aboutsummaryrefslogtreecommitdiff
path: root/vendor/ryu/src
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/ryu/src')
-rw-r--r--vendor/ryu/src/buffer/mod.rs171
-rw-r--r--vendor/ryu/src/common.rs95
-rw-r--r--vendor/ryu/src/d2s.rs300
-rw-r--r--vendor/ryu/src/d2s_full_table.rs696
-rw-r--r--vendor/ryu/src/d2s_intrinsics.rs89
-rw-r--r--vendor/ryu/src/d2s_small_table.rs142
-rw-r--r--vendor/ryu/src/digit_table.rs28
-rw-r--r--vendor/ryu/src/f2s.rs176
-rw-r--r--vendor/ryu/src/f2s_intrinsics.rs113
-rw-r--r--vendor/ryu/src/lib.rs124
-rw-r--r--vendor/ryu/src/parse.rs19
-rw-r--r--vendor/ryu/src/pretty/exponent.rs48
-rw-r--r--vendor/ryu/src/pretty/mantissa.rs82
-rw-r--r--vendor/ryu/src/pretty/mod.rs224
-rw-r--r--vendor/ryu/src/s2d.rs217
-rw-r--r--vendor/ryu/src/s2f.rs227
16 files changed, 0 insertions, 2751 deletions
diff --git a/vendor/ryu/src/buffer/mod.rs b/vendor/ryu/src/buffer/mod.rs
deleted file mode 100644
index 905ee2f..0000000
--- a/vendor/ryu/src/buffer/mod.rs
+++ /dev/null
@@ -1,171 +0,0 @@
-use crate::raw;
-use core::mem::MaybeUninit;
-use core::{slice, str};
-#[cfg(feature = "no-panic")]
-use no_panic::no_panic;
-
-const NAN: &str = "NaN";
-const INFINITY: &str = "inf";
-const NEG_INFINITY: &str = "-inf";
-
-/// Safe API for formatting floating point numbers to text.
-///
-/// ## Example
-///
-/// ```
-/// let mut buffer = ryu::Buffer::new();
-/// let printed = buffer.format_finite(1.234);
-/// assert_eq!(printed, "1.234");
-/// ```
-pub struct Buffer {
- bytes: [MaybeUninit<u8>; 24],
-}
-
-impl Buffer {
- /// This is a cheap operation; you don't need to worry about reusing buffers
- /// for efficiency.
- #[inline]
- #[cfg_attr(feature = "no-panic", no_panic)]
- pub fn new() -> Self {
- let bytes = [MaybeUninit::<u8>::uninit(); 24];
- Buffer { bytes }
- }
-
- /// Print a floating point number into this buffer and return a reference to
- /// its string representation within the buffer.
- ///
- /// # Special cases
- ///
- /// This function formats NaN as the string "NaN", positive infinity as
- /// "inf", and negative infinity as "-inf" to match std::fmt.
- ///
- /// If your input is known to be finite, you may get better performance by
- /// calling the `format_finite` method instead of `format` to avoid the
- /// checks for special cases.
- #[cfg_attr(feature = "no-panic", inline)]
- #[cfg_attr(feature = "no-panic", no_panic)]
- pub fn format<F: Float>(&mut self, f: F) -> &str {
- if f.is_nonfinite() {
- f.format_nonfinite()
- } else {
- self.format_finite(f)
- }
- }
-
- /// Print a floating point number into this buffer and return a reference to
- /// its string representation within the buffer.
- ///
- /// # Special cases
- ///
- /// This function **does not** check for NaN or infinity. If the input
- /// number is not a finite float, the printed representation will be some
- /// correctly formatted but unspecified numerical value.
- ///
- /// Please check [`is_finite`] yourself before calling this function, or
- /// check [`is_nan`] and [`is_infinite`] and handle those cases yourself.
- ///
- /// [`is_finite`]: https://doc.rust-lang.org/std/primitive.f64.html#method.is_finite
- /// [`is_nan`]: https://doc.rust-lang.org/std/primitive.f64.html#method.is_nan
- /// [`is_infinite`]: https://doc.rust-lang.org/std/primitive.f64.html#method.is_infinite
- #[inline]
- #[cfg_attr(feature = "no-panic", no_panic)]
- pub fn format_finite<F: Float>(&mut self, f: F) -> &str {
- unsafe {
- let n = f.write_to_ryu_buffer(self.bytes.as_mut_ptr() as *mut u8);
- debug_assert!(n <= self.bytes.len());
- let slice = slice::from_raw_parts(self.bytes.as_ptr() as *const u8, n);
- str::from_utf8_unchecked(slice)
- }
- }
-}
-
-impl Copy for Buffer {}
-
-impl Clone for Buffer {
- #[inline]
- #[allow(clippy::non_canonical_clone_impl)] // false positive https://github.com/rust-lang/rust-clippy/issues/11072
- fn clone(&self) -> Self {
- Buffer::new()
- }
-}
-
-impl Default for Buffer {
- #[inline]
- #[cfg_attr(feature = "no-panic", no_panic)]
- fn default() -> Self {
- Buffer::new()
- }
-}
-
-/// A floating point number, f32 or f64, that can be written into a
-/// [`ryu::Buffer`][Buffer].
-///
-/// This trait is sealed and cannot be implemented for types outside of the
-/// `ryu` crate.
-pub trait Float: Sealed {}
-impl Float for f32 {}
-impl Float for f64 {}
-
-pub trait Sealed: Copy {
- fn is_nonfinite(self) -> bool;
- fn format_nonfinite(self) -> &'static str;
- unsafe fn write_to_ryu_buffer(self, result: *mut u8) -> usize;
-}
-
-impl Sealed for f32 {
- #[inline]
- fn is_nonfinite(self) -> bool {
- const EXP_MASK: u32 = 0x7f800000;
- let bits = self.to_bits();
- bits & EXP_MASK == EXP_MASK
- }
-
- #[cold]
- #[cfg_attr(feature = "no-panic", inline)]
- fn format_nonfinite(self) -> &'static str {
- const MANTISSA_MASK: u32 = 0x007fffff;
- const SIGN_MASK: u32 = 0x80000000;
- let bits = self.to_bits();
- if bits & MANTISSA_MASK != 0 {
- NAN
- } else if bits & SIGN_MASK != 0 {
- NEG_INFINITY
- } else {
- INFINITY
- }
- }
-
- #[inline]
- unsafe fn write_to_ryu_buffer(self, result: *mut u8) -> usize {
- raw::format32(self, result)
- }
-}
-
-impl Sealed for f64 {
- #[inline]
- fn is_nonfinite(self) -> bool {
- const EXP_MASK: u64 = 0x7ff0000000000000;
- let bits = self.to_bits();
- bits & EXP_MASK == EXP_MASK
- }
-
- #[cold]
- #[cfg_attr(feature = "no-panic", inline)]
- fn format_nonfinite(self) -> &'static str {
- const MANTISSA_MASK: u64 = 0x000fffffffffffff;
- const SIGN_MASK: u64 = 0x8000000000000000;
- let bits = self.to_bits();
- if bits & MANTISSA_MASK != 0 {
- NAN
- } else if bits & SIGN_MASK != 0 {
- NEG_INFINITY
- } else {
- INFINITY
- }
- }
-
- #[inline]
- unsafe fn write_to_ryu_buffer(self, result: *mut u8) -> usize {
- raw::format64(self, result)
- }
-}
diff --git a/vendor/ryu/src/common.rs b/vendor/ryu/src/common.rs
deleted file mode 100644
index 9613036..0000000
--- a/vendor/ryu/src/common.rs
+++ /dev/null
@@ -1,95 +0,0 @@
-// Translated from C to Rust. The original C code can be found at
-// https://github.com/ulfjack/ryu and carries the following license:
-//
-// Copyright 2018 Ulf Adams
-//
-// The contents of this file may be used under the terms of the Apache License,
-// Version 2.0.
-//
-// (See accompanying file LICENSE-Apache or copy at
-// http://www.apache.org/licenses/LICENSE-2.0)
-//
-// Alternatively, the contents of this file may be used under the terms of
-// the Boost Software License, Version 1.0.
-// (See accompanying file LICENSE-Boost or copy at
-// https://www.boost.org/LICENSE_1_0.txt)
-//
-// Unless required by applicable law or agreed to in writing, this software
-// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied.
-
-// Returns the number of decimal digits in v, which must not contain more than 9
-// digits.
-#[cfg_attr(feature = "no-panic", inline)]
-pub fn decimal_length9(v: u32) -> u32 {
- // Function precondition: v is not a 10-digit number.
- // (f2s: 9 digits are sufficient for round-tripping.)
- debug_assert!(v < 1000000000);
-
- if v >= 100000000 {
- 9
- } else if v >= 10000000 {
- 8
- } else if v >= 1000000 {
- 7
- } else if v >= 100000 {
- 6
- } else if v >= 10000 {
- 5
- } else if v >= 1000 {
- 4
- } else if v >= 100 {
- 3
- } else if v >= 10 {
- 2
- } else {
- 1
- }
-}
-
-// Returns e == 0 ? 1 : [log_2(5^e)]; requires 0 <= e <= 3528.
-#[cfg_attr(feature = "no-panic", inline)]
-#[allow(dead_code)]
-pub fn log2_pow5(e: i32) -> i32 /* or u32 -> u32 */ {
- // This approximation works up to the point that the multiplication
- // overflows at e = 3529. If the multiplication were done in 64 bits, it
- // would fail at 5^4004 which is just greater than 2^9297.
- debug_assert!(e >= 0);
- debug_assert!(e <= 3528);
- ((e as u32 * 1217359) >> 19) as i32
-}
-
-// Returns e == 0 ? 1 : ceil(log_2(5^e)); requires 0 <= e <= 3528.
-#[cfg_attr(feature = "no-panic", inline)]
-pub fn pow5bits(e: i32) -> i32 /* or u32 -> u32 */ {
- // This approximation works up to the point that the multiplication
- // overflows at e = 3529. If the multiplication were done in 64 bits, it
- // would fail at 5^4004 which is just greater than 2^9297.
- debug_assert!(e >= 0);
- debug_assert!(e <= 3528);
- (((e as u32 * 1217359) >> 19) + 1) as i32
-}
-
-#[cfg_attr(feature = "no-panic", inline)]
-#[allow(dead_code)]
-pub fn ceil_log2_pow5(e: i32) -> i32 /* or u32 -> u32 */ {
- log2_pow5(e) + 1
-}
-
-// Returns floor(log_10(2^e)); requires 0 <= e <= 1650.
-#[cfg_attr(feature = "no-panic", inline)]
-pub fn log10_pow2(e: i32) -> u32 /* or u32 -> u32 */ {
- // The first value this approximation fails for is 2^1651 which is just greater than 10^297.
- debug_assert!(e >= 0);
- debug_assert!(e <= 1650);
- (e as u32 * 78913) >> 18
-}
-
-// Returns floor(log_10(5^e)); requires 0 <= e <= 2620.
-#[cfg_attr(feature = "no-panic", inline)]
-pub fn log10_pow5(e: i32) -> u32 /* or u32 -> u32 */ {
- // The first value this approximation fails for is 5^2621 which is just greater than 10^1832.
- debug_assert!(e >= 0);
- debug_assert!(e <= 2620);
- (e as u32 * 732923) >> 20
-}
diff --git a/vendor/ryu/src/d2s.rs b/vendor/ryu/src/d2s.rs
deleted file mode 100644
index 392577a..0000000
--- a/vendor/ryu/src/d2s.rs
+++ /dev/null
@@ -1,300 +0,0 @@
-// Translated from C to Rust. The original C code can be found at
-// https://github.com/ulfjack/ryu and carries the following license:
-//
-// Copyright 2018 Ulf Adams
-//
-// The contents of this file may be used under the terms of the Apache License,
-// Version 2.0.
-//
-// (See accompanying file LICENSE-Apache or copy at
-// http://www.apache.org/licenses/LICENSE-2.0)
-//
-// Alternatively, the contents of this file may be used under the terms of
-// the Boost Software License, Version 1.0.
-// (See accompanying file LICENSE-Boost or copy at
-// https://www.boost.org/LICENSE_1_0.txt)
-//
-// Unless required by applicable law or agreed to in writing, this software
-// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied.
-
-use crate::common::*;
-#[cfg(not(feature = "small"))]
-pub use crate::d2s_full_table::*;
-use crate::d2s_intrinsics::*;
-#[cfg(feature = "small")]
-pub use crate::d2s_small_table::*;
-use core::mem::MaybeUninit;
-
-pub const DOUBLE_MANTISSA_BITS: u32 = 52;
-pub const DOUBLE_EXPONENT_BITS: u32 = 11;
-pub const DOUBLE_BIAS: i32 = 1023;
-pub const DOUBLE_POW5_INV_BITCOUNT: i32 = 125;
-pub const DOUBLE_POW5_BITCOUNT: i32 = 125;
-
-#[cfg_attr(feature = "no-panic", inline)]
-pub fn decimal_length17(v: u64) -> u32 {
- // This is slightly faster than a loop.
- // The average output length is 16.38 digits, so we check high-to-low.
- // Function precondition: v is not an 18, 19, or 20-digit number.
- // (17 digits are sufficient for round-tripping.)
- debug_assert!(v < 100000000000000000);
-
- if v >= 10000000000000000 {
- 17
- } else if v >= 1000000000000000 {
- 16
- } else if v >= 100000000000000 {
- 15
- } else if v >= 10000000000000 {
- 14
- } else if v >= 1000000000000 {
- 13
- } else if v >= 100000000000 {
- 12
- } else if v >= 10000000000 {
- 11
- } else if v >= 1000000000 {
- 10
- } else if v >= 100000000 {
- 9
- } else if v >= 10000000 {
- 8
- } else if v >= 1000000 {
- 7
- } else if v >= 100000 {
- 6
- } else if v >= 10000 {
- 5
- } else if v >= 1000 {
- 4
- } else if v >= 100 {
- 3
- } else if v >= 10 {
- 2
- } else {
- 1
- }
-}
-
-// A floating decimal representing m * 10^e.
-pub struct FloatingDecimal64 {
- pub mantissa: u64,
- // Decimal exponent's range is -324 to 308
- // inclusive, and can fit in i16 if needed.
- pub exponent: i32,
-}
-
-#[cfg_attr(feature = "no-panic", inline)]
-pub fn d2d(ieee_mantissa: u64, ieee_exponent: u32) -> FloatingDecimal64 {
- let (e2, m2) = if ieee_exponent == 0 {
- (
- // We subtract 2 so that the bounds computation has 2 additional bits.
- 1 - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS as i32 - 2,
- ieee_mantissa,
- )
- } else {
- (
- ieee_exponent as i32 - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS as i32 - 2,
- (1u64 << DOUBLE_MANTISSA_BITS) | ieee_mantissa,
- )
- };
- let even = (m2 & 1) == 0;
- let accept_bounds = even;
-
- // Step 2: Determine the interval of valid decimal representations.
- let mv = 4 * m2;
- // Implicit bool -> int conversion. True is 1, false is 0.
