(factorial(1), 1); - /// assert_eq!(factorial(5), 120); - /// ``` - fn product<P>(self) -> P - where - P: Send + Product<Self::Item> + Product<P>, - { - product::product(self) - } - - /// Computes the minimum of all the items in the iterator. If the - /// iterator is empty, `None` is returned; otherwise, `Some(min)` - /// is returned. - /// - /// Note that the order in which the items will be reduced is not - /// specified, so if the `Ord` impl is not truly associative, then - /// the results are not deterministic. - /// - /// Basically equivalent to `self.reduce_with(|a, b| cmp::min(a, b))`. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let a = [45, 74, 32]; - /// - /// assert_eq!(a.par_iter().min(), Some(&32)); - /// - /// let b: [i32; 0] = []; - /// - /// assert_eq!(b.par_iter().min(), None); - /// ``` - fn min(self) -> Option<Self::Item> - where - Self::Item: Ord, - { - self.reduce_with(cmp::min) - } - - /// Computes the minimum of all the items in the iterator with respect to - /// the given comparison function. If the iterator is empty, `None` is - /// returned; otherwise, `Some(min)` is returned. - /// - /// Note that the order in which the items will be reduced is not - /// specified, so if the comparison function is not associative, then - /// the results are not deterministic. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let a = [-3_i32, 77, 53, 240, -1]; - /// - /// assert_eq!(a.par_iter().min_by(|x, y| x.cmp(y)), Some(&-3)); - /// ``` - fn min_by<F>(self, f: F) -> Option<Self::Item> - where - F: Sync + Send + Fn(&Self::Item, &Self::Item) -> Ordering, - { - fn min<T>(f: impl Fn(&T, &T) -> Ordering) -> impl Fn(T, T) -> T { - move |a, b| match f(&a, &b) { - Ordering::Greater => b, - _ => a, - } - } - - self.reduce_with(min(f)) - } - - /// Computes the item that yields the minimum value for the given - /// function. If the iterator is empty, `None` is returned; - /// otherwise, `Some(item)` is returned. - /// - /// Note that the order in which the items will be reduced is not - /// specified, so if the `Ord` impl is not truly associative, then - /// the results are not deterministic. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let a = [-3_i32, 34, 2, 5, -10, -3, -23]; - /// - /// assert_eq!(a.par_iter().min_by_key(|x| x.abs()), Some(&2)); - /// ``` - fn min_by_key<K, F>(self, f: F) -> Option<Self::Item> - where - K: Ord + Send, - F: Sync + Send + Fn(&Self::Item) -> K, - { - fn key<T, K>(f: impl Fn(&T) -> K) -> impl Fn(T) -> (K, T) { - move |x| (f(&x), x) - } - - fn min_key<T, K: Ord>(a: (K, T), b: (K, T)) -> (K, T) { - match (a.0).cmp(&b.0) { - Ordering::Greater => b, - _ => a, - } - } - - let (_, x) = self.map(key(f)).reduce_with(min_key)?; - Some(x) - } - - /// Computes the maximum of all the items in the iterator. If the - /// iterator is empty, `None` is returned; otherwise, `Some(max)` - /// is returned. - /// - /// Note that the order in which the items will be reduced is not - /// specified, so if the `Ord` impl is not truly associative, then - /// the results are not deterministic. - /// - /// Basically equivalent to `self.reduce_with(|a, b| cmp::max(a, b))`. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let a = [45, 74, 32]; - /// - /// assert_eq!(a.par_iter().max(), Some(&74)); - /// - /// let b: [i32; 0] = []; - /// - /// assert_eq!(b.par_iter().max(), None); - /// ``` - fn max(self) -> Option<Self::Item> - where - Self::Item: Ord, - { - self.reduce_with(cmp::max) - } - - /// Computes the maximum of all the items in the iterator with respect to - /// the given comparison function. If the iterator is empty, `None` is - /// returned; otherwise, `Some(max)` is returned. - /// - /// Note that the order in which the items will be reduced is not - /// specified, so if the comparison function is not associative, then - /// the results are not deterministic. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let a = [-3_i32, 77, 53, 240, -1]; - /// - /// assert_eq!(a.par_iter().max_by(|x, y| x.abs().cmp(&y.abs())), Some(&240)); - /// ``` - fn max_by<F>(self, f: F) -> Option<Self::Item> - where - F: Sync + Send + Fn(&Self::Item, &Self::Item) -> Ordering, - { - fn max<T>(f: impl Fn(&T, &T) -> Ordering) -> impl Fn(T, T) -> T { - move |a, b| match f(&a, &b) { - Ordering::Greater => a, - _ => b, - } - } - - self.reduce_with(max(f)) - } - - /// Computes the item that yields the maximum value for the given - /// function. If the iterator is empty, `None` is returned; - /// otherwise, `Some(item)` is returned. - /// - /// Note that the order in which the items will be reduced is not - /// specified, so if the `Ord` impl is not truly associative, then - /// the results are not deterministic. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let a = [-3_i32, 34, 2, 5, -10, -3, -23]; - /// - /// assert_eq!(a.par_iter().max_by_key(|x| x.abs()), Some(&34)); - /// ``` - fn max_by_key<K, F>(self, f: F) -> Option<Self::Item> - where - K: Ord + Send, - F: Sync + Send + Fn(&Self::Item) -> K, - { - fn key<T, K>(f: impl Fn(&T) -> K) -> impl Fn(T) -> (K, T) { - move |x| (f(&x), x) - } - - fn max_key<T, K: Ord>(a: (K, T), b: (K, T)) -> (K, T) { - match (a.0).cmp(&b.0) { - Ordering::Greater => a, - _ => b, - } - } - - let (_, x) = self.map(key(f)).reduce_with(max_key)?; - Some(x) - } - - /// Takes two iterators and creates a new iterator over both. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let a = [0, 1, 2]; - /// let b = [9, 8, 7]; - /// - /// let par_iter = a.par_iter().chain(b.par_iter()); - /// - /// let chained: Vec<_> = par_iter.cloned().collect(); - /// - /// assert_eq!(&chained[..], &[0, 1, 2, 9, 8, 7]); - /// ``` - fn chain<C>(self, chain: C) -> Chain<Self, C::Iter> - where - C: IntoParallelIterator<Item = Self::Item>, - { - Chain::new(self, chain.into_par_iter()) - } - - /// Searches for **some** item in the parallel iterator that - /// matches the given predicate and returns it. This operation - /// is similar to [`find` on sequential iterators][find] but - /// the item returned may not be the **first** one in the parallel - /// sequence which matches, since we search the entire sequence in parallel. - /// - /// Once a match is found, we will attempt to stop processing - /// the rest of the items in the iterator as soon as possible - /// (just as `find` stops iterating once a match is found). - /// - /// [find]: https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.find - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let a = [1, 2, 3, 3]; - /// - /// assert_eq!(a.par_iter().find_any(|&&x| x == 3), Some(&3)); - /// - /// assert_eq!(a.par_iter().find_any(|&&x| x == 100), None); - /// ``` - fn find_any<P>(self, predicate: P) -> Option<Self::Item> - where - P: Fn(&Self::Item) -> bool + Sync + Send, - { - find::find(self, predicate) - } - - /// Searches for the sequentially **first** item in the parallel iterator - /// that matches the given predicate and returns it. - /// - /// Once a match is found, all attempts to the right of the match - /// will be stopped, while attempts to the left must continue in case - /// an earlier match is found. - /// - /// Note that not all parallel iterators have a useful order, much like - /// sequential `HashMap` iteration, so "first" may be nebulous. If you - /// just want the first match that discovered anywhere in the iterator, - /// `find_any` is a better choice. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let a = [1, 2, 3, 3]; - /// - /// assert_eq!(a.par_iter().find_first(|&&x| x == 3), Some(&3)); - /// - /// assert_eq!