aboutsummaryrefslogtreecommitdiff
path: root/vendor/spin/src/mutex/fair.rs
blob: db07ad6f714c1021b29159a096709c4ce2704eaf (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
//! A spinning mutex with a fairer unlock algorithm.
//!
//! This mutex is similar to the `SpinMutex` in that it uses spinning to avoid
//! context switches. However, it uses a fairer unlock algorithm that avoids
//! starvation of threads that are waiting for the lock.

use crate::{
    atomic::{AtomicUsize, Ordering},
    RelaxStrategy, Spin,
};
use core::{
    cell::UnsafeCell,
    fmt,
    marker::PhantomData,
    mem::ManuallyDrop,
    ops::{Deref, DerefMut},
};

// The lowest bit of `lock` is used to indicate whether the mutex is locked or not. The rest of the bits are used to
// store the number of starving threads.
const LOCKED: usize = 1;
const STARVED: usize = 2;

/// Number chosen by fair roll of the dice, adjust as needed.
const STARVATION_SPINS: usize = 1024;

/// A [spin lock](https://en.m.wikipedia.org/wiki/Spinlock) providing mutually exclusive access to data, but with a fairer
/// algorithm.
///
/// # Example
///
/// ```
/// use spin;
///
/// let lock = spin::mutex::FairMutex::<_>::new(0);
///
/// // Modify the data
/// *lock.lock() = 2;
///
/// // Read the data
/// let answer = *lock.lock();
/// assert_eq!(answer, 2);
/// ```
///
/// # Thread safety example
///
/// ```
/// use spin;
/// use std::sync::{Arc, Barrier};
///
/// let thread_count = 1000;
/// let spin_mutex = Arc::new(spin::mutex::FairMutex::<_>::new(0));
///
/// // We use a barrier to ensure the readout happens after all writing
/// let barrier = Arc::new(Barrier::new(thread_count + 1));
///
/// for _ in (0..thread_count) {
///     let my_barrier = barrier.clone();
///     let my_lock = spin_mutex.clone();
///     std::thread::spawn(move || {
///         let mut guard = my_lock.lock();
///         *guard += 1;
///
///         // Release the lock to prevent a deadlock
///         drop(guard);
///         my_barrier.wait();
///     });
/// }
///
/// barrier.wait();
///
/// let answer = { *spin_mutex.lock() };
/// assert_eq!(answer, thread_count);
/// ```
pub struct FairMutex<T: ?Sized, R = Spin> {
    phantom: PhantomData<R>,
    pub(crate) lock: AtomicUsize,
    data: UnsafeCell<T>,
}

/// A guard that provides mutable data access.
///
/// When the guard falls out of scope it will release the lock.
pub struct FairMutexGuard<'a, T: ?Sized + 'a> {
    lock: &'a AtomicUsize,
    data: *mut T,
}

/// A handle that indicates that we have been trying to acquire the lock for a while.
///
/// This handle is used to prevent starvation.
pub struct Starvation<'a, T: ?Sized + 'a, R> {
    lock: &'a FairMutex<T, R>,
}

/// Indicates whether a lock was rejected due to the lock being held by another thread or due to starvation.
#[derive(Debug)]
pub enum LockRejectReason {
    /// The lock was rejected due to the lock being held by another thread.
    Locked,

    /// The lock was rejected due to starvation.
    Starved,
}

// Same unsafe impls as `std::sync::Mutex`
unsafe impl<T: ?Sized + Send, R> Sync for FairMutex<T, R> {}
unsafe impl<T: ?Sized + Send, R> Send for FairMutex<T, R> {}

unsafe impl<T: ?Sized + Sync> Sync for FairMutexGuard<'_, T> {}
unsafe impl<T: ?Sized + Send> Send for FairMutexGuard<'_, T> {}

impl<T, R> FairMutex<T, R> {
    /// Creates a new [`FairMutex`] wrapping the supplied data.
    ///
    /// # Example
    ///
    /// ```
    /// use spin::mutex::FairMutex;
    ///
    /// static MUTEX: FairMutex<()> = FairMutex::<_>::new(());
    ///
    /// fn demo() {
    ///     let lock = MUTEX.lock();
    ///     // do something with lock
    ///     drop(lock);
    /// }
    /// ```
    #[inline(always)]
    pub const fn new(data: T) -> Self {
        FairMutex {
            lock: AtomicUsize::new(0),
            data: UnsafeCell::new(data),
            phantom: PhantomData,
        }
    }

