aboutsummaryrefslogtreecommitdiff
path: root/Marlin/src/feature/bedlevel/abl/abl.cpp
diff options
context:
space:
mode:
authorGeorgiy Bondarenko <69736697+nehilo@users.noreply.github.com>2021-03-04 20:54:23 +0300
committerGeorgiy Bondarenko <69736697+nehilo@users.noreply.github.com>2021-03-04 20:54:23 +0300
commite8701195e66f2d27ffe17fb514eae8173795aaf7 (patch)
tree9f519c4abf6556b9ae7190a6210d87ead1dfadde /Marlin/src/feature/bedlevel/abl/abl.cpp
downloadkp3s-lgvl-e8701195e66f2d27ffe17fb514eae8173795aaf7.tar.xz
kp3s-lgvl-e8701195e66f2d27ffe17fb514eae8173795aaf7.zip
Initial commit
Diffstat (limited to 'Marlin/src/feature/bedlevel/abl/abl.cpp')
-rw-r--r--Marlin/src/feature/bedlevel/abl/abl.cpp421
1 files changed, 421 insertions, 0 deletions
diff --git a/Marlin/src/feature/bedlevel/abl/abl.cpp b/Marlin/src/feature/bedlevel/abl/abl.cpp
new file mode 100644
index 0000000..3fb0cfc
--- /dev/null
+++ b/Marlin/src/feature/bedlevel/abl/abl.cpp
@@ -0,0 +1,421 @@
+/**
+ * Marlin 3D Printer Firmware
+ * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
+ *
+ * Based on Sprinter and grbl.
+ * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <https://www.gnu.org/licenses/>.
+ *
+ */
+
+#include "../../../inc/MarlinConfig.h"
+
+#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
+
+#include "../bedlevel.h"
+
+#include "../../../module/motion.h"
+
+#define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE)
+#include "../../../core/debug_out.h"
+
+#if ENABLED(EXTENSIBLE_UI)
+ #include "../../../lcd/extui/ui_api.h"
+#endif
+
+xy_pos_t bilinear_grid_spacing, bilinear_start;
+xy_float_t bilinear_grid_factor;
+bed_mesh_t z_values;
+
+/**
+ * Extrapolate a single point from its neighbors
+ */
+static void extrapolate_one_point(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir) {
+ if (!isnan(z_values[x][y])) return;
+ if (DEBUGGING(LEVELING)) {
+ DEBUG_ECHOPGM("Extrapolate [");
+ if (x < 10) DEBUG_CHAR(' ');
+ DEBUG_ECHO((int)x);
+ DEBUG_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
+ DEBUG_CHAR(' ');
+ if (y < 10) DEBUG_CHAR(' ');
+ DEBUG_ECHO((int)y);
+ DEBUG_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
+ DEBUG_ECHOLNPGM("]");
+ }
+
+ // Get X neighbors, Y neighbors, and XY neighbors
+ const uint8_t x1 = x + xdir, y1 = y + ydir, x2 = x1 + xdir, y2 = y1 + ydir;
+ float a1 = z_values[x1][y ], a2 = z_values[x2][y ],
+ b1 = z_values[x ][y1], b2 = z_values[x ][y2],
+ c1 = z_values[x1][y1], c2 = z_values[x2][y2];
+
+ // Treat far unprobed points as zero, near as equal to far
+ if (isnan(a2)) a2 = 0.0;
+ if (isnan(a1)) a1 = a2;
+ if (isnan(b2)) b2 = 0.0;
+ if (isnan(b1)) b1 = b2;
+ if (isnan(c2)) c2 = 0.0;
+ if (isnan(c1)) c1 = c2;
+
+ const float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
+
+ // Take the average instead of the median
+ z_values[x][y] = (a + b + c) / 3.0;
+ TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(x, y, z_values[x][y]));
+
+ // Median is robust (ignores outliers).
