diff options
author | Georgiy Bondarenko <69736697+nehilo@users.noreply.github.com> | 2021-03-04 20:54:23 +0300 |
---|---|---|
committer | Georgiy Bondarenko <69736697+nehilo@users.noreply.github.com> | 2021-03-04 20:54:23 +0300 |
commit | e8701195e66f2d27ffe17fb514eae8173795aaf7 (patch) | |
tree | 9f519c4abf6556b9ae7190a6210d87ead1dfadde /Marlin/src/HAL/DUE/HAL_SPI.cpp | |
download | kp3s-lgvl-e8701195e66f2d27ffe17fb514eae8173795aaf7.tar.xz kp3s-lgvl-e8701195e66f2d27ffe17fb514eae8173795aaf7.zip |
Initial commit
Diffstat (limited to 'Marlin/src/HAL/DUE/HAL_SPI.cpp')
-rw-r--r-- | Marlin/src/HAL/DUE/HAL_SPI.cpp | 825 |
1 files changed, 825 insertions, 0 deletions
diff --git a/Marlin/src/HAL/DUE/HAL_SPI.cpp b/Marlin/src/HAL/DUE/HAL_SPI.cpp new file mode 100644 index 0000000..342c373 --- /dev/null +++ b/Marlin/src/HAL/DUE/HAL_SPI.cpp @@ -0,0 +1,825 @@ +/** + * Marlin 3D Printer Firmware + * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] + * + * Based on Sprinter and grbl. + * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <https://www.gnu.org/licenses/>. + * + */ + +/** + * Software SPI functions originally from Arduino Sd2Card Library + * Copyright (c) 2009 by William Greiman + * + * Completely rewritten and tuned by Eduardo José Tagle in 2017/2018 + * in ARM thumb2 inline assembler and tuned for maximum speed and performance + * allowing SPI clocks of up to 12 Mhz to increase SD card read/write performance + */ + +/** + * HAL for Arduino Due and compatible (SAM3X8E) + * + * For ARDUINO_ARCH_SAM + */ + +#ifdef ARDUINO_ARCH_SAM + +#include "../../inc/MarlinConfig.h" +#include "../shared/Delay.h" + +// ------------------------ +// Public functions +// ------------------------ + +#if EITHER(DUE_SOFTWARE_SPI, FORCE_SOFT_SPI) + + // ------------------------ + // Software SPI + // ------------------------ + + // Make sure GCC optimizes this file. + // Note that this line triggers a bug in GCC which is fixed by casting. + // See the note below. + #pragma GCC optimize (3) + + typedef uint8_t (*pfnSpiTransfer)(uint8_t b); + typedef void (*pfnSpiRxBlock)(uint8_t* buf, uint32_t nbyte); + typedef void (*pfnSpiTxBlock)(const uint8_t* buf, uint32_t nbyte); + + /* ---------------- Macros to be able to access definitions from asm */ + #define _PORT(IO) DIO ## IO ## _WPORT + #define _PIN_MASK(IO) MASK(DIO ## IO ## _PIN) + #define _PIN_SHIFT(IO) DIO ## IO ## _PIN + #define PORT(IO) _PORT(IO) + #define PIN_MASK(IO) _PIN_MASK(IO) + #define PIN_SHIFT(IO) _PIN_SHIFT(IO) + + // run at ~8 .. ~10Mhz - Tx version (Rx data discarded) + static uint8_t spiTransferTx0(uint8_t bout) { // using Mode 0 + uint32_t MOSI_PORT_PLUS30 = ((uint32_t) PORT(SD_MOSI_PIN)) + 0x30; /* SODR of port */ + uint32_t MOSI_MASK = PIN_MASK(SD_MOSI_PIN); + uint32_t SCK_PORT_PLUS30 = ((uint32_t) PORT(SD_SCK_PIN)) + 0x30; /* SODR of port */ + uint32_t SCK_MASK = PIN_MASK(SD_SCK_PIN); + uint32_t idx = 0; + + /* Negate bout, as the assembler requires a negated value */ + bout = ~bout; + + /* The software SPI routine */ + __asm__ __volatile__( + A(".syntax unified") // is to prevent CM0,CM1 non-unified syntax + + /* Bit 7 */ + A("ubfx %[idx],%[txval],#7,#1") /* Place bit 7 in bit 0 of idx*/ + + A("str %[mosi_mask],[%[mosi_port], %[idx],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */ + A("str %[sck_mask],[%[sck_port]]") /* SODR */ + A("ubfx %[idx],%[txval],#6,#1") /* Place bit 6 in bit 0 of idx*/ + A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ + + /* Bit 6 */ + A("str %[mosi_mask],[%[mosi_port], %[idx],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */ + A("str %[sck_mask],[%[sck_port]]") /* SODR */ + A("ubfx %[idx],%[txval],#5,#1") /* Place bit 5 in bit 0 of idx*/ + A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ + + /* Bit 5 */ + A("str %[mosi_mask],[%[mosi_port], %[idx],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */ + A("str %[sck_mask],[%[sck_port]]") /* SODR */ + A("ubfx %[idx],%[txval],#4,#1") /* Place bit 4 in bit 0 of idx*/ + A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ + + /* Bit 4 */ + A("str %[mosi_mask],[%[mosi_port], %[idx],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */ + A("str %[sck_mask],[%[sck_port]]") /* SODR */ + A("ubfx %[idx],%[txval],#3,#1") /* Place bit 3 in bit 0 of idx*/ + A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ + + /* Bit 3 */ + A("str %[mosi_mask],[%[mosi_port], %[idx],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */ + A("str %[sck_mask],[%[sck_port]]") /* SODR */ + A("ubfx %[idx],%[txval],#2,#1") /* Place bit 2 in bit 0 of idx*/ + A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ + + /* Bit 2 */ + A("str %[mosi_mask],[%[mosi_port], %[idx],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */ + A("str %[sck_mask],[%[sck_port]]") /* SODR */ + A("ubfx %[idx],%[txval],#1,#1") /* Place bit 1 in bit 0 of idx*/ + A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ + + /* Bit 1 */ + A("str %[mosi_mask],[%[mosi_port], %[idx],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */ + A("str %[sck_mask],[%[sck_port]]") /* SODR */ + A("ubfx %[idx],%[txval],#0,#1") /* Place bit 0 in bit 0 of idx*/ + A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ + + /* Bit 0 */ + A("str %[mosi_mask],[%[mosi_port], %[idx],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */ + A("str %[sck_mask],[%[sck_port]]") /* SODR */ + A("nop") /* Result will be 0 */ + A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ + + : [idx]"+r"( idx ) + : [txval]"r"( bout ) , + [mosi_mask]"r"( MOSI_MASK ), + [mosi_port]"r"( MOSI_PORT_PLUS30 ), + [sck_mask]"r"( SCK_MASK ), + [sck_port]"r"( SCK_PORT_PLUS30 ) + : "cc" + ); + + return 0; + } + + // Calculates the bit band alias address and returns a pointer address to word. + // addr: The byte address of bitbanding bit. + // bit: The bit position of bitbanding bit. + #define BITBAND_ADDRESS(addr, bit) \ + (((uint32_t)(addr) & 0xF0000000) + 0x02000000 + ((uint32_t)(addr)&0xFFFFF)*32 + (bit)*4) + + // run at ~8 .. ~10Mhz - Rx version (Tx line not altered) + static uint8_t spiTransferRx0(uint8_t) { // using Mode 0 + uint32_t bin = 0; + uint32_t work = 0; + uint32_t BITBAND_MISO_PORT = BITBAND_ADDRESS( ((uint32_t)PORT(SD_MISO_PIN))+0x3C, PIN_SHIFT(SD_MISO_PIN)); /* PDSR of port in bitband area */ + uint32_t SCK_PORT_PLUS30 = ((uint32_t) PORT(SD_SCK_PIN)) + 0x30; /* SODR of port */ + uint32_t SCK_MASK = PIN_MASK(SD_SCK_PIN); + + /* The software SPI routine */ + __asm__ __volatile__( + A(".syntax unified") // is to prevent CM0,CM1 non-unified syntax + + /* bit 7 */ + A("str %[sck_mask],[%[sck_port]]") /* SODR */ + A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */ + A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ + A("bfi %[bin],%[work],#7,#1") /* Store read bit as the bit 7 */ + + /* bit 6 */ + A("str %[sck_mask],[%[sck_port]]") /* SODR */ + A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */ + A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ + A("bfi %[bin],%[work],#6,#1") /* Store read bit as the bit 6 */ + + /* bit 5 */ + A("str %[sck_mask],[%[sck_port]]") /* SODR */ + A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */ + A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ + A("bfi %[bin],%[work],#5,#1") /* Store read bit as the bit 5 */ + + /* bit 4 */ + A("str %[sck_mask],[%[sck_port]]") /* SODR */ + A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */ + A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ + A("bfi %[bin],%[work],#4,#1") /* Store read bit as the bit 4 */ + + /* bit 3 */ + A("str %[sck_mask],[%[sck_port]]") /* SODR */ + A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */ + A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ + A("bfi %[bin],%[work],#3,#1") /* Store read bit as the bit 3 */ + + /* bit 2 */ + A("str %[sck_mask],[%[sck_port]]") /* SODR */ + A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */ + A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ + A("bfi %[bin],%[work],#2,#1") /* Store read bit as the bit 2 */ + + /* bit 1 */ + A("str %[sck_mask],[%[sck_port]]") /* SODR */ + A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */ + A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ + A("bfi %[bin],%[work],#1,#1") /* Store read bit as the bit 1 */ + + /* bit 0 */ + A("str %[sck_mask],[%[sck_port]]") /* SODR */ + A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */ + A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ + A("bfi %[bin],%[work],#0,#1") /* Store read bit as the bit 0 */ + + : [bin]"+r"(bin), + [work]"+r"(work) + : [bitband_miso_port]"r"( BITBAND_MISO_PORT ), + [sck_mask]"r"( SCK_MASK ), + [sck_port]"r"( SCK_PORT_PLUS30 ) + : "cc" + ); + + return bin; + } + + // run at ~4Mhz + static uint8_t spiTransfer1(uint8_t b) { // using Mode 0 + int bits = 8; + do { + WRITE(SD_MOSI_PIN, b & 0x80); + b <<= 1; // little setup time + + WRITE(SD_SCK_PIN, HIGH); + DELAY_NS(125); // 10 cycles @ 84mhz + + b |= (READ(SD_MISO_PIN) != 0); + + WRITE(SD_SCK_PIN, LOW); + DELAY_NS(125); // 10 cycles @ 84mhz + } while (--bits); + return b; + } + + // all the others + static uint32_t spiDelayCyclesX4 = (F_CPU) / 1000000; // 4µs => 125khz + + static uint8_t spiTransferX(uint8_t b) { // using Mode 0 + int bits = 8; + do { + WRITE(SD_MOSI_PIN, b & 0x80); + b <<= 1; // little setup time + + WRITE(SD_SCK_PIN, HIGH); + __delay_4cycles(spiDelayCyclesX4); + + b |= (READ(SD_MISO_PIN) != 0); + + WRITE(SD_SCK_PIN, LOW); + __delay_4cycles(spiDelayCyclesX4); + } while (--bits); + return b; + } + + // Pointers to generic functions for byte transfers + + /** + * Note: The cast is unnecessary, but without it, this file triggers a GCC 4.8.3-2014 bug. + * Later GCC versions do not have this problem, but at this time (May 2018) Arduino still + * uses that buggy and obsolete GCC version!! + */ + static pfnSpiTransfer spiTransferRx = (pfnSpiTransfer)spiTransferX; + static pfnSpiTransfer spiTransferTx = (pfnSpiTransfer)spiTransferX; + + // Block transfers run at ~8 .. ~10Mhz - Tx version (Rx data discarded) + static void spiTxBlock0(const uint8_t* ptr, uint32_t todo) { + uint32_t MOSI_PORT_PLUS30 = ((uint32_t) PORT(SD_MOSI_PIN)) + 0x30; /* SODR of port */ + uint32_t MOSI_MASK = PIN_MASK(SD_MOSI_PIN); + uint32_t SCK_PORT_PLUS30 = ((uint32_t) PORT(SD_SCK_PIN)) + 