- let mm_shift = (ieee_mantissa != 0 || ieee_exponent <= 1) as u32;
- // We would compute mp and mm like this:
- // uint64_t mp = 4 * m2 + 2;
- // uint64_t mm = mv - 1 - mm_shift;
-
- // Step 3: Convert to a decimal power base using 128-bit arithmetic.
- let mut vr: u64;
- let mut vp: u64;
- let mut vm: u64;
- let mut vp_uninit: MaybeUninit<u64> = MaybeUninit::uninit();
- let mut vm_uninit: MaybeUninit<u64> = MaybeUninit::uninit();
- let e10: i32;
- let mut vm_is_trailing_zeros = false;
- let mut vr_is_trailing_zeros = false;
- if e2 >= 0 {
- // I tried special-casing q == 0, but there was no effect on performance.
- // This expression is slightly faster than max(0, log10_pow2(e2) - 1).
- let q = log10_pow2(e2) - (e2 > 3) as u32;
- e10 = q as i32;
- let k = DOUBLE_POW5_INV_BITCOUNT + pow5bits(q as i32) - 1;
- let i = -e2 + q as i32 + k;
- vr = unsafe {
- mul_shift_all_64(
- m2,
- #[cfg(feature = "small")]
- &compute_inv_pow5(q),
- #[cfg(not(feature = "small"))]
- {
- debug_assert!(q < DOUBLE_POW5_INV_SPLIT.len() as u32);
- DOUBLE_POW5_INV_SPLIT.get_unchecked(q as usize)
- },
- i as u32,
- vp_uninit.as_mut_ptr(),
- vm_uninit.as_mut_ptr(),
- mm_shift,
- )
- };
- vp = unsafe { vp_uninit.assume_init() };
- vm = unsafe { vm_uninit.assume_init() };
- if q <= 21 {
- // This should use q <= 22, but I think 21 is also safe. Smaller values
- // may still be safe, but it's more difficult to reason about them.
- // Only one of mp, mv, and mm can be a multiple of 5, if any.
- let mv_mod5 = (mv as u32).wrapping_sub(5u32.wrapping_mul(div5(mv) as u32));
- if mv_mod5 == 0 {
- vr_is_trailing_zeros = multiple_of_power_of_5(mv, q);
- } else if accept_bounds {
- // Same as min(e2 + (~mm & 1), pow5_factor(mm)) >= q
- // <=> e2 + (~mm & 1) >= q && pow5_factor(mm) >= q
- // <=> true && pow5_factor(mm) >= q, since e2 >= q.
- vm_is_trailing_zeros = multiple_of_power_of_5(mv - 1 - mm_shift as u64, q);
- } else {
- // Same as min(e2 + 1, pow5_factor(mp)) >= q.
- vp -= multiple_of_power_of_5(mv + 2, q) as u64;
- }
- }
- } else {
- // This expression is slightly faster than max(0, log10_pow5(-e2) - 1).
- let q = log10_pow5(-e2) - (-e2 > 1) as u32;
- e10 = q as i32 + e2;
- let i = -e2 - q as i32;
- let k = pow5bits(i) - DOUBLE_POW5_BITCOUNT;
- let j = q as i32 - k;
- vr = unsafe {
- mul_shift_all_64(
- m2,
- #[cfg(feature = "small")]
- &compute_pow5(i as u32),
- #[cfg(not(feature = "small"))]
- {
- debug_assert!(i < DOUBLE_POW5_SPLIT.len() as i32);
- DOUBLE_POW5_SPLIT.get_unchecked(i as usize)
- },
- j as u32,
- vp_uninit.as_mut_ptr(),
- vm_uninit.as_mut_ptr(),
- mm_shift,
- )
- };
- vp = unsafe { vp_uninit.assume_init() };
- vm = unsafe { vm_uninit.assume_init() };
- if q <= 1 {
- // {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at least q trailing 0 bits.
- // mv = 4 * m2, so it always has at least two trailing 0 bits.
- vr_is_trailing_zeros = true;
- if accept_bounds {
- // mm = mv - 1 - mm_shift, so it has 1 trailing 0 bit iff mm_shift == 1.
- vm_is_trailing_zeros = mm_shift == 1;
- } else {
- // mp = mv + 2, so it always has at least one trailing 0 bit.
- vp -= 1;
- }
- } else if q < 63 {
- // TODO(ulfjack): Use a tighter bound here.
- // We want to know if the full product has at least q trailing zeros.
- // We need to compute min(p2(mv), p5(mv) - e2) >= q
- // <=> p2(mv) >= q && p5(mv) - e2 >= q
- // <=> p2(mv) >= q (because -e2 >= q)
- vr_is_trailing_zeros = multiple_of_power_of_2(mv, q);
- }
- }
-
- // Step 4: Find the shortest decimal representation in the interval of valid representations.
- let mut removed = 0i32;
- let mut last_removed_digit = 0u8;
- // On average, we remove ~2 digits.
- let output = if vm_is_trailing_zeros || vr_is_trailing_zeros {
- // General case, which happens rarely (~0.7%).
- loop {
- let vp_div10 = div10(vp);
- let vm_div10 = div10(vm);
- if vp_div10 <= vm_div10 {
- break;
- }
- let vm_mod10 = (vm as u32).wrapping_sub(10u32.wrapping_mul(vm_div10 as u32));
- let vr_div10 = div10(vr);
- let vr_mod10 = (vr as u32).wrapping_sub(10u32.wrapping_mul(vr_div10 as u32));
- vm_is_trailing_zeros &= vm_mod10 == 0;
- vr_is_trailing_zeros &= last_removed_digit == 0;
- last_removed_digit = vr_mod10 as u8;
- vr = vr_div10;
- vp = vp_div10;
- vm = vm_div10;
- removed += 1;
- }
- if vm_is_trailing_zeros {
- loop {
- let vm_div10 = div10(vm);
- let vm_mod10 = (vm as u32).wrapping_sub(10u32.wrapping_mul(vm_div10 as u32));
- if vm_mod10 != 0 {
- break;
- }
- let vp_div10 = div10(vp);
- let vr_div10 = div10(vr);
- let vr_mod10 = (vr as u32).wrapping_sub(10u32.wrapping_mul(vr_div10 as u32));
- vr_is_trailing_zeros &= last_removed_digit == 0;
- last_removed_digit = vr_mod10 as u8;
- vr = vr_div10;
- vp = vp_div10;
- vm = vm_div10;
- removed += 1;
- }
- }
- if vr_is_trailing_zeros && last_removed_digit == 5 && vr % 2 == 0 {
- // Round even if the exact number is .....50..0.
- last_removed_digit = 4;
- }
- // We need to take vr + 1 if vr is outside bounds or we need to round up.
- vr + ((vr == vm && (!accept_bounds || !vm_is_trailing_zeros)) || last_removed_digit >= 5)
- as u64
- } else {
- // Specialized for the common case (~99.3%). Percentages below are relative to this.
- let mut round_up = false;
- let vp_div100 = div100(vp);
- let vm_div100 = div100(vm);
- // Optimization: remove two digits at a time (~86.2%).
- if vp_div100 > vm_div100 {
- let vr_div100 = div100(vr);
- let vr_mod100 = (vr as u32).wrapping_sub(100u32.wrapping_mul(vr_div100 as u32));
- round_up = vr_mod100 >= 50;
- vr = vr_div100;
- vp = vp_div100;
- vm = vm_div100;
- removed += 2;
- }
- // Loop iterations below (approximately), without optimization above:
- // 0: 0.03%, 1: 13.8%, 2: 70.6%, 3: 14.0%, 4: 1.40%, 5: 0.14%, 6+: 0.02%
- // Loop iterations below (approximately), with optimization above:
- // 0: 70.6%, 1: 27.8%, 2: 1.40%, 3: 0.14%, 4+: 0.02%
- loop {
- let vp_div10 = div10(vp);
- let vm_div10 = div10(vm);
- if vp_div10 <= vm_div10 {
- break;
- }
- let vr_div10 = div10(vr);
- let vr_mod10 = (vr as u32).wrapping_sub(10u32.wrapping_mul(vr_div10 as u32));
- round_up = vr_mod10 >= 5;
- vr = vr_div10;
- vp = vp_div10;
- vm = vm_div10;
- removed += 1;
- }
- // We need to take vr + 1 if vr is outside bounds or we need to round up.
- vr + (vr == vm || round_up) as u64
- };
- let exp = e10 + removed;
-
- FloatingDecimal64 {
- exponent: exp,
- mantissa: output,
- }
-}
diff --git a/vendor/ryu/src/d2s_full_table.rs b/vendor/ryu/src/d2s_full_table.rs
deleted file mode 100644
index 7534ddd..0000000
--- a/vendor/ryu/src/d2s_full_table.rs
+++ /dev/null
@@ -1,696 +0,0 @@
-// Translated from C to Rust. The original C code can be found at
-// https://github.com/ulfjack/ryu and carries the following license:
-//
-// Copyright 2018 Ulf Adams
-//
-// The contents of this file may be used under the terms of the Apache License,
-// Version 2.0.
-//
-// (See accompanying file LICENSE-Apache or copy at
-// http://www.apache.org/licenses/LICENSE-2.0)
-//
-// Alternatively, the contents of this file may be used under the terms of
-// the Boost Software License, Version 1.0.
-// (See accompanying file LICENSE-Boost or copy at
-// https://www.boost.org/LICENSE_1_0.txt)
-//
-// Unless required by applicable law or agreed to in writing, this software
-// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied.
-
-const DOUBLE_POW5_INV_TABLE_SIZE: usize = 342;
-const DOUBLE_POW5_TABLE_SIZE: usize = 326;
-
-pub static DOUBLE_POW5_INV_SPLIT: [(u64, u64); DOUBLE_POW5_INV_TABLE_SIZE] = [
- (1, 2305843009213693952),
- (11068046444225730970, 1844674407370955161),
- (5165088340638674453, 1475739525896764129),
- (7821419487252849886, 1180591620717411303),
- (8824922364862649494, 1888946593147858085),
- (7059937891890119595, 1511157274518286468),
- (13026647942995916322, 1208925819614629174),
- (9774590264567735146, 1934281311383406679),
- (11509021026396098440, 1547425049106725343),
- (16585914450600699399, 1237940039285380274),
- (15469416676735388068, 1980704062856608439),
- (16064882156130220778, 1584563250285286751),
- (9162556910162266299, 1267650600228229401),
- (7281393426775805432, 2028240960365167042),
- (16893161185646375315, 1622592768292133633),
- (2446482504291369283, 1298074214633706907),
- (7603720821608101175, 2076918743413931051),
- (2393627842544570617, 1661534994731144841),
- (16672297533003297786, 1329227995784915872),
- (11918280793837635165, 2126764793255865396),
- (5845275820328197809, 1701411834604692317),
- (15744267100488289217, 1361129467683753853),
- (3054734472329800808, 2177807148294006166),
- (17201182836831481939, 1742245718635204932),
- (6382248639981364905, 1393796574908163946),
- (2832900194486363201, 2230074519853062314),
- (5955668970331000884, 1784059615882449851),
- (1075186361522890384, 1427247692705959881),
- (12788344622662355584, 2283596308329535809),
- (13920024512871794791, 1826877046663628647),
- (3757321980813615186, 1461501637330902918),
- (10384555214134712795, 1169201309864722334),
- (5547241898389809503, 1870722095783555735),
- (4437793518711847602, 1496577676626844588),
- (10928932444453298728, 1197262141301475670),
- (17486291911125277965, 1915619426082361072),
- (6610335899416401726, 1532495540865888858),
- (12666966349016942027, 1225996432692711086),
- (12888448528943286597, 1961594292308337738),
- (17689456452638449924, 1569275433846670190),
- (14151565162110759939, 1255420347077336152),
- (7885109000409574610, 2008672555323737844),
- (9997436015069570011, 1606938044258990275),
- (7997948812055656009, 1285550435407192220),
- (12796718099289049614, 2056880696651507552),
- (2858676849947419045, 1645504557321206042),
- (13354987924183666206, 1316403645856964833),
- (17678631863951955605, 2106245833371143733),
- (3074859046935833515, 1684996666696914987),
- (13527933681774397782, 1347997333357531989),
- (10576647446613305481, 2156795733372051183),
- (15840015586774465031, 1725436586697640946),
- (8982663654677661702, 1380349269358112757),
- (18061610662226169046, 2208558830972980411),
- (10759939715039024913, 1766847064778384329),
- (12297300586773130254, 1413477651822707463),
- (15986332124095098083, 2261564242916331941),
- (9099716884534168143, 1809251394333065553),
- (14658471137111155161, 1447401115466452442),
- (4348079280205103483, 1157920892373161954),
- (14335624477811986218, 1852673427797059126),
- (7779150767507678651, 1482138742237647301),
- (2533971799264232598, 1185710993790117841),
- (15122401323048503126, 1897137590064188545),
- (12097921058438802501, 1517710072051350836),
- (5988988032009131678, 1214168057641080669),
- (16961078480698431330, 1942668892225729070),
- (13568862784558745064, 1554135113780583256),
- (7165741412905085728, 1243308091024466605),
- (11465186260648137165, 1989292945639146568),
- (16550846638002330379, 1591434356511317254),
- (16930026125143774626, 1273147485209053803),
- (4951948911778577463, 2037035976334486086),
- (272210314680951647, 1629628781067588869),
- (3907117066486671641, 1303703024854071095),
- (6251387306378674625, 2085924839766513752),
- (16069156289328670670, 1668739871813211001),
- (9165976216721026213, 1334991897450568801),
- (7286864317269821294, 2135987035920910082),
- (16897537898041588005, 1708789628736728065),
- (13518030318433270404, 1367031702989382452),
- (6871453250525591353, 2187250724783011924),
- (9186511415162383406, 1749800579826409539),
- (11038557946871817048, 1399840463861127631),
- (10282995085511086630, 2239744742177804210),
- (8226396068408869304, 1791795793742243368),
- (13959814484210916090, 1433436634993794694),
- (11267656730511734774, 2293498615990071511),
- (5324776569667477496, 1834798892792057209),
- (7949170070475892320, 1467839114233645767),
- (17427382500606444826, 1174271291386916613),
- (5747719112518849781, 1878834066219066582),
- (15666221734240810795, 1503067252975253265),
- (12532977387392648636, 1202453802380202612),
- (5295368560860596524, 1923926083808324180),
- (4236294848688477220, 1539140867046659344),
- (7078384693692692099, 1231312693637327475),
- (11325415509908307358, 1970100309819723960),
- (9060332407926645887, 1576080247855779168),
- (14626963555825137356, 1260864198284623334),
- (12335095245094488799, 2017382717255397335),
- (9868076196075591040, 1613906173804317868),
- (15273158586344293478, 1291124939043454294),
- (13369007293925138595, 2065799902469526871),
- (7005857020398200553, 1652639921975621497),
- (16672732060544291412, 1322111937580497197),
- (11918976037903224966, 2115379100128795516),
- (5845832015580669650, 1692303280103036413),
- (12055363241948356366, 1353842624082429130),
- (841837113407818570, 2166148198531886609),
- (4362818505468165179, 1732918558825509287),
- (14558301248600263113, 1386334847060407429),
- (12225235553534690011, 2218135755296651887),
- (2401490813343931363, 1774508604237321510),
- (1921192650675145090, 1419606883389857208),
- (17831303500047873437, 2271371013423771532),
- (6886345170554478103, 1817096810739017226),
- (1819727321701672159, 1453677448591213781),
- (16213177116328979020, 1162941958872971024),
- (14873036941900635463, 1860707134196753639),
- (15587778368262418694, 1488565707357402911),
- (8780873879868024632, 1190852565885922329),
- (2981351763563108441, 1905364105417475727),
- (13453127855076217722, 1524291284333980581),
- (7073153469319063855, 1219433027467184465),
- (11317045550910502167, 1951092843947495144),
- (12742985255470312057, 1560874275157996115),
- (10194388204376249646, 1248699420126396892),