+ // z_values[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
+ // : ((c < b) ? b : (a < c) ? a : c);
+}
+
+//Enable this if your SCARA uses 180° of total area
+//#define EXTRAPOLATE_FROM_EDGE
+
+#if ENABLED(EXTRAPOLATE_FROM_EDGE)
+ #if GRID_MAX_POINTS_X < GRID_MAX_POINTS_Y
+ #define HALF_IN_X
+ #elif GRID_MAX_POINTS_Y < GRID_MAX_POINTS_X
+ #define HALF_IN_Y
+ #endif
+#endif
+
+/**
+ * Fill in the unprobed points (corners of circular print surface)
+ * using linear extrapolation, away from the center.
+ */
+void extrapolate_unprobed_bed_level() {
+ #ifdef HALF_IN_X
+ constexpr uint8_t ctrx2 = 0, xlen = GRID_MAX_POINTS_X - 1;
+ #else
+ constexpr uint8_t ctrx1 = (GRID_MAX_POINTS_X - 1) / 2, // left-of-center
+ ctrx2 = (GRID_MAX_POINTS_X) / 2, // right-of-center
+ xlen = ctrx1;
+ #endif
+
+ #ifdef HALF_IN_Y
+ constexpr uint8_t ctry2 = 0, ylen = GRID_MAX_POINTS_Y - 1;
+ #else
+ constexpr uint8_t ctry1 = (GRID_MAX_POINTS_Y - 1) / 2, // top-of-center
+ ctry2 = (GRID_MAX_POINTS_Y) / 2, // bottom-of-center
+ ylen = ctry1;
+ #endif
+
+ LOOP_LE_N(xo, xlen)
+ LOOP_LE_N(yo, ylen) {
+ uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
+ #ifndef HALF_IN_X
+ const uint8_t x1 = ctrx1 - xo;
+ #endif
+ #ifndef HALF_IN_Y
+ const uint8_t y1 = ctry1 - yo;
+ #ifndef HALF_IN_X
+ extrapolate_one_point(x1, y1, +1, +1); // left-below + +
+ #endif
+ extrapolate_one_point(x2, y1, -1, +1); // right-below - +
+ #endif
+ #ifndef HALF_IN_X
+ extrapolate_one_point(x1, y2, +1, -1); // left-above + -
+ #endif
+ extrapolate_one_point(x2, y2, -1, -1); // right-above - -
+ }
+
+}
+
+void print_bilinear_leveling_grid() {
+ SERIAL_ECHOLNPGM("Bilinear Leveling Grid:");
+ print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 3,
+ [](const uint8_t ix, const uint8_t iy) { return z_values[ix][iy]; }
+ );
+}
+
+#if ENABLED(ABL_BILINEAR_SUBDIVISION)
+
+ #define ABL_GRID_POINTS_VIRT_X (GRID_MAX_POINTS_X - 1) * (BILINEAR_SUBDIVISIONS) + 1
+ #define ABL_GRID_POINTS_VIRT_Y (GRID_MAX_POINTS_Y - 1) * (BILINEAR_SUBDIVISIONS) + 1
+ #define ABL_TEMP_POINTS_X (GRID_MAX_POINTS_X + 2)
+ #define ABL_TEMP_POINTS_Y (GRID_MAX_POINTS_Y + 2)
+ float z_values_virt[ABL_GRID_POINTS_VIRT_X][ABL_GRID_POINTS_VIRT_Y];
+ xy_pos_t bilinear_grid_spacing_virt;
+ xy_float_t bilinear_grid_factor_virt;
+
+ void print_bilinear_leveling_grid_virt() {
+ SERIAL_ECHOLNPGM("Subdivided with CATMULL ROM Leveling Grid:");
+ print_2d_array(ABL_GRID_POINTS_VIRT_X, ABL_GRID_POINTS_VIRT_Y, 5,
+ [](const uint8_t ix, const uint8_t iy) { return z_values_virt[ix][iy]; }
+ );
+ }
+
+ #define LINEAR_EXTRAPOLATION(E, I) ((E) * 2 - (I))
+ float bed_level_virt_coord(const uint8_t x, const uint8_t y) {
+ uint8_t ep = 0, ip = 1;
+ if (x > GRID_MAX_POINTS_X + 1 || y > GRID_MAX_POINTS_Y + 1) {
+ // The requested point requires extrapolating two points beyond the mesh.
