1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
|
# Terrain + map loading
Документ описывает полный runtime-пайплайн загрузки ландшафта и карты (`Terrain.dll` + `ArealMap.dll`) и требования к toolchain для 1:1 совместимости (чтение, конвертация, редактирование, обратная сборка).
Источник реверса:
- `tmp/disassembler1/Terrain.dll.c`
- `tmp/disassembler1/ArealMap.dll.c`
- `tmp/disassembler2/Terrain.dll.asm`
- `tmp/disassembler2/ArealMap.dll.asm`
Связанные спецификации:
- [NRes / RsLi](nres.md)
- [MSH core](msh-core.md)
- [ArealMap](arealmap.md)
---
## 1. Назначение подсистем
### 1.1. `Terrain.dll`
Отвечает за:
- загрузку и хранение terrain-геометрии из `*.msh` (NRes);
- фильтрацию и выборку треугольников для коллизий/трассировки/рендера;
- рендер terrain-примитивов и связанного shading;
- использование микро-текстурного канала (chunk type 18).
Характерные runtime-строки:
- `CLandscape::CLandscape()`
- `Unable to find microtexture mapping chunk`
- `Rendering empty primitive!`
- `Rendering empty primitive2!`
### 1.2. `ArealMap.dll`
Отвечает за:
- загрузку геометрии ареалов из `*.map` (NRes, chunk type 12);
- построение связей "ареал <-> соседи/подграфы";
- grid-ускорение по ячейкам карты;
- runtime-доступ к `ISystemArealMap` (интерфейс id `770`) и ареалам (id `771`).
Характерные runtime-строки:
- `SystemArealMap panic: Cannot load ArealMapGeometry`
- `SystemArealMap panic: Cannot find chunk in resource`
- `SystemArealMap panic: ArealMap Cells are empty`
- `SystemArealMap panic: Incorrect ArealMap`
---
## 2. End-to-End загрузка уровня
### 2.1. Имена файлов уровня
В `CLandscape::CLandscape()` базовое имя уровня `levelBase` разворачивается в:
- `levelBase + ".msh"`: terrain-геометрия;
- `levelBase + ".map"`: геометрия ареалов/навигация;
- `levelBase + "1.wea"` и `levelBase + "2.wea"`: weather/материалы.
### 2.2. Порядок инициализации (высокоуровнево)
1. Получение `3DRender` и `3DSound`.
2. Загрузка `MatManager` (`*.wea`), `LightManager`, `CollManager`, `FxManager`.
3. Создание `SystemArealMap` через `CreateSystemArealMap(..., "<level>.map", ...)`.
4. Открытие terrain-библиотеки `niOpenResFile("<level>.msh")`.
5. Загрузка terrain-chunk-ов (см. §3).
6. Построение runtime-границ, grid-ускорителей и рабочих массивов.
Критичные ошибки на любом шаге приводят к `ngiProcessError`/panic.
---
## 3. Формат terrain `*.msh` (NRes)
### 3.1. Используемые chunk type в `Terrain.dll`
Порядок загрузки в `CLandscape::CLandscape()`:
| Порядок | Type | Обяз. | Использование (подтверждено кодом) |
|---|---:|---|---|
| 1 | 3 | да | поток позиций (`stride = 12`) |
| 2 | 4 | да | поток packed normal (`stride = 4`) |
| 3 | 5 | да | UV-поток (`stride = 4`) |
| 4 | 18 | да | microtexture mapping (`stride = 4`) |
| 5 | 14 | нет | опциональный доп. поток (`stride = 4`, отсутствует на части карт) |
| 6 | 21 | да | таблица terrain-face (по 28 байт) |
| 7 | 2 | да | header + slot-таблицы (используются диапазоны face) |
| 8 | 1 | да | node/grid-таблица (stride 38) |
| 9 | 11 | да | доп. индекс/ускоритель для запросов (cell->list) |
Ключевые проверки:
- отсутствие type `18` вызывает `Unable to find microtexture mapping chunk`;
- отсутствие остальных обязательных чанков вызывает `Unable to open file`.