    /// Consumes this [`FairMutex`] and unwraps the underlying data.
    ///
    /// # Example
    ///
    /// ```
    /// let lock = spin::mutex::FairMutex::<_>::new(42);
    /// assert_eq!(42, lock.into_inner());
    /// ```
    #[inline(always)]
    pub fn into_inner(self) -> T {
        // We know statically that there are no outstanding references to
        // `self` so there's no need to lock.
        let FairMutex { data, .. } = self;
        data.into_inner()
    }

    /// Returns a mutable pointer to the underlying data.
    ///
    /// This is mostly meant to be used for applications which require manual unlocking, but where
    /// storing both the lock and the pointer to the inner data gets inefficient.
    ///
    /// # Example
    /// ```
    /// let lock = spin::mutex::FairMutex::<_>::new(42);
    ///
    /// unsafe {
    ///     core::mem::forget(lock.lock());
    ///
    ///     assert_eq!(lock.as_mut_ptr().read(), 42);
    ///     lock.as_mut_ptr().write(58);
    ///
    ///     lock.force_unlock();
    /// }
    ///
    /// assert_eq!(*lock.lock(), 58);
    ///
    /// ```
    #[inline(always)]
    pub fn as_mut_ptr(&self) -> *mut T {
        self.data.get()
    }
}

impl<T: ?Sized, R: RelaxStrategy> FairMutex<T, R> {
    /// Locks the [`FairMutex`] and returns a guard that permits access to the inner data.
    ///
    /// The returned value may be dereferenced for data access
    /// and the lock will be dropped when the guard falls out of scope.
    ///
    /// ```
    /// let lock = spin::mutex::FairMutex::<_>::new(0);
    /// {
    ///     let mut data = lock.lock();
    ///     // The lock is now locked and the data can be accessed
    ///     *data += 1;
    ///     // The lock is implicitly dropped at the end of the scope
    /// }
    /// ```
    #[inline(always)]
    pub fn lock(&self) -> FairMutexGuard<T> {
        // Can fail to lock even if the spinlock is not locked. May be more efficient than `try_lock`
        // when called in a loop.
        let mut spins = 0;
        while self
            .lock
            .compare_exchange_weak(0, 1, Ordering::Acquire, Ordering::Relaxed)
            .is_err()
        {
            // Wait until the lock looks unlocked before retrying
            while self.is_locked() {
                R::relax();

                // If we've been spinning for a while, switch to a fairer strategy that will prevent
                // newer users from stealing our lock from us.
                if spins > STARVATION_SPINS {
                    return self.starve().lock();
                }
                spins += 1;
            }
        }

        FairMutexGuard {
            lock: &self.lock,
            data: unsafe { &mut *self.data.get() },
        }
    }
}

impl<T: ?Sized, R> FairMutex<T, R> {
    /// Returns `true` if the lock is currently held.
    ///
    /// # Safety
    ///
    /// This function provides no synchronization guarantees and so its result should be considered 'out of date'
    /// the instant it is called. Do not use it for synchronization purposes. However, it may be useful as a heuristic.
    #[inline(always)]
    pub fn is_locked(&self) -> bool {
        self.lock.load(Ordering::Relaxed) & LOCKED != 0
    }

    /// Force unlock this [`FairMutex`].
    ///
    /// # Safety
    ///
    /// This is *extremely* unsafe if the lock is not held by the current
    /// thread. However, this can be useful in some instances for exposing the
    /// lock to FFI that doesn't know how to deal with RAII.
    #[inline(always)]
    pub unsafe fn force_unlock(&self) {
        self.lock.fetch_and(!LOCKED, Ordering::Release);
    }

    /// Try to lock this [`FairMutex`], returning a lock guard if successful.
    ///
    /// # Example
    ///
    /// ```
    /// let lock = spin::mutex::FairMutex::<_>::new(42);
    ///
    /// let maybe_guard = lock.try_lock();
    /// assert!(maybe_guard.is_some());
    ///
    /// // `maybe_guard` is still held, so the second call fails
    /// let maybe_guard2 = lock.try_lock();
    /// assert!(maybe_guard2.is_none());
    /// ```
    #[inline(always)]
    pub fn try_lock(&self) -> Option<FairMutexGuard<T>> {
        self.try_lock_starver().ok()
    }

    /// Tries to lock this [`FairMutex`] and returns a result that indicates whether the lock was
    /// rejected due to a starver or not.
    #[inline(always)]
    pub fn try_lock_starver(&self) -> Result<FairMutexGuard<T>, LockRejectReason> {
        match self
            .lock
            .compare_exchange(0, LOCKED, Ordering::Acquire, Ordering::Relaxed)
            .unwrap_or_else(|x| x)
        {
            0 => Ok(FairMutexGuard {
                lock: &self.lock,
                data: unsafe { &mut *self.data.get() },
            }),
            LOCKED => Err(LockRejectReason::Locked),
            _ => Err(LockRejectReason::Starved),
        }
    }