- (1553625868034358140, 1997919072202235028),
- (8621598323911307159, 1598335257761788022),
- (17965325103354776697, 1278668206209430417),
- (13987124906400001422, 2045869129935088668),
- (121653480894270168, 1636695303948070935),
- (97322784715416134, 1309356243158456748),
- (14913111714512307107, 2094969989053530796),
- (8241140556867935363, 1675975991242824637),
- (17660958889720079260, 1340780792994259709),
- (17189487779326395846, 2145249268790815535),
- (13751590223461116677, 1716199415032652428),
- (18379969808252713988, 1372959532026121942),
- (14650556434236701088, 2196735251241795108),
- (652398703163629901, 1757388200993436087),
- (11589965406756634890, 1405910560794748869),
- (7475898206584884855, 2249456897271598191),
- (2291369750525997561, 1799565517817278553),
- (9211793429904618695, 1439652414253822842),
- (18428218302589300235, 2303443862806116547),
- (7363877012587619542, 1842755090244893238),
- (13269799239553916280, 1474204072195914590),
- (10615839391643133024, 1179363257756731672),
- (2227947767661371545, 1886981212410770676),
- (16539753473096738529, 1509584969928616540),
- (13231802778477390823, 1207667975942893232),
- (6413489186596184024, 1932268761508629172),
- (16198837793502678189, 1545815009206903337),
- (5580372605318321905, 1236652007365522670),
- (8928596168509315048, 1978643211784836272),
- (18210923379033183008, 1582914569427869017),
- (7190041073742725760, 1266331655542295214),
- (436019273762630246, 2026130648867672343),
- (7727513048493924843, 1620904519094137874),
- (9871359253537050198, 1296723615275310299),
- (4726128361433549347, 2074757784440496479),
- (7470251503888749801, 1659806227552397183),
- (13354898832594820487, 1327844982041917746),
- (13989140502667892133, 2124551971267068394),
- (14880661216876224029, 1699641577013654715),
- (11904528973500979224, 1359713261610923772),
- (4289851098633925465, 2175541218577478036),
- (18189276137874781665, 1740432974861982428),
- (3483374466074094362, 1392346379889585943),
- (1884050330976640656, 2227754207823337509),
- (5196589079523222848, 1782203366258670007),
- (15225317707844309248, 1425762693006936005),
- (5913764258841343181, 2281220308811097609),
- (8420360221814984868, 1824976247048878087),
- (17804334621677718864, 1459980997639102469),
- (17932816512084085415, 1167984798111281975),
- (10245762345624985047, 1868775676978051161),
- (4507261061758077715, 1495020541582440929),
- (7295157664148372495, 1196016433265952743),
- (7982903447895485668, 1913626293225524389),
- (10075671573058298858, 1530901034580419511),
- (4371188443704728763, 1224720827664335609),
- (14372599139411386667, 1959553324262936974),
- (15187428126271019657, 1567642659410349579),
- (15839291315758726049, 1254114127528279663),
- (3206773216762499739, 2006582604045247462),
- (13633465017635730761, 1605266083236197969),
- (14596120828850494932, 1284212866588958375),
- (4907049252451240275, 2054740586542333401),
- (236290587219081897, 1643792469233866721),
- (14946427728742906810, 1315033975387093376),
- (16535586736504830250, 2104054360619349402),
- (5849771759720043554, 1683243488495479522),
- (15747863852001765813, 1346594790796383617),
- (10439186904235184007, 2154551665274213788),
- (15730047152871967852, 1723641332219371030),
- (12584037722297574282, 1378913065775496824),
- (9066413911450387881, 2206260905240794919),
- (10942479943902220628, 1765008724192635935),
- (8753983955121776503, 1412006979354108748),
- (10317025513452932081, 2259211166966573997),
- (874922781278525018, 1807368933573259198),
- (8078635854506640661, 1445895146858607358),
- (13841606313089133175, 1156716117486885886),
- (14767872471458792434, 1850745787979017418),
- (746251532941302978, 1480596630383213935),
- (597001226353042382, 1184477304306571148),
- (15712597221132509104, 1895163686890513836),
- (8880728962164096960, 1516130949512411069),
- (10793931984473187891, 1212904759609928855),
- (17270291175157100626, 1940647615375886168),
- (2748186495899949531, 1552518092300708935),
- (2198549196719959625, 1242014473840567148),
- (18275073973719576693, 1987223158144907436),
- (10930710364233751031, 1589778526515925949),
- (12433917106128911148, 1271822821212740759),
- (8826220925580526867, 2034916513940385215),
- (7060976740464421494, 1627933211152308172),
- (16716827836597268165, 1302346568921846537),
- (11989529279587987770, 2083754510274954460),
- (9591623423670390216, 1667003608219963568),
- (15051996368420132820, 1333602886575970854),
- (13015147745246481542, 2133764618521553367),
- (3033420566713364587, 1707011694817242694),
- (6116085268112601993, 1365609355853794155),
- (9785736428980163188, 2184974969366070648),
- (15207286772667951197, 1747979975492856518),
- (1097782973908629988, 1398383980394285215),
- (1756452758253807981, 2237414368630856344),
- (5094511021344956708, 1789931494904685075),
- (4075608817075965366, 1431945195923748060),
- (6520974107321544586, 2291112313477996896),
- (1527430471115325346, 1832889850782397517),
- (12289990821117991246, 1466311880625918013),
- (17210690286378213644, 1173049504500734410),
- (9090360384495590213, 1876879207201175057),
- (18340334751822203140, 1501503365760940045),
- (14672267801457762512, 1201202692608752036),
- (16096930852848599373, 1921924308174003258),
- (1809498238053148529, 1537539446539202607),
- (12515645034668249793, 1230031557231362085),
- (1578287981759648052, 1968050491570179337),
- (12330676829633449412, 1574440393256143469),
- (13553890278448669853, 1259552314604914775),
- (3239480371808320148, 2015283703367863641),
- (17348979556414297411, 1612226962694290912),
- (6500486015647617283, 1289781570155432730),
- (10400777625036187652, 2063650512248692368),
- (15699319729512770768, 1650920409798953894),
- (16248804598352126938, 1320736327839163115),
- (7551343283653851484, 2113178124542660985),
- (6041074626923081187, 1690542499634128788),
- (12211557331022285596, 1352433999707303030),
- (1091747655926105338, 2163894399531684849),
- (4562746939482794594, 1731115519625347879),
- (7339546366328145998, 1384892415700278303),
- (8053925371383123274, 2215827865120445285),
- (6443140297106498619, 1772662292096356228),
- (12533209867169019542, 1418129833677084982),
- (5295740528502789974, 2269007733883335972),
- (15304638867027962949, 1815206187106668777),
- (4865013464138549713, 1452164949685335022),
- (14960057215536570740, 1161731959748268017),
- (9178696285890871890, 1858771135597228828),
- (14721654658196518159, 1487016908477783062),
- (4398626097073393881, 1189613526782226450),
- (7037801755317430209, 1903381642851562320),
- (5630241404253944167, 1522705314281249856),
- (814844308661245011, 1218164251424999885),
- (1303750893857992017, 1949062802279999816),
- (15800395974054034906, 1559250241823999852),
- (5261619149759407279, 1247400193459199882),
- (12107939454356961969, 1995840309534719811),
- (5997002748743659252, 1596672247627775849),
- (8486951013736837725, 1277337798102220679),
- (2511075177753209390, 2043740476963553087),
- (13076906586428298482, 1634992381570842469),
- (14150874083884549109, 1307993905256673975),
- (4194654460505726958, 2092790248410678361),
- (18113118827372222859, 1674232198728542688),
- (3422448617672047318, 1339385758982834151),
- (16543964232501006678, 2143017214372534641),
- (9545822571258895019, 1714413771498027713),
- (15015355686490936662, 1371531017198422170),
- (5577825024675947042, 2194449627517475473),
- (11840957649224578280, 1755559702013980378),
- (16851463748863483271, 1404447761611184302),
- (12204946739213931940, 2247116418577894884),
- (13453306206113055875, 1797693134862315907),
- (3383947335406624054, 1438154507889852726),
- (16482362180876329456, 2301047212623764361),
- (9496540929959153242, 1840837770099011489),
- (11286581558709232917, 1472670216079209191),
- (5339916432225476010, 1178136172863367353),
- (4854517476818851293, 1885017876581387765),
- (3883613981455081034, 1508014301265110212),
- (14174937629389795797, 1206411441012088169),
- (11611853762797942306, 1930258305619341071),
- (5600134195496443521, 1544206644495472857),
- (15548153800622885787, 1235365315596378285),
- (6430302007287065643, 1976584504954205257),
- (16212288050055383484, 1581267603963364205),
- (12969830440044306787, 1265014083170691364),
- (9683682259845159889, 2024022533073106183),
- (15125643437359948558, 1619218026458484946),
- (8411165935146048523, 1295374421166787957),
- (17147214310975587960, 2072599073866860731),
- (10028422634038560045, 1658079259093488585),
- (8022738107230848036, 1326463407274790868),
- (9147032156827446534, 2122341451639665389),
- (11006974540203867551, 1697873161311732311),
- (5116230817421183718, 1358298529049385849),
- (15564666937357714594, 2173277646479017358),
- (1383687105660440706, 1738622117183213887),
- (12174996128754083534, 1390897693746571109),
- (8411947361780802685, 2225436309994513775),
- (6729557889424642148, 1780349047995611020),
- (5383646311539713719, 1424279238396488816),
- (1235136468979721303, 2278846781434382106),
- (15745504434151418335, 1823077425147505684),
- (16285752362063044992, 1458461940118004547),
- (5649904260166615347, 1166769552094403638),
- (5350498001524674232, 1866831283351045821),
- (591049586477829062, 1493465026680836657),
- (11540886113407994219, 1194772021344669325),
- (18673707743239135, 1911635234151470921),
- (14772334225162232601, 1529308187321176736),
- (8128518565387875758, 1223446549856941389),
- (1937583260394870242, 1957514479771106223),
- (8928764237799716840, 1566011583816884978),
- (14521709019723594119, 1252809267053507982),
- (8477339172590109297, 2004494827285612772),
- (17849917782297818407, 1603595861828490217),
- (6901236596354434079, 1282876689462792174),
- (18420676183650915173, 2052602703140467478),
- (3668494502695001169, 1642082162512373983),
- (10313493231639821582, 1313665730009899186),
- (9122891541139893884, 2101865168015838698),
- (14677010862395735754, 1681492134412670958),
- (673562245690857633, 1345193707530136767),
-];
-
-pub static DOUBLE_POW5_SPLIT: [(u64, u64); DOUBLE_POW5_TABLE_SIZE] = [
- (0, 1152921504606846976),
- (0, 1441151880758558720),
- (0, 1801439850948198400),
- (0, 2251799813685248000),
- (0, 1407374883553280000),
- (0, 1759218604441600000),
- (0, 2199023255552000000),
- (0, 1374389534720000000),
- (0, 1717986918400000000),
- (0, 2147483648000000000),
- (0, 1342177280000000000),
- (0, 1677721600000000000),
- (0, 2097152000000000000),
- (0, 1310720000000000000),
- (0, 1638400000000000000),
- (0, 2048000000000000000),
- (0, 1280000000000000000),
- (0, 1600000000000000000),
- (0, 2000000000000000000),
- (0, 1250000000000000000),
- (0, 1562500000000000000),
- (0, 1953125000000000000),
- (0, 1220703125000000000),
- (0, 1525878906250000000),
- (0, 1907348632812500000),
- (0, 1192092895507812500),
- (0, 1490116119384765625),
- (4611686018427387904, 1862645149230957031),
- (9799832789158199296, 1164153218269348144),
- (12249790986447749120, 1455191522836685180),
- (15312238733059686400, 1818989403545856475),
- (14528612397897220096, 2273736754432320594),
- (13692068767113150464, 1421085471520200371),
- (12503399940464050176, 1776356839400250464),
- (15629249925580062720, 2220446049250313080),
- (9768281203487539200, 1387778780781445675),
- (7598665485932036096, 1734723475976807094),
- (274959820560269312, 2168404344971008868),
- (9395221924704944128, 1355252715606880542),
- (2520655369026404352, 1694065894508600678),
- (12374191248137781248, 2117582368135750847),
- (14651398557727195136, 1323488980084844279),
- (13702562178731606016, 1654361225106055349),
- (3293144668132343808, 2067951531382569187),
- (18199116482078572544, 1292469707114105741),
- (8913837547316051968, 1615587133892632177),
- (15753982952572452864, 2019483917365790221),
- (12152082354571476992, 1262177448353618888),
- (15190102943214346240, 1577721810442023610),
- (9764256642163156992, 1972152263052529513),
- (17631875447420442880, 1232595164407830945),
- (8204786253993389888, 1540743955509788682),
- (1032610780636961552, 1925929944387235853),
- (2951224747111794922, 1203706215242022408),
- (3689030933889743652, 1504632769052528010),
- (13834660704216955373, 1880790961315660012),
- (17870034976990372916, 1175494350822287507),
- (17725857702810578241, 1469367938527859384),
- (3710578054803671186, 1836709923159824231),
- (26536550077201078, 2295887403949780289),
- (11545800389866720434, 1434929627468612680),
- (14432250487333400542, 1793662034335765850),
- (8816941072311974870, 2242077542919707313),
- (17039803216263454053, 1401298464324817070),
- (12076381983474541759, 1751623080406021338),
- (5872105442488401391, 2189528850507526673),
- (15199280947623720629, 1368455531567204170),
- (9775729147674874978, 1710569414459005213),
- (16831347453020981627, 2138211768073756516),
- (1296220121283337709, 1336382355046097823),
- (15455333206886335848, 1670477943807622278),
- (10095794471753144002, 2088097429759527848),
- (6309871544845715001, 1305060893599704905),
- (12499025449484531656, 1631326116999631131),
- (11012095793428276666, 2039157646249538914),
- (11494245889320060820, 1274473528905961821),
- (532749306367912313, 1593091911132452277),
- (5277622651387278295, 1991364888915565346),
- (7910200175544436838, 1244603055572228341),
- (14499436237857933952, 1555753819465285426),
- (8900923260467641632, 1944692274331606783),
- (12480606065433357876, 1215432671457254239),
- (10989071563364309441, 1519290839321567799),
- (9124653435777998898, 1899113549151959749),