### 3.2. Node/slot структура для terrain
Terrain-код использует те же stride и адресацию, что и core-описание:
- node-запись: `38` байт;
- slot-запись: `68` байт;
- доступ к первому slot-index: `node + 8`;
- tri-диапазон в slot: `slot + 140` (offset 0 внутри slot), `slot + 142` (offset 2).
Это согласуется с [MSH core](msh-core.md) для `Res1/Res2`:
- `Res1`: `uint16[19]` на node;
- `Res2`: header + slot table (`0x8C + N * 0x44`).
### 3.3. Terrain face record (type 21, 28 bytes)
Подтвержденные поля из runtime-декодирования face:
```c
struct TerrainFace28 {
uint32_t flags; // +0
uint8_t materialId; // +4 (читается как byte)
uint8_t auxByte; // +5
uint16_t unk06; // +6
uint16_t i0; // +8 (индекс вершины)
uint16_t i1; // +10
uint16_t i2; // +12
uint16_t n0; // +14 (сосед, 0xFFFF -> нет)
uint16_t n1; // +16
uint16_t n2; // +18
int16_t nx; // +20 packed normal component
int16_t ny; // +22
int16_t nz; // +24
uint8_t edgeClass; // +26 (три 2-бит значения)
uint8_t unk27; // +27
};
```
`edgeClass` декодируется как:
- `edge0 = byte26 & 0x3`
- `edge1 = (byte26 >> 2) & 0x3`
- `edge2 = (byte26 >> 4) & 0x3`
### 3.4. Маски флагов face
Во многих запросах применяется фильтр:
```c
(faceFlags & requiredMask) == requiredMask &&
(faceFlags | ~forbiddenMask) == ~forbiddenMask
```
Эквивалентно: "все required-биты выставлены, forbidden-биты отсутствуют".
Подтверждено активное использование битов:
- `0x8` (особая обработка в трассировке)
- `0x2000`
- `0x20000`
- `0x100000`
- `0x200000`
Кроме "полной" 32-бит маски, runtime использует компактные маски в API-запросах.
Подтверждённый remap `full -> compactMain16` (функции `sub_10013FC0`, `sub_1004BA00`, `sub_1004BB40`):
| Full bit | Compact bit |
|---:|---:|
| `0x00000001` | `0x0001` |
| `0x00000008` | `0x0002` |
| `0x00000010` | `0x0004` |
| `0x00000020` | `0x0008` |
| `0x00001000` | `0x0010` |
| `0x00004000` | `0x0020` |
| `0x00000002` | `0x0040` |
| `0x00000400` | `0x0080` |
| `0x00000800` | `0x0100` |
| `0x00020000` | `0x0200` |
| `0x00002000` | `0x0400` |
| `0x00000200` | `0x0800` |
| `0x00000004` | `0x1000` |
| `0x00000040` | `0x2000` |
| `0x00200000` | `0x8000` |
Подтверждённый remap `full -> compactMaterial6` (функции `sub_10014090`, `sub_10015540`, `sub_1004BB40`):
| Full bit | Compact bit |
|---:|---:|
| `0x00000100` | `0x01` |
| `0x00008000` | `0x02` |
| `0x00010000` | `0x04` |
| `0x00040000` | `0x08` |
| `0x00080000` | `0x10` |
| `0x00000080` | `0x20` |
Подтверждённый remap `compact -> full` (функция `sub_10015680`):
- `a2[4]`/`a2[5]` (compactMain16 required/forbidden) + `a2[6]`/`a2[7]` (compactMaterial6 required/forbidden)
- разворачиваются в `fullRequired/fullForbidden` в `this[4]/this[5]`.
Для toolchain это означает:
- если редактируется только бинарник `type 21`, достаточно сохранять `flags` как есть;
- если реализуется API-совместимый runtime-слой, нужно поддерживать оба представления (`full` и `compact`) и точный remap выше.
### 3.5. Grid-ускоритель terrain-запросов
Runtime строит grid descriptor с параметрами:
- origin (`baseX/baseY`);
- масштабные коэффициенты (`invSizeX/invSizeY`);
- размеры сетки (`cellsX`, `cellsY`).
