aboutsummaryrefslogtreecommitdiff
path: root/vendor/zune-inflate/src/decoder.rs
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/zune-inflate/src/decoder.rs')
-rw-r--r--vendor/zune-inflate/src/decoder.rs1791
1 files changed, 0 insertions, 1791 deletions
diff --git a/vendor/zune-inflate/src/decoder.rs b/vendor/zune-inflate/src/decoder.rs
deleted file mode 100644
index 105c882..0000000
--- a/vendor/zune-inflate/src/decoder.rs
+++ /dev/null
@@ -1,1791 +0,0 @@
-#![allow(unused_imports)]
-
-use alloc::vec::Vec;
-use alloc::{format, vec};
-
-use crate::bitstream::BitStreamReader;
-use crate::constants::{
- DEFLATE_BLOCKTYPE_DYNAMIC_HUFFMAN, DEFLATE_BLOCKTYPE_RESERVED, DEFLATE_BLOCKTYPE_STATIC,
- DEFLATE_BLOCKTYPE_UNCOMPRESSED, DEFLATE_MAX_CODEWORD_LENGTH,
- DEFLATE_MAX_LITLEN_CODEWORD_LENGTH, DEFLATE_MAX_NUM_SYMS, DEFLATE_MAX_OFFSET_CODEWORD_LENGTH,
- DEFLATE_MAX_PRE_CODEWORD_LEN, DEFLATE_NUM_LITLEN_SYMS, DEFLATE_NUM_OFFSET_SYMS,
- DEFLATE_NUM_PRECODE_SYMS, DEFLATE_PRECODE_LENS_PERMUTATION, DELFATE_MAX_LENS_OVERRUN,
- FASTCOPY_BYTES, FASTLOOP_MAX_BYTES_WRITTEN, HUFFDEC_END_OF_BLOCK, HUFFDEC_EXCEPTIONAL,
- HUFFDEC_LITERAL, HUFFDEC_SUITABLE_POINTER, LITLEN_DECODE_BITS, LITLEN_DECODE_RESULTS,
- LITLEN_ENOUGH, LITLEN_TABLE_BITS, OFFSET_DECODE_RESULTS, OFFSET_ENOUGH, OFFSET_TABLEBITS,
- PRECODE_DECODE_RESULTS, PRECODE_ENOUGH, PRECODE_TABLE_BITS
-};
-use crate::errors::{DecodeErrorStatus, InflateDecodeErrors};
-#[cfg(feature = "gzip")]
-use crate::gzip_constants::{
- GZIP_CM_DEFLATE, GZIP_FCOMMENT, GZIP_FEXTRA, GZIP_FHCRC, GZIP_FNAME, GZIP_FOOTER_SIZE,
- GZIP_FRESERVED, GZIP_ID1, GZIP_ID2
-};
-use crate::utils::{copy_rep_matches, fixed_copy_within, make_decode_table_entry};
-
-struct DeflateHeaderTables
-{
- litlen_decode_table: [u32; LITLEN_ENOUGH],
- offset_decode_table: [u32; OFFSET_ENOUGH]
-}
-
-impl Default for DeflateHeaderTables
-{
- fn default() -> Self
- {
- DeflateHeaderTables {
- litlen_decode_table: [0; LITLEN_ENOUGH],
- offset_decode_table: [0; OFFSET_ENOUGH]
- }
- }
-}
-
-/// Options that can influence decompression
-/// in Deflate/Zlib/Gzip
-///
-/// To use them, pass a customized options to
-/// the deflate decoder.
-#[derive(Copy, Clone)]
-pub struct DeflateOptions
-{
- limit: usize,
- confirm_checksum: bool,
- size_hint: usize
-}
-
-impl Default for DeflateOptions
-{
- fn default() -> Self
- {
- DeflateOptions {
- limit: 1 << 30,
- confirm_checksum: true,
- size_hint: 37000
- }
- }
-}
-
-impl DeflateOptions
-{
- /// Get deflate/zlib limit option
- ///
- /// The decoder won't extend the inbuilt limit and will
- /// return an error if the limit is exceeded
- ///
- /// # Returns
- /// The currently set limit of the instance
- /// # Note
- /// This is provided as a best effort, correctly quiting
- /// is detrimental to speed and hence this should not be relied too much.
- pub const fn get_limit(&self) -> usize
- {
- self.limit
- }
- /// Set a limit to the internal vector
- /// used to store decoded zlib/deflate output.
- ///
- /// # Arguments
- /// limit: The new decompressor limit
- /// # Returns
- /// A modified version of DeflateDecoder
- ///
- /// # Note
- /// This is provided as a best effort, correctly quiting
- /// is detrimental to speed and hence this should not be relied too much
- #[must_use]
- pub fn set_limit(mut self, limit: usize) -> Self
- {
- self.limit = limit;
- self
- }
-
- /// Get whether the decoder will confirm a checksum
- /// after decoding
- pub const fn get_confirm_checksum(&self) -> bool
- {
- self.confirm_checksum
- }
- /// Set whether the decoder should confirm a checksum
- /// after decoding
- ///
- /// Note, you should definitely confirm your checksum, use
- /// this with caution, otherwise data returned may be corrupt
- ///
- /// # Arguments
- /// - yes: When true, the decoder will confirm checksum
- /// when false, the decoder will skip checksum verification
- /// # Notes
- /// This does not have an influence for deflate decoding as
- /// it does not have a checksum
- pub fn set_confirm_checksum(mut self, yes: bool) -> Self
- {
- self.confirm_checksum = yes;
- self
- }
-
- /// Get the default set size hint for the decompressor
- ///
- /// The decompressor initializes the internal storage for decompressed bytes
- /// with this size and will reallocate the vec if the decompressed size becomes bigger
- /// than this, but when the user currently knows how big the output will be, can be used
- /// to prevent unnecessary re-allocations
- pub const fn get_size_hint(&self) -> usize
- {
- self.size_hint
- }
- /// Set the size hint for the decompressor
- ///
- /// This can be used to prevent multiple re-allocations
- #[must_use]
- pub const fn set_size_hint(mut self, hint: usize) -> Self
- {
- self.size_hint = hint;
- self
- }
-}
-
-/// A deflate decoder instance.
-///
-/// The decoder manages output buffer as opposed to requiring the caller to provide a pre-allocated buffer
-/// it tracks number of bytes written and on successfully reaching the
-/// end of the block, will return a vector with exactly
-/// the number of decompressed bytes.
-///
-/// This means that it may use up huge amounts of memory if not checked, but
-/// there are [options] that can prevent that
-///
-/// [options]: DeflateOptions
-pub struct DeflateDecoder<'a>
-{
- data: &'a [u8],
- position: usize,
- stream: BitStreamReader<'a>,
- is_last_block: bool,
- static_codes_loaded: bool,
- deflate_header_tables: DeflateHeaderTables,
- options: DeflateOptions
-}
-
-impl<'a> DeflateDecoder<'a>
-{
- /// Create a new decompressor that will read compressed
- /// data from `data` and return a new vector containing new data
- ///
- /// # Arguments
- /// - `data`: The compressed data. Data can be of any type
- /// gzip,zlib or raw deflate.