0x30; /* SODR of port */ + uint32_t SCK_MASK = PIN_MASK(SD_SCK_PIN); + uint32_t work = 0; + uint32_t txval = 0; + + /* The software SPI routine */ + __asm__ __volatile__( + A(".syntax unified") // is to prevent CM0,CM1 non-unified syntax + + L("loop%=") + A("ldrb.w %[txval], [%[ptr]], #1") /* Load value to send, increment buffer */ + A("mvn %[txval],%[txval]") /* Negate value */ + + /* Bit 7 */ + A("ubfx %[work],%[txval],#7,#1") /* Place bit 7 in bit 0 of work*/ + + A("str %[mosi_mask],[%[mosi_port], %[work],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */ + A("str %[sck_mask],[%[sck_port]]") /* SODR */ + A("ubfx %[work],%[txval],#6,#1") /* Place bit 6 in bit 0 of work*/ + A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ + + /* Bit 6 */ + A("str %[mosi_mask],[%[mosi_port], %[work],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */ + A("str %[sck_mask],[%[sck_port]]") /* SODR */ + A("ubfx %[work],%[txval],#5,#1") /* Place bit 5 in bit 0 of work*/ + A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ + + /* Bit 5 */ + A("str %[mosi_mask],[%[mosi_port], %[work],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */ + A("str %[sck_mask],[%[sck_port]]") /* SODR */ + A("ubfx %[work],%[txval],#4,#1") /* Place bit 4 in bit 0 of work*/ + A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ + + /* Bit 4 */ + A("str %[mosi_mask],[%[mosi_port], %[work],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */ + A("str %[sck_mask],[%[sck_port]]") /* SODR */ + A("ubfx %[work],%[txval],#3,#1") /* Place bit 3 in bit 0 of work*/ + A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ + + /* Bit 3 */ + A("str %[mosi_mask],[%[mosi_port], %[work],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */ + A("str %[sck_mask],[%[sck_port]]") /* SODR */ + A("ubfx %[work],%[txval],#2,#1") /* Place bit 2 in bit 0 of work*/ + A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ + + /* Bit 2 */ + A("str %[mosi_mask],[%[mosi_port], %[work],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */ + A("str %[sck_mask],[%[sck_port]]") /* SODR */ + A("ubfx %[work],%[txval],#1,#1") /* Place bit 1 in bit 0 of work*/ + A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ + + /* Bit 1 */ + A("str %[mosi_mask],[%[mosi_port], %[work],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */ + A("str %[sck_mask],[%[sck_port]]") /* SODR */ + A("ubfx %[work],%[txval],#0,#1") /* Place bit 0 in bit 0 of work*/ + A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ + + /* Bit 0 */ + A("str %[mosi_mask],[%[mosi_port], %[work],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */ + A("str %[sck_mask],[%[sck_port]]") /* SODR */ + A("subs %[todo],#1") /* Decrement count of pending words to send, update status */ + A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ + A("bne.n loop%=") /* Repeat until done */ + + : [ptr]"+r" ( ptr ) , + [todo]"+r" ( todo ) , + [work]"+r"( work ) , + [txval]"+r"( txval ) + : [mosi_mask]"r"( MOSI_MASK ), + [mosi_port]"r"( MOSI_PORT_PLUS30 ), + [sck_mask]"r"( SCK_MASK ), + [sck_port]"r"( SCK_PORT_PLUS30 ) + : "cc" + ); + } + + static void spiRxBlock0(uint8_t* ptr, uint32_t todo) { + uint32_t bin = 0; + uint32_t work = 0; + uint32_t BITBAND_MISO_PORT = BITBAND_ADDRESS( ((uint32_t)PORT(SD_MISO_PIN))+0x3C, PIN_SHIFT(SD_MISO_PIN)); /* PDSR of port in bitband area */ + uint32_t SCK_PORT_PLUS30 = ((uint32_t) PORT(SD_SCK_PIN)) + 0x30; /* SODR of port */ + uint32_t SCK_MASK = PIN_MASK(SD_SCK_PIN); + + /* The software SPI routine */ + __asm__ __volatile__( + A(".syntax unified") // is to prevent CM0,CM1 non-unified syntax + + L("loop%=") + + /* bit 7 */ + A("str %[sck_mask],[%[sck_port]]") /* SODR */ + A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */ + A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ + A("bfi %[bin],%[work],#7,#1") /* Store read bit as the bit 7 */ + + /* bit 6 */ + A("str %[sck_mask],[%[sck_port]]") /* SODR */ + A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */ + A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ + A("bfi %[bin],%[work],#6,#1") /* Store read bit as the bit 6 */ + + /* bit 5 */ + A("str %[sck_mask],[%[sck_port]]") /* SODR */ + A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */ + A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ + A("bfi %[bin],%[work],#5,#1") /* Store read bit as the bit 5 */ + + /* bit 4 */ + A("str %[sck_mask],[%[sck_port]]") /* SODR */ + A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */ + A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ + A("bfi %[bin],%[work],#4,#1") /* Store read bit as the bit 4 */ + + /* bit 3 */ + A("str %[sck_mask],[%[sck_port]]") /* SODR */ + A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */ + A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ + A("bfi %[bin],%[work],#3,#1") /* Store read bit as the bit 3 */ + + /* bit 2 */ + A("str %[sck_mask],[%[sck_port]]") /* SODR */ + A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */ + A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ + A("bfi %[bin],%[work],#2,#1") /* Store read bit as the bit 2 */ + + /* bit 1 */ + A("str %[sck_mask],[%[sck_port]]") /* SODR */ + A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */ + A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ + A("bfi %[bin],%[work],#1,#1") /* Store read bit as the bit 1 */ + + /* bit 0 */ + A("str %[sck_mask],[%[sck_port]]") /* SODR */ + A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */ + A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ + A("bfi %[bin],%[work],#0,#1") /* Store read bit as the bit 0 */ + + A("subs %[todo],#1") /* Decrement count of pending words to send, update status */ + A("strb.w %[bin], [%[ptr]], #1") /* Store read value into buffer, increment buffer pointer */ + A("bne.n loop%=") /* Repeat until done */ + + : [ptr]"+r"(ptr), + [todo]"+r"(todo), + [bin]"+r"(bin), + [work]"+r"(work) + : [bitband_miso_port]"r"( BITBAND_MISO_PORT ), + [sck_mask]"r"( SCK_MASK ), + [sck_port]"r"( SCK_PORT_PLUS30 ) + : "cc" + ); + } + + static void spiTxBlockX(const uint8_t* buf, uint32_t todo) { + do { + (void)spiTransferTx(*buf++); + } while (--todo); + } + + static void spiRxBlockX(uint8_t* buf, uint32_t todo) { + do { + *buf++ = spiTransferRx(0xFF); + } while (--todo); + } + + // Pointers to generic functions for block tranfers + static pfnSpiTxBlock spiTxBlock = (pfnSpiTxBlock)spiTxBlockX; + static pfnSpiRxBlock spiRxBlock = (pfnSpiRxBlock)spiRxBlockX; + + #if MB(ALLIGATOR) + #define _SS_WRITE(S) WRITE(SD_SS_PIN, S) + #else + #define _SS_WRITE(S) NOOP + #endif + + void spiBegin() { + SET_OUTPUT(SD_SS_PIN); + _SS_WRITE(HIGH); + SET_OUTPUT(SD_SCK_PIN); + SET_INPUT(SD_MISO_PIN); + SET_OUTPUT(SD_MOSI_PIN); + } + + uint8_t spiRec() { + _SS_WRITE(LOW); + WRITE(SD_MOSI_PIN, HIGH); // Output 1s 1 + uint8_t b = spiTransferRx(0xFF); + _SS_WRITE(HIGH); + return