aboutsummaryrefslogtreecommitdiff
path: root/Marlin/src/feature/bedlevel/ubl
diff options
context:
space:
mode:
authorGeorgiy Bondarenko <69736697+nehilo@users.noreply.github.com>2021-03-04 20:54:23 +0300
committerGeorgiy Bondarenko <69736697+nehilo@users.noreply.github.com>2021-03-04 20:54:23 +0300
commite8701195e66f2d27ffe17fb514eae8173795aaf7 (patch)
tree9f519c4abf6556b9ae7190a6210d87ead1dfadde /Marlin/src/feature/bedlevel/ubl
downloadkp3s-lgvl-e8701195e66f2d27ffe17fb514eae8173795aaf7.tar.xz
kp3s-lgvl-e8701195e66f2d27ffe17fb514eae8173795aaf7.zip
Initial commit
Diffstat (limited to 'Marlin/src/feature/bedlevel/ubl')
-rw-r--r--Marlin/src/feature/bedlevel/ubl/ubl.cpp257
-rw-r--r--Marlin/src/feature/bedlevel/ubl/ubl.h328
-rw-r--r--Marlin/src/feature/bedlevel/ubl/ubl_G29.cpp1783
-rw-r--r--Marlin/src/feature/bedlevel/ubl/ubl_motion.cpp474
4 files changed, 2842 insertions, 0 deletions
diff --git a/Marlin/src/feature/bedlevel/ubl/ubl.cpp b/Marlin/src/feature/bedlevel/ubl/ubl.cpp
new file mode 100644
index 0000000..b0640e5
--- /dev/null
+++ b/Marlin/src/feature/bedlevel/ubl/ubl.cpp
@@ -0,0 +1,257 @@
+/**
+ * Marlin 3D Printer Firmware
+ * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
+ *
+ * Based on Sprinter and grbl.
+ * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <https://www.gnu.org/licenses/>.
+ *
+ */
+
+#include "../../../inc/MarlinConfig.h"
+
+#if ENABLED(AUTO_BED_LEVELING_UBL)
+
+ #include "../bedlevel.h"
+
+ unified_bed_leveling ubl;
+
+ #include "../../../MarlinCore.h"
+ #include "../../../gcode/gcode.h"
+
+ #include "../../../module/settings.h"
+ #include "../../../module/planner.h"
+ #include "../../../module/motion.h"
+ #include "../../../module/probe.h"
+
+ #if ENABLED(EXTENSIBLE_UI)
+ #include "../../../lcd/extui/ui_api.h"
+ #endif
+
+ #include "math.h"
+
+ void unified_bed_leveling::echo_name() { SERIAL_ECHOPGM("Unified Bed Leveling"); }
+
+ void unified_bed_leveling::report_current_mesh() {
+ if (!leveling_is_valid()) return;
+ SERIAL_ECHO_MSG(" G29 I999");
+ GRID_LOOP(x, y)
+ if (!isnan(z_values[x][y])) {
+ SERIAL_ECHO_START();
+ SERIAL_ECHOPAIR(" M421 I", int(x), " J", int(y));
+ SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, z_values[x][y], 4);
+ serial_delay(75); // Prevent Printrun from exploding
+ }
+ }
+
+ void unified_bed_leveling::report_state() {
+ echo_name();
+ SERIAL_ECHO_TERNARY(planner.leveling_active, " System v" UBL_VERSION " ", "", "in", "active\n");
+ serial_delay(50);
+ }
+
+ int8_t unified_bed_leveling::storage_slot;
+
+ float unified_bed_leveling::z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
+
+ #define _GRIDPOS(A,N) (MESH_MIN_##A + N * (MESH_##A##_DIST))
+
+ const float
+ unified_bed_leveling::_mesh_index_to_xpos[GRID_MAX_POINTS_X] PROGMEM = ARRAY_N(GRID_MAX_POINTS_X,
+ _GRIDPOS(X, 0), _GRIDPOS(X, 1), _GRIDPOS(X, 2), _GRIDPOS(X, 3),
+ _GRIDPOS(X, 4), _GRIDPOS(X, 5), _GRIDPOS(X, 6), _GRIDPOS(X, 7),
+ _GRIDPOS(X, 8), _GRIDPOS(X, 9), _GRIDPOS(X, 10), _GRIDPOS(X, 11),