- ///
- /// # Returns
- /// A decoder instance which will pull compressed data from `data` to inflate the output output
- ///
- /// # Note
- ///
- /// The default output size limit is **1 GiB.**
- /// this is to protect the end user against ddos attacks as deflate does not specify it's
- /// output size upfront
- ///
- /// The checksum will be verified depending on the called function.
- /// this only works for zlib and gzip since deflate does not have a checksum
- ///
- /// These defaults can be overridden via [new_with_options()](Self::new_with_options).
- pub fn new(data: &'a [u8]) -> DeflateDecoder<'a>
- {
- let options = DeflateOptions::default();
-
- Self::new_with_options(data, options)
- }
- /// Create new decoder with specified options
- ///
- /// This can be used to fine tune the decoder to the user's
- /// needs.
- ///
- ///
- /// # Arguments
- /// - `data`: The compressed data. Data can be of any format i.e
- /// gzip, zlib or raw deflate.
- /// - `options` : A set of user defined options which tune how the decompressor
- ///
- /// # Returns
- /// A decoder instance which will pull compressed data from `data` to inflate output
- ///
- /// # Example
- /// ```no_run
- /// use zune_inflate::{DeflateDecoder, DeflateOptions};
- /// let data = [37];
- /// let options = DeflateOptions::default()
- /// .set_confirm_checksum(true) // confirm the checksum for zlib and gzip
- /// .set_limit(1000); // how big I think the input will be
- /// let mut decoder = DeflateDecoder::new_with_options(&data,options);
- /// // do some stuff and then call decode
- /// let data = decoder.decode_zlib();
- ///
- /// ```
- pub fn new_with_options(data: &'a [u8], options: DeflateOptions) -> DeflateDecoder<'a>
- {
- // create stream
- DeflateDecoder {
- data,
- position: 0,
- stream: BitStreamReader::new(data),
- is_last_block: false,
- static_codes_loaded: false,
- deflate_header_tables: DeflateHeaderTables::default(),
- options
- }
- }
- /// Decode zlib-encoded data returning the uncompressed in a `Vec<u8>`
- /// or an error if something went wrong.
- ///
- /// Bytes consumed will be from the data passed when the
- /// `new` method was called.
- ///
- /// # Arguments
- /// - None
- /// # Returns
- /// Result type containing the decoded data.
- ///
- /// - `Ok(Vec<u8>)`: Decoded vector containing the uncompressed bytes
- /// - `Err(InflateDecodeErrors)`: Error that occurred during decoding
- ///
- /// It's possible to recover bytes even after an error occurred, bytes up
- /// to when error was encountered are stored in [InflateDecodeErrors]
- ///
- ///
- /// # Note
- /// This needs the `zlib` feature enabled to be available otherwise it's a
- /// compile time error
- ///
- /// [InflateDecodeErrors]:crate::errors::InflateDecodeErrors
- ///
- #[cfg(feature = "zlib")]
- pub fn decode_zlib(&mut self) -> Result<Vec<u8>, InflateDecodeErrors>
- {
- use crate::utils::calc_adler_hash;
-
- if self.data.len()
- < 2 /* zlib header */
- + 4
- /* Deflate */
- {
- return Err(InflateDecodeErrors::new_with_error(
- DecodeErrorStatus::InsufficientData
- ));
- }
-
- // Zlib flags
- // See https://www.ietf.org/rfc/rfc1950.txt for
- // the RFC
- let cmf = self.data[0];
- let flg = self.data[1];
-
- let cm = cmf & 0xF;
- let cinfo = cmf >> 4;
-
- // let fcheck = flg & 0xF;
- // let fdict = (flg >> 4) & 1;
- // let flevel = flg >> 5;
-
- // confirm we have the right deflate methods
- if cm != 8
- {
- if cm == 15
- {
- return Err(InflateDecodeErrors::new_with_error(DecodeErrorStatus::Generic(
- "CM of 15 is preserved by the standard,currently don't know how to handle it"
- )));
- }
- return Err(InflateDecodeErrors::new_with_error(
- DecodeErrorStatus::GenericStr(format!("Unknown zlib compression method {cm}"))
- ));
- }
- if cinfo > 7
- {
- return Err(InflateDecodeErrors::new_with_error(
- DecodeErrorStatus::GenericStr(format!(
- "Unknown cinfo `{cinfo}` greater than 7, not allowed"
- ))
- ));
- }
- let flag_checks = (u16::from(cmf) * 256) + u16::from(flg);
-
- if flag_checks % 31 != 0
- {
- return Err(InflateDecodeErrors::new_with_error(
- DecodeErrorStatus::Generic("FCHECK integrity not preserved")
- ));
- }
-
- self.position = 2;
-
- let data = self.decode_deflate()?;
-
- if self.options.confirm_checksum
- {
- // Get number of consumed bytes from the input
- let out_pos = self.stream.get_position() + self.position + self.stream.over_read;
-
- // read adler
- if let Some(adler) = self.data.get(out_pos..out_pos + 4)
- {
- let adler_bits: [u8; 4] = adler.try_into().unwrap();
-
- let adler32_expected = u32::from_be_bytes(adler_bits);
-
- let adler32_found = calc_adler_hash(&data);
-
- if adler32_expected != adler32_found
- {
- let err_msg =
- DecodeErrorStatus::MismatchedAdler(adler32_expected, adler32_found);
- let err = InflateDecodeErrors::new(err_msg, data);
-
- return Err(err);
- }
- }
- else
- {
- let err = InflateDecodeErrors::new(DecodeErrorStatus::InsufficientData, data);
-
- return Err(err);
- }
- }
-
- Ok(data)
- }
-
- /// Decode a gzip encoded data and return the uncompressed data in a
- /// `Vec<u8>` or an error if something went wrong
- ///
- /// Bytes consumed will be from the data passed when the
- /// `new` method was called.
- ///
- /// # Arguments
- /// - None
- /// # Returns
- /// Result type containing the decoded data.