- (8008751406574943263, 1186945968219974843),
- (5399253239791291175, 1483682460274968554),
- (15972438586593889776, 1854603075343710692),
- (759402079766405302, 1159126922089819183),
- (14784310654990170340, 1448908652612273978),
- (9257016281882937117, 1811135815765342473),
- (16182956370781059300, 2263919769706678091),
- (7808504722524468110, 1414949856066673807),
- (5148944884728197234, 1768687320083342259),
- (1824495087482858639, 2210859150104177824),
- (1140309429676786649, 1381786968815111140),
- (1425386787095983311, 1727233711018888925),
- (6393419502297367043, 2159042138773611156),
- (13219259225790630210, 1349401336733506972),
- (16524074032238287762, 1686751670916883715),
- (16043406521870471799, 2108439588646104644),
- (803757039314269066, 1317774742903815403),
- (14839754354425000045, 1647218428629769253),
- (4714634887749086344, 2059023035787211567),
- (9864175832484260821, 1286889397367007229),
- (16941905809032713930, 1608611746708759036),
- (2730638187581340797, 2010764683385948796),
- (10930020904093113806, 1256727927116217997),
- (18274212148543780162, 1570909908895272496),
- (4396021111970173586, 1963637386119090621),
- (5053356204195052443, 1227273366324431638),
- (15540067292098591362, 1534091707905539547),
- (14813398096695851299, 1917614634881924434),
- (13870059828862294966, 1198509146801202771),
- (12725888767650480803, 1498136433501503464),
- (15907360959563101004, 1872670541876879330),
- (14553786618154326031, 1170419088673049581),
- (4357175217410743827, 1463023860841311977),
- (10058155040190817688, 1828779826051639971),
- (7961007781811134206, 2285974782564549964),
- (14199001900486734687, 1428734239102843727),
- (13137066357181030455, 1785917798878554659),
- (11809646928048900164, 2232397248598193324),
- (16604401366885338411, 1395248280373870827),
- (16143815690179285109, 1744060350467338534),
- (10956397575869330579, 2180075438084173168),
- (6847748484918331612, 1362547148802608230),
- (17783057643002690323, 1703183936003260287),
- (17617136035325974999, 2128979920004075359),
- (17928239049719816230, 1330612450002547099),
- (17798612793722382384, 1663265562503183874),
- (13024893955298202172, 2079081953128979843),
- (5834715712847682405, 1299426220705612402),
- (16516766677914378815, 1624282775882015502),
- (11422586310538197711, 2030353469852519378),
- (11750802462513761473, 1268970918657824611),
- (10076817059714813937, 1586213648322280764),
- (12596021324643517422, 1982767060402850955),
- (5566670318688504437, 1239229412751781847),
- (2346651879933242642, 1549036765939727309),
- (7545000868343941206, 1936295957424659136),
- (4715625542714963254, 1210184973390411960),
- (5894531928393704067, 1512731216738014950),
- (16591536947346905892, 1890914020922518687),
- (17287239619732898039, 1181821263076574179),
- (16997363506238734644, 1477276578845717724),
- (2799960309088866689, 1846595723557147156),
- (10973347230035317489, 1154122327223216972),
- (13716684037544146861, 1442652909029021215),
- (12534169028502795672, 1803316136286276519),
- (11056025267201106687, 2254145170357845649),
- (18439230838069161439, 1408840731473653530),
- (13825666510731675991, 1761050914342066913),
- (3447025083132431277, 2201313642927583642),
- (6766076695385157452, 1375821026829739776),
- (8457595869231446815, 1719776283537174720),
- (10571994836539308519, 2149720354421468400),
- (6607496772837067824, 1343575221513417750),
- (17482743002901110588, 1679469026891772187),
- (17241742735199000331, 2099336283614715234),
- (15387775227926763111, 1312085177259197021),
- (5399660979626290177, 1640106471573996277),
- (11361262242960250625, 2050133089467495346),
- (11712474920277544544, 1281333180917184591),
- (10028907631919542777, 1601666476146480739),
- (7924448521472040567, 2002083095183100924),
- (14176152362774801162, 1251301934489438077),
- (3885132398186337741, 1564127418111797597),
- (9468101516160310080, 1955159272639746996),
- (15140935484454969608, 1221974545399841872),
- (479425281859160394, 1527468181749802341),
- (5210967620751338397, 1909335227187252926),
- (17091912818251750210, 1193334516992033078),
- (12141518985959911954, 1491668146240041348),
- (15176898732449889943, 1864585182800051685),
- (11791404716994875166, 1165365739250032303),
- (10127569877816206054, 1456707174062540379),
- (8047776328842869663, 1820883967578175474),
- (836348374198811271, 2276104959472719343),
- (7440246761515338900, 1422565599670449589),
- (13911994470321561530, 1778206999588061986),
- (8166621051047176104, 2222758749485077483),
- (2798295147690791113, 1389224218428173427),
- (17332926989895652603, 1736530273035216783),
- (17054472718942177850, 2170662841294020979),
- (8353202440125167204, 1356664275808763112),
- (10441503050156459005, 1695830344760953890),
- (3828506775840797949, 2119787930951192363),
- (86973725686804766, 1324867456844495227),
- (13943775212390669669, 1656084321055619033),
- (3594660960206173375, 2070105401319523792),
- (2246663100128858359, 1293815875824702370),
- (12031700912015848757, 1617269844780877962),
- (5816254103165035138, 2021587305976097453),
- (5941001823691840913, 1263492066235060908),
- (7426252279614801142, 1579365082793826135),
- (4671129331091113523, 1974206353492282669),
- (5225298841145639904, 1233878970932676668),
- (6531623551432049880, 1542348713665845835),
- (3552843420862674446, 1927935892082307294),
- (16055585193321335241, 1204959932551442058),
- (10846109454796893243, 1506199915689302573),
- (18169322836923504458, 1882749894611628216),
- (11355826773077190286, 1176718684132267635),
- (9583097447919099954, 1470898355165334544),
- (11978871809898874942, 1838622943956668180),
- (14973589762373593678, 2298278679945835225),
- (2440964573842414192, 1436424174966147016),
- (3051205717303017741, 1795530218707683770),
- (13037379183483547984, 2244412773384604712),
- (8148361989677217490, 1402757983365377945),
- (14797138505523909766, 1753447479206722431),
- (13884737113477499304, 2191809349008403039),
- (15595489723564518921, 1369880843130251899),
- (14882676136028260747, 1712351053912814874),
- (9379973133180550126, 2140438817391018593),
- (17391698254306313589, 1337774260869386620),
- (3292878744173340370, 1672217826086733276),
- (4116098430216675462, 2090272282608416595),
- (266718509671728212, 1306420176630260372),
- (333398137089660265, 1633025220787825465),
- (5028433689789463235, 2041281525984781831),
- (10060300083759496378, 1275800953740488644),
- (12575375104699370472, 1594751192175610805),
- (1884160825592049379, 1993438990219513507),
- (17318501580490888525, 1245899368887195941),
- (7813068920331446945, 1557374211108994927),
- (5154650131986920777, 1946717763886243659),
- (915813323278131534, 1216698602428902287),
- (14979824709379828129, 1520873253036127858),
- (9501408849870009354, 1901091566295159823),
- (12855909558809837702, 1188182228934474889),
- (2234828893230133415, 1485227786168093612),
- (2793536116537666769, 1856534732710117015),
- (8663489100477123587, 1160334207943823134),
- (1605989338741628675, 1450417759929778918),
- (11230858710281811652, 1813022199912223647),
- (9426887369424876662, 2266277749890279559),
- (12809333633531629769, 1416423593681424724),
- (16011667041914537212, 1770529492101780905),
- (6179525747111007803, 2213161865127226132),
- (13085575628799155685, 1383226165704516332),
- (16356969535998944606, 1729032707130645415),
- (15834525901571292854, 2161290883913306769),
- (2979049660840976177, 1350806802445816731),
- (17558870131333383934, 1688508503057270913),
- (8113529608884566205, 2110635628821588642),
- (9682642023980241782, 1319147268013492901),
- (16714988548402690132, 1648934085016866126),
- (11670363648648586857, 2061167606271082658),
- (11905663298832754689, 1288229753919426661),
- (1047021068258779650, 1610287192399283327),
- (15143834390605638274, 2012858990499104158),
- (4853210475701136017, 1258036869061940099),
- (1454827076199032118, 1572546086327425124),
- (1818533845248790147, 1965682607909281405),
- (3442426662494187794, 1228551629943300878),
- (13526405364972510550, 1535689537429126097),
- (3072948650933474476, 1919611921786407622),
- (15755650962115585259, 1199757451116504763),
- (15082877684217093670, 1499696813895630954),
- (9630225068416591280, 1874621017369538693),
- (8324733676974063502, 1171638135855961683),
- (5794231077790191473, 1464547669819952104),
- (7242788847237739342, 1830684587274940130),
- (18276858095901949986, 2288355734093675162),
- (16034722328366106645, 1430222333808546976),
- (1596658836748081690, 1787777917260683721),
- (6607509564362490017, 2234722396575854651),
- (1823850468512862308, 1396701497859909157),
- (6891499104068465790, 1745876872324886446),
- (17837745916940358045, 2182346090406108057),
- (4231062170446641922, 1363966306503817536),
- (5288827713058302403, 1704957883129771920),
- (6611034641322878003, 2131197353912214900),
- (13355268687681574560, 1331998346195134312),
- (16694085859601968200, 1664997932743917890),
- (11644235287647684442, 2081247415929897363),
- (4971804045566108824, 1300779634956185852),
- (6214755056957636030, 1625974543695232315),
- (3156757802769657134, 2032468179619040394),
- (6584659645158423613, 1270292612261900246),
- (17454196593302805324, 1587865765327375307),
- (17206059723201118751, 1984832206659219134),
- (6142101308573311315, 1240520129162011959),
- (3065940617289251240, 1550650161452514949),
- (8444111790038951954, 1938312701815643686),
- (665883850346957067, 1211445438634777304),
- (832354812933696334, 1514306798293471630),
- (10263815553021896226, 1892883497866839537),
- (17944099766707154901, 1183052186166774710),
- (13206752671529167818, 1478815232708468388),
- (16508440839411459773, 1848519040885585485),
- (12623618533845856310, 1155324400553490928),
- (15779523167307320387, 1444155500691863660),
- (1277659885424598868, 1805194375864829576),
- (1597074856780748586, 2256492969831036970),
- (5609857803915355770, 1410308106144398106),
- (16235694291748970521, 1762885132680497632),
- (1847873790976661535, 2203606415850622041),
- (12684136165428883219, 1377254009906638775),
- (11243484188358716120, 1721567512383298469),
- (219297180166231438, 2151959390479123087),
- (7054589765244976505, 1344974619049451929),
- (13429923224983608535, 1681218273811814911),
- (12175718012802122765, 2101522842264768639),
- (14527352785642408584, 1313451776415480399),
- (13547504963625622826, 1641814720519350499),
- (12322695186104640628, 2052268400649188124),
- (16925056528170176201, 1282667750405742577),
- (7321262604930556539, 1603334688007178222),
- (18374950293017971482, 2004168360008972777),
- (4566814905495150320, 1252605225005607986),
- (14931890668723713708, 1565756531257009982),
- (9441491299049866327, 1957195664071262478),
- (1289246043478778550, 1223247290044539049),
- (6223243572775861092, 1529059112555673811),
- (3167368447542438461, 1911323890694592264),
- (1979605279714024038, 1194577431684120165),
- (7086192618069917952, 1493221789605150206),
- (18081112809442173248, 1866527237006437757),
- (13606538515115052232, 1166579523129023598),
- (7784801107039039482, 1458224403911279498),
- (507629346944023544, 1822780504889099373),
- (5246222702107417334, 2278475631111374216),
- (3278889188817135834, 1424047269444608885),
- (8710297504448807696, 1780059086805761106),
-];
diff --git a/vendor/ryu/src/d2s_intrinsics.rs b/vendor/ryu/src/d2s_intrinsics.rs
deleted file mode 100644
index a4e1fb1..0000000
--- a/vendor/ryu/src/d2s_intrinsics.rs
+++ /dev/null
@@ -1,89 +0,0 @@
-// Translated from C to Rust. The original C code can be found at
-// https://github.com/ulfjack/ryu and carries the following license:
-//
-// Copyright 2018 Ulf Adams
-//
-// The contents of this file may be used under the terms of the Apache License,
-// Version 2.0.
-//
-// (See accompanying file LICENSE-Apache or copy at
-// http://www.apache.org/licenses/LICENSE-2.0)
-//
-// Alternatively, the contents of this file may be used under the terms of
-// the Boost Software License, Version 1.0.
-// (See accompanying file LICENSE-Boost or copy at
-// https://www.boost.org/LICENSE_1_0.txt)
-//
-// Unless required by applicable law or agreed to in writing, this software
-// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied.
-
-use core::ptr;
-
-#[cfg_attr(feature = "no-panic", inline)]
-pub fn div5(x: u64) -> u64 {
- x / 5
-}
-
-#[cfg_attr(feature = "no-panic", inline)]
-pub fn div10(x: u64) -> u64 {
- x / 10
-}
-
-#[cfg_attr(feature = "no-panic", inline)]
-pub fn div100(x: u64) -> u64 {
- x / 100
-}
-
-#[cfg_attr(feature = "no-panic", inline)]
-pub(crate) fn pow5_factor(mut value: u64) -> u32 {
- const M_INV_5: u64 = 14757395258967641293; // 5 * m_inv_5 = 1 (mod 2^64)
- const N_DIV_5: u64 = 3689348814741910323; // #{ n | n = 0 (mod 2^64) } = 2^64 / 5
- let mut count = 0u32;
- loop {
- debug_assert!(value != 0);
- value = value.wrapping_mul(M_INV_5);
- if value > N_DIV_5 {
- break;
- }
- count += 1;
- }
- count
-}
-
-// Returns true if value is divisible by 5^p.
-#[cfg_attr(feature = "no-panic", inline)]
-pub fn multiple_of_power_of_5(value: u64, p: u32) -> bool {
- // I tried a case distinction on p, but there was no performance difference.
- pow5_factor(value) >= p
-}
-
-// Returns true if value is divisible by 2^p.
-#[cfg_attr(feature = "no-panic", inline)]
-pub fn multiple_of_power_of_2(value: u64, p: u32) -> bool {
- debug_assert!(value != 0);
- debug_assert!(p < 64);
- // __builtin_ctzll doesn't appear to be faster here.