(a.par_iter().find_first(|&&x| x == 100), None); - /// ``` - fn find_first<P>(self, predicate: P) -> Option<Self::Item> - where - P: Fn(&Self::Item) -> bool + Sync + Send, - { - find_first_last::find_first(self, predicate) - } - - /// Searches for the sequentially **last** item in the parallel iterator - /// that matches the given predicate and returns it. - /// - /// Once a match is found, all attempts to the left of the match - /// will be stopped, while attempts to the right must continue in case - /// a later match is found. - /// - /// Note that not all parallel iterators have a useful order, much like - /// sequential `HashMap` iteration, so "last" may be nebulous. When the - /// order doesn't actually matter to you, `find_any` is a better choice. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let a = [1, 2, 3, 3]; - /// - /// assert_eq!(a.par_iter().find_last(|&&x| x == 3), Some(&3)); - /// - /// assert_eq!(a.par_iter().find_last(|&&x| x == 100), None); - /// ``` - fn find_last<P>(self, predicate: P) -> Option<Self::Item> - where - P: Fn(&Self::Item) -> bool + Sync + Send, - { - find_first_last::find_last(self, predicate) - } - - /// Applies the given predicate to the items in the parallel iterator - /// and returns **any** non-None result of the map operation. - /// - /// Once a non-None value is produced from the map operation, we will - /// attempt to stop processing the rest of the items in the iterator - /// as soon as possible. - /// - /// Note that this method only returns **some** item in the parallel - /// iterator that is not None from the map predicate. The item returned - /// may not be the **first** non-None value produced in the parallel - /// sequence, since the entire sequence is mapped over in parallel. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let c = ["lol", "NaN", "5", "5"]; - /// - /// let found_number = c.par_iter().find_map_any(|s| s.parse().ok()); - /// - /// assert_eq!(found_number, Some(5)); - /// ``` - fn find_map_any<P, R>(self, predicate: P) -> Option<R> - where - P: Fn(Self::Item) -> Option<R> + Sync + Send, - R: Send, - { - fn yes<T>(_: &T) -> bool { - true - } - self.filter_map(predicate).find_any(yes) - } - - /// Applies the given predicate to the items in the parallel iterator and - /// returns the sequentially **first** non-None result of the map operation. - /// - /// Once a non-None value is produced from the map operation, all attempts - /// to the right of the match will be stopped, while attempts to the left - /// must continue in case an earlier match is found. - /// - /// Note that not all parallel iterators have a useful order, much like - /// sequential `HashMap` iteration, so "first" may be nebulous. If you - /// just want the first non-None value discovered anywhere in the iterator, - /// `find_map_any` is a better choice. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let c = ["lol", "NaN", "2", "5"]; - /// - /// let first_number = c.par_iter().find_map_first(|s| s.parse().ok()); - /// - /// assert_eq!(first_number, Some(2)); - /// ``` - fn find_map_first<P, R>(self, predicate: P) -> Option<R> - where - P: Fn(Self::Item) -> Option<R> + Sync + Send, - R: Send, - { - fn yes<T>(_: &T) -> bool { - true - } - self.filter_map(predicate).find_first(yes) - } - - /// Applies the given predicate to the items in the parallel iterator and - /// returns the sequentially **last** non-None result of the map operation. - /// - /// Once a non-None value is produced from the map operation, all attempts - /// to the left of the match will be stopped, while attempts to the right - /// must continue in case a later match is found. - /// - /// Note that not all parallel iterators have a useful order, much like - /// sequential `HashMap` iteration, so "first" may be nebulous. If you - /// just want the first non-None value discovered anywhere in the iterator, - /// `find_map_any` is a better choice. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let c = ["lol", "NaN", "2", "5"]; - /// - /// let last_number = c.par_iter().find_map_last(|s| s.parse().ok()); - /// - /// assert_eq!(last_number, Some(5)); - /// ``` - fn find_map_last<P, R>(self, predicate: P) -> Option<R> - where - P: Fn(Self::Item) -> Option<R> + Sync + Send, - R: Send, - { - fn yes<T>(_: &T) -> bool { - true - } - self.filter_map(predicate).find_last(yes) - } - - #[doc(hidden)] - #[deprecated(note = "parallel `find` does not search in order -- use `find_any`, \\ - `find_first`, or `find_last`")] - fn find<P>(self, predicate: P) -> Option<Self::Item> - where - P: Fn(&Self::Item) -> bool + Sync + Send, - { - self.find_any(predicate) - } - - /// Searches for **some** item in the parallel iterator that - /// matches the given predicate, and if so returns true. Once - /// a match is found, we'll attempt to stop process the rest - /// of the items. Proving that there's no match, returning false, - /// does require visiting every item. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let a = [0, 12, 3, 4, 0, 23, 0]; - /// - /// let is_valid = a.par_iter().any(|&x| x > 10); - /// - /// assert!(is_valid); - /// ``` - fn any<P>(self, predicate: P) -> bool - where - P: Fn(Self::Item) -> bool + Sync + Send, - { - self.map(predicate).find_any(bool::clone).is_some() - } - - /// Tests that every item in the parallel iterator matches the given - /// predicate, and if so returns true. If a counter-example is found, - /// we'll attempt to stop processing more items, then return false. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let a = [0, 12, 3, 4, 0, 23, 0]; - /// - /// let is_valid = a.par_iter().all(|&x| x > 10); - /// - /// assert!(!is_valid); - /// ``` - fn all<P>(self, predicate: P) -> bool - where - P: Fn(Self::Item) -> bool + Sync + Send, - { - #[inline] - fn is_false(x: &bool) -> bool { - !x - } - - self.map(predicate).find_any(is_false).is_none() - } - - /// Creates an iterator over the `Some` items of this iterator, halting - /// as soon as any `None` is found. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// use std::sync::atomic::{AtomicUsize, Ordering}; - /// - /// let counter = AtomicUsize::new(0); - /// let value = (0_i32..2048) - /// .into_par_iter() - /// .map(|x| { - /// counter.fetch_add(1, Ordering::SeqCst); - /// if x < 1024 { Some(x) } else { None } - /// }) - /// .while_some() - /// .max(); - /// - /// assert!(value < Some(1024)); - /// assert!(counter.load(Ordering::SeqCst) < 2048); // should not have visited every single one - /// ``` - fn while_some<T>(self) -> WhileSome<Self> - where - Self: ParallelIterator<Item = Option<T>>, - T: Send, - { - WhileSome::new(self) - } - - /// Wraps an iterator with a fuse in case of panics, to halt all threads - /// as soon as possible. - /// - /// Panics within parallel iterators are always propagated to the caller, - /// but they don't always halt the rest of the iterator right away, due to - /// the internal semantics of [`join`]. This adaptor makes a greater effort - /// to stop processing other items sooner, with the cost of additional - /// synchronization overhead, which may also inhibit some optimizations. - /// - /// [`join`]: ../fn.join.html#panics - /// - /// # Examples - /// - /// If this code didn't use `panic_fuse()`, it would continue processing - /// many more items in other threads (with long sleep delays) before the - /// panic is finally propagated. - /// - /// ```should_panic - /// use rayon::prelude::*; - /// use std::{thread, time}; - /// - /// (0..1_000_000) - /// .into_par_iter() - /// .panic_fuse() - /// .for_each(|i| { - /// // simulate some work - /// thread::sleep(time::Duration::from_secs(1)); - /// assert!