+ // These values are only requested for the edges of the mesh, which are always an actual mesh point,
+ // and do not require interpolation. When interpolation is not needed, this "Mesh + 2" point is
+ // cancelled out in bed_level_virt_cmr and does not impact the result. Return 0.0 rather than
+ // making this function more complex by extrapolating two points.
+ return 0.0;
+ }
+ if (!x || x == ABL_TEMP_POINTS_X - 1) {
+ if (x) {
+ ep = GRID_MAX_POINTS_X - 1;
+ ip = GRID_MAX_POINTS_X - 2;
+ }
+ if (WITHIN(y, 1, ABL_TEMP_POINTS_Y - 2))
+ return LINEAR_EXTRAPOLATION(
+ z_values[ep][y - 1],
+ z_values[ip][y - 1]
+ );
+ else
+ return LINEAR_EXTRAPOLATION(
+ bed_level_virt_coord(ep + 1, y),
+ bed_level_virt_coord(ip + 1, y)
+ );
+ }
+ if (!y || y == ABL_TEMP_POINTS_Y - 1) {
+ if (y) {
+ ep = GRID_MAX_POINTS_Y - 1;
+ ip = GRID_MAX_POINTS_Y - 2;
+ }
+ if (WITHIN(x, 1, ABL_TEMP_POINTS_X - 2))
+ return LINEAR_EXTRAPOLATION(
+ z_values[x - 1][ep],
+ z_values[x - 1][ip]
+ );
+ else
+ return LINEAR_EXTRAPOLATION(
+ bed_level_virt_coord(x, ep + 1),
+ bed_level_virt_coord(x, ip + 1)
+ );
+ }
+ return z_values[x - 1][y - 1];
+ }
+
+ static float bed_level_virt_cmr(const float p[4], const uint8_t i, const float t) {
+ return (
+ p[i-1] * -t * sq(1 - t)
+ + p[i] * (2 - 5 * sq(t) + 3 * t * sq(t))
+ + p[i+1] * t * (1 + 4 * t - 3 * sq(t))
+ - p[i+2] * sq(t) * (1 - t)
+ ) * 0.5f;
+ }
+
+ static float bed_level_virt_2cmr(const uint8_t x, const uint8_t y, const float &tx, const float &ty) {
+ float row[4], column[4];
+ LOOP_L_N(i, 4) {
+ LOOP_L_N(j, 4) {
+ column[j] = bed_level_virt_coord(i + x - 1, j + y - 1);
+ }
+ row[i] = bed_level_virt_cmr(column, 1, ty);
+ }
+ return bed_level_virt_cmr(row, 1, tx);
+ }
+
+ void bed_level_virt_interpolate() {
+ bilinear_grid_spacing_virt = bilinear_grid_spacing / (BILINEAR_SUBDIVISIONS);
+ bilinear_grid_factor_virt = bilinear_grid_spacing_virt.reciprocal();
+ LOOP_L_N(y, GRID_MAX_POINTS_Y)
+ LOOP_L_N(x, GRID_MAX_POINTS_X)
+ LOOP_L_N(ty, BILINEAR_SUBDIVISIONS)
+ LOOP_L_N(tx, BILINEAR_SUBDIVISIONS) {
+ if ((ty && y == (GRID_MAX_POINTS_Y) - 1) || (tx && x == (GRID_MAX_POINTS_X) - 1))
+ continue;
+ z_values_virt[x * (BILINEAR_SUBDIVISIONS) + tx][y * (BILINEAR_SUBDIVISIONS) + ty] =
+ bed_level_virt_2cmr(
+ x + 1,
+ y + 1,
+ (float)tx / (BILINEAR_SUBDIVISIONS),
+ (float)ty / (BILINEAR_SUBDIVISIONS)
+ );
+ }
+ }
+#endif // ABL_BILINEAR_SUBDIVISION
+
+// Refresh after other values have been updated
+void refresh_bed_level() {
+ bilinear_grid_factor = bilinear_grid_spacing.reciprocal();
+ TERN_(ABL_BILINEAR_SUBDIVISION, bed_level_virt_interpolate());
+}
+
+#if ENABLED(ABL_BILINEAR_SUBDIVISION)
+ #define ABL_BG_SPACING(A) bilinear_grid_spacing_virt.A
+ #define ABL_BG_FACTOR(A) bilinear_grid_factor_virt.A
+ #define ABL_BG_POINTS_X ABL_GRID_POINTS_VIRT_X
+ #define ABL_BG_POINTS_Y ABL_GRID_POINTS_VIRT_Y
+ #define ABL_BG_GRID(X,Y) z_values_virt[X][Y]
+#else
+ #define ABL_BG_SPACING(A) bilinear_grid_spacing.A
+ #define ABL_BG_FACTOR(A) bilinear_grid_factor.A
+ #define ABL_BG_POINTS_X GRID_MAX_POINTS_X
+ #define ABL_BG_POINTS_Y GRID_MAX_POINTS_Y
+ #define ABL_BG_GRID(X,Y) z_values[X][Y]
+#endif
+
+// Get the Z adjustment for non-linear bed leveling
+float bilinear_z_offset(const xy_pos_t &raw) {
+
+ static float z1, d2, z3, d4, L, D;
+
+ static xy_pos_t prev { -999.999, -999.999 }, ratio;
+
+ // Whole units for the grid line indices. Constrained within bounds.