- (value & ((1u64 << p) - 1)) == 0
-}
-
-#[cfg_attr(feature = "no-panic", inline)]
-pub fn mul_shift_64(m: u64, mul: &(u64, u64), j: u32) -> u64 {
- let b0 = m as u128 * mul.0 as u128;
- let b2 = m as u128 * mul.1 as u128;
- (((b0 >> 64) + b2) >> (j - 64)) as u64
-}
-
-#[cfg_attr(feature = "no-panic", inline)]
-pub unsafe fn mul_shift_all_64(
- m: u64,
- mul: &(u64, u64),
- j: u32,
- vp: *mut u64,
- vm: *mut u64,
- mm_shift: u32,
-) -> u64 {
- ptr::write(vp, mul_shift_64(4 * m + 2, mul, j));
- ptr::write(vm, mul_shift_64(4 * m - 1 - mm_shift as u64, mul, j));
- mul_shift_64(4 * m, mul, j)
-}
diff --git a/vendor/ryu/src/d2s_small_table.rs b/vendor/ryu/src/d2s_small_table.rs
deleted file mode 100644
index 262fc04..0000000
--- a/vendor/ryu/src/d2s_small_table.rs
+++ /dev/null
@@ -1,142 +0,0 @@
-// Translated from C to Rust. The original C code can be found at
-// https://github.com/ulfjack/ryu and carries the following license:
-//
-// Copyright 2018 Ulf Adams
-//
-// The contents of this file may be used under the terms of the Apache License,
-// Version 2.0.
-//
-// (See accompanying file LICENSE-Apache or copy at
-// http://www.apache.org/licenses/LICENSE-2.0)
-//
-// Alternatively, the contents of this file may be used under the terms of
-// the Boost Software License, Version 1.0.
-// (See accompanying file LICENSE-Boost or copy at
-// https://www.boost.org/LICENSE_1_0.txt)
-//
-// Unless required by applicable law or agreed to in writing, this software
-// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied.
-
-use crate::common::*;
-
-pub static DOUBLE_POW5_INV_SPLIT2: [(u64, u64); 15] = [
- (1, 2305843009213693952),
- (5955668970331000884, 1784059615882449851),
- (8982663654677661702, 1380349269358112757),
- (7286864317269821294, 2135987035920910082),
- (7005857020398200553, 1652639921975621497),
- (17965325103354776697, 1278668206209430417),
- (8928596168509315048, 1978643211784836272),
- (10075671573058298858, 1530901034580419511),
- (597001226353042382, 1184477304306571148),
- (1527430471115325346, 1832889850782397517),
- (12533209867169019542, 1418129833677084982),
- (5577825024675947042, 2194449627517475473),
- (11006974540203867551, 1697873161311732311),
- (10313493231639821582, 1313665730009899186),
- (12701016819766672773, 2032799256770390445),
-];
-
-pub static POW5_INV_OFFSETS: [u32; 19] = [
- 0x54544554, 0x04055545, 0x10041000, 0x00400414, 0x40010000, 0x41155555, 0x00000454, 0x00010044,
- 0x40000000, 0x44000041, 0x50454450, 0x55550054, 0x51655554, 0x40004000, 0x01000001, 0x00010500,
- 0x51515411, 0x05555554, 0x00000000,
-];
-
-pub static DOUBLE_POW5_SPLIT2: [(u64, u64); 13] = [
- (0, 1152921504606846976),
- (0, 1490116119384765625),
- (1032610780636961552, 1925929944387235853),
- (7910200175544436838, 1244603055572228341),
- (16941905809032713930, 1608611746708759036),
- (13024893955298202172, 2079081953128979843),
- (6607496772837067824, 1343575221513417750),
- (17332926989895652603, 1736530273035216783),
- (13037379183483547984, 2244412773384604712),
- (1605989338741628675, 1450417759929778918),
- (9630225068416591280, 1874621017369538693),
- (665883850346957067, 1211445438634777304),
- (14931890668723713708, 1565756531257009982),
-];
-
-pub static POW5_OFFSETS: [u32; 21] = [
- 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x40000000, 0x59695995, 0x55545555, 0x56555515,
- 0x41150504, 0x40555410, 0x44555145, 0x44504540, 0x45555550, 0x40004000, 0x96440440, 0x55565565,
- 0x54454045, 0x40154151, 0x55559155, 0x51405555, 0x00000105,
-];
-
-pub static DOUBLE_POW5_TABLE: [u64; 26] = [
- 1,
- 5,
- 25,
- 125,
- 625,
- 3125,
- 15625,
- 78125,
- 390625,
- 1953125,
- 9765625,
- 48828125,
- 244140625,
- 1220703125,
- 6103515625,
- 30517578125,
- 152587890625,
- 762939453125,
- 3814697265625,
- 19073486328125,
- 95367431640625,
- 476837158203125,
- 2384185791015625,
- 11920928955078125,
- 59604644775390625,
- 298023223876953125,
-];
-
-// Computes 5^i in the form required by Ryū.
-#[cfg_attr(feature = "no-panic", inline)]
-pub unsafe fn compute_pow5(i: u32) -> (u64, u64) {
- let base = i / DOUBLE_POW5_TABLE.len() as u32;
- let base2 = base * DOUBLE_POW5_TABLE.len() as u32;
- let offset = i - base2;
- debug_assert!(base < DOUBLE_POW5_SPLIT2.len() as u32);
- let mul = *DOUBLE_POW5_SPLIT2.get_unchecked(base as usize);
- if offset == 0 {
- return mul;
- }
- debug_assert!(offset < DOUBLE_POW5_TABLE.len() as u32);
- let m = *DOUBLE_POW5_TABLE.get_unchecked(offset as usize);
- let b0 = m as u128 * mul.0 as u128;
- let b2 = m as u128 * mul.1 as u128;
- let delta = pow5bits(i as i32) - pow5bits(base2 as i32);
- debug_assert!(i / 16 < POW5_OFFSETS.len() as u32);
- let shifted_sum = (b0 >> delta)
- + (b2 << (64 - delta))
- + ((*POW5_OFFSETS.get_unchecked((i / 16) as usize) >> ((i % 16) << 1)) & 3) as u128;
- (shifted_sum as u64, (shifted_sum >> 64) as u64)
-}
-
-// Computes 5^-i in the form required by Ryū.
-#[cfg_attr(feature = "no-panic", inline)]
-pub unsafe fn compute_inv_pow5(i: u32) -> (u64, u64) {
- let base = (i + DOUBLE_POW5_TABLE.len() as u32 - 1) / DOUBLE_POW5_TABLE.len() as u32;
- let base2 = base * DOUBLE_POW5_TABLE.len() as u32;
- let offset = base2 - i;
- debug_assert!(base < DOUBLE_POW5_INV_SPLIT2.len() as u32);
- let mul = *DOUBLE_POW5_INV_SPLIT2.get_unchecked(base as usize); // 1/5^base2
- if offset == 0 {
- return mul;
- }
- debug_assert!(offset < DOUBLE_POW5_TABLE.len() as u32);
- let m = *DOUBLE_POW5_TABLE.get_unchecked(offset as usize); // 5^offset
- let b0 = m as u128 * (mul.0 - 1) as u128;
- let b2 = m as u128 * mul.1 as u128; // 1/5^base2 * 5^offset = 1/5^(base2-offset) = 1/5^i
- let delta = pow5bits(base2 as i32) - pow5bits(i as i32);
- debug_assert!(base < POW5_INV_OFFSETS.len() as u32);
- let shifted_sum = ((b0 >> delta) + (b2 << (64 - delta)))
- + 1
- + ((*POW5_INV_OFFSETS.get_unchecked((i / 16) as usize) >> ((i % 16) << 1)) & 3) as u128;
- (shifted_sum as u64, (shifted_sum >> 64) as u64)
-}
diff --git a/vendor/ryu/src/digit_table.rs b/vendor/ryu/src/digit_table.rs
deleted file mode 100644
index d871f03..0000000
--- a/vendor/ryu/src/digit_table.rs
+++ /dev/null
@@ -1,28 +0,0 @@
-// Translated from C to Rust. The original C code can be found at
-// https://github.com/ulfjack/ryu and carries the following license:
-//
-// Copyright 2018 Ulf Adams
-//
-// The contents of this file may be used under the terms of the Apache License,
-// Version 2.0.
-//
-// (See accompanying file LICENSE-Apache or copy at
-// http://www.apache.org/licenses/LICENSE-2.0)
-//
-// Alternatively, the contents of this file may be used under the terms of
-// the Boost Software License, Version 1.0.
-// (See accompanying file LICENSE-Boost or copy at
-// https://www.boost.org/LICENSE_1_0.txt)
-//
-// Unless required by applicable law or agreed to in writing, this software
-// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied.
-
-// A table of all two-digit numbers. This is used to speed up decimal digit
-// generation by copying pairs of digits into the final output.
-pub static DIGIT_TABLE: [u8; 200] = *b"\
- 0001020304050607080910111213141516171819\
- 2021222324252627282930313233343536373839\
- 4041424344454647484950515253545556575859\
- 6061626364656667686970717273747576777879\
- 8081828384858687888990919293949596979899";
diff --git a/vendor/ryu/src/f2s.rs b/vendor/ryu/src/f2s.rs
deleted file mode 100644
index eeb457a..0000000
--- a/vendor/ryu/src/f2s.rs
+++ /dev/null
@@ -1,176 +0,0 @@
-// Translated from C to Rust. The original C code can be found at
-// https://github.com/ulfjack/ryu and carries the following license:
-//
-// Copyright 2018 Ulf Adams
-//
-// The contents of this file may be used under the terms of the Apache License,
-// Version 2.0.
-//
-// (See accompanying file LICENSE-Apache or copy at
-// http://www.apache.org/licenses/LICENSE-2.0)
-//
-// Alternatively, the contents of this file may be used under the terms of
-// the Boost Software License, Version 1.0.
-// (See accompanying file LICENSE-Boost or copy at
-// https://www.boost.org/LICENSE_1_0.txt)
-//
-// Unless required by applicable law or agreed to in writing, this software
-// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied.
-
-use crate::common::*;
-use crate::f2s_intrinsics::*;
-
-pub const FLOAT_MANTISSA_BITS: u32 = 23;
-pub const FLOAT_EXPONENT_BITS: u32 = 8;
-const FLOAT_BIAS: i32 = 127;
-pub use crate::f2s_intrinsics::{FLOAT_POW5_BITCOUNT, FLOAT_POW5_INV_BITCOUNT};
-
-// A floating decimal representing m * 10^e.
-pub struct FloatingDecimal32 {
- pub mantissa: u32,
- // Decimal exponent's range is -45 to 38
- // inclusive, and can fit in i16 if needed.
- pub exponent: i32,
-}
-
-#[cfg_attr(feature = "no-panic", inline)]
-pub fn f2d(ieee_mantissa: u32, ieee_exponent: u32) -> FloatingDecimal32 {
- let (e2, m2) = if ieee_exponent == 0 {
- (
- // We subtract 2 so that the bounds computation has 2 additional bits.
- 1 - FLOAT_BIAS - FLOAT_MANTISSA_BITS as i32 - 2,
- ieee_mantissa,
- )
- } else {
- (
- ieee_exponent as i32 - FLOAT_BIAS - FLOAT_MANTISSA_BITS as i32 - 2,
- (1u32 << FLOAT_MANTISSA_BITS) | ieee_mantissa,
- )
- };
- let even = (m2 & 1) == 0;
- let accept_bounds = even;
-
- // Step 2: Determine the interval of valid decimal representations.
- let mv = 4 * m2;
- let mp = 4 * m2 + 2;
- // Implicit bool -> int conversion. True is 1, false is 0.
- let mm_shift = (ieee_mantissa != 0 || ieee_exponent <= 1) as u32;
- let mm = 4 * m2 - 1 - mm_shift;
-
- // Step 3: Convert to a decimal power base using 64-bit arithmetic.
- let mut vr: u32;
- let mut vp: u32;
- let mut vm: u32;
- let e10: i32;
- let mut vm_is_trailing_zeros = false;
- let mut vr_is_trailing_zeros = false;
- let mut last_removed_digit = 0u8;
- if e2 >= 0 {
- let q = log10_pow2(e2);
- e10 = q as i32;
- let k = FLOAT_POW5_INV_BITCOUNT + pow5bits(q as i32) - 1;
- let i = -e2 + q as i32 + k;
- vr = mul_pow5_inv_div_pow2(mv, q, i);
- vp = mul_pow5_inv_div_pow2(mp, q, i);
- vm = mul_pow5_inv_div_pow2(mm, q, i);
- if q != 0 && (vp - 1) / 10 <= vm / 10 {
- // We need to know one removed digit even if we are not going to loop below. We could use
- // q = X - 1 above, except that would require 33 bits for the result, and we've found that
- // 32-bit arithmetic is faster even on 64-bit machines.
- let l = FLOAT_POW5_INV_BITCOUNT + pow5bits(q as i32 - 1) - 1;
- last_removed_digit =
- (mul_pow5_inv_div_pow2(mv, q - 1, -e2 + q as i32 - 1 + l) % 10) as u8;
- }
- if q <= 9 {
- // The largest power of 5 that fits in 24 bits is 5^10, but q <= 9 seems to be safe as well.
- // Only one of mp, mv, and mm can be a multiple of 5, if any.
- if mv % 5 == 0 {
- vr_is_trailing_zeros = multiple_of_power_of_5_32(mv, q);
- } else if accept_bounds {
- vm_is_trailing_zeros = multiple_of_power_of_5_32(mm, q);
- } else {
- vp -= multiple_of_power_of_5_32(mp, q) as u32;
- }
- }
- } else {
- let q = log10_pow5(-e2);
- e10 = q as i32 + e2;
- let i = -e2 - q as i32;
- let k = pow5bits(i) - FLOAT_POW5_BITCOUNT;
- let mut j = q as i32 - k;
- vr = mul_pow5_div_pow2(mv, i as u32, j);
- vp = mul_pow5_div_pow2(mp, i as u32, j);
- vm = mul_pow5_div_pow2(mm, i as u32, j);
- if q != 0 && (vp - 1) / 10 <= vm / 10 {
- j = q as i32 - 1 - (pow5bits(i + 1) - FLOAT_POW5_BITCOUNT);
- last_removed_digit = (mul_pow5_div_pow2(mv, (i + 1) as u32, j) % 10) as u8;
- }
- if q <= 1 {
- // {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at least q trailing 0 bits.
- // mv = 4 * m2, so it always has at least two trailing 0 bits.
- vr_is_trailing_zeros = true;
- if accept_bounds {
- // mm = mv - 1 - mm_shift, so it has 1 trailing 0 bit iff mm_shift == 1.
- vm_is_trailing_zeros = mm_shift == 1;
- } else {
- // mp = mv + 2, so it always has at least one trailing 0 bit.
- vp -= 1;
- }
- } else if q < 31 {
- // TODO(ulfjack): Use a tighter bound here.
- vr_is_trailing_zeros = multiple_of_power_of_2_32(mv, q - 1);
- }
- }
-
- // Step 4: Find the shortest decimal representation in the interval of valid representations.
- let mut removed = 0i32;
- let output = if vm_is_trailing_zeros || vr_is_trailing_zeros {
- // General case, which happens rarely (~4.0%).