- ///
- /// - `Ok(Vec<u8>)`: Decoded vector containing the uncompressed bytes
- /// - `Err(InflateDecodeErrors)`: Error that occurred during decoding
- ///
- /// It's possible to recover bytes even after an error occurred, bytes up
- /// to when error was encountered are stored in [InflateDecodeErrors]
- ///
- /// # Note
- /// This needs the `gzip` feature enabled to be available, otherwise it's a
- /// compile time error
- ///
- /// [InflateDecodeErrors]:crate::errors::InflateDecodeErrors
- ///
- #[cfg(feature = "gzip")]
- pub fn decode_gzip(&mut self) -> Result<Vec<u8>, InflateDecodeErrors>
- {
- if self.data.len() < 18
- {
- return Err(InflateDecodeErrors::new_with_error(
- DecodeErrorStatus::InsufficientData
- ));
- }
-
- if self.data[self.position] != GZIP_ID1
- {
- return Err(InflateDecodeErrors::new_with_error(
- DecodeErrorStatus::CorruptData
- ));
- }
- self.position += 1;
- if self.data[self.position] != GZIP_ID2
- {
- return Err(InflateDecodeErrors::new_with_error(
- DecodeErrorStatus::CorruptData
- ));
- }
- self.position += 1;
-
- if self.data[self.position] != GZIP_CM_DEFLATE
- {
- return Err(InflateDecodeErrors::new_with_error(
- DecodeErrorStatus::CorruptData
- ));
- }
- self.position += 1;
-
- let flg = self.data[self.position];
- self.position += 1;
-
- // skip mtime
- self.position += 4;
- // skip xfl
- self.position += 1;
- // skip os
- self.position += 1;
-
- if (flg & GZIP_FRESERVED) != 0
- {
- return Err(InflateDecodeErrors::new_with_error(
- DecodeErrorStatus::CorruptData
- ));
- }
- // extra field
- if (flg & GZIP_FEXTRA) != 0
- {
- let len_bytes = self.data[self.position..self.position + 2]
- .try_into()
- .unwrap();
- let xlen = usize::from(u16::from_le_bytes(len_bytes));
-
- self.position += 2;
-
- if self.data.len().saturating_sub(self.position) < xlen + GZIP_FOOTER_SIZE
- {
- return Err(InflateDecodeErrors::new_with_error(
- DecodeErrorStatus::CorruptData
- ));
- }
- self.position += xlen;
- }
- // original file name zero terminated
- if (flg & GZIP_FNAME) != 0
- {
- loop
- {
- if let Some(byte) = self.data.get(self.position)
- {
- self.position += 1;
-
- if *byte == 0
- {
- break;
- }
- }
- else
- {
- return Err(InflateDecodeErrors::new_with_error(
- DecodeErrorStatus::InsufficientData
- ));
- }
- }
- }
- // File comment zero terminated
- if (flg & GZIP_FCOMMENT) != 0
- {
- loop
- {
- if let Some(byte) = self.data.get(self.position)
- {
- self.position += 1;
-
- if *byte == 0
- {
- break;
- }
- }
- else
- {
- return Err(InflateDecodeErrors::new_with_error(
- DecodeErrorStatus::InsufficientData
- ));
- }
- }
- }
- // crc16 for gzip header
- if (flg & GZIP_FHCRC) != 0
- {
- self.position += 2;
- }
-
- if self.position + GZIP_FOOTER_SIZE > self.data.len()
- {
- return Err(InflateDecodeErrors::new_with_error(
- DecodeErrorStatus::InsufficientData
- ));
- }
-
- let data = self.decode_deflate()?;
-
- let mut out_pos = self.stream.get_position() + self.position + self.stream.over_read;
-
- if self.options.confirm_checksum
- {
- // Get number of consumed bytes from the input
-
- if let Some(crc) = self.data.get(out_pos..out_pos + 4)
- {
- let crc_bits: [u8; 4] = crc.try_into().unwrap();
-
- let crc32_expected = u32::from_le_bytes(crc_bits);
-
- let crc32_found = !crate::crc::crc32(&data, !0);
-
- if crc32_expected != crc32_found
- {
- let err_msg = DecodeErrorStatus::MismatchedCRC(crc32_expected, crc32_found);
- let err = InflateDecodeErrors::new(err_msg, data);
-
- return Err(err);
- }
- }
- else
- {
- let err = InflateDecodeErrors::new(DecodeErrorStatus::InsufficientData, data);
-
- return Err(err);
- }
- }
- //checksum
- out_pos += 4;
-
- if let Some(val) = self.data.get(out_pos..out_pos + 4)
- {
- let actual_bytes: [u8; 4] = val.try_into().unwrap();
- let ac = u32::from_le_bytes(actual_bytes) as usize;
-
- if data.len() != ac
- {
- let err = DecodeErrorStatus::Generic("ISIZE does not match actual bytes");
-
- let err = InflateDecodeErrors::new(err, data);
-
- return Err(err);
- }
- }
- else
- {
- let err = InflateDecodeErrors::new(DecodeErrorStatus::InsufficientData, data);
-
- return Err(err);
- }
-
- Ok(data)
- }
- /// Decode a deflate stream returning the data as `Vec<u8>` or an error
- /// indicating what went wrong.
- /// # Arguments
- /// - None
- /// # Returns
- /// Result type containing the decoded data.
- ///
- /// - `Ok(Vec<u8>)`: Decoded vector containing the uncompressed bytes
- /// - `Err(InflateDecodeErrors)`: Error that occurred during decoding
- ///
- /// It's possible to recover bytes even after an error occurred, bytes up
- /// to when error was encountered are stored in [InflateDecodeErrors]
- ///
- ///
- /// # Example
- /// ```no_run
- /// let data = [42]; // answer to life, the universe and everything
- ///
- /// let mut decoder = zune_inflate::DeflateDecoder::new(&data);
- /// let bytes = decoder.decode_deflate().unwrap();
- /// ```
- ///
- /// [InflateDecodeErrors]:crate::errors::InflateDecodeErrors
- pub fn decode_deflate(&mut self) -> Result<Vec<u8>, InflateDecodeErrors>
- {
- self.start_deflate_block()
- }
- /// Main inner loop for decompressing deflate data
- #[allow(unused_assignments)]
- fn start_deflate_block(&mut self) -> Result<Vec<u8>, InflateDecodeErrors>
- {
- // start deflate decode
- // re-read the stream so that we can remove code read by zlib
- self.stream = BitStreamReader::new(&self.data[self.position..]);
-
- self.stream.refill();
-
- // Output space for our decoded bytes.
- let mut out_block = vec![0; self.options.size_hint];
- // bits used
-
- let mut src_offset = 0;
- let mut dest_offset = 0;
-
- loop
- {
- self.stream.refill();
-
- self.is_last_block = self.stream.get_bits(1) == 1;
- let block_type = self.stream.get_bits(2);
-
- if block_type == DEFLATE_BLOCKTYPE_UNCOMPRESSED
- {
- /*
- * Uncompressed block: copy 'len' bytes literally from the input
- * buffer to the output buffer.