    /// Indicates that the current user has been waiting for the lock for a while
    /// and that the lock should yield to this thread over a newly arriving thread.
    ///
    /// # Example
    ///
    /// ```
    /// let lock = spin::mutex::FairMutex::<_>::new(42);
    ///
    /// // Lock the mutex to simulate it being used by another user.
    /// let guard1 = lock.lock();
    ///
    /// // Try to lock the mutex.
    /// let guard2 = lock.try_lock();
    /// assert!(guard2.is_none());
    ///
    /// // Wait for a while.
    /// wait_for_a_while();
    ///
    /// // We are now starved, indicate as such.
    /// let starve = lock.starve();
    ///
    /// // Once the lock is released, another user trying to lock it will
    /// // fail.
    /// drop(guard1);
    /// let guard3 = lock.try_lock();
    /// assert!(guard3.is_none());
    ///
    /// // However, we will be able to lock it.
    /// let guard4 = starve.try_lock();
    /// assert!(guard4.is_ok());
    ///
    /// # fn wait_for_a_while() {}
    /// ```
    pub fn starve(&self) -> Starvation<'_, T, R> {
        // Add a new starver to the state.
        if self.lock.fetch_add(STARVED, Ordering::Relaxed) > (core::isize::MAX - 1) as usize {
            // In the event of a potential lock overflow, abort.
            crate::abort();
        }

        Starvation { lock: self }
    }

    /// Returns a mutable reference to the underlying data.
    ///
    /// Since this call borrows the [`FairMutex`] mutably, and a mutable reference is guaranteed to be exclusive in
    /// Rust, no actual locking needs to take place -- the mutable borrow statically guarantees no locks exist. As
    /// such, this is a 'zero-cost' operation.
    ///
    /// # Example
    ///
    /// ```
    /// let mut lock = spin::mutex::FairMutex::<_>::new(0);
    /// *lock.get_mut() = 10;
    /// assert_eq!(*lock.lock(), 10);
    /// ```
    #[inline(always)]
    pub fn get_mut(&mut self) -> &mut T {
        // We know statically that there are no other references to `self`, so
        // there's no need to lock the inner mutex.
        unsafe { &mut *self.data.get() }
    }
}

impl<T: ?Sized + fmt::Debug, R> fmt::Debug for FairMutex<T, R> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        struct LockWrapper<'a, T: ?Sized + fmt::Debug>(Option<FairMutexGuard<'a, T>>);

        impl<T: ?Sized + fmt::Debug> fmt::Debug for LockWrapper<'_, T> {
            fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
                match &self.0 {
                    Some(guard) => fmt::Debug::fmt(guard, f),
                    None => f.write_str("<locked>"),
                }
            }
        }

        f.debug_struct("FairMutex")
            .field("data", &LockWrapper(self.try_lock()))
            .finish()
    }
}

impl<T: ?Sized + Default, R> Default for FairMutex<T, R> {
    fn default() -> Self {
        Self::new(Default::default())
    }
}

impl<T, R> From<T> for FairMutex<T, R> {
    fn from(data: T) -> Self {
        Self::new(data)
    }
}

impl<'a, T: ?Sized> FairMutexGuard<'a, T> {
    /// Leak the lock guard, yielding a mutable reference to the underlying data.
    ///
    /// Note that this function will permanently lock the original [`FairMutex`].
    ///
    /// ```
    /// let mylock = spin::mutex::FairMutex::<_>::new(0);
    ///
    /// let data: &mut i32 = spin::mutex::FairMutexGuard::leak(mylock.lock());
    ///
    /// *data = 1;
    /// assert_eq!(*data, 1);
    /// ```
    #[inline(always)]
    pub fn leak(this: Self) -> &'a mut T {
        // Use ManuallyDrop to avoid stacked-borrow invalidation
        let mut this = ManuallyDrop::new(this);
        // We know statically that only we are referencing data
        unsafe { &mut *this.data }
    }
}

impl<'a, T: ?Sized + fmt::Debug> fmt::Debug for FairMutexGuard<'a, T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Debug::fmt(&**self, f)
    }
}

impl<'a, T: ?Sized + fmt::Display> fmt::Display for FairMutexGuard<'a, T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Display::fmt(&**self, f)
    }
}