+ static xy_int8_t thisg, nextg, lastg { -99, -99 };
+
+ // XY relative to the probed area
+ xy_pos_t rel = raw - bilinear_start.asFloat();
+
+ #if ENABLED(EXTRAPOLATE_BEYOND_GRID)
+ #define FAR_EDGE_OR_BOX 2 // Keep using the last grid box
+ #else
+ #define FAR_EDGE_OR_BOX 1 // Just use the grid far edge
+ #endif
+
+ if (prev.x != rel.x) {
+ prev.x = rel.x;
+ ratio.x = rel.x * ABL_BG_FACTOR(x);
+ const float gx = constrain(FLOOR(ratio.x), 0, ABL_BG_POINTS_X - (FAR_EDGE_OR_BOX));
+ ratio.x -= gx; // Subtract whole to get the ratio within the grid box
+
+ #if DISABLED(EXTRAPOLATE_BEYOND_GRID)
+ // Beyond the grid maintain height at grid edges
+ NOLESS(ratio.x, 0); // Never <0 (>1 is ok when nextg.x==thisg.x)
+ #endif
+
+ thisg.x = gx;
+ nextg.x = _MIN(thisg.x + 1, ABL_BG_POINTS_X - 1);
+ }
+
+ if (prev.y != rel.y || lastg.x != thisg.x) {
+
+ if (prev.y != rel.y) {
+ prev.y = rel.y;
+ ratio.y = rel.y * ABL_BG_FACTOR(y);
+ const float gy = constrain(FLOOR(ratio.y), 0, ABL_BG_POINTS_Y - (FAR_EDGE_OR_BOX));
+ ratio.y -= gy;
+
+ #if DISABLED(EXTRAPOLATE_BEYOND_GRID)
+ // Beyond the grid maintain height at grid edges
+ NOLESS(ratio.y, 0); // Never < 0.0. (> 1.0 is ok when nextg.y==thisg.y.)
+ #endif
+
+ thisg.y = gy;
+ nextg.y = _MIN(thisg.y + 1, ABL_BG_POINTS_Y - 1);
+ }
+
+ if (lastg != thisg) {
+ lastg = thisg;
+ // Z at the box corners
+ z1 = ABL_BG_GRID(thisg.x, thisg.y); // left-front
+ d2 = ABL_BG_GRID(thisg.x, nextg.y) - z1; // left-back (delta)
+ z3 = ABL_BG_GRID(nextg.x, thisg.y); // right-front
+ d4 = ABL_BG_GRID(nextg.x, nextg.y) - z3; // right-back (delta)
+ }
+
+ // Bilinear interpolate. Needed since rel.y or thisg.x has changed.