(i > 0); // oops! - /// }); - /// ``` - fn panic_fuse(self) -> PanicFuse<Self> { - PanicFuse::new(self) - } - - /// Creates a fresh collection containing all the elements produced - /// by this parallel iterator. - /// - /// You may prefer [`collect_into_vec()`] implemented on - /// [`IndexedParallelIterator`], if your underlying iterator also implements - /// it. [`collect_into_vec()`] allocates efficiently with precise knowledge - /// of how many elements the iterator contains, and even allows you to reuse - /// an existing vector's backing store rather than allocating a fresh vector. - /// - /// [`IndexedParallelIterator`]: trait.IndexedParallelIterator.html - /// [`collect_into_vec()`]: - /// trait.IndexedParallelIterator.html#method.collect_into_vec - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let sync_vec: Vec<_> = (0..100).into_iter().collect(); - /// - /// let async_vec: Vec<_> = (0..100).into_par_iter().collect(); - /// - /// assert_eq!(sync_vec, async_vec); - /// ``` - /// - /// You can collect a pair of collections like [`unzip`](#method.unzip) - /// for paired items: - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let a = [(0, 1), (1, 2), (2, 3), (3, 4)]; - /// let (first, second): (Vec<_>, Vec<_>) = a.into_par_iter().collect(); - /// - /// assert_eq!(first, [0, 1, 2, 3]); - /// assert_eq!(second, [1, 2, 3, 4]); - /// ``` - /// - /// Or like [`partition_map`](#method.partition_map) for `Either` items: - /// - /// ``` - /// use rayon::prelude::*; - /// use rayon::iter::Either; - /// - /// let (left, right): (Vec<_>, Vec<_>) = (0..8).into_par_iter().map(|x| { - /// if x % 2 == 0 { - /// Either::Left(x * 4) - /// } else { - /// Either::Right(x * 3) - /// } - /// }).collect(); - /// - /// assert_eq!(left, [0, 8, 16, 24]); - /// assert_eq!(right, [3, 9, 15, 21]); - /// ``` - /// - /// You can even collect an arbitrarily-nested combination of pairs and `Either`: - /// - /// ``` - /// use rayon::prelude::*; - /// use rayon::iter::Either; - /// - /// let (first, (left, right)): (Vec<_>, (Vec<_>, Vec<_>)) - /// = (0..8).into_par_iter().map(|x| { - /// if x % 2 == 0 { - /// (x, Either::Left(x * 4)) - /// } else { - /// (-x, Either::Right(x * 3)) - /// } - /// }).collect(); - /// - /// assert_eq!(first, [0, -1, 2, -3, 4, -5, 6, -7]); - /// assert_eq!(left, [0, 8, 16, 24]); - /// assert_eq!(right, [3, 9, 15, 21]); - /// ``` - /// - /// All of that can _also_ be combined with short-circuiting collection of - /// `Result` or `Option` types: - /// - /// ``` - /// use rayon::prelude::*; - /// use rayon::iter::Either; - /// - /// let result: Result<(Vec<_>, (Vec<_>, Vec<_>)), _> - /// = (0..8).into_par_iter().map(|x| { - /// if x > 5 { - /// Err(x) - /// } else if x % 2 == 0 { - /// Ok((x, Either::Left(x * 4))) - /// } else { - /// Ok((-x, Either::Right(x * 3))) - /// } - /// }).collect(); - /// - /// let error = result.unwrap_err(); - /// assert!(error == 6 || error == 7); - /// ``` - fn collect<C>(self) -> C - where - C: FromParallelIterator<Self::Item>, - { - C::from_par_iter(self) - } - - /// Unzips the items of a parallel iterator into a pair of arbitrary - /// `ParallelExtend` containers. - /// - /// You may prefer to use `unzip_into_vecs()`, which allocates more - /// efficiently with precise knowledge of how many elements the - /// iterator contains, and even allows you to reuse existing - /// vectors' backing stores rather than allocating fresh vectors. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let a = [(0, 1), (1, 2), (2, 3), (3, 4)]; - /// - /// let (left, right): (Vec<_>, Vec<_>) = a.par_iter().cloned().unzip(); - /// - /// assert_eq!(left, [0, 1, 2, 3]); - /// assert_eq!(right, [1, 2, 3, 4]); - /// ``` - /// - /// Nested pairs can be unzipped too. - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let (values, (squares, cubes)): (Vec<_>, (Vec<_>, Vec<_>)) = (0..4).into_par_iter() - /// .map(|i| (i, (i * i, i * i * i))) - /// .unzip(); - /// - /// assert_eq!(values, [0, 1, 2, 3]); - /// assert_eq!(squares, [0, 1, 4, 9]); - /// assert_eq!(cubes, [0, 1, 8, 27]); - /// ``` - fn unzip<A, B, FromA, FromB>(self) -> (FromA, FromB) - where - Self: ParallelIterator<Item = (A, B)>, - FromA: Default + Send + ParallelExtend<A>, - FromB: Default + Send + ParallelExtend<B>, - A: Send, - B: Send, - { - unzip::unzip(self) - } - - /// Partitions the items of a parallel iterator into a pair of arbitrary - /// `ParallelExtend` containers. Items for which the `predicate` returns - /// true go into the first container, and the rest go into the second. - /// - /// Note: unlike the standard `Iterator::partition`, this allows distinct - /// collection types for the left and right items. This is more flexible, - /// but may require new type annotations when converting sequential code - /// that used type inference assuming the two were the same. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let (left, right): (Vec<_>, Vec<_>) = (0..8).into_par_iter().partition(|x| x % 2 == 0); - /// - /// assert_eq!(left, [0, 2, 4, 6]); - /// assert_eq!(right, [1, 3, 5, 7]); - /// ``` - fn partition<A, B, P>(self, predicate: P) -> (A, B) - where - A: Default + Send + ParallelExtend<Self::Item>, - B: Default + Send + ParallelExtend<Self::Item>, - P: Fn(&Self::Item) -> bool + Sync + Send, - { - unzip::partition(self, predicate) - } - - /// Partitions and maps the items of a parallel iterator into a pair of - /// arbitrary `ParallelExtend` containers. `Either::Left` items go into - /// the first container, and `Either::Right` items go into the second. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// use rayon::iter::Either; - /// - /// let (left, right): (Vec<_>, Vec<_>) = (0..8).into_par_iter() - /// .partition_map(|x| { - /// if x % 2 == 0 { - /// Either::Left(x * 4) - /// } else { - /// Either::Right(x * 3) - /// } - /// }); - /// - /// assert_eq!(left, [0, 8, 16, 24]); - /// assert_eq!(right, [3, 9, 15, 21]); - /// ``` - /// - /// Nested `Either` enums can be split as well. - /// - /// ``` - /// use rayon::prelude::*; - /// use rayon::iter::Either::*; - /// - /// let ((fizzbuzz, fizz), (buzz, other)): ((Vec<_>, Vec<_>), (Vec<_>, Vec<_>)) = (1..20) - /// .into_par_iter() - /// .partition_map(|x| match (x % 3, x % 5) { - /// (0, 0) => Left(Left(x)), - /// (0, _) => Left(Right(x)), - /// (_, 0) => Right(Left(x)), - /// (_, _) => Right(Right(x)), - /// }); - /// - /// assert_eq!(fizzbuzz, [15]); - /// assert_eq!(fizz, [3, 6, 9, 12, 18]); - /// assert_eq!(buzz, [5, 10]); - /// assert_eq!(other, [1, 2, 4, 7, 8, 11, 13, 14, 16, 17, 19]); - /// ``` - fn partition_map<A, B, P, L, R>(self, predicate: P) -> (A, B) - where - A: Default + Send + ParallelExtend<L>, - B: Default + Send + ParallelExtend<R>, - P: Fn(Self::Item) -> Either<L, R> + Sync + Send, - L: Send, - R: Send, - { - unzip::partition_map(self, predicate) - } - - /// Intersperses clones of an element between items of this iterator. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let x = vec![1, 2, 3]; - /// let r: Vec<_> = x.into_par_iter().intersperse(-1).collect(); - /// - /// assert_eq!(r, vec![1, -1, 2, -1, 3]); - /// ``` - fn intersperse(self, element: Self::Item) -> Intersperse<Self> - where - Self::Item: Clone, - { - Intersperse::new(self, element) - } - - /// Creates an iterator that yields `n` elements from *anywhere* in the original iterator. - /// - /// This is similar to [`IndexedParallelIterator::take`] without being - /// constrained to the "first" `n` of the original iterator order. The - /// taken items will still maintain their relative order where that is - /// visible in `collect`, `reduce`, and similar outputs. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let result: Vec<_> = (0..100) - /// .into_par_iter() - /// .filter(|&x| x % 2 == 0) - /// .take_any(5) - /// .collect(); - /// - /// assert_eq!