impl<'a, T: ?Sized> Deref for FairMutexGuard<'a, T> {
    type Target = T;
    fn deref(&self) -> &T {
        // We know statically that only we are referencing data
        unsafe { &*self.data }
    }
}

impl<'a, T: ?Sized> DerefMut for FairMutexGuard<'a, T> {
    fn deref_mut(&mut self) -> &mut T {
        // We know statically that only we are referencing data
        unsafe { &mut *self.data }
    }
}

impl<'a, T: ?Sized> Drop for FairMutexGuard<'a, T> {
    /// The dropping of the MutexGuard will release the lock it was created from.
    fn drop(&mut self) {
        self.lock.fetch_and(!LOCKED, Ordering::Release);
    }
}

impl<'a, T: ?Sized, R> Starvation<'a, T, R> {
    /// Attempts the lock the mutex if we are the only starving user.
    ///
    /// This allows another user to lock the mutex if they are starving as well.
    pub fn try_lock_fair(self) -> Result<FairMutexGuard<'a, T>, Self> {
        // Try to lock the mutex.
        if self
            .lock
            .lock
            .compare_exchange(
                STARVED,
                STARVED | LOCKED,
                Ordering::Acquire,
                Ordering::Relaxed,
            )
            .is_ok()
        {
            // We are the only starving user, lock the mutex.
            Ok(FairMutexGuard {
                lock: &self.lock.lock,
                data: self.lock.data.get(),
            })
        } else {
            // Another user is starving, fail.
            Err(self)
        }
    }

    /// Attempts to lock the mutex.
    ///
    /// If the lock is currently held by another thread, this will return `None`.
    ///
    /// # Example
    ///
    /// ```
    /// let lock = spin::mutex::FairMutex::<_>::new(42);
    ///
    /// // Lock the mutex to simulate it being used by another user.
    /// let guard1 = lock.lock();
    ///
    /// // Try to lock the mutex.
    /// let guard2 = lock.try_lock();
    /// assert!(guard2.is_none());
    ///
    /// // Wait for a while.
    /// wait_for_a_while();
    ///
    /// // We are now starved, indicate as such.
    /// let starve = lock.starve();
    ///
    /// // Once the lock is released, another user trying to lock it will
    /// // fail.
    /// drop(guard1);
    /// let guard3 = lock.try_lock();
    /// assert!(guard3.is_none());
    ///
    /// // However, we will be able to lock it.
    /// let guard4 = starve.try_lock();
    /// assert!(guard4.is_ok());
    ///
    /// # fn wait_for_a_while() {}
    /// ```
    pub fn try_lock(self) -> Result<FairMutexGuard<'a, T>, Self> {
        // Try to lock the mutex.
        if self.lock.lock.fetch_or(LOCKED, Ordering::Acquire) & LOCKED == 0 {
            // We have successfully locked the mutex.
            // By dropping `self` here, we decrement the starvation count.
            Ok(FairMutexGuard {
                lock: &self.lock.lock,
                data: self.lock.data.get(),
            })
        } else {
            Err(self)
        }
    }
}

impl<'a, T: ?Sized, R: RelaxStrategy> Starvation<'a, T, R> {
    /// Locks the mutex.
    pub fn lock(mut self) -> FairMutexGuard<'a, T> {
        // Try to lock the mutex.
        loop {
            match self.try_lock() {
                Ok(lock) => return lock,
                Err(starve) => self = starve,
            }

            // Relax until the lock is released.
            while self.lock.is_locked() {
                R::relax();
            }
        }
    }
}

impl<'a, T: ?Sized, R> Drop for Starvation<'a, T, R> {
    fn drop(&mut self) {
        // As there is no longer a user being starved, we decrement the starver count.
        self.lock.lock.fetch_sub(STARVED, Ordering::Release);
    }
}

impl fmt::Display for LockRejectReason {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match self {
            LockRejectReason::Locked => write!(f, "locked"),
            LockRejectReason::Starved => write!(f, "starved"),
        }
    }
}

#[cfg(feature = "std")]
impl std::error::Error for LockRejectReason {}

#[cfg(feature = "lock_api")]
unsafe impl<R: RelaxStrategy> lock_api_crate::RawMutex for FairMutex<(), R> {
    type GuardMarker = lock_api_crate::GuardSend;

    const INIT: Self = Self::new(());

    fn lock(&self) {
        // Prevent guard destructor running
        core::mem::forget(Self::lock(self));
    }

    fn try_lock(&self) -> bool {
        // Prevent guard destructor running
        Self::try_lock(self).map(core::mem::forget).is_some()
    }

    unsafe fn unlock(&self) {
        self.force_unlock();
    }

    fn is_locked(&self) -> bool {
        Self::is_locked(self)
    }
}

#[cfg(test)]
mod tests {
    use std::prelude::v1::*;

    use std::sync::atomic::{AtomicUsize, Ordering};
    use std::sync::mpsc::channel;
    use std::sync::Arc;
    use std::thread;

    type FairMutex<T> = super::FairMutex<T>;