- while vp / 10 > vm / 10 {
- vm_is_trailing_zeros &= vm - (vm / 10) * 10 == 0;
- vr_is_trailing_zeros &= last_removed_digit == 0;
- last_removed_digit = (vr % 10) as u8;
- vr /= 10;
- vp /= 10;
- vm /= 10;
- removed += 1;
- }
- if vm_is_trailing_zeros {
- while vm % 10 == 0 {
- vr_is_trailing_zeros &= last_removed_digit == 0;
- last_removed_digit = (vr % 10) as u8;
- vr /= 10;
- vp /= 10;
- vm /= 10;
- removed += 1;
- }
- }
- if vr_is_trailing_zeros && last_removed_digit == 5 && vr % 2 == 0 {
- // Round even if the exact number is .....50..0.
- last_removed_digit = 4;
- }
- // We need to take vr + 1 if vr is outside bounds or we need to round up.
- vr + ((vr == vm && (!accept_bounds || !vm_is_trailing_zeros)) || last_removed_digit >= 5)
- as u32
- } else {
- // Specialized for the common case (~96.0%). Percentages below are relative to this.
- // Loop iterations below (approximately):
- // 0: 13.6%, 1: 70.7%, 2: 14.1%, 3: 1.39%, 4: 0.14%, 5+: 0.01%
- while vp / 10 > vm / 10 {
- last_removed_digit = (vr % 10) as u8;
- vr /= 10;
- vp /= 10;
- vm /= 10;
- removed += 1;
- }
- // We need to take vr + 1 if vr is outside bounds or we need to round up.
- vr + (vr == vm || last_removed_digit >= 5) as u32
- };
- let exp = e10 + removed;
-
- FloatingDecimal32 {
- exponent: exp,
- mantissa: output,
- }
-}
diff --git a/vendor/ryu/src/f2s_intrinsics.rs b/vendor/ryu/src/f2s_intrinsics.rs
deleted file mode 100644
index 1a35218..0000000
--- a/vendor/ryu/src/f2s_intrinsics.rs
+++ /dev/null
@@ -1,113 +0,0 @@
-// Translated from C to Rust. The original C code can be found at
-// https://github.com/ulfjack/ryu and carries the following license:
-//
-// Copyright 2018 Ulf Adams
-//
-// The contents of this file may be used under the terms of the Apache License,
-// Version 2.0.
-//
-// (See accompanying file LICENSE-Apache or copy at
-// http://www.apache.org/licenses/LICENSE-2.0)
-//
-// Alternatively, the contents of this file may be used under the terms of
-// the Boost Software License, Version 1.0.
-// (See accompanying file LICENSE-Boost or copy at
-// https://www.boost.org/LICENSE_1_0.txt)
-//
-// Unless required by applicable law or agreed to in writing, this software
-// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied.
-
-use crate::d2s;
-
-pub const FLOAT_POW5_INV_BITCOUNT: i32 = d2s::DOUBLE_POW5_INV_BITCOUNT - 64;
-pub const FLOAT_POW5_BITCOUNT: i32 = d2s::DOUBLE_POW5_BITCOUNT - 64;
-
-#[cfg_attr(feature = "no-panic", inline)]
-fn pow5factor_32(mut value: u32) -> u32 {
- let mut count = 0u32;
- loop {
- debug_assert!(value != 0);
- let q = value / 5;
- let r = value % 5;
- if r != 0 {
- break;
- }
- value = q;
- count += 1;
- }
- count
-}
-
-// Returns true if value is divisible by 5^p.
-#[cfg_attr(feature = "no-panic", inline)]
-pub fn multiple_of_power_of_5_32(value: u32, p: u32) -> bool {
- pow5factor_32(value) >= p
-}
-
-// Returns true if value is divisible by 2^p.
-#[cfg_attr(feature = "no-panic", inline)]
-pub fn multiple_of_power_of_2_32(value: u32, p: u32) -> bool {
- // __builtin_ctz doesn't appear to be faster here.
- (value & ((1u32 << p) - 1)) == 0
-}
-
-// It seems to be slightly faster to avoid uint128_t here, although the
-// generated code for uint128_t looks slightly nicer.
-#[cfg_attr(feature = "no-panic", inline)]
-fn mul_shift_32(m: u32, factor: u64, shift: i32) -> u32 {
- debug_assert!(shift > 32);
-
- // The casts here help MSVC to avoid calls to the __allmul library
- // function.
- let factor_lo = factor as u32;
- let factor_hi = (factor >> 32) as u32;
- let bits0 = m as u64 * factor_lo as u64;
- let bits1 = m as u64 * factor_hi as u64;
-
- let sum = (bits0 >> 32) + bits1;
- let shifted_sum = sum >> (shift - 32);
- debug_assert!(shifted_sum <= u32::max_value() as u64);
- shifted_sum as u32
-}
-
-#[cfg_attr(feature = "no-panic", inline)]
-pub fn mul_pow5_inv_div_pow2(m: u32, q: u32, j: i32) -> u32 {
- #[cfg(feature = "small")]
- {
- // The inverse multipliers are defined as [2^x / 5^y] + 1; the upper 64
- // bits from the double lookup table are the correct bits for [2^x /
- // 5^y], so we have to add 1 here. Note that we rely on the fact that
- // the added 1 that's already stored in the table never overflows into
- // the upper 64 bits.
- let pow5 = unsafe { d2s::compute_inv_pow5(q) };
- mul_shift_32(m, pow5.1 + 1, j)
- }
-
- #[cfg(not(feature = "small"))]
- {
- debug_assert!(q < d2s::DOUBLE_POW5_INV_SPLIT.len() as u32);
- unsafe {
- mul_shift_32(
- m,
- d2s::DOUBLE_POW5_INV_SPLIT.get_unchecked(q as usize).1 + 1,
- j,
- )
- }
- }
-}
-
-#[cfg_attr(feature = "no-panic", inline)]
-pub fn mul_pow5_div_pow2(m: u32, i: u32, j: i32) -> u32 {
- #[cfg(feature = "small")]
- {
- let pow5 = unsafe { d2s::compute_pow5(i) };
- mul_shift_32(m, pow5.1, j)
- }
-
- #[cfg(not(feature = "small"))]
- {
- debug_assert!(i < d2s::DOUBLE_POW5_SPLIT.len() as u32);
- unsafe { mul_shift_32(m, d2s::DOUBLE_POW5_SPLIT.get_unchecked(i as usize).1, j) }
- }
-}
diff --git a/vendor/ryu/src/lib.rs b/vendor/ryu/src/lib.rs
deleted file mode 100644
index cf3a732..0000000
--- a/vendor/ryu/src/lib.rs
+++ /dev/null
@@ -1,124 +0,0 @@
-//! [![github]](https://github.com/dtolnay/ryu)&ensp;[![crates-io]](https://crates.io/crates/ryu)&ensp;[![docs-rs]](https://docs.rs/ryu)
-//!
-//! [github]: https://img.shields.io/badge/github-8da0cb?style=for-the-badge&labelColor=555555&logo=github
-//! [crates-io]: https://img.shields.io/badge/crates.io-fc8d62?style=for-the-badge&labelColor=555555&logo=rust
-//! [docs-rs]: https://img.shields.io/badge/docs.rs-66c2a5?style=for-the-badge&labelColor=555555&logo=docs.rs
-//!
-//! <br>
-//!
-//! Pure Rust implementation of Ryū, an algorithm to quickly convert floating
-//! point numbers to decimal strings.
-//!
-//! The PLDI'18 paper [*Ryū: fast float-to-string conversion*][paper] by Ulf
-//! Adams includes a complete correctness proof of the algorithm. The paper is
-//! available under the creative commons CC-BY-SA license.
-//!
-//! This Rust implementation is a line-by-line port of Ulf Adams' implementation
-//! in C, [https://github.com/ulfjack/ryu][upstream].
-//!
-//! [paper]: https://dl.acm.org/citation.cfm?id=3192369
-//! [upstream]: https://github.com/ulfjack/ryu
-//!
-//! # Example
-//!
-//! ```
-//! fn main() {
-//! let mut buffer = ryu::Buffer::new();
-//! let printed = buffer.format(1.234);
-//! assert_eq!(printed, "1.234");
-//! }
-//! ```
-//!
-//! ## Performance (lower is better)
-//!
-//! ![performance](https://raw.githubusercontent.com/dtolnay/ryu/master/performance.png)
-//!
-//! You can run upstream's benchmarks with:
-//!
-//! ```console
-//! $ git clone https://github.com/ulfjack/ryu c-ryu
-//! $ cd c-ryu
-//! $ bazel run -c opt //ryu/benchmark
-//! ```
-//!
-//! And the same benchmark against our implementation with:
-//!
-//! ```console
-//! $ git clone https://github.com/dtolnay/ryu rust-ryu
-//! $ cd rust-ryu
-//! $ cargo run --example upstream_benchmark --release
-//! ```
-//!
-//! These benchmarks measure the average time to print a 32-bit float and average
-//! time to print a 64-bit float, where the inputs are distributed as uniform random
-//! bit patterns 32 and 64 bits wide.
-//!
-//! The upstream C code, the unsafe direct Rust port, and the safe pretty Rust API
-//! all perform the same, taking around 21 nanoseconds to format a 32-bit float and
-//! 31 nanoseconds to format a 64-bit float.
-//!
-//! There is also a Rust-specific benchmark comparing this implementation to the
-//! standard library which you can run with:
-//!
-//! ```console
-//! $ cargo bench
-//! ```
-//!
-//! The benchmark shows Ryū approximately 2-5x faster than the standard library
-//! across a range of f32 and f64 inputs. Measurements are in nanoseconds per
-//! iteration; smaller is better.
-//!
-//! ## Formatting
-//!
-//! This library tends to produce more human-readable output than the standard
-//! library's to\_string, which never uses scientific notation. Here are two
-//! examples:
-//!
-//! - *ryu:* 1.23e40, *std:* 12300000000000000000000000000000000000000
-//! - *ryu:* 1.23e-40, *std:* 0.000000000000000000000000000000000000000123
-//!
-//! Both libraries print short decimals such as 0.0000123 without scientific
-//! notation.
-
-#![no_std]
-#![doc(html_root_url = "https://docs.rs/ryu/1.0.16")]
-#![allow(
- clippy::cast_lossless,
- clippy::cast_possible_truncation,
- clippy::cast_possible_wrap,
- clippy::cast_sign_loss,
- clippy::checked_conversions,
- clippy::doc_markdown,
- clippy::expl_impl_clone_on_copy,
- clippy::if_not_else,
- clippy::many_single_char_names,
- clippy::missing_panics_doc,
- clippy::module_name_repetitions,
- clippy::must_use_candidate,
- clippy::needless_doctest_main,
- clippy::similar_names,
- clippy::too_many_lines,
- clippy::unreadable_literal,
- clippy::unseparated_literal_suffix,
- clippy::wildcard_imports
-)]
-
-mod buffer;
-mod common;
-mod d2s;
-#[cfg(not(feature = "small"))]
-mod d2s_full_table;
-mod d2s_intrinsics;
-#[cfg(feature = "small")]
-mod d2s_small_table;
-mod digit_table;
-mod f2s;
-mod f2s_intrinsics;
-mod pretty;
-
-pub use crate::buffer::{Buffer, Float};
-
-/// Unsafe functions that mirror the API of the C implementation of Ryū.
-pub mod raw {
- pub use crate::pretty::{format32, format64};
-}
diff --git a/vendor/ryu/src/parse.rs b/vendor/ryu/src/parse.rs
deleted file mode 100644
index 00f7983..0000000
--- a/vendor/ryu/src/parse.rs
+++ /dev/null
@@ -1,19 +0,0 @@
-use core::fmt::{self, Display};
-
-#[derive(Copy, Clone, Debug)]
-pub enum Error {
- InputTooShort,
- InputTooLong,
- MalformedInput,
-}
-
-impl Display for Error {
- fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
- let msg = match self {
- Error::InputTooShort => "input too short",
- Error::InputTooLong => "input too long",
- Error::MalformedInput => "malformed input",
- };
- formatter.write_str(msg)
- }
-}
diff --git a/vendor/ryu/src/pretty/exponent.rs b/vendor/ryu/src/pretty/exponent.rs
deleted file mode 100644
index b72add5..0000000
--- a/vendor/ryu/src/pretty/exponent.rs
+++ /dev/null
@@ -1,48 +0,0 @@
-use crate::digit_table::*;
-use core::ptr;
-
-#[cfg_attr(feature = "no-panic", inline)]
-pub unsafe fn write_exponent3(mut k: isize, mut result: *mut u8) -> usize {
- let sign = k < 0;
- if sign {
- *result = b'-';
- result = result.offset(1);
- k = -k;
- }
-
- debug_assert!(k < 1000);
- if k >= 100 {
- *result = b'0' + (k / 100) as u8;
- k %= 100;
- let d = DIGIT_TABLE.as_ptr().offset(k * 2);
- ptr::copy_nonoverlapping(d, result.offset(1), 2);
- sign as usize + 3
- } else if k >= 10 {
- let d = DIGIT_TABLE.as_ptr().offset(k * 2);
- ptr::copy_nonoverlapping(d, result, 2);
- sign as usize + 2
- } else {
- *result = b'0' + k as u8;
- sign as usize + 1
- }
-}
-
-#[cfg_attr(feature = "no-panic", inline)]
-pub unsafe fn write_exponent2(mut k: isize, mut result: *mut u8) -> usize {
- let sign = k < 0;
- if sign {
- *result = b'-';
- result = result.offset(1);
- k = -k;
- }
-
- debug_assert!(k < 100);
- if k >= 10 {
- let d = DIGIT_TABLE.as_ptr().offset(k * 2);
- ptr::copy_nonoverlapping(d, result, 2);
- sign as usize + 2
- } else {
- *result = b'0' + k as u8;
- sign as usize + 1
- }
-}
diff --git a/vendor/ryu/src/pretty/mantissa.rs b/vendor/ryu/src/pretty/mantissa.rs
deleted file mode 100644
index 0149f5c..0000000
--- a/vendor/ryu/src/pretty/mantissa.rs
+++ /dev/null
@@ -1,82 +0,0 @@
-use crate::digit_table::*;
-use core::ptr;
-
-#[cfg_attr(feature = "no-panic", inline)]
-pub unsafe fn write_mantissa_long(mut output: u64, mut result: *mut u8) {
- if (output >> 32) != 0 {
- // One expensive 64-bit division.