+ _GRIDPOS(X, 12), _GRIDPOS(X, 13), _GRIDPOS(X, 14), _GRIDPOS(X, 15)
+ ),
+ unified_bed_leveling::_mesh_index_to_ypos[GRID_MAX_POINTS_Y] PROGMEM = ARRAY_N(GRID_MAX_POINTS_Y,
+ _GRIDPOS(Y, 0), _GRIDPOS(Y, 1), _GRIDPOS(Y, 2), _GRIDPOS(Y, 3),
+ _GRIDPOS(Y, 4), _GRIDPOS(Y, 5), _GRIDPOS(Y, 6), _GRIDPOS(Y, 7),
+ _GRIDPOS(Y, 8), _GRIDPOS(Y, 9), _GRIDPOS(Y, 10), _GRIDPOS(Y, 11),
+ _GRIDPOS(Y, 12), _GRIDPOS(Y, 13), _GRIDPOS(Y, 14), _GRIDPOS(Y, 15)
+ );
+
+ volatile int16_t unified_bed_leveling::encoder_diff;
+
+ unified_bed_leveling::unified_bed_leveling() { reset(); }
+
+ void unified_bed_leveling::reset() {
+ const bool was_enabled = planner.leveling_active;
+ set_bed_leveling_enabled(false);
+ storage_slot = -1;
+ ZERO(z_values);
+ #if ENABLED(EXTENSIBLE_UI)
+ GRID_LOOP(x, y) ExtUI::onMeshUpdate(x, y, 0);
+ #endif
+ if (was_enabled) report_current_position();
+ }
+
+ void unified_bed_leveling::invalidate() {
+ set_bed_leveling_enabled(false);
+ set_all_mesh_points_to_value(NAN);
+ }
+
+ void unified_bed_leveling::set_all_mesh_points_to_value(const float value) {
+ GRID_LOOP(x, y) {
+ z_values[x][y] = value;
+ TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(x, y, value));
+ }
+ }
+
+ #if ENABLED(OPTIMIZED_MESH_STORAGE)
+
+ constexpr float mesh_store_scaling = 1000;
+ constexpr int16_t Z_STEPS_NAN = INT16_MAX;
+
+ void unified_bed_leveling::set_store_from_mesh(const bed_mesh_t &in_values, mesh_store_t &stored_values) {
+ auto z_to_store = [](const float &z) {
+ if (isnan(z)) return Z_STEPS_NAN;
+ const int32_t z_scaled = TRUNC(z * mesh_store_scaling);
+ if (z_scaled == Z_STEPS_NAN || !WITHIN(z_scaled, INT16_MIN, INT16_MAX))
+ return Z_STEPS_NAN; // If Z is out of range, return our custom 'NaN'
+ return int16_t(z_scaled);
+ };
+ GRID_LOOP(x, y) stored_values[x][y] = z_to_store(in_values[x][y]);
+ }
+
+ void unified_bed_leveling::set_mesh_from_store(const mesh_store_t &stored_values, bed_mesh_t &out_values) {
+ auto store_to_z = [](const int16_t z_scaled) {
+ return z_scaled == Z_STEPS_NAN ? NAN : z_scaled / mesh_store_scaling;
+ };
+ GRID_LOOP(x, y) out_values[x][y] = store_to_z(stored_values[x][y]);
+ }
+
+ #endif // OPTIMIZED_MESH_STORAGE
+
+ static void serial_echo_xy(const uint8_t sp, const int16_t x, const int16_t y) {
+ SERIAL_ECHO_SP(sp);
+ SERIAL_CHAR('(');
+ if (x < 100) { SERIAL_CHAR(' '); if (x < 10) SERIAL_CHAR(' '); }
+ SERIAL_ECHO(x);
+ SERIAL_CHAR(',');
+ if (y < 100) { SERIAL_CHAR(' '); if (y < 10) SERIAL_CHAR(' '); }
+ SERIAL_ECHO(y);
+ SERIAL_CHAR(')');
+ serial_delay(5);
+ }
+
+ static void serial_echo_column_labels(const uint8_t sp) {
+ SERIAL_ECHO_SP(7);
+ LOOP_L_N(i, GRID_MAX_POINTS_X) {
+ if (i < 10) SERIAL_CHAR(' ');
+ SERIAL_ECHO((int)i);
+ SERIAL_ECHO_SP(sp);
+ }
+ serial_delay(10);
+ }
+
+ /**
+ * Produce one of these mesh maps:
+ * 0: Human-readable
+ * 1: CSV format for spreadsheet import
+ * 2: TODO: Display on Graphical LCD
+ * 4: Compact Human-Readable
+ */