    #[derive(Eq, PartialEq, Debug)]
    struct NonCopy(i32);

    #[test]
    fn smoke() {
        let m = FairMutex::<_>::new(());
        drop(m.lock());
        drop(m.lock());
    }

    #[test]
    fn lots_and_lots() {
        static M: FairMutex<()> = FairMutex::<_>::new(());
        static mut CNT: u32 = 0;
        const J: u32 = 1000;
        const K: u32 = 3;

        fn inc() {
            for _ in 0..J {
                unsafe {
                    let _g = M.lock();
                    CNT += 1;
                }
            }
        }

        let (tx, rx) = channel();
        for _ in 0..K {
            let tx2 = tx.clone();
            thread::spawn(move || {
                inc();
                tx2.send(()).unwrap();
            });
            let tx2 = tx.clone();
            thread::spawn(move || {
                inc();
                tx2.send(()).unwrap();
            });
        }

        drop(tx);
        for _ in 0..2 * K {
            rx.recv().unwrap();
        }
        assert_eq!(unsafe { CNT }, J * K * 2);
    }

    #[test]
    fn try_lock() {
        let mutex = FairMutex::<_>::new(42);

        // First lock succeeds
        let a = mutex.try_lock();
        assert_eq!(a.as_ref().map(|r| **r), Some(42));

        // Additional lock fails
        let b = mutex.try_lock();
        assert!(b.is_none());

        // After dropping lock, it succeeds again
        ::core::mem::drop(a);
        let c = mutex.try_lock();
        assert_eq!(c.as_ref().map(|r| **r), Some(42));
    }

    #[test]
    fn test_into_inner() {
        let m = FairMutex::<_>::new(NonCopy(10));
        assert_eq!(m.into_inner(), NonCopy(10));
    }

    #[test]
    fn test_into_inner_drop() {
        struct Foo(Arc<AtomicUsize>);
        impl Drop for Foo {
            fn drop(&mut self) {
                self.0.fetch_add(1, Ordering::SeqCst);
            }
        }
        let num_drops = Arc::new(AtomicUsize::new(0));
        let m = FairMutex::<_>::new(Foo(num_drops.clone()));
        assert_eq!(num_drops.load(Ordering::SeqCst), 0);
        {
            let _inner = m.into_inner();
            assert_eq!(num_drops.load(Ordering::SeqCst), 0);
        }
        assert_eq!(num_drops.load(Ordering::SeqCst), 1);
    }

    #[test]
    fn test_mutex_arc_nested() {
        // Tests nested mutexes and access
        // to underlying data.
        let arc = Arc::new(FairMutex::<_>::new(1));
        let arc2 = Arc::new(FairMutex::<_>::new(arc));
        let (tx, rx) = channel();
        let _t = thread::spawn(move || {
            let lock = arc2.lock();
            let lock2 = lock.lock();
            assert_eq!(*lock2, 1);
            tx.send(()).unwrap();
        });
        rx.recv().unwrap();
    }

    #[test]
    fn test_mutex_arc_access_in_unwind() {
        let arc = Arc::new(FairMutex::<_>::new(1));
        let arc2 = arc.clone();
        let _ = thread::spawn(move || -> () {
            struct Unwinder {
                i: Arc<FairMutex<i32>>,
            }
            impl Drop for Unwinder {
                fn drop(&mut self) {
                    *self.i.lock() += 1;
                }
            }
            let _u = Unwinder { i: arc2 };
            panic!();
        })
        .join();
        let lock = arc.lock();
        assert_eq!(*lock, 2);
    }

    #[test]
    fn test_mutex_unsized() {
        let mutex: &FairMutex<[i32]> = &FairMutex::<_>::new([1, 2, 3]);
        {
            let b = &mut *mutex.lock();
            b[0] = 4;
            b[2] = 5;
        }
        let comp: &[i32] = &[4, 2, 5];
        assert_eq!(&*mutex.lock(), comp);
    }

    #[test]
    fn test_mutex_force_lock() {
        let lock = FairMutex::<_>::new(());
        ::std::mem::forget(lock.lock());
        unsafe {
            lock.force_unlock();
        }
        assert!(lock.try_lock().is_some());
    }
}