- let mut output2 = (output - 100_000_000 * (output / 100_000_000)) as u32;
- output /= 100_000_000;
-
- let c = output2 % 10_000;
- output2 /= 10_000;
- let d = output2 % 10_000;
- let c0 = (c % 100) << 1;
- let c1 = (c / 100) << 1;
- let d0 = (d % 100) << 1;
- let d1 = (d / 100) << 1;
- ptr::copy_nonoverlapping(
- DIGIT_TABLE.as_ptr().offset(c0 as isize),
- result.offset(-2),
- 2,
- );
- ptr::copy_nonoverlapping(
- DIGIT_TABLE.as_ptr().offset(c1 as isize),
- result.offset(-4),
- 2,
- );
- ptr::copy_nonoverlapping(
- DIGIT_TABLE.as_ptr().offset(d0 as isize),
- result.offset(-6),
- 2,
- );
- ptr::copy_nonoverlapping(
- DIGIT_TABLE.as_ptr().offset(d1 as isize),
- result.offset(-8),
- 2,
- );
- result = result.offset(-8);
- }
- write_mantissa(output as u32, result);
-}
-
-#[cfg_attr(feature = "no-panic", inline)]
-pub unsafe fn write_mantissa(mut output: u32, mut result: *mut u8) {
- while output >= 10_000 {
- let c = output - 10_000 * (output / 10_000);
- output /= 10_000;
- let c0 = (c % 100) << 1;
- let c1 = (c / 100) << 1;
- ptr::copy_nonoverlapping(
- DIGIT_TABLE.as_ptr().offset(c0 as isize),
- result.offset(-2),
- 2,
- );
- ptr::copy_nonoverlapping(
- DIGIT_TABLE.as_ptr().offset(c1 as isize),
- result.offset(-4),
- 2,
- );
- result = result.offset(-4);
- }
- if output >= 100 {
- let c = (output % 100) << 1;
- output /= 100;
- ptr::copy_nonoverlapping(
- DIGIT_TABLE.as_ptr().offset(c as isize),
- result.offset(-2),
- 2,
- );
- result = result.offset(-2);
- }
- if output >= 10 {
- let c = output << 1;
- ptr::copy_nonoverlapping(
- DIGIT_TABLE.as_ptr().offset(c as isize),
- result.offset(-2),
- 2,
- );
- } else {
- *result.offset(-1) = b'0' + output as u8;
- }
-}
diff --git a/vendor/ryu/src/pretty/mod.rs b/vendor/ryu/src/pretty/mod.rs
deleted file mode 100644
index da49e86..0000000
--- a/vendor/ryu/src/pretty/mod.rs
+++ /dev/null
@@ -1,224 +0,0 @@
-mod exponent;
-mod mantissa;
-
-use self::exponent::*;
-use self::mantissa::*;
-use crate::common;
-use crate::d2s::{self, *};
-use crate::f2s::*;
-use core::ptr;
-#[cfg(feature = "no-panic")]
-use no_panic::no_panic;
-
-/// Print f64 to the given buffer and return number of bytes written.
-///
-/// At most 24 bytes will be written.
-///
-/// ## Special cases
-///
-/// This function **does not** check for NaN or infinity. If the input
-/// number is not a finite float, the printed representation will be some
-/// correctly formatted but unspecified numerical value.
-///
-/// Please check [`is_finite`] yourself before calling this function, or
-/// check [`is_nan`] and [`is_infinite`] and handle those cases yourself.
-///
-/// [`is_finite`]: https://doc.rust-lang.org/std/primitive.f64.html#method.is_finite
-/// [`is_nan`]: https://doc.rust-lang.org/std/primitive.f64.html#method.is_nan
-/// [`is_infinite`]: https://doc.rust-lang.org/std/primitive.f64.html#method.is_infinite
-///
-/// ## Safety
-///
-/// The `result` pointer argument must point to sufficiently many writable bytes
-/// to hold Ryū's representation of `f`.
-///
-/// ## Example
-///
-/// ```
-/// use std::{mem::MaybeUninit, slice, str};
-///
-/// let f = 1.234f64;
-///
-/// unsafe {
-/// let mut buffer = [MaybeUninit::<u8>::uninit(); 24];
-/// let len = ryu::raw::format64(f, buffer.as_mut_ptr() as *mut u8);
-/// let slice = slice::from_raw_parts(buffer.as_ptr() as *const u8, len);
-/// let print = str::from_utf8_unchecked(slice);
-/// assert_eq!(print, "1.234");
-/// }
-/// ```
-#[must_use]
-#[cfg_attr(feature = "no-panic", no_panic)]
-pub unsafe fn format64(f: f64, result: *mut u8) -> usize {
- let bits = f.to_bits();
- let sign = ((bits >> (DOUBLE_MANTISSA_BITS + DOUBLE_EXPONENT_BITS)) & 1) != 0;
- let ieee_mantissa = bits & ((1u64 << DOUBLE_MANTISSA_BITS) - 1);
- let ieee_exponent =
- (bits >> DOUBLE_MANTISSA_BITS) as u32 & ((1u32 << DOUBLE_EXPONENT_BITS) - 1);
-
- let mut index = 0isize;
- if sign {
- *result = b'-';
- index += 1;
- }
-
- if ieee_exponent == 0 && ieee_mantissa == 0 {
- ptr::copy_nonoverlapping(b"0.0".as_ptr(), result.offset(index), 3);
- return sign as usize + 3;
- }
-
- let v = d2d(ieee_mantissa, ieee_exponent);
-
- let length = d2s::decimal_length17(v.mantissa) as isize;
- let k = v.exponent as isize;
- let kk = length + k; // 10^(kk-1) <= v < 10^kk
- debug_assert!(k >= -324);
-
- if 0 <= k && kk <= 16 {
- // 1234e7 -> 12340000000.0
- write_mantissa_long(v.mantissa, result.offset(index + length));
- for i in length..kk {
- *result.offset(index + i) = b'0';
- }
- *result.offset(index + kk) = b'.';
- *result.offset(index + kk + 1) = b'0';
- index as usize + kk as usize + 2
- } else if 0 < kk && kk <= 16 {
- // 1234e-2 -> 12.34
- write_mantissa_long(v.mantissa, result.offset(index + length + 1));
- ptr::copy(result.offset(index + 1), result.offset(index), kk as usize);
- *result.offset(index + kk) = b'.';
- index as usize + length as usize + 1
- } else if -5 < kk && kk <= 0 {
- // 1234e-6 -> 0.001234
- *result.offset(index) = b'0';
- *result.offset(index + 1) = b'.';
- let offset = 2 - kk;
- for i in 2..offset {
- *result.offset(index + i) = b'0';
- }
- write_mantissa_long(v.mantissa, result.offset(index + length + offset));
- index as usize + length as usize + offset as usize
- } else if length == 1 {
- // 1e30
- *result.offset(index) = b'0' + v.mantissa as u8;
- *result.offset(index + 1) = b'e';
- index as usize + 2 + write_exponent3(kk - 1, result.offset(index + 2))
- } else {
- // 1234e30 -> 1.234e33
- write_mantissa_long(v.mantissa, result.offset(index + length + 1));
- *result.offset(index) = *result.offset(index + 1);
- *result.offset(index + 1) = b'.';
- *result.offset(index + length + 1) = b'e';
- index as usize
- + length as usize
- + 2
- + write_exponent3(kk - 1, result.offset(index + length + 2))
- }
-}
-
-/// Print f32 to the given buffer and return number of bytes written.
-///
-/// At most 16 bytes will be written.
-///
-/// ## Special cases
-///
-/// This function **does not** check for NaN or infinity. If the input
-/// number is not a finite float, the printed representation will be some
-/// correctly formatted but unspecified numerical value.
-///
-/// Please check [`is_finite`] yourself before calling this function, or
-/// check [`is_nan`] and [`is_infinite`] and handle those cases yourself.
-///
-/// [`is_finite`]: https://doc.rust-lang.org/std/primitive.f32.html#method.is_finite
-/// [`is_nan`]: https://doc.rust-lang.org/std/primitive.f32.html#method.is_nan
-/// [`is_infinite`]: https://doc.rust-lang.org/std/primitive.f32.html#method.is_infinite
-///
-/// ## Safety
-///
-/// The `result` pointer argument must point to sufficiently many writable bytes
-/// to hold Ryū's representation of `f`.
-///
-/// ## Example
-///
-/// ```
-/// use std::{mem::MaybeUninit, slice, str};
-///
-/// let f = 1.234f32;
-///
-/// unsafe {
-/// let mut buffer = [MaybeUninit::<u8>::uninit(); 16];
-/// let len = ryu::raw::format32(f, buffer.as_mut_ptr() as *mut u8);
-/// let slice = slice::from_raw_parts(buffer.as_ptr() as *const u8, len);
-/// let print = str::from_utf8_unchecked(slice);
-/// assert_eq!(print, "1.234");
-/// }
-/// ```
-#[must_use]
-#[cfg_attr(feature = "no-panic", no_panic)]
-pub unsafe fn format32(f: f32, result: *mut u8) -> usize {
- let bits = f.to_bits();
- let sign = ((bits >> (FLOAT_MANTISSA_BITS + FLOAT_EXPONENT_BITS)) & 1) != 0;
- let ieee_mantissa = bits & ((1u32 << FLOAT_MANTISSA_BITS) - 1);
- let ieee_exponent = (bits >> FLOAT_MANTISSA_BITS) & ((1u32 << FLOAT_EXPONENT_BITS) - 1);
-
- let mut index = 0isize;
- if sign {
- *result = b'-';
- index += 1;
- }
-
- if ieee_exponent == 0 && ieee_mantissa == 0 {
- ptr::copy_nonoverlapping(b"0.0".as_ptr(), result.offset(index), 3);
- return sign as usize + 3;
- }
-
- let v = f2d(ieee_mantissa, ieee_exponent);
-
- let length = common::decimal_length9(v.mantissa) as isize;
- let k = v.exponent as isize;
- let kk = length + k; // 10^(kk-1) <= v < 10^kk
- debug_assert!(k >= -45);
-
- if 0 <= k && kk <= 13 {
- // 1234e7 -> 12340000000.0
- write_mantissa(v.mantissa, result.offset(index + length));
- for i in length..kk {
- *result.offset(index + i) = b'0';
- }
- *result.offset(index + kk) = b'.';
- *result.offset(index + kk + 1) = b'0';
- index as usize + kk as usize + 2
- } else if 0 < kk && kk <= 13 {
- // 1234e-2 -> 12.34
- write_mantissa(v.mantissa, result.offset(index + length + 1));
- ptr::copy(result.offset(index + 1), result.offset(index), kk as usize);
- *result.offset(index + kk) = b'.';
- index as usize + length as usize + 1
- } else if -6 < kk && kk <= 0 {
- // 1234e-6 -> 0.001234
- *result.offset(index) = b'0';
- *result.offset(index + 1) = b'.';
- let offset = 2 - kk;
- for i in 2..offset {
- *result.offset(index + i) = b'0';
- }
- write_mantissa(v.mantissa, result.offset(index + length + offset));
- index as usize + length as usize + offset as usize
- } else if length == 1 {
- // 1e30
- *result.offset(index) = b'0' + v.mantissa as u8;
- *result.offset(index + 1) = b'e';
- index as usize + 2 + write_exponent2(kk - 1, result.offset(index + 2))
- } else {
- // 1234e30 -> 1.234e33
- write_mantissa(v.mantissa, result.offset(index + length + 1));
- *result.offset(index) = *result.offset(index + 1);
- *result.offset(index + 1) = b'.';
- *result.offset(index + length + 1) = b'e';
- index as usize
- + length as usize
- + 2
- + write_exponent2(kk - 1, result.offset(index + length + 2))
- }
-}
diff --git a/vendor/ryu/src/s2d.rs b/vendor/ryu/src/s2d.rs
deleted file mode 100644
index 152ca97..0000000
--- a/vendor/ryu/src/s2d.rs
+++ /dev/null
@@ -1,217 +0,0 @@
-use crate::common::*;
-use crate::d2s;
-use crate::d2s_intrinsics::*;
-use crate::parse::Error;
-#[cfg(feature = "no-panic")]
-use no_panic::no_panic;
-
-const DOUBLE_EXPONENT_BIAS: usize = 1023;
-
-fn floor_log2(value: u64) -> u32 {
- 63_u32.wrapping_sub(value.leading_zeros())
-}
-
-#[cfg_attr(feature = "no-panic", no_panic)]
-pub fn s2d(buffer: &[u8]) -> Result<f64, Error> {
- let len = buffer.len();
- if len == 0 {
- return Err(Error::InputTooShort);
- }
-
- let mut m10digits = 0;
- let mut e10digits = 0;
- let mut dot_index = len;
- let mut e_index = len;
- let mut m10 = 0u64;
- let mut e10 = 0i32;
- let mut signed_m = false;
- let mut signed_e = false;
-
- let mut i = 0;
- if unsafe { *buffer.get_unchecked(0) } == b'-' {
- signed_m = true;
- i += 1;
- }
-
- while let Some(c) = buffer.get(i).copied() {
- if c == b'.' {
- if dot_index != len {
- return Err(Error::MalformedInput);
- }
- dot_index = i;
- i += 1;
- continue;
- }
- if c < b'0' || c > b'9' {
- break;
- }
- if m10digits >= 17 {
- return Err(Error::InputTooLong);
- }
- m10 = 10 * m10 + (c - b'0') as u64;
- if m10 != 0 {
- m10digits += 1;
- }
- i += 1;
- }
-
- if let Some(b'e') | Some(b'E') = buffer.get(i) {
- e_index = i;
- i += 1;
- match buffer.get(i) {
- Some(b'-') => {
- signed_e = true;
- i += 1;
- }
- Some(b'+') => i += 1,
- _ => {}
- }
- while let Some(c) = buffer.get(i).copied() {
- if c < b'0' || c > b'9' {
- return Err(Error::MalformedInput);
- }
- if e10digits > 3 {
- // TODO: Be more lenient. Return +/-Infinity or +/-0 instead.
- return Err(Error::InputTooLong);
- }
- e10 = 10 * e10 + (c - b'0') as i32;
- if e10 != 0 {
- e10digits += 1;
- }
- i += 1;
- }
- }
-
- if i < len {
- return Err(Error::MalformedInput);
- }
- if signed_e {
- e10 = -e10;
- }
- e10 -= if dot_index < e_index {
- (e_index - dot_index - 1) as i32
- } else {
- 0
- };
- if m10 == 0 {
- return Ok(if signed_m { -0.0 } else { 0.0 });
- }
-
- if m10digits + e10 <= -324 || m10 == 0 {
- // Number is less than 1e-324, which should be rounded down to 0; return
- // +/-0.0.
- let ieee = (signed_m as u64) << (d2s::DOUBLE_EXPONENT_BITS + d2s::DOUBLE_MANTISSA_BITS);
- return Ok(f64::from_bits(ieee));
- }
- if m10digits + e10 >= 310 {
- // Number is larger than 1e+309, which should be rounded to +/-Infinity.
- let ieee = ((signed_m as u64) << (d2s::DOUBLE_EXPONENT_BITS + d2s::DOUBLE_MANTISSA_BITS))
- | (0x7ff_u64 << d2s::DOUBLE_MANTISSA_BITS);
- return Ok(f64::from_bits(ieee));
- }
-
- // Convert to binary float m2 * 2^e2, while retaining information about
- // whether the conversion was exact (trailing_zeros).
- let e2: i32;
- let m2: u64;
- let mut trailing_zeros: bool;
- if e10 >= 0 {
- // The length of m * 10^e in bits is:
- // log2(m10 * 10^e10) = log2(m10) + e10 log2(10) = log2(m10) + e10 + e10 * log2(5)
- //
- // We want to compute the DOUBLE_MANTISSA_BITS + 1 top-most bits (+1 for
- // the implicit leading one in IEEE format). We therefore choose a
- // binary output exponent of
- // log2(m10 * 10^e10) - (DOUBLE_MANTISSA_BITS + 1).