b; + } + + void spiRead(uint8_t* buf, uint16_t nbyte) { + if (nbyte) { + _SS_WRITE(LOW); + WRITE(SD_MOSI_PIN, HIGH); // Output 1s 1 + spiRxBlock(buf, nbyte); + _SS_WRITE(HIGH); + } + } + + void spiSend(uint8_t b) { + _SS_WRITE(LOW); + (void)spiTransferTx(b); + _SS_WRITE(HIGH); + } + + void spiSendBlock(uint8_t token, const uint8_t* buf) { + _SS_WRITE(LOW); + (void)spiTransferTx(token); + spiTxBlock(buf, 512); + _SS_WRITE(HIGH); + } + + /** + * spiRate should be + * 0 : 8 - 10 MHz + * 1 : 4 - 5 MHz + * 2 : 2 - 2.5 MHz + * 3 : 1 - 1.25 MHz + * 4 : 500 - 625 kHz + * 5 : 250 - 312 kHz + * 6 : 125 - 156 kHz + */ + void spiInit(uint8_t spiRate) { + switch (spiRate) { + case 0: + spiTransferTx = (pfnSpiTransfer)spiTransferTx0; + spiTransferRx = (pfnSpiTransfer)spiTransferRx0; + spiTxBlock = (pfnSpiTxBlock)spiTxBlock0; + spiRxBlock = (pfnSpiRxBlock)spiRxBlock0; + break; + case 1: + spiTransferTx = (pfnSpiTransfer)spiTransfer1; + spiTransferRx = (pfnSpiTransfer)spiTransfer1; + spiTxBlock = (pfnSpiTxBlock)spiTxBlockX; + spiRxBlock = (pfnSpiRxBlock)spiRxBlockX; + break; + default: + spiDelayCyclesX4 = ((F_CPU) / 1000000) >> (6 - spiRate); + spiTransferTx = (pfnSpiTransfer)spiTransferX; + spiTransferRx = (pfnSpiTransfer)spiTransferX; + spiTxBlock = (pfnSpiTxBlock)spiTxBlockX; + spiRxBlock = (pfnSpiRxBlock)spiRxBlockX; + break; + } + + _SS_WRITE(HIGH); + WRITE(SD_MOSI_PIN, HIGH); + WRITE(SD_SCK_PIN, LOW); + } + + /** Begin SPI transaction, set clock, bit order, data mode */ + void spiBeginTransaction(uint32_t spiClock, uint8_t bitOrder, uint8_t dataMode) { + // TODO: to be implemented + } + + #pragma GCC reset_options + +#else // !SOFTWARE_SPI + + #define WHILE_TX(N) while ((SPI0->SPI_SR & SPI_SR_TDRE) == (N)) + #define WHILE_RX(N) while ((SPI0->SPI_SR & SPI_SR_RDRF) == (N)) + #define FLUSH_TX() do{ WHILE_RX(1) SPI0->SPI_RDR; }while(0) + + #if MB(ALLIGATOR) + + // slave selects controlled by SPI controller + // doesn't support changing SPI speeds for SD card + + // ------------------------ + // hardware SPI + // ------------------------ + static bool spiInitialized = false; + + void spiInit(uint8_t spiRate) { + if (spiInitialized) return; + + // 8.4 MHz, 4 MHz, 2 MHz, 1 MHz, 0.5 MHz, 0.329 MHz, 0.329 MHz + constexpr int spiDivider[] = { 10, 21, 42, 84, 168, 255, 255 }; + if (spiRate > 6) spiRate = 1; + + // Set SPI mode 1, clock, select not active after transfer, with delay between transfers + SPI_ConfigureNPCS(SPI0, SPI_CHAN_DAC, + SPI_CSR_CSAAT | SPI_CSR_SCBR(spiDivider[spiRate]) | + SPI_CSR_DLYBCT(1)); + // Set SPI mode 0, clock, select not active after transfer, with delay between transfers + SPI_ConfigureNPCS(SPI0, SPI_CHAN_EEPROM1, SPI_CSR_NCPHA | + SPI_CSR_CSAAT | SPI_CSR_SCBR(spiDivider[spiRate]) | + SPI_CSR_DLYBCT(1)); + + // Set SPI mode 0, clock, select not active after transfer, with delay between transfers + SPI_ConfigureNPCS(SPI0, SPI_CHAN, SPI_CSR_NCPHA | + SPI_CSR_CSAAT | SPI_CSR_SCBR(spiDivider[spiRate]) | + SPI_CSR_DLYBCT(1)); + SPI_Enable(SPI0); + spiInitialized = true; + } + + void spiBegin() { + if (spiInitialized) return; + + // Configure SPI pins + PIO_Configure( + g_APinDescription[SD_SCK_PIN].pPort, + g_APinDescription[SD_SCK_PIN].ulPinType, + g_APinDescription[SD_SCK_PIN].ulPin, + g_APinDescription[SD_SCK_PIN].ulPinConfiguration); + PIO_Configure( + g_APinDescription[SD_MOSI_PIN].pPort, + g_APinDescription[SD_MOSI_PIN].ulPinType, + g_APinDescription[SD_MOSI_PIN].ulPin, + g_APinDescription[SD_MOSI_PIN].ulPinConfiguration); + PIO_Configure( + g_APinDescription[SD_MISO_PIN].pPort, + g_APinDescription[SD_MISO_PIN].ulPinType, + g_APinDescription[SD_MISO_PIN].ulPin, + g_APinDescription[SD_MISO_PIN].ulPinConfiguration); + + // set