(result.len(), 5); - /// assert!(result.windows(2).all(|w| w[0] < w[1])); - /// ``` - fn take_any(self, n: usize) -> TakeAny<Self> { - TakeAny::new(self, n) - } - - /// Creates an iterator that skips `n` elements from *anywhere* in the original iterator. - /// - /// This is similar to [`IndexedParallelIterator::skip`] without being - /// constrained to the "first" `n` of the original iterator order. The - /// remaining items will still maintain their relative order where that is - /// visible in `collect`, `reduce`, and similar outputs. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let result: Vec<_> = (0..100) - /// .into_par_iter() - /// .filter(|&x| x % 2 == 0) - /// .skip_any(5) - /// .collect(); - /// - /// assert_eq!(result.len(), 45); - /// assert!(result.windows(2).all(|w| w[0] < w[1])); - /// ``` - fn skip_any(self, n: usize) -> SkipAny<Self> { - SkipAny::new(self, n) - } - - /// Creates an iterator that takes elements from *anywhere* in the original iterator - /// until the given `predicate` returns `false`. - /// - /// The `predicate` may be anything -- e.g. it could be checking a fact about the item, a - /// global condition unrelated to the item itself, or some combination thereof. - /// - /// If parallel calls to the `predicate` race and give different results, then the - /// `true` results will still take those particular items, while respecting the `false` - /// result from elsewhere to skip any further items. - /// - /// This is similar to [`Iterator::take_while`] without being constrained to the original - /// iterator order. The taken items will still maintain their relative order where that is - /// visible in `collect`, `reduce`, and similar outputs. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let result: Vec<_> = (0..100) - /// .into_par_iter() - /// .take_any_while(|x| *x < 50) - /// .collect(); - /// - /// assert!(result.len() <= 50); - /// assert!(result.windows(2).all(|w| w[0] < w[1])); - /// ``` - /// - /// ``` - /// use rayon::prelude::*; - /// use std::sync::atomic::AtomicUsize; - /// use std::sync::atomic::Ordering::Relaxed; - /// - /// // Collect any group of items that sum <= 1000 - /// let quota = AtomicUsize::new(1000); - /// let result: Vec<_> = (0_usize..100) - /// .into_par_iter() - /// .take_any_while(|&x| { - /// quota.fetch_update(Relaxed, Relaxed, |q| q.checked_sub(x)) - /// .is_ok() - /// }) - /// .collect(); - /// - /// let sum = result.iter().sum::<usize>(); - /// assert!(matches!(sum, 902..=1000)); - /// ``` - fn take_any_while<P>(self, predicate: P) -> TakeAnyWhile<Self, P> - where - P: Fn(&Self::Item) -> bool + Sync + Send, - { - TakeAnyWhile::new(self, predicate) - } - - /// Creates an iterator that skips elements from *anywhere* in the original iterator - /// until the given `predicate` returns `false`. - /// - /// The `predicate` may be anything -- e.g. it could be checking a fact about the item, a - /// global condition unrelated to the item itself, or some combination thereof. - /// - /// If parallel calls to the `predicate` race and give different results, then the - /// `true` results will still skip those particular items, while respecting the `false` - /// result from elsewhere to skip any further items. - /// - /// This is similar to [`Iterator::skip_while`] without being constrained to the original - /// iterator order. The remaining items will still maintain their relative order where that is - /// visible in `collect`, `reduce`, and similar outputs. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let result: Vec<_> = (0..100) - /// .into_par_iter() - /// .skip_any_while(|x| *x < 50) - /// .collect(); - /// - /// assert!(result.len() >= 50); - /// assert!(result.windows(2).all(|w| w[0] < w[1])); - /// ``` - fn skip_any_while<P>(self, predicate: P) -> SkipAnyWhile<Self, P> - where - P: Fn(&Self::Item) -> bool + Sync + Send, - { - SkipAnyWhile::new(self, predicate) - } - - /// Internal method used to define the behavior of this parallel - /// iterator. You should not need to call this directly. - /// - /// This method causes the iterator `self` to start producing - /// items and to feed them to the consumer `consumer` one by one. - /// It may split the consumer before doing so to create the - /// opportunity to produce in parallel. - /// - /// See the [README] for more details on the internals of parallel - /// iterators. - /// - /// [README]: https://github.com/rayon-rs/rayon/blob/master/src/iter/plumbing/README.md - fn drive_unindexed<C>(self, consumer: C) -> C::Result - where - C: UnindexedConsumer<Self::Item>; - - /// Internal method used to define the behavior of this parallel - /// iterator. You should not need to call this directly. - /// - /// Returns the number of items produced by this iterator, if known - /// statically. This can be used by consumers to trigger special fast - /// paths. Therefore, if `Some(_)` is returned, this iterator must only - /// use the (indexed) `Consumer` methods when driving a consumer, such - /// as `split_at()`. Calling `UnindexedConsumer::split_off_left()` or - /// other `UnindexedConsumer` methods -- or returning an inaccurate - /// value -- may result in panics. - /// - /// This method is currently used to optimize `collect` for want - /// of true Rust specialization; it may be removed when - /// specialization is stable. - fn opt_len(&self) -> Option<usize> { - None - } -} - -impl<T: ParallelIterator> IntoParallelIterator for T { - type Iter = T; - type Item = T::Item; - - fn into_par_iter(self) -> T { - self - } -} - -/// An iterator that supports "random access" to its data, meaning -/// that you can split it at arbitrary indices and draw data from -/// those points. -/// -/// **Note:** Not implemented for `u64`, `i64`, `u128`, or `i128` ranges -// Waiting for `ExactSizeIterator::is_empty` to be stabilized. See rust-lang/rust#35428 -#[allow(clippy::len_without_is_empty)] -pub trait IndexedParallelIterator: ParallelIterator { - /// Collects the results of the iterator into the specified - /// vector. The vector is always cleared before execution - /// begins. If possible, reusing the vector across calls can lead - /// to better performance since it reuses the same backing buffer. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// // any prior data will be cleared - /// let mut vec = vec![-1, -2, -3]; - /// - /// (0..5).into_par_iter() - /// .collect_into_vec(&mut vec); - /// - /// assert_eq!(vec, [0, 1, 2, 3, 4]); - /// ``` - fn collect_into_vec(self, target: &mut Vec<Self::Item>) { - collect::collect_into_vec(self, target); - } - - /// Unzips the results of the iterator into the specified - /// vectors. The vectors are always cleared before execution - /// begins. If possible, reusing the vectors across calls can lead - /// to better performance since they reuse the same backing buffer. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// // any prior data will be cleared - /// let mut left = vec![42; 10]; - /// let mut right = vec![-1; 10]; - /// - /// (10..15).into_par_iter() - /// .enumerate() - /// .unzip_into_vecs(&mut left, &mut right); - /// - /// assert_eq!(left, [0, 1, 2, 3, 4]); - /// assert_eq!(right, [10, 11, 12, 13, 14]); - /// ``` - fn unzip_into_vecs<A, B>(self, left: &mut Vec<A>, right: &mut Vec<B>) - where - Self: IndexedParallelIterator<Item = (A, B)>, - A: Send, - B: Send, - { - collect::unzip_into_vecs(self, left, right); - } - - /// Iterates over tuples `(A, B)`, where the items `A` are from - /// this iterator and `B` are from the iterator given as argument. - /// Like the `zip` method on ordinary iterators, if the two - /// iterators are of unequal length, you only get the items they - /// have in common. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let result: Vec<_> = (1..4) - /// .into_par_iter() - /// .zip(vec!['a', 'b', 'c']) - /// .collect(); - /// - /// assert_eq!(result, [(1, 'a'), (2, 'b'), (3, 'c')]); - /// ``` - fn zip<Z>(self, zip_op: Z) -> Zip<Self, Z::Iter> - where - Z: IntoParallelIterator, - Z::Iter: IndexedParallelIterator, - { - Zip::new(self, zip_op.into_par_iter()) - } - - /// The same as `Zip`, but requires that both iterators have the same length. - /// - /// # Panics - /// Will panic if `self` and `zip_op` are not the same length. - /// - /// ```should_panic - /// use rayon::prelude::*; - /// - /// let one = [1u8]; - /// let two = [2u8, 2]; - /// let one_iter = one.par_iter(); - /// let two_iter = two.par_iter(); - /// - /// // this will panic - /// let zipped: Vec<(&u8, &u8)> = one_iter.zip_eq(two_iter).collect(); - /// - /// // we should never get here - /// assert_eq!(1, zipped.len()); - /// ``` - #[track_caller] - fn zip_eq<Z>(self, zip_op: Z) -> ZipEq<Self, Z::Iter> - where - Z: IntoParallelIterator, - Z::Iter: IndexedParallelIterator, - { - let zip_op_iter = zip_op.into_par_iter(); - assert_eq!( - self.len(), - zip_op_iter.len(), - "iterators must have the same length" - ); - ZipEq::new(self, zip_op_iter) - } - - /// Interleaves elements of this iterator and the other given - /// iterator. Alternately yields elements from this iterator and - /// the given iterator, until both are exhausted. If one iterator - /// is exhausted before the other, the last elements are provided - /// from the other. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// let (x, y) = (vec![1, 2], vec![3, 4, 5, 6]); - /// let r: Vec<i32> = x.into_par_iter().interleave(y).collect(); - /// assert_eq!(r, vec![1, 3, 2, 4, 5, 6]); - /// ``` - fn interleave<I>(self, other: I) -> Interleave<Self, I::Iter> - where - I: IntoParallelIterator<Item = Self::Item>, - I::Iter: IndexedParallelIterator<Item = Self::Item>, - { - Interleave::new(self, other.into_par_iter()) - } - - /// Interleaves elements of this iterator and the other given - /// iterator, until one is exhausted. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// let (x, y) = (vec![1, 2, 3, 4], vec![5, 6]); - /// let r: Vec<i32> = x.into_par_iter().interleave_shortest(y).collect(); - /// assert_eq!(r, vec![1, 5, 2, 6, 3]); - /// ``` - fn interleave_shortest<I>(self, other: I) -> InterleaveShortest<Self, I::Iter> - where - I: IntoParallelIterator<Item = Self::Item>, - I::Iter: IndexedParallelIterator<Item = Self::Item>, - { - InterleaveShortest::new(self, other.into_par_iter()) - } - - /// Splits an iterator up into fixed-size chunks. - /// - /// Returns an iterator that returns `Vec`s of the given number of elements. - /// If the number of elements in the iterator is not divisible by `chunk_size`, - /// the last chunk may be shorter than `chunk_size`. - /// - /// See also [`par_chunks()`] and [`par_chunks_mut()`] for similar behavior on - /// slices, without having to allocate intermediate `Vec`s for the chunks. - /// - /// [`par_chunks()`]: ../slice/trait.ParallelSlice.html#method.par_chunks - /// [`par_chunks_mut()`]: ../slice/trait.ParallelSliceMut.html#method.par_chunks_mut - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// let a = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; - /// let r: Vec<Vec<i32>> = a.into_par_iter().chunks(3).collect(); - /// assert_eq!(r, vec![vec![1,2,3], vec![4,5,6], vec![7,8,9], vec![10]]); - /// ``` - #[track_caller] - fn chunks(self, chunk_size: usize) -> Chunks<Self> { - assert!(chunk_size != 0, "chunk_size must not be zero"); - Chunks::new(self, chunk_size) - } - - /// Splits an iterator into fixed-size chunks, performing a sequential [`fold()`] on - /// each chunk. - /// - /// Returns an iterator that produces a folded result for each chunk of items - /// produced by this iterator. - /// - /// This works essentially like: - /// - /// ```text - /// iter.chunks(chunk_size) - /// .map(|chunk| - /// chunk.into_iter() - /// .fold(identity, fold_op) - /// ) - /// ``` - /// - /// except there is no per-chunk allocation overhead. - /// - /// [`fold()`]: std::iter::Iterator#method.fold - /// - /// **Panics** if `chunk_size` is 0. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// let nums = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; - /// let chunk_sums = nums.into_par_iter().fold_chunks(2, || 0, |a, n| a + n).collect::<Vec<_>>(); - /// assert_eq!(chunk_sums, vec![3, 7, 11, 15, 19]); - /// ``` - #[track_caller] - fn fold_chunks<T, ID, F>( - self, - chunk_size: usize, - identity: ID, - fold_op: F, - ) -> FoldChunks<Self, ID, F> - where - ID: Fn() -> T + Send + Sync, - F: Fn(T, Self::Item) -> T + Send + Sync, - T: Send, - { - assert!(chunk_size != 0, "chunk_size must not be zero"); - FoldChunks::new(self, chunk_size, identity, fold_op) - } - - /// Splits an iterator into fixed-size chunks, performing a sequential [`fold()`] on - /// each chunk. - /// - /// Returns an iterator that produces a folded result for each chunk of items - /// produced by this iterator. - /// - /// This works essentially like `fold_chunks(chunk_size, || init.clone(), fold_op)`, - /// except it doesn't require the `init` type to be `Sync`, nor any other form of - /// added synchronization. - /// - /// [`fold()`]: std::iter::Iterator#method.fold - /// - /// **Panics** if `chunk_size` is 0. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// let nums = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; - /// let chunk_sums = nums.into_par_iter().fold_chunks_with(2, 0, |a, n| a + n).collect::<Vec<_>>(); - /// assert_eq!(chunk_sums, vec![3, 7, 11, 15, 19]); - /// ``` - #[track_caller] - fn fold_chunks_with<T, F>( - self, - chunk_size: usize, - init: T, - fold_op: F, - ) -> FoldChunksWith<Self, T, F> - where - T: Send + Clone, - F: Fn(T, Self::Item) -> T + Send + Sync, - { - assert!(chunk_size != 0, "chunk_size must not be zero"); - FoldChunksWith::new(self, chunk_size, init, fold_op) - } - - /// Lexicographically compares the elements of this `ParallelIterator` with those of - /// another. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// use std::cmp::Ordering::*; - /// - /// let x = vec![1, 2, 3]; - /// assert_eq!(x.par_iter().cmp(&vec![1, 3, 0]), Less); - /// assert_eq!(x.par_iter().cmp(&vec![1, 2, 3]), Equal); - /// assert_eq!(x.par_iter().cmp(&vec![1, 2]), Greater); - /// ``` - fn cmp<I>(self, other: I) -> Ordering - where - I: IntoParallelIterator<Item = Self::Item>, - I::Iter: IndexedParallelIterator, - Self::Item: Ord, - { - #[inline] - fn ordering<T: Ord>((x, y): (T, T)) -> Ordering { - Ord::cmp(&x, &y) - } - - #[inline] - fn inequal(&ord: &Ordering) -> bool { - ord != Ordering::Equal - } - - let other = other.into_par_iter(); - let ord_len = self.len().cmp(&other.len()); - self.zip(other) - .map(ordering) - .find_first(inequal) - .unwrap_or(ord_len) - } - - /// Lexicographically compares the elements of this `ParallelIterator` with those of - /// another. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// use std::cmp::Ordering::*; - /// use std::f64::NAN; - /// - /// let x = vec![1.0, 2.0, 3.0]; - /// assert_eq!(x.par_iter().partial_cmp(&vec![1.0, 3.0, 0.0]), Some(Less)); - /// assert_eq!(x.par_iter().partial_cmp(&vec![1.0, 2.0, 3.0]), Some(Equal)); - /// assert_eq!(x.par_iter().partial_cmp(&vec![1.0, 2.0]), Some(Greater)); - /// assert_eq!