- */
- /*
- * The RFC says that
- * skip any remaining bits in current partially
- * processed byte
- * read LEN and NLEN (see next section)
- * copy LEN bytes of data to output
- */
-
- if self.stream.over_read > usize::from(self.stream.get_bits_left() >> 3)
- {
- out_block.truncate(dest_offset);
-
- let err_msg = DecodeErrorStatus::Generic("over-read stream");
- let error = InflateDecodeErrors::new(err_msg, out_block);
-
- return Err(error);
- }
- let partial_bits = self.stream.get_bits_left() & 7;
-
- self.stream.drop_bits(partial_bits);
-
- let len = self.stream.get_bits(16) as u16;
- let nlen = self.stream.get_bits(16) as u16;
-
- // copy to deflate
- if len != !nlen
- {
- out_block.truncate(dest_offset);
-
- let err_msg = DecodeErrorStatus::Generic("Len and nlen do not match");
- let error = InflateDecodeErrors::new(err_msg, out_block);
-
- return Err(error);
- }
- let len = len as usize;
-
- let start = self.stream.get_position() + self.position + self.stream.over_read;
-
- // ensure there is enough space for a fast copy
- if dest_offset + len + FASTCOPY_BYTES > out_block.len()
- {
- // and if there is not, resize
- let new_len = out_block.len() + RESIZE_BY + len;
-
- out_block.resize(new_len, 0);
- }
-
- if self.data.get((start + len).saturating_sub(1)).is_none()
- {
- out_block.truncate(dest_offset);
-
- let err_msg = DecodeErrorStatus::CorruptData;
- let error = InflateDecodeErrors::new(err_msg, out_block);
-
- return Err(error);
- }
- if dest_offset > self.options.limit
- {
- out_block.truncate(dest_offset);
-
- let err_msg =
- DecodeErrorStatus::OutputLimitExceeded(self.options.limit, out_block.len());
- let error = InflateDecodeErrors::new(err_msg, out_block);
-
- return Err(error);
- }
-
- out_block[dest_offset..dest_offset + len]
- .copy_from_slice(&self.data[start..start + len]);
-
- dest_offset += len;
-
- // get the new position to write.
- self.stream.position =
- len + (self.stream.position - usize::from(self.stream.bits_left >> 3));
-
- self.stream.reset();
-
- if self.is_last_block
- {
- break;
- }
-
- continue;
- }
- else if block_type == DEFLATE_BLOCKTYPE_RESERVED
- {
- out_block.truncate(dest_offset);
-
- let err_msg = DecodeErrorStatus::Generic("Reserved block type 0b11 encountered");
- let error = InflateDecodeErrors::new(err_msg, out_block);
-
- return Err(error);
- }
-
- // build decode tables for static and dynamic tables
- match self.build_decode_table(block_type)
- {
- Ok(_) => (),
- Err(value) =>
- {
- out_block.truncate(dest_offset);
-
- let err_msg = value;
- let error = InflateDecodeErrors::new(err_msg, out_block);
-
- return Err(error);
- }
- };
-
- // Tables are mutated into the struct, so at this point we know the tables
- // are loaded, take a reference to them
- let litlen_decode_table = &self.deflate_header_tables.litlen_decode_table;
- let offset_decode_table = &self.deflate_header_tables.offset_decode_table;
-
- /*
- * This is the "fast loop" for decoding literals and matches. It does
- * bounds checks on in_next and out_next in the loop conditions so that
- * additional bounds checks aren't needed inside the loop body.
- *
- * To reduce latency, the bit-buffer is refilled and the next litlen
- * decode table entry is preloaded before each loop iteration.
- */
- let (mut literal, mut length, mut offset, mut entry) = (0, 0, 0, 0);
-
- let mut saved_bitbuf;
-
- 'decode: loop
- {
- let close_src = 3 * FASTCOPY_BYTES < self.stream.remaining_bytes();
-
- if close_src
- {
- self.stream.refill_inner_loop();
-
- let lit_mask = self.stream.peek_bits::<LITLEN_DECODE_BITS>();
-
- entry = litlen_decode_table[lit_mask];
-
- 'sequence: loop
- {
- // Resize the output vector here to ensure we can always have
- // enough space for sloppy copies
- if dest_offset + FASTLOOP_MAX_BYTES_WRITTEN > out_block.len()
- {
- let curr_len = out_block.len();
- out_block.resize(curr_len + FASTLOOP_MAX_BYTES_WRITTEN + RESIZE_BY, 0)
- }
- // At this point entry contains the next value of the litlen
- // This will always be the case so meaning all our exit paths need
- // to load in the next entry.
-
- // recheck after every sequence
- // when we hit continue, we need to recheck this
- // as we are trying to emulate a do while
- let new_check = self.stream.src.len() < self.stream.position + 8;
-
- if new_check
- {
- break 'sequence;
- }
-
- self.stream.refill_inner_loop();
- /*
- * Consume the bits for the litlen decode table entry. Save the
- * original bit-buf for later, in case the extra match length
- * bits need to be extracted from it.
- */
- saved_bitbuf = self.stream.buffer;
-
- self.stream.drop_bits((entry & 0xFF) as u8);
-
- /*
- * Begin by checking for a "fast" literal, i.e. a literal that
- * doesn't need a subtable.
- */
- if (entry & HUFFDEC_LITERAL) != 0
- {
- /*
- * On 64-bit platforms, we decode up to 2 extra fast
- * literals in addition to the primary item, as this
- * increases performance and still leaves enough bits
- * remaining for what follows. We could actually do 3,
- * assuming LITLEN_TABLEBITS=11, but that actually
- * decreases performance slightly (perhaps by messing
- * with the branch prediction of the conditional refill
- * that happens later while decoding the match offset).
- */
-
- literal = entry >> 16;
-
- let new_pos = self.stream.peek_bits::<LITLEN_DECODE_BITS>();
-
- entry = litlen_decode_table[new_pos];
- saved_bitbuf = self.stream.buffer;
-
- self.stream.drop_bits(entry as u8);
-
- let out: &mut [u8; 2] = out_block
- .get_mut(dest_offset..dest_offset + 2)
- .unwrap()
- .try_into()
- .unwrap();
-
- out[0] = literal as u8;
- dest_offset += 1;
-
- if (entry & HUFFDEC_LITERAL) != 0
- {
- /*
- * Another fast literal, but this one is in lieu of the
- * primary item, so it doesn't count as one of the extras.
- */
-
- // load in the next entry.
- literal = entry >> 16;
-
- let new_pos = self.stream.peek_bits::<LITLEN_DECODE_BITS>();
-
- entry = litlen_decode_table[new_pos];
-
- out[1] = literal as u8;
- dest_offset += 1;
-
- continue;
- }
- }
- /*
- * It's not a literal entry, so it can be a length entry, a
- * subtable pointer entry, or an end-of-block entry. Detect the
- * two unlikely cases by testing the HUFFDEC_EXCEPTIONAL flag.
- */
- if (entry & HUFFDEC_EXCEPTIONAL) != 0
- {
- // Subtable pointer or end of block entry
- if (entry & HUFFDEC_END_OF_BLOCK) != 0
- {
- // block done
- break 'decode;
- }
- /*
- * A subtable is required. Load and consume the
- * subtable entry. The subtable entry can be of any
- * type: literal, length, or end-of-block.