master mode, peripheral select, fault detection + SPI_Configure(SPI0, ID_SPI0, SPI_MR_MSTR | SPI_MR_MODFDIS | SPI_MR_PS); + SPI_Enable(SPI0); + + SET_OUTPUT(DAC0_SYNC); + #if HAS_MULTI_EXTRUDER + SET_OUTPUT(DAC1_SYNC); + WRITE(DAC1_SYNC, HIGH); + #endif + SET_OUTPUT(SPI_EEPROM1_CS); + SET_OUTPUT(SPI_EEPROM2_CS); + SET_OUTPUT(SPI_FLASH_CS); + WRITE(DAC0_SYNC, HIGH); + WRITE(SPI_EEPROM1_CS, HIGH); + WRITE(SPI_EEPROM2_CS, HIGH); + WRITE(SPI_FLASH_CS, HIGH); + WRITE(SD_SS_PIN, HIGH); + + OUT_WRITE(SDSS, LOW); + + PIO_Configure( + g_APinDescription[SPI_PIN].pPort, + g_APinDescription[SPI_PIN].ulPinType, + g_APinDescription[SPI_PIN].ulPin, + g_APinDescription[SPI_PIN].ulPinConfiguration + ); + + spiInit(1); + } + + // Read single byte from SPI + uint8_t spiRec() { + // write dummy byte with address and end transmission flag + SPI0->SPI_TDR = 0x000000FF | SPI_PCS(SPI_CHAN) | SPI_TDR_LASTXFER; + + WHILE_TX(0); + WHILE_RX(0); + + //DELAY_US(1U); + return SPI0->SPI_RDR; + } + + uint8_t spiRec(uint32_t chan) { + + WHILE_TX(0); + FLUSH_RX(); + + // write dummy byte with address and end transmission flag + SPI0->SPI_TDR = 0x000000FF | SPI_PCS(chan) | SPI_TDR_LASTXFER; + WHILE_RX(0); + + return SPI0->SPI_RDR; + } + + // Read from SPI into buffer + void spiRead(uint8_t* buf, uint16_t nbyte) { + if (!nbyte) return; + --nbyte; + for (int i = 0; i < nbyte; i++) { + //WHILE_TX(0); + SPI0->SPI_TDR = 0x000000FF | SPI_PCS(SPI_CHAN); + WHILE_RX(0); + buf[i] = SPI0->SPI_RDR; + //DELAY_US(1U); + } + buf[nbyte] = spiRec(); + } + + // Write single byte to SPI + void spiSend(const byte b) { + // write byte with address and end transmission flag + SPI0->SPI_TDR = (uint32_t)b | SPI_PCS(SPI_CHAN) | SPI_TDR_LASTXFER; + WHILE_TX(0); + WHILE_RX(0); + SPI0->SPI_RDR; + //DELAY_US(1U); + } + + void spiSend(const uint8_t* buf, size_t nbyte) { + if (!nbyte) return; + --nbyte; + for (size_t i = 0; i < nbyte; i++) { + SPI0->SPI_TDR = (uint32_t)buf[i] | SPI_PCS(SPI_CHAN); + WHILE_TX(0); + WHILE_RX(0); + SPI0->SPI_RDR; + //DELAY_US(1U); + } + spiSend(buf[nbyte]); + } + + void spiSend(uint32_t chan, byte b) { + WHILE_TX(0); + // write byte with address and end transmission flag + SPI0->SPI_TDR = (uint32_t)b | SPI_PCS(chan) | SPI_TDR_LASTXFER; + WHILE_RX(0); + FLUSH_RX(); + } + + void spiSend(uint32_t chan, const uint8_t* buf, size_t nbyte) { + if (!nbyte) return; + --nbyte; + for (size_t i = 0; i < nbyte; i++) { + WHILE_TX(0); + SPI0->SPI_TDR = (uint32_t)buf[i] | SPI_PCS(chan); + WHILE_RX(0); + FLUSH_RX(); + } + spiSend(chan, buf[nbyte]); + } + + // Write from buffer to SPI + void spiSendBlock(uint8_t token, const uint8_t* buf) { + SPI0->SPI_TDR = (uint32_t)token | SPI_PCS(SPI_CHAN); + WHILE_TX(0); + //WHILE_RX(0); + //SPI0->SPI_RDR; + for (int i = 0; i < 511; i++) { + SPI0->SPI_TDR = (uint32_t)buf[i] | SPI_PCS(SPI_CHAN); + WHILE_TX(0); + WHILE_RX(0); + SPI0->SPI_RDR; + //DELAY_US(1U); + } + spiSend(buf[511]); + } + + /** Begin SPI transaction, set clock, bit order, data mode */ + void spiBeginTransaction(uint32_t spiClock, uint8_t bitOrder, uint8_t dataMode) { + // TODO: to be implemented + } + + #else // U8G compatible hardware