(x.par_iter().partial_cmp(&vec![1.0, NAN]), None); - /// ``` - fn partial_cmp<I>(self, other: I) -> Option<Ordering> - where - I: IntoParallelIterator, - I::Iter: IndexedParallelIterator, - Self::Item: PartialOrd<I::Item>, - { - #[inline] - fn ordering<T: PartialOrd<U>, U>((x, y): (T, U)) -> Option<Ordering> { - PartialOrd::partial_cmp(&x, &y) - } - - #[inline] - fn inequal(&ord: &Option<Ordering>) -> bool { - ord != Some(Ordering::Equal) - } - - let other = other.into_par_iter(); - let ord_len = self.len().cmp(&other.len()); - self.zip(other) - .map(ordering) - .find_first(inequal) - .unwrap_or(Some(ord_len)) - } - - /// Determines if the elements of this `ParallelIterator` - /// are equal to those of another - fn eq<I>(self, other: I) -> bool - where - I: IntoParallelIterator, - I::Iter: IndexedParallelIterator, - Self::Item: PartialEq<I::Item>, - { - #[inline] - fn eq<T: PartialEq<U>, U>((x, y): (T, U)) -> bool { - PartialEq::eq(&x, &y) - } - - let other = other.into_par_iter(); - self.len() == other.len() && self.zip(other).all(eq) - } - - /// Determines if the elements of this `ParallelIterator` - /// are unequal to those of another - fn ne<I>(self, other: I) -> bool - where - I: IntoParallelIterator, - I::Iter: IndexedParallelIterator, - Self::Item: PartialEq<I::Item>, - { - !self.eq(other) - } - - /// Determines if the elements of this `ParallelIterator` - /// are lexicographically less than those of another. - fn lt<I>(self, other: I) -> bool - where - I: IntoParallelIterator, - I::Iter: IndexedParallelIterator, - Self::Item: PartialOrd<I::Item>, - { - self.partial_cmp(other) == Some(Ordering::Less) - } - - /// Determines if the elements of this `ParallelIterator` - /// are less or equal to those of another. - fn le<I>(self, other: I) -> bool - where - I: IntoParallelIterator, - I::Iter: IndexedParallelIterator, - Self::Item: PartialOrd<I::Item>, - { - let ord = self.partial_cmp(other); - ord == Some(Ordering::Equal) || ord == Some(Ordering::Less) - } - - /// Determines if the elements of this `ParallelIterator` - /// are lexicographically greater than those of another. - fn gt<I>(self, other: I) -> bool - where - I: IntoParallelIterator, - I::Iter: IndexedParallelIterator, - Self::Item: PartialOrd<I::Item>, - { - self.partial_cmp(other) == Some(Ordering::Greater) - } - - /// Determines if the elements of this `ParallelIterator` - /// are less or equal to those of another. - fn ge<I>(self, other: I) -> bool - where - I: IntoParallelIterator, - I::Iter: IndexedParallelIterator, - Self::Item: PartialOrd<I::Item>, - { - let ord = self.partial_cmp(other); - ord == Some(Ordering::Equal) || ord == Some(Ordering::Greater) - } - - /// Yields an index along with each item. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let chars = vec!['a', 'b', 'c']; - /// let result: Vec<_> = chars - /// .into_par_iter() - /// .enumerate() - /// .collect(); - /// - /// assert_eq!(result, [(0, 'a'), (1, 'b'), (2, 'c')]); - /// ``` - fn enumerate(self) -> Enumerate<Self> { - Enumerate::new(self) - } - - /// Creates an iterator that steps by the given amount - /// - /// # Examples - /// - /// ``` - ///use rayon::prelude::*; - /// - /// let range = (3..10); - /// let result: Vec<i32> = range - /// .into_par_iter() - /// .step_by(3) - /// .collect(); - /// - /// assert_eq!(result, [3, 6, 9]) - /// ``` - fn step_by(self, step: usize) -> StepBy<Self> { - StepBy::new(self, step) - } - - /// Creates an iterator that skips the first `n` elements. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let result: Vec<_> = (0..100) - /// .into_par_iter() - /// .skip(95) - /// .collect(); - /// - /// assert_eq!(result, [95, 96, 97, 98, 99]); - /// ``` - fn skip(self, n: usize) -> Skip<Self> { - Skip::new(self, n) - } - - /// Creates an iterator that yields the first `n` elements. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let result: Vec<_> = (0..100) - /// .into_par_iter() - /// .take(5) - /// .collect(); - /// - /// assert_eq!(result, [0, 1, 2, 3, 4]); - /// ``` - fn take(self, n: usize) -> Take<Self> { - Take::new(self, n) - } - - /// Searches for **some** item in the parallel iterator that - /// matches the given predicate, and returns its index. Like - /// `ParallelIterator::find_any`, the parallel search will not - /// necessarily find the **first** match, and once a match is - /// found we'll attempt to stop processing any more. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let a = [1, 2, 3, 3]; - /// - /// let i = a.par_iter().position_any(|&x| x == 3).expect("found"); - /// assert!(i == 2 || i == 3); - /// - /// assert_eq!(a.par_iter().position_any(|&x| x == 100), None); - /// ``` - fn position_any<P>(self, predicate: P) -> Option<usize> - where - P: Fn(Self::Item) -> bool + Sync + Send, - { - #[inline] - fn check(&(_, p): &(usize, bool)) -> bool { - p - } - - let (i, _) = self.map(predicate).enumerate().find_any(check)?; - Some(i) - } - - /// Searches for the sequentially **first** item in the parallel iterator - /// that matches the given predicate, and returns its index. - /// - /// Like `ParallelIterator::find_first`, once a match is found, - /// all attempts to the right of the match will be stopped, while - /// attempts to the left must continue in case an earlier match - /// is found. - /// - /// Note that not all parallel iterators have a useful order, much like - /// sequential `HashMap` iteration, so "first" may be nebulous. If you - /// just want the first match that discovered anywhere in the iterator, - /// `position_any` is a better choice. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let a = [1, 2, 3, 3]; - /// - /// assert_eq!(a.par_iter().position_first(|&x| x == 3), Some(2)); - /// - /// assert_eq!(a.par_iter().position_first(|&x| x == 100), None); - /// ``` - fn position_first<P>(self, predicate: P) -> Option<usize> - where - P: Fn(Self::Item) -> bool + Sync + Send, - { - #[inline] - fn check(&(_, p): &(usize, bool)) -> bool { - p - } - - let (i, _) = self.map(predicate).enumerate().find_first(check)?; - Some(i) - } - - /// Searches for the sequentially **last** item in the parallel iterator - /// that matches the given predicate, and returns its index. - /// - /// Like `ParallelIterator::find_last`, once a match is found, - /// all attempts to the left of the match will be stopped, while - /// attempts to the right must continue in case a later match - /// is found. - /// - /// Note that not all parallel iterators have a useful order, much like - /// sequential `HashMap` iteration, so "last" may be nebulous. When the - /// order doesn't actually matter to you, `position_any` is a better - /// choice. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let a = [1, 2, 3, 3]; - /// - /// assert_eq!(a.par_iter().position_last(|&x| x == 3), Some(3)); - /// - /// assert_eq!(a.par_iter().position_last(|&x| x == 100), None); - /// ``` - fn position_last<P>(self, predicate: P) -> Option<usize> - where - P: Fn(Self::Item) -> bool + Sync + Send, - { - #[inline] - fn check(&(_, p): &(usize, bool)) -> bool { - p - } - - let (i, _) = self.map(predicate).enumerate().find_last(check)?; - Some(i) - } - - #[doc(hidden)] - #[deprecated( - note = "parallel `position` does not search in order -- use `position_any`, \\ - `position_first`, or `position_last`" - )] - fn position<P>(self, predicate: P) -> Option<usize> - where - P: Fn(Self::Item) -> bool + Sync + Send, - { - self.position_any(predicate) - } - - /// Searches for items in the parallel iterator that match the given - /// predicate, and returns their indices. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let primes = vec![2, 3, 5, 7, 11, 13, 17, 19, 23, 29]; - /// - /// // Find the positions of primes congruent to 1 modulo 6 - /// let p1mod6: Vec<_> = primes.par_iter().positions(|&p| p % 6 == 1).collect(); - /// assert_eq!