+ L = z1 + d2 * ratio.y; // Linear interp. LF -> LB
+ const float R = z3 + d4 * ratio.y; // Linear interp. RF -> RB
+
+ D = R - L;
+ }
+
+ const float offset = L + ratio.x * D; // the offset almost always changes
+
+ /*
+ static float last_offset = 0;
+ if (ABS(last_offset - offset) > 0.2) {
+ SERIAL_ECHOLNPAIR("Sudden Shift at x=", rel.x, " / ", bilinear_grid_spacing.x, " -> thisg.x=", thisg.x);
+ SERIAL_ECHOLNPAIR(" y=", rel.y, " / ", bilinear_grid_spacing.y, " -> thisg.y=", thisg.y);
+ SERIAL_ECHOLNPAIR(" ratio.x=", ratio.x, " ratio.y=", ratio.y);
+ SERIAL_ECHOLNPAIR(" z1=", z1, " z2=", z2, " z3=", z3, " z4=", z4);
+ SERIAL_ECHOLNPAIR(" L=", L, " R=", R, " offset=", offset);
+ }
+ last_offset = offset;
+ //*/
+
+ return offset;
+}
+
+#if IS_CARTESIAN && DISABLED(SEGMENT_LEVELED_MOVES)
+
+ #define CELL_INDEX(A,V) ((V - bilinear_start.A) * ABL_BG_FACTOR(A))
+
+ /**
+ * Prepare a bilinear-leveled linear move on Cartesian,
+ * splitting the move where it crosses grid borders.
+ */
+ void bilinear_line_to_destination(const feedRate_t &scaled_fr_mm_s, uint16_t x_splits, uint16_t y_splits) {
+ // Get current and destination cells for this line
+ xy_int_t c1 { CELL_INDEX(x, current_position.x), CELL_INDEX(y, current_position.y) },
+ c2 { CELL_INDEX(x, destination.x), CELL_INDEX(y, destination.y) };
+ LIMIT(c1.x, 0, ABL_BG_POINTS_X - 2);
+ LIMIT(c1.y, 0, ABL_BG_POINTS_Y - 2);
+ LIMIT(c2.x, 0, ABL_BG_POINTS_X - 2);
+ LIMIT(c2.y, 0, ABL_BG_POINTS_Y - 2);
+
+ // Start and end in the same cell? No split needed.
+ if (c1 == c2) {
+ current_position = destination;
+ line_to_current_position(scaled_fr_mm_s);
+ return;
+ }
+
+ #define LINE_SEGMENT_END(A) (current_position.A + (destination.A - current_position.A) * normalized_dist)
+
+ float normalized_dist;
+ xyze_pos_t end;
+ const xy_int8_t gc { _MAX(c1.x, c2.x), _MAX(c1.y, c2.y) };
+
+ // Crosses on the X and not already split on this X?
+ // The x_splits flags are insurance against rounding errors.
+ if (c2.x != c1.x && TEST(x_splits, gc.x)) {
+ // Split on the X grid line
+ CBI(x_splits, gc.x);
+ end = destination;
+ destination.x = bilinear_start.x + ABL_BG_SPACING(x) * gc.x;
+ normalized_dist = (destination.x - current_position.x) / (end.x - current_position.x);
+ destination.y = LINE_SEGMENT_END(y);
+ }
+ // Crosses on the Y and not already split on this Y?
+ else if (c2.y != c1.y && TEST(y_splits, gc.y)) {
+ // Split on the Y grid line
+ CBI(y_splits, gc.y);
+ end = destination;
+ destination.y = bilinear_start.y + ABL_BG_SPACING(y) * gc.y;
+ normalized_dist = (destination.y - current_position.y) / (end.y - current_position.y);
+ destination.x = LINE_SEGMENT_END(x);
+ }
+ else {
+ // Must already have been split on these border(s)
+ // This should be a rare case.
+ current_position = destination;
+ line_to_current_position(scaled_fr_mm_s);
+ return;
+ }
+
+ destination.z = LINE_SEGMENT_END(z);
+ destination.e = LINE_SEGMENT_END(e);
+
+ // Do the split and look for more borders
+ bilinear_line_to_destination(scaled_fr_mm_s, x_splits, y_splits);
+
+ // Restore destination from stack
+ destination = end;
+ bilinear_line_to_destination(scaled_fr_mm_s, x_splits, y_splits);
+ }
+
+#endif // IS_CARTESIAN && !SEGMENT_LEVELED_MOVES
+
+#endif // AUTO_BED_LEVELING_BILINEAR