- //
- // We use floor(log2(5^e10)) so that we get at least this many bits;
- // better to have an additional bit than to not have enough bits.
- e2 = floor_log2(m10)
- .wrapping_add(e10 as u32)
- .wrapping_add(log2_pow5(e10) as u32)
- .wrapping_sub(d2s::DOUBLE_MANTISSA_BITS + 1) as i32;
-
- // We now compute [m10 * 10^e10 / 2^e2] = [m10 * 5^e10 / 2^(e2-e10)].
- // To that end, we use the DOUBLE_POW5_SPLIT table.
- let j = e2
- .wrapping_sub(e10)
- .wrapping_sub(ceil_log2_pow5(e10))
- .wrapping_add(d2s::DOUBLE_POW5_BITCOUNT);
- debug_assert!(j >= 0);
- debug_assert!(e10 < d2s::DOUBLE_POW5_SPLIT.len() as i32);
- m2 = mul_shift_64(
- m10,
- unsafe { d2s::DOUBLE_POW5_SPLIT.get_unchecked(e10 as usize) },
- j as u32,
- );
-
- // We also compute if the result is exact, i.e.,
- // [m10 * 10^e10 / 2^e2] == m10 * 10^e10 / 2^e2.
- // This can only be the case if 2^e2 divides m10 * 10^e10, which in turn
- // requires that the largest power of 2 that divides m10 + e10 is
- // greater than e2. If e2 is less than e10, then the result must be
- // exact. Otherwise we use the existing multiple_of_power_of_2 function.
- trailing_zeros =
- e2 < e10 || e2 - e10 < 64 && multiple_of_power_of_2(m10, (e2 - e10) as u32);
- } else {
- e2 = floor_log2(m10)
- .wrapping_add(e10 as u32)
- .wrapping_sub(ceil_log2_pow5(-e10) as u32)
- .wrapping_sub(d2s::DOUBLE_MANTISSA_BITS + 1) as i32;
- let j = e2
- .wrapping_sub(e10)
- .wrapping_add(ceil_log2_pow5(-e10))
- .wrapping_sub(1)
- .wrapping_add(d2s::DOUBLE_POW5_INV_BITCOUNT);
- debug_assert!(-e10 < d2s::DOUBLE_POW5_INV_SPLIT.len() as i32);
- m2 = mul_shift_64(
- m10,
- unsafe { d2s::DOUBLE_POW5_INV_SPLIT.get_unchecked(-e10 as usize) },
- j as u32,
- );
- trailing_zeros = multiple_of_power_of_5(m10, -e10 as u32);
- }
-
- // Compute the final IEEE exponent.
- let mut ieee_e2 = i32::max(0, e2 + DOUBLE_EXPONENT_BIAS as i32 + floor_log2(m2) as i32) as u32;
-
- if ieee_e2 > 0x7fe {
- // Final IEEE exponent is larger than the maximum representable; return +/-Infinity.
- let ieee = ((signed_m as u64) << (d2s::DOUBLE_EXPONENT_BITS + d2s::DOUBLE_MANTISSA_BITS))
- | (0x7ff_u64 << d2s::DOUBLE_MANTISSA_BITS);
- return Ok(f64::from_bits(ieee));
- }
-
- // We need to figure out how much we need to shift m2. The tricky part is
- // that we need to take the final IEEE exponent into account, so we need to
- // reverse the bias and also special-case the value 0.
- let shift = if ieee_e2 == 0 { 1 } else { ieee_e2 as i32 }
- .wrapping_sub(e2)
- .wrapping_sub(DOUBLE_EXPONENT_BIAS as i32)
- .wrapping_sub(d2s::DOUBLE_MANTISSA_BITS as i32);
- debug_assert!(shift >= 0);
-
- // We need to round up if the exact value is more than 0.5 above the value
- // we computed. That's equivalent to checking if the last removed bit was 1
- // and either the value was not just trailing zeros or the result would
- // otherwise be odd.
- //
- // We need to update trailing_zeros given that we have the exact output
- // exponent ieee_e2 now.
- trailing_zeros &= (m2 & ((1_u64 << (shift - 1)) - 1)) == 0;
- let last_removed_bit = (m2 >> (shift - 1)) & 1;
- let round_up = last_removed_bit != 0 && (!trailing_zeros || ((m2 >> shift) & 1) != 0);
-
- let mut ieee_m2 = (m2 >> shift).wrapping_add(round_up as u64);
- debug_assert!(ieee_m2 <= 1_u64 << (d2s::DOUBLE_MANTISSA_BITS + 1));
- ieee_m2 &= (1_u64 << d2s::DOUBLE_MANTISSA_BITS) - 1;
- if ieee_m2 == 0 && round_up {
- // Due to how the IEEE represents +/-Infinity, we don't need to check
- // for overflow here.
- ieee_e2 += 1;
- }
- let ieee = ((((signed_m as u64) << d2s::DOUBLE_EXPONENT_BITS) | ieee_e2 as u64)
- << d2s::DOUBLE_MANTISSA_BITS)
- | ieee_m2;
- Ok(f64::from_bits(ieee))
-}
diff --git a/vendor/ryu/src/s2f.rs b/vendor/ryu/src/s2f.rs
deleted file mode 100644
index 9593528..0000000
--- a/vendor/ryu/src/s2f.rs
+++ /dev/null
@@ -1,227 +0,0 @@
-use crate::common::*;
-use crate::f2s;
-use crate::f2s_intrinsics::*;
-use crate::parse::Error;
-#[cfg(feature = "no-panic")]
-use no_panic::no_panic;
-
-const FLOAT_EXPONENT_BIAS: usize = 127;
-
-fn floor_log2(value: u32) -> u32 {
- 31_u32.wrapping_sub(value.leading_zeros())
-}
-
-#[cfg_attr(feature = "no-panic", no_panic)]
-pub fn s2f(buffer: &[u8]) -> Result<f32, Error> {
- let len = buffer.len();
- if len == 0 {
- return Err(Error::InputTooShort);
- }
-
- let mut m10digits = 0;
- let mut e10digits = 0;
- let mut dot_index = len;
- let mut e_index = len;
- let mut m10 = 0u32;
- let mut e10 = 0i32;
- let mut signed_m = false;
- let mut signed_e = false;
-
- let mut i = 0;
- if unsafe { *buffer.get_unchecked(0) } == b'-' {
- signed_m = true;
- i += 1;
- }
-
- while let Some(c) = buffer.get(i).copied() {
- if c == b'.' {
- if dot_index != len {
- return Err(Error::MalformedInput);
- }
- dot_index = i;
- i += 1;
- continue;
- }
- if c < b'0' || c > b'9' {
- break;
- }
- if m10digits >= 9 {
- return Err(Error::InputTooLong);
- }
- m10 = 10 * m10 + (c - b'0') as u32;
- if m10 != 0 {
- m10digits += 1;
- }
- i += 1;
- }
-
- if let Some(b'e') | Some(b'E') = buffer.get(i) {
- e_index = i;
- i += 1;
- match buffer.get(i) {
- Some(b'-') => {
- signed_e = true;
- i += 1;
- }
- Some(b'+') => i += 1,
- _ => {}
- }
- while let Some(c) = buffer.get(i).copied() {
- if c < b'0' || c > b'9' {
- return Err(Error::MalformedInput);
- }
- if e10digits > 3 {
- // TODO: Be more lenient. Return +/-Infinity or +/-0 instead.
- return Err(Error::InputTooLong);
- }
- e10 = 10 * e10 + (c - b'0') as i32;
- if e10 != 0 {
- e10digits += 1;
- }
- i += 1;
- }
- }
-
- if i < len {
- return Err(Error::MalformedInput);
- }
- if signed_e {
- e10 = -e10;
- }
- e10 -= if dot_index < e_index {
- (e_index - dot_index - 1) as i32
- } else {
- 0
- };
- if m10 == 0 {
- return Ok(if signed_m { -0.0 } else { 0.0 });
- }
-
- if m10digits + e10 <= -46 || m10 == 0 {
- // Number is less than 1e-46, which should be rounded down to 0; return
- // +/-0.0.
- let ieee = (signed_m as u32) << (f2s::FLOAT_EXPONENT_BITS + f2s::FLOAT_MANTISSA_BITS);
- return Ok(f32::from_bits(ieee));
- }
- if m10digits + e10 >= 40 {
- // Number is larger than 1e+39, which should be rounded to +/-Infinity.
- let ieee = ((signed_m as u32) << (f2s::FLOAT_EXPONENT_BITS + f2s::FLOAT_MANTISSA_BITS))
- | (0xff_u32 << f2s::FLOAT_MANTISSA_BITS);
- return Ok(f32::from_bits(ieee));
- }
-
- // Convert to binary float m2 * 2^e2, while retaining information about
- // whether the conversion was exact (trailing_zeros).
- let e2: i32;
- let m2: u32;
- let mut trailing_zeros: bool;
- if e10 >= 0 {
- // The length of m * 10^e in bits is:
- // log2(m10 * 10^e10) = log2(m10) + e10 log2(10) = log2(m10) + e10 + e10 * log2(5)
- //
- // We want to compute the FLOAT_MANTISSA_BITS + 1 top-most bits (+1 for
- // the implicit leading one in IEEE format). We therefore choose a
- // binary output exponent of
- // log2(m10 * 10^e10) - (FLOAT_MANTISSA_BITS + 1).
- //
- // We use floor(log2(5^e10)) so that we get at least this many bits; better to
- // have an additional bit than to not have enough bits.
- e2 = floor_log2(m10)
- .wrapping_add(e10 as u32)
- .wrapping_add(log2_pow5(e10) as u32)
- .wrapping_sub(f2s::FLOAT_MANTISSA_BITS + 1) as i32;
-
- // We now compute [m10 * 10^e10 / 2^e2] = [m10 * 5^e10 / 2^(e2-e10)].
- // To that end, we use the FLOAT_POW5_SPLIT table.
- let j = e2
- .wrapping_sub(e10)
- .wrapping_sub(ceil_log2_pow5(e10))
- .wrapping_add(f2s::FLOAT_POW5_BITCOUNT);
- debug_assert!(j >= 0);
- m2 = mul_pow5_div_pow2(m10, e10 as u32, j);
-
- // We also compute if the result is exact, i.e.,
- // [m10 * 10^e10 / 2^e2] == m10 * 10^e10 / 2^e2.
- // This can only be the case if 2^e2 divides m10 * 10^e10, which in turn
- // requires that the largest power of 2 that divides m10 + e10 is
- // greater than e2. If e2 is less than e10, then the result must be
- // exact. Otherwise we use the existing multiple_of_power_of_2 function.
- trailing_zeros =
- e2 < e10 || e2 - e10 < 32 && multiple_of_power_of_2_32(m10, (e2 - e10) as u32);
- } else {
- e2 = floor_log2(m10)
- .wrapping_add(e10 as u32)
- .wrapping_sub(ceil_log2_pow5(-e10) as u32)
- .wrapping_sub(f2s::FLOAT_MANTISSA_BITS + 1) as i32;
-
- // We now compute [m10 * 10^e10 / 2^e2] = [m10 / (5^(-e10) 2^(e2-e10))].
- let j = e2
- .wrapping_sub(e10)
- .wrapping_add(ceil_log2_pow5(-e10))
- .wrapping_sub(1)
- .wrapping_add(f2s::FLOAT_POW5_INV_BITCOUNT);
- m2 = mul_pow5_inv_div_pow2(m10, -e10 as u32, j);
-
- // We also compute if the result is exact, i.e.,
- // [m10 / (5^(-e10) 2^(e2-e10))] == m10 / (5^(-e10) 2^(e2-e10))
- //
- // If e2-e10 >= 0, we need to check whether (5^(-e10) 2^(e2-e10))
- // divides m10, which is the case iff pow5(m10) >= -e10 AND pow2(m10) >=
- // e2-e10.
- //
- // If e2-e10 < 0, we have actually computed [m10 * 2^(e10 e2) /
- // 5^(-e10)] above, and we need to check whether 5^(-e10) divides (m10 *
- // 2^(e10-e2)), which is the case iff pow5(m10 * 2^(e10-e2)) = pow5(m10)
- // >= -e10.
- trailing_zeros = (e2 < e10
- || (e2 - e10 < 32 && multiple_of_power_of_2_32(m10, (e2 - e10) as u32)))
- && multiple_of_power_of_5_32(m10, -e10 as u32);
- }
-
- // Compute the final IEEE exponent.
- let mut ieee_e2 = i32::max(0, e2 + FLOAT_EXPONENT_BIAS as i32 + floor_log2(m2) as i32) as u32;
-
- if ieee_e2 > 0xfe {
- // Final IEEE exponent is larger than the maximum representable; return
- // +/-Infinity.
- let ieee = ((signed_m as u32) << (f2s::FLOAT_EXPONENT_BITS + f2s::FLOAT_MANTISSA_BITS))
- | (0xff_u32 << f2s::FLOAT_MANTISSA_BITS);
- return Ok(f32::from_bits(ieee));
- }
-
- // We need to figure out how much we need to shift m2. The tricky part is
- // that we need to take the final IEEE exponent into account, so we need to
- // reverse the bias and also special-case the value 0.
- let shift = if ieee_e2 == 0 { 1 } else { ieee_e2 as i32 }
- .wrapping_sub(e2)
- .wrapping_sub(FLOAT_EXPONENT_BIAS as i32)
- .wrapping_sub(f2s::FLOAT_MANTISSA_BITS as i32);
- debug_assert!(shift >= 0);
-
- // We need to round up if the exact value is more than 0.5 above the value
- // we computed. That's equivalent to checking if the last removed bit was 1
- // and either the value was not just trailing zeros or the result would
- // otherwise be odd.
- //
- // We need to update trailing_zeros given that we have the exact output
- // exponent ieee_e2 now.
- trailing_zeros &= (m2 & ((1_u32 << (shift - 1)) - 1)) == 0;
- let last_removed_bit = (m2 >> (shift - 1)) & 1;
- let round_up = last_removed_bit != 0 && (!trailing_zeros || ((m2 >> shift) & 1) != 0);
-
- let mut ieee_m2 = (m2 >> shift).wrapping_add(round_up as u32);
- debug_assert!(ieee_m2 <= 1_u32 << (f2s::FLOAT_MANTISSA_BITS + 1));
- ieee_m2 &= (1_u32 << f2s::FLOAT_MANTISSA_BITS) - 1;
- if ieee_m2 == 0 && round_up {
- // Rounding up may overflow the mantissa.
- // In this case we move a trailing zero of the mantissa into the
- // exponent.
- // Due to how the IEEE represents +/-Infinity, we don't need to check
- // for overflow here.
- ieee_e2 += 1;
- }
- let ieee = ((((signed_m as u32) << f2s::FLOAT_EXPONENT_BITS) | ieee_e2)
- << f2s::FLOAT_MANTISSA_BITS)
- | ieee_m2;
- Ok(f32::from_bits(ieee))
-}