(p1mod6, [3, 5, 7]); // primes 7, 13, and 19 - /// - /// // Find the positions of primes congruent to 5 modulo 6 - /// let p5mod6: Vec<_> = primes.par_iter().positions(|&p| p % 6 == 5).collect(); - /// assert_eq!(p5mod6, [2, 4, 6, 8, 9]); // primes 5, 11, 17, 23, and 29 - /// ``` - fn positions<P>(self, predicate: P) -> Positions<Self, P> - where - P: Fn(Self::Item) -> bool + Sync + Send, - { - Positions::new(self, predicate) - } - - /// Produces a new iterator with the elements of this iterator in - /// reverse order. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let result: Vec<_> = (0..5) - /// .into_par_iter() - /// .rev() - /// .collect(); - /// - /// assert_eq!(result, [4, 3, 2, 1, 0]); - /// ``` - fn rev(self) -> Rev<Self> { - Rev::new(self) - } - - /// Sets the minimum length of iterators desired to process in each - /// rayon job. Rayon will not split any smaller than this length, but - /// of course an iterator could already be smaller to begin with. - /// - /// Producers like `zip` and `interleave` will use greater of the two - /// minimums. - /// Chained iterators and iterators inside `flat_map` may each use - /// their own minimum length. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let min = (0..1_000_000) - /// .into_par_iter() - /// .with_min_len(1234) - /// .fold(|| 0, |acc, _| acc + 1) // count how many are in this segment - /// .min().unwrap(); - /// - /// assert!(min >= 1234); - /// ``` - fn with_min_len(self, min: usize) -> MinLen<Self> { - MinLen::new(self, min) - } - - /// Sets the maximum length of iterators desired to process in each - /// rayon job. Rayon will try to split at least below this length, - /// unless that would put it below the length from `with_min_len()`. - /// For example, given min=10 and max=15, a length of 16 will not be - /// split any further. - /// - /// Producers like `zip` and `interleave` will use lesser of the two - /// maximums. - /// Chained iterators and iterators inside `flat_map` may each use - /// their own maximum length. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let max = (0..1_000_000) - /// .into_par_iter() - /// .with_max_len(1234) - /// .fold(|| 0, |acc, _| acc + 1) // count how many are in this segment - /// .max().unwrap(); - /// - /// assert!(max <= 1234); - /// ``` - fn with_max_len(self, max: usize) -> MaxLen<Self> { - MaxLen::new(self, max) - } - - /// Produces an exact count of how many items this iterator will - /// produce, presuming no panic occurs. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let par_iter = (0..100).into_par_iter().zip(vec![0; 10]); - /// assert_eq!(par_iter.len(), 10); - /// - /// let vec: Vec<_> = par_iter.collect(); - /// assert_eq!(vec.len(), 10); - /// ``` - fn len(&self) -> usize; - - /// Internal method used to define the behavior of this parallel - /// iterator. You should not need to call this directly. - /// - /// This method causes the iterator `self` to start producing - /// items and to feed them to the consumer `consumer` one by one. - /// It may split the consumer before doing so to create the - /// opportunity to produce in parallel. If a split does happen, it - /// will inform the consumer of the index where the split should - /// occur (unlike `ParallelIterator::drive_unindexed()`). - /// - /// See the [README] for more details on the internals of parallel - /// iterators. - /// - /// [README]: https://github.com/rayon-rs/rayon/blob/master/src/iter/plumbing/README.md - fn drive<C: Consumer<Self::Item>>(self, consumer: C) -> C::Result; - - /// Internal method used to define the behavior of this parallel - /// iterator. You should not need to call this directly. - /// - /// This method converts the iterator into a producer P and then - /// invokes `callback.callback()` with P. Note that the type of - /// this producer is not defined as part of the API, since - /// `callback` must be defined generically for all producers. This - /// allows the producer type to contain references; it also means - /// that parallel iterators can adjust that type without causing a - /// breaking change. - /// - /// See the [README] for more details on the internals of parallel - /// iterators. - /// - /// [README]: https://github.com/rayon-rs/rayon/blob/master/src/iter/plumbing/README.md - fn with_producer<CB: ProducerCallback<Self::Item>>(self, callback: CB) -> CB::Output; -} - -/// `FromParallelIterator` implements the creation of a collection -/// from a [`ParallelIterator`]. By implementing -/// `FromParallelIterator` for a given type, you define how it will be -/// created from an iterator. -/// -/// `FromParallelIterator` is used through [`ParallelIterator`]'s [`collect()`] method. -/// -/// [`ParallelIterator`]: trait.ParallelIterator.html -/// [`collect()`]: trait.ParallelIterator.html#method.collect -/// -/// # Examples -/// -/// Implementing `FromParallelIterator` for your type: -/// -/// ``` -/// use rayon::prelude::*; -/// use std::mem; -/// -/// struct BlackHole { -/// mass: usize, -/// } -/// -/// impl<T: Send> FromParallelIterator<T> for BlackHole { -/// fn from_par_iter<I>(par_iter: I) -> Self -/// where I: IntoParallelIterator<Item = T> -/// { -/// let par_iter = par_iter.into_par_iter(); -/// BlackHole { -/// mass: par_iter.count() * mem::size_of::<T>(), -/// } -/// } -/// } -/// -/// let bh: BlackHole = (0i32..1000).into_par_iter().collect(); -/// assert_eq!(bh.mass, 4000); -/// ``` -pub trait FromParallelIterator<T> -where - T: Send, -{ - /// Creates an instance of the collection from the parallel iterator `par_iter`. - /// - /// If your collection is not naturally parallel, the easiest (and - /// fastest) way to do this is often to collect `par_iter` into a - /// [`LinkedList`] or other intermediate data structure and then - /// sequentially extend your collection. However, a more 'native' - /// technique is to use the [`par_iter.fold`] or - /// [`par_iter.fold_with`] methods to create the collection. - /// Alternatively, if your collection is 'natively' parallel, you - /// can use `par_iter.for_each` to process each element in turn. - /// - /// [`LinkedList`]: https://doc.rust-lang.org/std/collections/struct.LinkedList.html - /// [`par_iter.fold`]: trait.ParallelIterator.html#method.fold - /// [`par_iter.fold_with`]: trait.ParallelIterator.html#method.fold_with - /// [`par_iter.for_each`]: trait.ParallelIterator.html#method.for_each - fn from_par_iter<I>(par_iter: I) -> Self - where - I: IntoParallelIterator<Item = T>; -} - -/// `ParallelExtend` extends an existing collection with items from a [`ParallelIterator`]. -/// -/// [`ParallelIterator`]: trait.ParallelIterator.html -/// -/// # Examples -/// -/// Implementing `ParallelExtend` for your type: -/// -/// ``` -/// use rayon::prelude::*; -/// use std::mem; -/// -/// struct BlackHole { -/// mass: usize, -/// } -/// -/// impl<T: Send> ParallelExtend<T> for BlackHole { -/// fn par_extend<I>(&mut self, par_iter: I) -/// where I: IntoParallelIterator<Item = T> -/// { -/// let par_iter = par_iter.into_par_iter(); -/// self.mass += par_iter.count() * mem::size_of::<T>(); -/// } -/// } -/// -/// let mut bh = BlackHole { mass: 0 }; -/// bh.par_extend(0i32..1000); -/// assert_eq!(bh.mass, 4000); -/// bh.par_extend(0i64..10); -/// assert_eq!(bh.mass, 4080); -/// ``` -pub trait ParallelExtend<T> -where - T: Send, -{ - /// Extends an instance of the collection with the elements drawn - /// from the parallel iterator `par_iter`. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let mut vec = vec![]; - /// vec.par_extend(0..5); - /// vec.par_extend((0..5).into_par_iter().map(|i| i * i)); - /// assert_eq!