SPI + + #define SPI_MODE_0_DUE_HW 2 // DUE CPHA control bit is inverted + #define SPI_MODE_1_DUE_HW 3 + #define SPI_MODE_2_DUE_HW 0 + #define SPI_MODE_3_DUE_HW 1 + + /** + * The DUE SPI controller is set up so the upper word of the longword + * written to the transmit data register selects which SPI Chip Select + * Register is used. This allows different streams to have different SPI + * settings. + * + * In practice it's spooky. Some combinations hang the system, while others + * upset the peripheral device. + * + * SPI mode should be the same for all streams. The FYSETC_MINI_12864 gets + * upset if the clock phase changes after chip select goes active. + * + * SPI_CSR_CSAAT should be set for all streams. If not the WHILE_TX(0) + * macro returns immediately which can result in the SPI chip select going + * inactive before all the data has been sent. + * + * The TMC2130 library uses SPI0->SPI_CSR[3]. + * + * The U8G hardware SPI uses SPI0->SPI_CSR[0]. The system hangs and/or the + * FYSETC_MINI_12864 gets upset if lower baud rates are used and the SD card + * is inserted or removed. + * + * The SD card uses SPI0->SPI_CSR[3]. Efforts were made to use [1] and [2] + * but they all resulted in hangs or garbage on the LCD. + * + * The SPI controlled chip selects are NOT enabled in the GPIO controller. + * The application must control the chip select. + * + * All of the above can be avoided by defining FORCE_SOFT_SPI to force the + * display to use software SPI. + */ + + void spiInit(uint8_t spiRate=6) { // Default to slowest rate if not specified) + // Also sets U8G SPI rate to 4MHz and the SPI mode to 3 + + // 8.4 MHz, 4 MHz, 2 MHz, 1 MHz, 0.5 MHz, 0.329 MHz, 0.329 MHz + constexpr int spiDivider[] = { 10, 21, 42, 84, 168, 255, 255 }; + if (spiRate > 6) spiRate = 1; + + // Enable PIOA and SPI0 + REG_PMC_PCER0 = (1UL << ID_PIOA) | (1UL << ID_SPI0); + + // Disable PIO on A26 and A27 + REG_PIOA_PDR = 0x0C000000; + OUT_WRITE(SDSS, HIGH); + + // Reset SPI0 (from sam lib) + SPI0->SPI_CR = SPI_CR_SPIDIS; + SPI0->SPI_CR = SPI_CR_SWRST; + SPI0->SPI_CR = SPI_CR_SWRST; + SPI0->SPI_CR = SPI_CR_SPIEN; + + // TMC2103 compatible setup + // Master mode, no fault detection, PCS bits in data written to TDR select CSR register + SPI0->SPI_MR = SPI_MR_MSTR | SPI_MR_PS | SPI_MR_MODFDIS; + // SPI mode 3, 8 Bit data transfer, baud rate + SPI0->SPI_CSR[3] = SPI_CSR_SCBR(spiDivider[spiRate]) | SPI_CSR_CSAAT | SPI_MODE_3_DUE_HW; // use same CSR as TMC2130 + SPI0->SPI_CSR[0] = SPI_CSR_SCBR(spiDivider[1]) | SPI_CSR_CSAAT | SPI_MODE_3_DUE_HW; // U8G default to 4MHz + } + + void spiBegin() { spiInit(); } + + static uint8_t spiTransfer(uint8_t data) { + WHILE_TX(0); + SPI0->SPI_TDR = (uint32_t)data | 0x00070000UL; // Add TMC2130 PCS bits to every byte (use SPI0->SPI_CSR[3]) + WHILE_TX(0); + WHILE_RX(0); + return SPI0->SPI_RDR; + } + + uint8_t spiRec() { return (uint8_t)spiTransfer(0xFF); } + + void spiRead(uint8_t* buf, uint16_t nbyte) { + for (int i = 0; i < nbyte; i++) + buf[i] = spiTransfer(0xFF); + } + + void spiSend(uint8_t data) { spiTransfer(data); } + + void spiSend(const uint8_t* buf, size_t nbyte) { + for (uint16_t i = 0; i < nbyte; i++) + spiTransfer(buf[i]); + } + + void spiSendBlock(uint8_t token, const uint8_t* buf) { + spiTransfer(token); + for (uint16_t i = 0; i < 512; i++) + spiTransfer(buf[i]); + } + + #endif // !ALLIGATOR +#endif // !SOFTWARE_SPI + +#endif // ARDUINO_ARCH_SAM |