- */
- let entry_position = ((entry >> 8) & 0x3F) as usize;
- let mut pos = (entry >> 16) as usize;
-
- saved_bitbuf = self.stream.buffer;
-
- pos += self.stream.peek_var_bits(entry_position);
- entry = litlen_decode_table[pos.min(LITLEN_ENOUGH - 1)];
-
- self.stream.drop_bits(entry as u8);
-
- if (entry & HUFFDEC_LITERAL) != 0
- {
- // decode a literal that required a sub table
- let new_pos = self.stream.peek_bits::<LITLEN_DECODE_BITS>();
-
- literal = entry >> 16;
- entry = litlen_decode_table[new_pos];
-
- *out_block.get_mut(dest_offset).unwrap_or(&mut 0) =
- (literal & 0xFF) as u8;
-
- dest_offset += 1;
-
- continue;
- }
-
- if (entry & HUFFDEC_END_OF_BLOCK) != 0
- {
- break 'decode;
- }
- }
-
- // At this point,we dropped at most 22 bits(LITLEN_DECODE is 11 and we
- // can do it twice), we now just have 34 bits min remaining.
-
- /*
- * Decode the match length: the length base value associated
- * with the litlen symbol (which we extract from the decode
- * table entry), plus the extra length bits. We don't need to
- * consume the extra length bits here, as they were included in
- * the bits consumed by the entry earlier. We also don't need
- * to check for too-long matches here, as this is inside the
- * fast loop where it's already been verified that the output
- * buffer has enough space remaining to copy a max-length match.
- */
- let entry_dup = entry;
-
- entry = offset_decode_table[self.stream.peek_bits::<OFFSET_TABLEBITS>()];
- length = (entry_dup >> 16) as usize;
-
- let mask = (1 << entry_dup as u8) - 1;
-
- length += (saved_bitbuf & mask) as usize >> ((entry_dup >> 8) as u8);
-
- // offset requires a subtable
- if (entry & HUFFDEC_EXCEPTIONAL) != 0
- {
- self.stream.drop_bits(OFFSET_TABLEBITS as u8);
- let extra = self.stream.peek_var_bits(((entry >> 8) & 0x3F) as usize);
- entry = offset_decode_table[((entry >> 16) as usize + extra) & 511];
- // refill to handle some weird edge case where we have
- // less bits than needed for reading the lit-len
- }
- saved_bitbuf = self.stream.buffer;
-
- self.stream.drop_bits((entry & 0xFF) as u8);
-
- let mask = (1 << entry as u8) - 1;
-
- offset = (entry >> 16) as usize;
- offset += (saved_bitbuf & mask) as usize >> (((entry >> 8) & 0xFF) as u8);
-
- if offset > dest_offset
- {
- out_block.truncate(dest_offset);
-
- let err_msg = DecodeErrorStatus::CorruptData;
- let error = InflateDecodeErrors::new(err_msg, out_block);
-
- return Err(error);
- }
-
- src_offset = dest_offset - offset;
-
- if self.stream.bits_left < 11
- {
- self.stream.refill_inner_loop();
- }
- // Copy some bytes unconditionally
- // This makes us copy smaller match lengths quicker because we don't need
- // a loop + don't send too much pressure to the Memory unit.
- fixed_copy_within::<FASTCOPY_BYTES>(
- &mut out_block,
- src_offset,
- dest_offset
- );
-
- entry = litlen_decode_table[self.stream.peek_bits::<LITLEN_DECODE_BITS>()];
-
- let mut current_position = dest_offset;
-
- dest_offset += length;
-
- if offset == 1
- {
- // RLE fill with a single byte
- let byte_to_repeat = out_block[src_offset];
- out_block[current_position..dest_offset].fill(byte_to_repeat);
- }
- else if offset <= FASTCOPY_BYTES
- && current_position + offset < dest_offset
- {
- // The second conditional ensures we only come
- // here if the first copy didn't succeed to copy just enough bytes for a rep
- // match to be valid, i.e we want this path to be taken the least amount
- // of times possible
-
- // the unconditional copy above copied some bytes
- // don't let it go into waste
- // Increment the position we are in by the number of correct bytes
- // currently copied
- let mut src_position = src_offset + offset;
- let mut dest_position = current_position + offset;
-
- // loop copying offset bytes in place
- // notice this loop does fixed copies but increments in offset bytes :)
- // that is intentional.
- loop
- {
- fixed_copy_within::<FASTCOPY_BYTES>(
- &mut out_block,
- src_position,
- dest_position
- );
-
- src_position += offset;
- dest_position += offset;
-
- if dest_position > dest_offset
- {
- break;
- }
- }
- }
- else if length > FASTCOPY_BYTES
- {
- current_position += FASTCOPY_BYTES;
- // fast non-overlapping copy
- //
- // We have enough space to write the ML+FAST_COPY bytes ahead
- // so we know this won't come to shoot us in the foot.
- //
- // An optimization is to copy FAST_COPY_BITS per invocation
- // Currently FASTCOPY_BYTES is 16, this fits in nicely as we
- // it's a single SIMD instruction on a lot of things, i.e x86,Arm and even
- // wasm.
-
- // current position of the match
- let mut dest_src_offset = src_offset + FASTCOPY_BYTES;
-
- // Number of bytes we are to copy
- // copy in batches of FAST_BYTES
- 'match_lengths: loop
- {
- // Safety: We resized out_block hence we know it can handle
- // sloppy copies without it being out of bounds
- //
- // Reason: This is a latency critical loop, even branches start
- // to matter
- fixed_copy_within::<FASTCOPY_BYTES>(
- &mut out_block,
- dest_src_offset,
- current_position
- );
-
- dest_src_offset += FASTCOPY_BYTES;
- current_position += FASTCOPY_BYTES;
-
- if current_position > dest_offset
- {
- break 'match_lengths;
- }
- }
- }
-
- if dest_offset > self.options.limit
- {
- out_block.truncate(dest_offset);
-
- let err_msg = DecodeErrorStatus::OutputLimitExceeded(
- self.options.limit,
- dest_offset
- );
- let error = InflateDecodeErrors::new(err_msg, out_block);
-
- return Err(error);
- }
-
- if self.stream.src.len() < self.stream.position + 8
- {
- // close to input end, move to the slower one
- break 'sequence;
- }
- }
- }
- // generic loop that does things a bit slower but it's okay since it doesn't
- // deal with a lot of things
- // We can afford to be more careful here, checking that we do
- // not drop non-existent bits etc etc as we do not have the
- // assurances of the fast loop bits above.