Дальше запросы:
1. переводят world AABB в диапазон grid-ячеек (`floor(...)`);
2. берут диапазон face через `Res1/Res2` (slot `triStart/triCount`);
3. дополняют кандидаты из cell-списков (chunk type 11);
4. применяют маски флагов;
5. выполняют геометрию (plane/intersection/point-in-triangle).
### 3.6. Cell-списки по ячейкам (`type 11` и runtime-массивы)
В `CLandscape` после инициализации используются три параллельных массива по ячейкам (`cellsX * cellsY`):
- `this+31588` (`sub_100164B0` ctor): массив записей по `12` байт, каждая запись содержит динамический буфер `8`-байтовых элементов;
- `this+31592` (`sub_100164E0` ctor): массив записей по `12` байт, каждая запись содержит динамический буфер `4`-байтовых элементов;
- `this+31596` (`sub_1001F880` ctor): массив записей по `12` байт для runtime-объектов/агентов (буфер `4`-байтовых идентификаторов/указателей).
Общий header записи списка:
```c
struct CellListHdr {
void* ptr; // +0
int count; // +4
int capacity; // +8
};
```
Подтвержденные element-layout:
- `this+31588`: элемент `8` байт (`uint32_t id`, `uint32_t aux`), добавление через `sub_10012E20` пишет `aux = 0`;
- `this+31592`: элемент `4` байта (`uint32_t id`);
- `this+31596`: элемент `4` байта (runtime object handle/pointer id).
Практический вывод для редактора:
- `type 11` должен считаться источником cell-ускорителя;
- неизвестные/дополнительные поля внутри списков должны сохраняться как есть;
- нельзя "нормализовать" или переупорядочивать списки без полного пересчёта всех зависимых runtime-структур.
---
## 4. Формат `*.map` (ArealMapGeometry, chunk type 12)
### 4.1. Точка входа
`CreateSystemArealMap(..., "<level>.map", ...)` вызывает `sub_1001E0D0`:
1. `niOpenResFile("<level>.map")`;
2. поиск chunk type `12`;
3. чтение chunk-данных;
4. разбор `ArealMapGeometry`.
При ошибках выдаются panic-строки `SystemArealMap panic: ...`.
### 4.2. Верхний уровень chunk 12
Используются:
- `entry.attr1` (из каталога NRes) как `areal_count`;
- `entry[+0x0C]` как размер payload chunk для контроля полного разбора.
Данные chunk:
1. `areal_count` переменных записей ареалов;
2. секция grid-ячеек (`cellsX/cellsY` + списки попаданий).
### 4.3. Переменная запись ареала
Полностью подтверждённые элементы layout:
```c
// record = начало записи ареала
float anchor_x = *(float*)(record + 0);
float anchor_y = *(float*)(record + 4);
float anchor_z = *(float*)(record + 8);
float reserved_12 = *(float*)(record + 12); // в retail-данных всегда 0
float area_metric = *(float*)(record + 16); // предрасчитанная площадь ареала
float normal_x = *(float*)(record + 20);
float normal_y = *(float*)(record + 24);
float normal_z = *(float*)(record + 28); // unit vector (|n| ~= 1)
uint32_t logic_flag = *(uint32_t*)(record + 32); // активно используется в runtime
uint32_t reserved_36 = *(uint32_t*)(record + 36); // в retail-данных всегда 0
uint32_t class_id = *(uint32_t*)(record + 40); // runtime-class/type id ареала
uint32_t reserved_44 = *(uint32_t*)(record + 44); // в retail-данных всегда 0
uint32_t vertex_count = *(uint32_t*)(record + 48);
uint32_t poly_count = *(uint32_t*)(record + 52);
float* vertices = (float*)(record + 56); // float3[vertex_count]
// сразу после vertices:
// EdgeLink8[vertex_count + 3*poly_count]
// где EdgeLink8 = { int32_t area_ref; int32_t edge_ref; }
// первые vertex_count записей используются как per-edge соседство границы ареала.