(vec, [0, 1, 2, 3, 4, 0, 1, 4, 9, 16]); - /// ``` - fn par_extend<I>(&mut self, par_iter: I) - where - I: IntoParallelIterator<Item = T>; -} - -/// `ParallelDrainFull` creates a parallel iterator that moves all items -/// from a collection while retaining the original capacity. -/// -/// Types which are indexable typically implement [`ParallelDrainRange`] -/// instead, where you can drain fully with `par_drain(..)`. -/// -/// [`ParallelDrainRange`]: trait.ParallelDrainRange.html -pub trait ParallelDrainFull { - /// The draining parallel iterator type that will be created. - type Iter: ParallelIterator<Item = Self::Item>; - - /// The type of item that the parallel iterator will produce. - /// This is usually the same as `IntoParallelIterator::Item`. - type Item: Send; - - /// Returns a draining parallel iterator over an entire collection. - /// - /// When the iterator is dropped, all items are removed, even if the - /// iterator was not fully consumed. If the iterator is leaked, for example - /// using `std::mem::forget`, it is unspecified how many items are removed. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// use std::collections::{BinaryHeap, HashSet}; - /// - /// let squares: HashSet<i32> = (0..10).map(|x| x * x).collect(); - /// - /// let mut heap: BinaryHeap<_> = squares.iter().copied().collect(); - /// assert_eq!( - /// // heaps are drained in arbitrary order - /// heap.par_drain() - /// .inspect(|x| assert!(squares.contains(x))) - /// .count(), - /// squares.len(), - /// ); - /// assert!(heap.is_empty()); - /// assert!(heap.capacity() >= squares.len()); - /// ``` - fn par_drain(self) -> Self::Iter; -} - -/// `ParallelDrainRange` creates a parallel iterator that moves a range of items -/// from a collection while retaining the original capacity. -/// -/// Types which are not indexable may implement [`ParallelDrainFull`] instead. -/// -/// [`ParallelDrainFull`]: trait.ParallelDrainFull.html -pub trait ParallelDrainRange<Idx = usize> { - /// The draining parallel iterator type that will be created. - type Iter: ParallelIterator<Item = Self::Item>; - - /// The type of item that the parallel iterator will produce. - /// This is usually the same as `IntoParallelIterator::Item`. - type Item: Send; - - /// Returns a draining parallel iterator over a range of the collection. - /// - /// When the iterator is dropped, all items in the range are removed, even - /// if the iterator was not fully consumed. If the iterator is leaked, for - /// example using `std::mem::forget`, it is unspecified how many items are - /// removed. - /// - /// # Examples - /// - /// ``` - /// use rayon::prelude::*; - /// - /// let squares: Vec<i32> = (0..10).map(|x| x * x).collect(); - /// - /// println!("RangeFull"); - /// let mut vec = squares.clone(); - /// assert!(vec.par_drain(..) - /// .eq(squares.par_iter().copied())); - /// assert!(vec.is_empty()); - /// assert!(vec.capacity() >= squares.len()); - /// - /// println!("RangeFrom"); - /// let mut vec = squares.clone(); - /// assert!(vec.par_drain(5..) - /// .eq(squares[5..].par_iter().copied())); - /// assert_eq!(&vec[..], &squares[..5]); - /// assert!(vec.capacity() >= squares.len()); - /// - /// println!("RangeTo"); - /// let mut vec = squares.clone(); - /// assert!(vec.par_drain(..5) - /// .eq(squares[..5].par_iter().copied())); - /// assert_eq!(&vec[..], &squares[5..]); - /// assert!(vec.capacity() >= squares.len()); - /// - /// println!("RangeToInclusive"); - /// let mut vec = squares.clone(); - /// assert!(vec.par_drain(..=5) - /// .eq(squares[..=5].par_iter().copied())); - /// assert_eq!(&vec[..], &squares[6..]); - /// assert!(vec.capacity() >= squares.len()); - /// - /// println!("Range"); - /// let mut vec = squares.clone(); - /// assert!(vec.par_drain(3..7) - /// .eq(squares[3..7].par_iter().copied())); - /// assert_eq!(&vec[..3], &squares[..3]); - /// assert_eq!(&vec[3..], &squares[7..]); - /// assert!(vec.capacity() >= squares.len()); - /// - /// println!("RangeInclusive"); - /// let mut vec = squares.clone(); - /// assert!(vec.par_drain(3..=7) - /// .eq(squares[3..=7].par_iter().copied())); - /// assert_eq!(&vec[..3], &squares[..3]); - /// assert_eq!(&vec[3..], &squares[8..]); - /// assert!(vec.capacity() >= squares.len()); - /// ``` - fn par_drain<R: RangeBounds<Idx>>(self, range: R) -> Self::Iter; -} - -/// We hide the `Try` trait in a private module, as it's only meant to be a -/// stable clone of the standard library's `Try` trait, as yet unstable. -mod private { - use std::convert::Infallible; - use std::ops::ControlFlow::{self, Break, Continue}; - use std::task::Poll; - - /// Clone of `std::ops::Try`. - /// - /// Implementing this trait is not permitted outside of `rayon`. - pub trait Try { - private_decl! {} - - type Output; - type Residual; - - fn from_output(output: Self::Output) -> Self; - - fn from_residual(residual: Self::Residual) -> Self; - - fn branch(self) -> ControlFlow<Self::Residual, Self::Output>; - } - - impl<B, C> Try for ControlFlow<B, C> { - private_impl! {} - - type Output = C; - type Residual = ControlFlow<B, Infallible>; - - fn from_output(output: Self::Output) -> Self { - Continue(output) - } - - fn from_residual(residual: Self::Residual) -> Self { - match residual { - Break(b) => Break(b), - Continue(_) => unreachable!(), - } - } - - fn branch(self) -> ControlFlow<Self::Residual, Self::Output> { - match self { - Continue(c) => Continue(c), - Break(b) => Break(Break(b)), - } - } - } - - impl<T> Try for Option<T> { - private_impl! {} - - type Output = T; - type Residual = Option<Infallible>; - - fn from_output(output: Self::Output) -> Self { - Some(output) - } - - fn from_residual(residual: Self::Residual) -> Self { - match residual { - None => None, - Some(_) => unreachable!(), - } - } - - fn branch(self) -> ControlFlow<Self::Residual, Self::Output> { - match self { - Some(c) => Continue(c), - None => Break(None), - } - } - } - - impl<T, E> Try for Result<T, E> { - private_impl! {} - - type Output = T; - type Residual = Result<Infallible, E>; - - fn from_output(output: Self::Output) -> Self { - Ok(output) - } - - fn from_residual(residual: Self::Residual) -> Self { - match residual { - Err(e) => Err(e), - Ok(_) => unreachable!(), - } - } - - fn branch(self) -> ControlFlow<Self::Residual, Self::Output> { - match self { - Ok(c) => Continue(c), - Err(e) => Break(Err(e)), - } - } - } - - impl<T, E> Try for Poll<Result<T, E>> { - private_impl! {} - - type Output = Poll<T>; - type Residual = Result<Infallible, E>; - - fn from_output(output: Self::Output) -> Self { - output.map(Ok) - } - - fn from_residual(residual: Self::Residual) -> Self { - match residual { - Err(e) => Poll::Ready(Err(e)), - Ok(_) => unreachable!(), - } - } - - fn branch(self) -> ControlFlow<Self::Residual, Self::Output> { - match self { - Poll::Pending => Continue(Poll::Pending), - Poll::Ready(Ok(c)) => Continue(Poll::Ready(c)), - Poll::Ready(Err(e)) => Break(Err(e)), - } - } - } - - impl<T, E> Try for Poll<Option<Result<T, E>>> { - private_impl! {} - - type Output = Poll<Option<T>>; - type Residual = Result<Infallible, E>; - - fn from_output(output: Self::Output) -> Self { - match output { - Poll::Ready(o) => Poll::Ready(o.map(Ok)), - Poll::Pending => Poll::Pending, - } - } - - fn from_residual(residual: Self::Residual) -> Self { - match residual { - Err(e) => Poll::Ready(Some(Err(e))), - Ok(_) => unreachable!(), - } - } - - fn branch(self) -> ControlFlow<Self::Residual, Self::Output> { - match self { - Poll::Pending => Continue(Poll::Pending), - Poll::Ready(None) => Continue(Poll::Ready(None)), - Poll::Ready(Some(Ok(c))) => Continue(Poll::Ready(Some(c))), - Poll::Ready(Some(Err(e))) => Break(Err(e)), - } - } - } -} |