- loop
- {
- self.stream.refill();
-
- if self.stream.over_read > usize::from(self.stream.bits_left >> 3)
- {
- out_block.truncate(dest_offset);
-
- let err_msg = DecodeErrorStatus::CorruptData;
- let error = InflateDecodeErrors::new(err_msg, out_block);
-
- return Err(error);
- }
-
- let literal_mask = self.stream.peek_bits::<LITLEN_DECODE_BITS>();
-
- entry = litlen_decode_table[literal_mask];
-
- saved_bitbuf = self.stream.buffer;
-
- self.stream.drop_bits((entry & 0xFF) as u8);
-
- if (entry & HUFFDEC_SUITABLE_POINTER) != 0
- {
- let extra = self.stream.peek_var_bits(((entry >> 8) & 0x3F) as usize);
-
- entry = litlen_decode_table[(entry >> 16) as usize + extra];
- saved_bitbuf = self.stream.buffer;
-
- self.stream.drop_bits((entry & 0xFF) as u8);
- }
-
- length = (entry >> 16) as usize;
-
- if (entry & HUFFDEC_LITERAL) != 0
- {
- resize_and_push(&mut out_block, dest_offset, length as u8);
-
- dest_offset += 1;
-
- continue;
- }
-
- if (entry & HUFFDEC_END_OF_BLOCK) != 0
- {
- break 'decode;
- }
-
- let mask = (1 << entry as u8) - 1;
-
- length += (saved_bitbuf & mask) as usize >> ((entry >> 8) as u8);
-
- self.stream.refill();
-
- entry = offset_decode_table[self.stream.peek_bits::<OFFSET_TABLEBITS>()];
-
- if (entry & HUFFDEC_EXCEPTIONAL) != 0
- {
- // offset requires a subtable
- self.stream.drop_bits(OFFSET_TABLEBITS as u8);
-
- let extra = self.stream.peek_var_bits(((entry >> 8) & 0x3F) as usize);
-
- entry = offset_decode_table[((entry >> 16) as usize + extra) & 511];
- }
-
- // ensure there is enough space for a fast copy
- if dest_offset + length + FASTCOPY_BYTES > out_block.len()
- {
- let new_len = out_block.len() + RESIZE_BY + length;
- out_block.resize(new_len, 0);
- }
- saved_bitbuf = self.stream.buffer;
-
- let mask = (1 << (entry & 0xFF) as u8) - 1;
-
- offset = (entry >> 16) as usize;
- offset += (saved_bitbuf & mask) as usize >> ((entry >> 8) as u8);
-
- if offset > dest_offset
- {
- out_block.truncate(dest_offset);
-
- let err_msg = DecodeErrorStatus::CorruptData;
- let error = InflateDecodeErrors::new(err_msg, out_block);
-
- return Err(error);
- }
-
- src_offset = dest_offset - offset;
-
- self.stream.drop_bits(entry as u8);
-
- let (dest_src, dest_ptr) = out_block.split_at_mut(dest_offset);
-
- if src_offset + length + FASTCOPY_BYTES > dest_offset
- {
- // overlapping copy
- // do a simple rep match
- copy_rep_matches(&mut out_block, src_offset, dest_offset, length);
- }
- else
- {
- dest_ptr[0..length]
- .copy_from_slice(&dest_src[src_offset..src_offset + length]);
- }
-
- dest_offset += length;
-
- if dest_offset > self.options.limit
- {
- out_block.truncate(dest_offset);
-
- let err_msg =
- DecodeErrorStatus::OutputLimitExceeded(self.options.limit, dest_offset);
- let error = InflateDecodeErrors::new(err_msg, out_block);
-
- return Err(error);
- }
- }
- }
- /*
- * If any of the implicit appended zero bytes were consumed (not just
- * refilled) before hitting end of stream, then the data is bad.
- */
- if self.stream.over_read > usize::from(self.stream.bits_left >> 3)
- {
- out_block.truncate(dest_offset);
-
- let err_msg = DecodeErrorStatus::CorruptData;
- let error = InflateDecodeErrors::new(err_msg, out_block);
-
- return Err(error);
- }
-
- if self.is_last_block
- {
- break;
- }
- }
-
- // decompression. DONE
- // Truncate data to match the number of actual
- // bytes written.
- out_block.truncate(dest_offset);
-
- Ok(out_block)
- }
-
- /// Build decode tables for static and dynamic
- /// huffman blocks.
- fn build_decode_table(&mut self, block_type: u64) -> Result<(), DecodeErrorStatus>
- {
- const COUNT: usize =
- DEFLATE_NUM_LITLEN_SYMS + DEFLATE_NUM_OFFSET_SYMS + DELFATE_MAX_LENS_OVERRUN;
-
- let mut lens = [0_u8; COUNT];
- let mut precode_lens = [0; DEFLATE_NUM_PRECODE_SYMS];
- let mut precode_decode_table = [0_u32; PRECODE_ENOUGH];
- let mut litlen_decode_table = [0_u32; LITLEN_ENOUGH];
- let mut offset_decode_table = [0; OFFSET_ENOUGH];
-
- let mut num_litlen_syms = 0;
- let mut num_offset_syms = 0;
-
- if block_type == DEFLATE_BLOCKTYPE_DYNAMIC_HUFFMAN
- {
- const SINGLE_PRECODE: usize = 3;
-
- self.static_codes_loaded = false;
-
- // Dynamic Huffman block
- // Read codeword lengths
- if !self.stream.has(5 + 5 + 4)
- {
- return Err(DecodeErrorStatus::InsufficientData);
- }
-
- num_litlen_syms = 257 + (self.stream.get_bits(5)) as usize;
- num_offset_syms = 1 + (self.stream.get_bits(5)) as usize;
-
- let num_explicit_precode_lens = 4 + (self.stream.get_bits(4)) as usize;
-
- self.stream.refill();
-
- if !self.stream.has(3)
- {
- return Err(DecodeErrorStatus::InsufficientData);
- }
-
- let first_precode = self.stream.get_bits(3) as u8;
- let expected = (SINGLE_PRECODE * num_explicit_precode_lens.saturating_sub(1)) as u8;
-
- precode_lens[usize::from(DEFLATE_PRECODE_LENS_PERMUTATION[0])] = first_precode;
-
- self.stream.refill();
-
- if !self.stream.has(expected)
- {
- return Err(DecodeErrorStatus::InsufficientData);
- }
-
- for i in DEFLATE_PRECODE_LENS_PERMUTATION[1..]
- .iter()
- .take(num_explicit_precode_lens - 1)
- {
- let bits = self.stream.get_bits(3) as u8;
-
- precode_lens[usize::from(*i)] = bits;
- }
-
- self.build_decode_table_inner(
- &precode_lens,
- &PRECODE_DECODE_RESULTS,
- &mut precode_decode_table,
- PRECODE_TABLE_BITS,
- DEFLATE_NUM_PRECODE_SYMS,
- DEFLATE_MAX_CODEWORD_LENGTH
- )?;
-
- /* Decode the litlen and offset codeword lengths. */
-
- let mut i = 0;
-
- loop
- {
- if i >= num_litlen_syms + num_offset_syms
- {
- // confirm here since with a continue loop stuff
- // breaks
- break;
- }
-
- let rep_val: u8;
- let rep_count: u64;
-
- if !self.stream.has(DEFLATE_MAX_PRE_CODEWORD_LEN + 7)
- {
- self.stream.refill();
- }
- // decode next pre-code symbol
- let entry_pos = self
- .stream
- .peek_bits::<{ DEFLATE_MAX_PRE_CODEWORD_LEN as usize }>();
-
- let entry = precode_decode_table[entry_pos];
- let presym = entry >> 16;
-
- if !self.stream.has(entry as u8)
- {
- return Err(DecodeErrorStatus::InsufficientData);
- }
-
- self.stream.drop_bits(entry as u8);
-
- if presym < 16
- {
- // explicit codeword length
- lens[i] = presym as u8;
- i += 1;
- continue;
- }
-
- /* Run-length encoded codeword lengths */
-
- /*
- * Note: we don't need verify that the repeat count
- * doesn't overflow the number of elements, since we've
- * sized the lens array to have enough extra space to
- * allow for the worst-case overrun (138 zeroes when
- * only 1 length was remaining).