EdgeLink8* links = (EdgeLink8*)(record + 56 + 12 * vertex_count);
uint8_t* p = (uint8_t*)(links + (vertex_count + 3 * poly_count));
for (i=0; i<poly_count; i++) {
uint32_t n = *(uint32_t*)p;
p += 4 * (3*n + 1);
}
// p -> начало следующей записи ареала
```
То есть для toolchain:
- поля `+0/+4/+8`, `+16`, `+20..+28`, `+32`, `+40`, `+48`, `+52` являются runtime-значимыми;
- для `links[0..vertex_count-1]` подтверждена интерпретация как `(area_ref, edge_ref)`:
- `area_ref == -1 && edge_ref == -1` = нет соседа;
- иначе `area_ref` указывает на индекс ареала, `edge_ref` — на индекс ребра в целевом ареале;
- при редактировании безопасно работать через parser+writer этой формулы;
- неизвестные байты внутри записи должны сохраняться без изменений.
Дополнительно по runtime-поведению:
- `anchor_x/anchor_y` валидируются на попадание внутрь полигона; при промахе движок делает случайный re-seed позиции (см. §4.5);
- `logic_flag` по смещению `+32` используется как gating-условие в логике `SystemArealMap`.
### 4.4. Секция grid-ячеек в chunk 12
После массива ареалов идёт:
```c
uint32_t cellsX;
uint32_t cellsY;
for (x in 0..cellsX-1) {
for (y in 0..cellsY-1) {
uint16_t hitCount;
uint16_t areaIds[hitCount];
}
}
```
Runtime упаковывает метаданные ячейки в `uint32`:
- high 10 bits: `hitCount` (`value >> 22`);
- low 22 bits: `startIndex` (1-based индекс в общем `uint16`-пуле areaIds).
Контроль целостности:
- после разбора `ptr_end - chunk_begin` должен строго совпасть с `entry[+0x0C]`;
- иначе `SystemArealMap panic: Incorrect ArealMap`.
### 4.5. Нормализация геометрии при загрузке
Если опорная точка ареала не попадает внутрь его полигона:
- до 100 попыток случайного сдвига в радиусе ~30;
- затем до 200 попыток в радиусе ~100.
Это runtime-correction; для 1:1-офлайн инструментов лучше генерировать валидные данные, чтобы не зависеть от недетерминизма `rand()`.
---
## 5. `BuildDat.lst` и объектные категории ареалов
`ArealMap.dll` инициализирует 12 категорий и читает `BuildDat.lst`.
Хардкод-категории (имя -> mask):
| Имя | Маска |
|---|---:|
| `Bunker_Small` | `0x80010000` |
| `Bunker_Medium` | `0x80020000` |
| `Bunker_Large` | `0x80040000` |
| `Generator` | `0x80000002` |
| `Mine` | `0x80000004` |
| `Storage` | `0x80000008` |
| `Plant` | `0x80000010` |
| `Hangar` | `0x80000040` |
| `MainTeleport` | `0x80000200` |
| `Institute` | `0x80000400` |
| `Tower_Medium` | `0x80100000` |
| `Tower_Large` | `0x80200000` |
Файл `BuildDat.lst` парсится секционно; при сбое формата используется panic `BuildDat.lst is corrupted`.
---
## 6. Требования к toolchain (конвертер/ридер/редактор)
### 6.1. Общие принципы 1:1
1. Никаких "переупорядочиваний по вкусу": сохранять порядок chunk-ов, если не требуется явная нормализация.
2. Все неизвестные поля сохранять побайтно.
3. При roundtrip обеспечивать byte-identical для неизмененных сущностей.
4. Валидации должны повторять runtime-ожидания (размеры, count-формулы, обязательность chunk-ов).
### 6.2. Для terrain `*.msh`
Обязательные проверки:
- наличие chunk types `1,2,3,4,5,11,18,21`;
- type `14` опционален;
- для `type 2`: `size >= 0x8C`, `(size - 0x8C) % 68 == 0`, `attr1 == (size - 0x8C) / 68`;
- `type21_size % 28 == 0`;
- индексы `i0/i1/i2` в `TerrainFace28` не выходят за `vertex_count` (type 3);
- `slot.triStart + slot.triCount` не выходит за `face_count`.
Сериализация:
- `flags`, соседи, `edgeClass`, material байты в `TerrainFace28` сохранять как есть;
- содержимое `type 11`-derived cell-списков (`id`, `aux`) сохранять без "починки";
- для packed normal не делать "улучшений" нормализации, если цель 1:1.
### 6.3. Для `*.map` (chunk 12)
Обязательные проверки:
- chunk type `12` существует;
- `areal_count > 0`;
- `cellsX > 0 && cellsY > 0`;
- `|normal_x,normal_y,normal_z| ~= 1` для каждого ареала;
- `links[0..vertex_count-1]` валидны (`-1/-1` или корректные `(area_ref, edge_ref)`);
- полный consumed-bytes строго равен `entry[+0x0C]`.
При редактировании:
- перестраивать только то, что действительно изменено;
- пересчитывать cell-списки и packed `cellMeta` синхронно;
- сохранять неизвестные части записи ареала без изменений.
### 6.4. Рекомендуемая архитектура редактора
1. `Parser`:
- NRes-слой;
- `TerrainMsh`-слой;
- `ArealMapChunk12`-слой.
2. `Model`:
- явные известные поля;
- `raw_unknown` для непросаженных блоков.
3. `Writer`:
- стабильная сериализация;
- проверка контрольных инвариантов перед записью.
4. `Verifier`:
- roundtrip hash/byte-compare;
- runtime-совместимые asserts.
---
## 7. Практический чеклист "движок 1:1"
Для runtime-совместимого движка нужно реализовать:
1. NRes API-уровень (`niOpenResFile`, `niOpenResInMem`, поиск chunk по type, получение data/attrs).
2. `CLandscape` пайплайн загрузки `*.msh` + менеджеров + `CreateSystemArealMap`.
3. Terrain face decode (28-byte запись), mask-фильтр, spatial grid queries.
4. Загрузчик `ArealMapGeometry` (chunk 12) с той же валидацией и packed-cell логикой.
5. Пост-обработку ареалов (пересвязка, корректировки опорных точек).
6. Поддержку `BuildDat.lst` для объектных категорий/схем.
---
## 8. Нерасшифрованные зоны (важно для редакторов)
Ниже поля, которые пока нельзя безопасно "пересобирать по смыслу":
- семантика `class_id` (`record + 40`) на уровне геймдизайна/скриптов (числовое поле подтверждено, но человекочитаемая таблица соответствий не восстановлена полностью);
- ветки формата для `poly_count > 0` (в retail `tmp/gamedata` это всегда `0`, поэтому поведение этих веток подтверждено только по коду, без живых образцов);
- человекочитаемая семантика части битов `TerrainFace28.flags` (при этом remap и бинарные значения подтверждены);
- семантика поля `aux` во `8`-байтовом элементе cell-списка (`this+31588`, второй `uint32_t`), которое в известных runtime-путях инициализируется нулем.
Правило до полного реверса: `preserve-as-is`.
---
## 9. Эмпирическая верификация (retail `tmp/gamedata`)
Для массовой проверки спецификации добавлен валидатор:
- `tools/terrain_map_doc_validator.py`
Запуск:
```bash
python3 tools/terrain_map_doc_validator.py \
--maps-root tmp/gamedata/DATA/MAPS \
--report-json tmp/terrain_map_doc_validator.report.json
```
Проверенные инварианты (на 33 картах, 2026-02-12):
- `Land.msh`:
- порядок chunk-ов всегда `[1,2,3,4,5,18,14,11,21]`;
- `type11` первые dword всегда `[5767168, 4718593]`;
- `type21` индексы вершин/соседей валидны;
- `type2` slot-таблица валидна по формуле `0x8C + 68*N`.
- `Land.map`:
- всегда один chunk `type 12`;
- `cellsX == cellsY == 128` на всех картах;
- `poly_count == 0` для всех `34662` записей ареалов в retail-наборе;
- `record+12`, `record+36`, `record+44` всегда `0`;
- `area_metric` (`record+16`) стабильно коррелирует с площадью XY-полигона (макс. абсолютное отклонение `51.39`, макс. относительное `14.73%`, `18` кейсов > `5%`);
- `normal` в `record+20..28` всегда unit (диапазон длины `0.9999998758..1.0000001194`);
- link-таблицы `EdgeLink8` проходят строгую валидацию ссылочной целостности.
Сводный результат текущего набора данных:
- `issues_total = 0`, `errors_total = 0`, `warnings_total = 0`.
|