- *
- * In the case of the small repeat counts (presyms 16
- * and 17), it is fastest to always write the maximum
- * number of entries. That gets rid of branches that
- * would otherwise be required.
- *
- * It is not just because of the numerical order that
- * our checks go in the order 'presym < 16', 'presym ==
- * 16', and 'presym == 17'. For typical data this is
- * ordered from most frequent to least frequent case.
- */
- if presym == 16
- {
- if i == 0
- {
- return Err(DecodeErrorStatus::CorruptData);
- }
-
- if !self.stream.has(2)
- {
- return Err(DecodeErrorStatus::InsufficientData);
- }
-
- // repeat previous length three to 6 times
- rep_val = lens[i - 1];
- rep_count = 3 + self.stream.get_bits(2);
- lens[i..i + 6].fill(rep_val);
- i += rep_count as usize;
- }
- else if presym == 17
- {
- if !self.stream.has(3)
- {
- return Err(DecodeErrorStatus::InsufficientData);
- }
- /* Repeat zero 3 - 10 times. */
- rep_count = 3 + self.stream.get_bits(3);
- lens[i..i + 10].fill(0);
- i += rep_count as usize;
- }
- else
- {
- if !self.stream.has(7)
- {
- return Err(DecodeErrorStatus::InsufficientData);
- }
- // repeat zero 11-138 times.
- rep_count = 11 + self.stream.get_bits(7);
- lens[i..i + rep_count as usize].fill(0);
- i += rep_count as usize;
- }
-
- if i >= num_litlen_syms + num_offset_syms
- {
- break;
- }
- }
- }
- else if block_type == DEFLATE_BLOCKTYPE_STATIC
- {
- if self.static_codes_loaded
- {
- return Ok(());
- }
-
- self.static_codes_loaded = true;
-
- lens[000..144].fill(8);
- lens[144..256].fill(9);
- lens[256..280].fill(7);
- lens[280..288].fill(8);
- lens[288..].fill(5);
-
- num_litlen_syms = 288;
- num_offset_syms = 32;
- }
- // build offset decode table
- self.build_decode_table_inner(
- &lens[num_litlen_syms..],
- &OFFSET_DECODE_RESULTS,
- &mut offset_decode_table,
- OFFSET_TABLEBITS,
- num_offset_syms,
- DEFLATE_MAX_OFFSET_CODEWORD_LENGTH
- )?;
-
- self.build_decode_table_inner(
- &lens,
- &LITLEN_DECODE_RESULTS,
- &mut litlen_decode_table,
- LITLEN_TABLE_BITS,
- num_litlen_syms,
- DEFLATE_MAX_LITLEN_CODEWORD_LENGTH
- )?;
-
- self.deflate_header_tables.offset_decode_table = offset_decode_table;
- self.deflate_header_tables.litlen_decode_table = litlen_decode_table;
-
- Ok(())
- }
- /// Build the decode table for the precode
- #[allow(clippy::needless_range_loop)]
- fn build_decode_table_inner(
- &mut self, lens: &[u8], decode_results: &[u32], decode_table: &mut [u32],
- table_bits: usize, num_syms: usize, mut max_codeword_len: usize
- ) -> Result<(), DecodeErrorStatus>
- {
- const BITS: u32 = usize::BITS - 1;
-
- let mut len_counts: [u32; DEFLATE_MAX_CODEWORD_LENGTH + 1] =
- [0; DEFLATE_MAX_CODEWORD_LENGTH + 1];
- let mut offsets: [u32; DEFLATE_MAX_CODEWORD_LENGTH + 1] =
- [0; DEFLATE_MAX_CODEWORD_LENGTH + 1];
- let mut sorted_syms: [u16; DEFLATE_MAX_NUM_SYMS] = [0; DEFLATE_MAX_NUM_SYMS];
-
- let mut i;
-
- // count how many codewords have each length, including 0.
- for sym in 0..num_syms
- {
- len_counts[usize::from(lens[sym])] += 1;
- }
-
- /*
- * Determine the actual maximum codeword length that was used, and
- * decrease table_bits to it if allowed.
- */
- while max_codeword_len > 1 && len_counts[max_codeword_len] == 0
- {
- max_codeword_len -= 1;
- }
- /*
- * Sort the symbols primarily by increasing codeword length and
- * A temporary array of length @num_syms.
- * secondarily by increasing symbol value; or equivalently by their
- * codewords in lexicographic order, since a canonical code is assumed.
- *
- * For efficiency, also compute 'codespace_used' in the same pass over
- * 'len_counts[]' used to build 'offsets[]' for sorting.
- */
- offsets[0] = 0;
- offsets[1] = len_counts[0];
-
- let mut codespace_used = 0_u32;
-
- for len in 1..max_codeword_len
- {
- offsets[len + 1] = offsets[len] + len_counts[len];
- codespace_used = (codespace_used << 1) + len_counts[len];
- }
- codespace_used = (codespace_used << 1) + len_counts[max_codeword_len];
-
- for sym in 0..num_syms
- {
- let pos = usize::from(lens[sym]);
- sorted_syms[offsets[pos] as usize] = sym as u16;
- offsets[pos] += 1;
- }
- i = (offsets[0]) as usize;
-
- /*
- * Check whether the lengths form a complete code (exactly fills the
- * codespace), an incomplete code (doesn't fill the codespace), or an
- * overfull code (overflows the codespace). A codeword of length 'n'
- * uses proportion '1/(2^n)' of the codespace. An overfull code is
- * nonsensical, so is considered invalid. An incomplete code is
- * considered valid only in two specific cases; see below.
- */
-
- // Overfull code
- if codespace_used > 1 << max_codeword_len
- {
- return Err(DecodeErrorStatus::Generic("Overflown code"));
- }
- // incomplete code
- if codespace_used < 1 << max_codeword_len
- {
- let entry = if codespace_used == 0
- {
- /*
- * An empty code is allowed. This can happen for the
- * offset code in DEFLATE, since a dynamic Huffman block
- * need not contain any matches.
- */
-
- /* sym=0, len=1 (arbitrary) */
- make_decode_table_entry(decode_results, 0, 1)
- }
- else
- {
- /*
- * Allow codes with a single used symbol, with codeword
- * length 1. The DEFLATE RFC is unclear regarding this
- * case. What zlib's decompressor does is permit this
- * for the litlen and offset codes and assume the
- * codeword is '0' rather than '1'. We do the same
- * except we allow this for precodes too, since there's
- * no convincing reason to treat the codes differently.
- * We also assign both codewords '0' and '1' to the
- * symbol to avoid having to handle '1' specially.
- */
- if codespace_used != 1 << (max_codeword_len - 1) || len_counts[1] != 1
- {
- return Err(DecodeErrorStatus::Generic(
- "Cannot work with empty pre-code table"
- ));
- }
- make_decode_table_entry(decode_results, usize::from(sorted_syms[i]), 1)
- };
- /*
- * Note: the decode table still must be fully initialized, in
- * case the stream is malformed and contains bits from the part
- * of the codespace the incomplete code doesn't use.
- */
- decode_table.fill(entry);
- return Ok(());
- }
-
- /*
- * The lengths form a complete code. Now, enumerate the codewords in
- * lexicographic order and fill the decode table entries for each one.
- *
- * First, process all codewords with len <= table_bits. Each one gets
- * '2^(table_bits-len)' direct entries in the table.
- *
- * Since DEFLATE uses bit-reversed codewords, these entries aren't
- * consecutive but rather are spaced '2^len' entries apart. This makes
- * filling them naively somewhat awkward and inefficient, since strided
- * stores are less cache-friendly and preclude the use of word or
- * vector-at-a-time stores to fill multiple entries per instruction.
- *
- * To optimize this, we incrementally double the table size. When
- * processing codewords with length 'len', the table is treated as
- * having only '2^len' entries, so each codeword uses just one entry.
- * Then, each time 'len' is incremented, the table size is doubled and
- * the first half is copied to the second half. This significantly
- * improves performance over naively doing strided stores.
- *
- * Note that some entries copied for each table doubling may not have
- * been initialized yet, but it doesn't matter since they're guaranteed
- * to be initialized later (because the Huffman code is complete).
- */
- let mut codeword = 0;
- let mut len = 1;
- let mut count = len_counts[1];
-
- while count == 0
- {
- len += 1;
-
- if len >= len_counts.len()
- {
- break;
- }
- count = len_counts[len];
- }
-
- let mut curr_table_end = 1 << len;
-
- while len <= table_bits
- {
- // Process all count codewords with length len
- loop
- {
- let entry = make_decode_table_entry(
- decode_results,
- usize::from(sorted_syms[i]),
- len as u32
- );
- i += 1;
- // fill first entry for current codeword
- decode_table[codeword] = entry;
-
- if codeword == curr_table_end - 1
- {
- // last codeword (all 1's)
- for _ in len..table_bits
- {
- decode_table.copy_within(0..curr_table_end, curr_table_end);
-
- curr_table_end <<= 1;
- }
- return Ok(());
- }
- /*
- * To advance to the lexicographically next codeword in
- * the canonical code, the codeword must be incremented,
- * then 0's must be appended to the codeword as needed
- * to match the next codeword's length.
- *
- * Since the codeword is bit-reversed, appending 0's is
- * a no-op. However, incrementing it is nontrivial. To
- * do so efficiently, use the 'bsr' instruction to find
- * the last (highest order) 0 bit in the codeword, set
- * it, and clear any later (higher order) 1 bits. But
- * 'bsr' actually finds the highest order 1 bit, so to
- * use it first flip all bits in the codeword by XOR' ing
- * it with (1U << len) - 1 == cur_table_end - 1.
- */
-
- let adv = BITS - (codeword ^ (curr_table_end - 1)).leading_zeros();
- let bit = 1 << adv;
-
- codeword &= bit - 1;
- codeword |= bit;
- count -= 1;
-
- if count == 0
- {
- break;
- }
- }
- // advance to the next codeword length
- loop
- {
- len += 1;
-
- if len <= table_bits
- {
- // dest is decode_table[curr_table_end]
- // source is decode_table(start of table);
- // size is curr_table;
-
- decode_table.copy_within(0..curr_table_end, curr_table_end);
-
- //decode_table.copy_within(range, curr_table_end);
- curr_table_end <<= 1;
- }
- count = len_counts[len];
-
- if count != 0
- {
- break;
- }
- }
- }
- // process codewords with len > table_bits.
- // Require sub-tables
- curr_table_end = 1 << table_bits;
-
- let mut subtable_prefix = usize::MAX;
- let mut subtable_start = 0;
- let mut subtable_bits;
-
- loop
- {
- /*
- * Start a new sub-table if the first 'table_bits' bits of the
- * codeword don't match the prefix of the current subtable.
- */
- if codeword & ((1_usize << table_bits) - 1) != subtable_prefix
- {
- subtable_prefix = codeword & ((1 << table_bits) - 1);
- subtable_start = curr_table_end;
-
- /*
- * Calculate the subtable length. If the codeword has
- * length 'table_bits + n', then the subtable needs
- * '2^n' entries. But it may need more; if fewer than
- * '2^n' codewords of length 'table_bits + n' remain,
- * then the length will need to be incremented to bring
- * in longer codewords until the subtable can be
- * completely filled. Note that because the Huffman
- * code is complete, it will always be possible to fill
- * the sub-table eventually.
- */
- subtable_bits = len - table_bits;
- codespace_used = count;
-
- while codespace_used < (1 << subtable_bits)
- {
- subtable_bits += 1;
-
- if subtable_bits + table_bits > 15
- {
- return Err(DecodeErrorStatus::CorruptData);
- }
-
- codespace_used = (codespace_used << 1) + len_counts[table_bits + subtable_bits];
- }
-
- /*
- * Create the entry that points from the main table to
- * the subtable.
- */
- decode_table[subtable_prefix] = (subtable_start as u32) << 16
- | HUFFDEC_EXCEPTIONAL
- | HUFFDEC_SUITABLE_POINTER
- | (subtable_bits as u32) << 8
- | table_bits as u32;
-
- curr_table_end = subtable_start + (1 << subtable_bits);
- }
-
- /* Fill the sub-table entries for the current codeword. */
-
- let stride = 1 << (len - table_bits);
-
- let mut j = subtable_start + (codeword >> table_bits);
-
- let entry = make_decode_table_entry(
- decode_results,
- sorted_syms[i] as usize,
- (len - table_bits) as u32
- );
- i += 1;
-
- while j < curr_table_end
- {
- decode_table[j] = entry;
- j += stride;
- }
- //advance to the next codeword
- if codeword == (1 << len) - 1
- {
- // last codeword
- return Ok(());
- }
-
- let adv = BITS - (codeword ^ ((1 << len) - 1)).leading_zeros();
- let bit = 1 << adv;
-
- codeword &= bit - 1;
- codeword |= bit;
- count -= 1;
-
- while count == 0
- {
- len += 1;
- count = len_counts[len];
- }
- }
- }
-}
-
-const RESIZE_BY: usize = 1024 * 4; // 4 kb
-
-/// Resize vector if its current space wont
-/// be able to store a new byte and then push an element to that new space
-#[inline(always)]
-fn resize_and_push(buf: &mut Vec<u8>, position: usize, elm: u8)
-{
- if buf.len() <= position
- {
- let new_len = buf.len() + RESIZE_BY;
- buf.resize(new_len, 0);
- }
- buf[position] = elm;
-}