+ void unified_bed_leveling::display_map(const int map_type) {
+ const bool was = gcode.set_autoreport_paused(true);
+
+ constexpr uint8_t eachsp = 1 + 6 + 1, // [-3.567]
+ twixt = eachsp * (GRID_MAX_POINTS_X) - 9 * 2; // Leading 4sp, Coordinates 9sp each
+
+ const bool human = !(map_type & 0x3), csv = map_type == 1, lcd = map_type == 2, comp = map_type & 0x4;
+
+ SERIAL_ECHOPGM("\nBed Topography Report");
+ if (human) {
+ SERIAL_ECHOLNPGM(":\n");
+ serial_echo_xy(4, MESH_MIN_X, MESH_MAX_Y);
+ serial_echo_xy(twixt, MESH_MAX_X, MESH_MAX_Y);
+ SERIAL_EOL();
+ serial_echo_column_labels(eachsp - 2);
+ }
+ else {
+ SERIAL_ECHOPGM(" for ");
+ serialprintPGM(csv ? PSTR("CSV:\n") : PSTR("LCD:\n"));
+ }
+
+ // Add XY probe offset from extruder because probe.probe_at_point() subtracts them when
+ // moving to the XY position to be measured. This ensures better agreement between
+ // the current Z position after G28 and the mesh values.
+ const xy_int8_t curr = closest_indexes(xy_pos_t(current_position) + probe.offset_xy);
+
+ if (!lcd) SERIAL_EOL();
+ for (int8_t j = GRID_MAX_POINTS_Y - 1; j >= 0; j--) {
+
+ // Row Label (J index)
+ if (human) {
+ if (j < 10) SERIAL_CHAR(' ');
+ SERIAL_ECHO(j);
+ SERIAL_ECHOPGM(" |");
+ }
+
+ // Row Values (I indexes)
+ LOOP_L_N(i, GRID_MAX_POINTS_X) {
+
+ // Opening Brace or Space
+ const bool is_current = i == curr.x && j == curr.y;
+ if (human) SERIAL_CHAR(is_current ? '[' : ' ');
+
+ // Z Value at current I, J
+ const float f = z_values[i][j];
+ if (lcd) {
+ // TODO: Display on Graphical LCD
+ }
+ else if (isnan(f))
+ serialprintPGM(human ? PSTR(" . ") : PSTR("NAN"));
+ else if (human || csv) {
+ if (human && f >= 0.0) SERIAL_CHAR(f > 0 ? '+' : ' '); // Space for positive ('-' for negative)
+ SERIAL_ECHO_F(f, 3); // Positive: 5 digits, Negative: 6 digits
+ }
+ if (csv && i < GRID_MAX_POINTS_X - 1) SERIAL_CHAR('\t');
+
+ // Closing Brace or Space
+ if (human) SERIAL_CHAR(is_current ? ']' : ' ');
+
+ SERIAL_FLUSHTX();
+ idle_no_sleep();
+ }
+ if (!lcd) SERIAL_EOL();
+
+ // A blank line between rows (unless compact)
+ if (j && human && !comp) SERIAL_ECHOLNPGM(" |");
+ }
+
+ if (human) {
+ serial_echo_column_labels(eachsp - 2);
+ SERIAL_EOL();
+ serial_echo_xy(4, MESH_MIN_X, MESH_MIN_Y);
+ serial_echo_xy(twixt, MESH_MAX_X, MESH_MIN_Y);
+ SERIAL_EOL();
+ SERIAL_EOL();
+ }
+
+ gcode.set_autoreport_paused(was);
+ }
+
+ bool unified_bed_leveling::sanity_check() {
+ uint8_t error_flag = 0;
+
+ if (settings.calc_num_meshes() < 1) {
+ SERIAL_ECHOLNPGM("?Mesh too big for EEPROM.");
+ error_flag++;
+ }
+
+ return !!error_flag;
+ }
+
+#endif // AUTO_BED_LEVELING_UBL
diff --git a/Marlin/src/feature/bedlevel/ubl/ubl.h b/Marlin/src/feature/bedlevel/ubl/ubl.h
new file mode 100644
index 0000000..876063c
--- /dev/null
+++ b/Marlin/src/feature/bedlevel/ubl/ubl.h
@@ -0,0 +1,328 @@
+/**
+ * Marlin 3D Printer Firmware
+ * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
+ *
+ * Based on Sprinter and grbl.
+ * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <https://www.gnu.org/licenses/>.
+ *
+ */
+#pragma once
+
+//#define UBL_DEVEL_DEBUGGING
+
+#include "../../../module/motion.h"
+
+#define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE)
+#include "../../../core/debug_out.h"
+
+#define UBL_VERSION "1.01"
+#define UBL_OK false
+#define UBL_ERR true
+
+enum MeshPointType : char { INVALID, REAL, SET_IN_BITMAP };
+
+// External references
+
+struct mesh_index_pair;
+
+#define MESH_X_DIST (float(MESH_MAX_X - (MESH_MIN_X)) / float(GRID_MAX_POINTS_X - 1))
+#define MESH_Y_DIST (float(MESH_MAX_Y - (MESH_MIN_Y)) / float(GRID_MAX_POINTS_Y - 1))
+
+#if ENABLED(OPTIMIZED_MESH_STORAGE)
+ typedef int16_t mesh_store_t[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
+#endif
+
+class unified_bed_leveling {
+ private:
+
+ static int g29_verbose_level,
+ g29_phase_value,
+ g29_repetition_cnt,
+ g29_storage_slot,
+ g29_map_type;
+ static bool g29_c_flag;
+ static float g29_card_thickness,
+ g29_constant;
+ static xy_pos_t g29_pos;
+ static xy_bool_t xy_seen;
+
+ #if HAS_BED_PROBE
+ static int g29_grid_size;
+ #endif
+
+ #if IS_NEWPANEL
+ static void move_z_with_encoder(const float &multiplier);
+ static float measure_point_with_encoder();
+ static float measure_business_card_thickness();
+ static void manually_probe_remaining_mesh(const xy_pos_t&, const float&, const float&, const bool) _O0;
+ static void fine_tune_mesh(const xy_pos_t &pos, const bool do_ubl_mesh_map) _O0;
+ #endif
+
+ static bool g29_parameter_parsing() _O0;
+ static void shift_mesh_height();
+ static void probe_entire_mesh(const xy_pos_t &near, const bool do_ubl_mesh_map, const bool stow_probe, const bool do_furthest) _O0;
+ static void tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3);
+ static void tilt_mesh_based_on_probed_grid(const bool do_ubl_mesh_map);
+ static bool smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir);
+ static inline bool smart_fill_one(const xy_uint8_t &pos, const xy_uint8_t &dir) {
+ return smart_fill_one(pos.x, pos.y, dir.x, dir.y);
+ }
+ static void smart_fill_mesh();
+
+ #if ENABLED(UBL_DEVEL_DEBUGGING)
+ static void g29_what_command();
+ static void g29_eeprom_dump();
+ static void g29_compare_current_mesh_to_stored_mesh();
+ #endif
+
+ public:
+
+ static void echo_name();
+ static void report_current_mesh();
+ static void report_state();
+ static void save_ubl_active_state_and_disable();
+ static void restore_ubl_active_state_and_leave();
+ static void display_map(const int) _O0;
+ static mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType, const xy_pos_t&, const bool=false, MeshFlags *done_flags=nullptr) _O0;
+ static mesh_index_pair find_furthest_invalid_mesh_point() _O0;
+ static void reset();
+ static void invalidate();
+ static void set_all_mesh_points_to_value(const float value);
+ static void adjust_mesh_to_mean(const bool cflag, const float value);
+ static bool sanity_check();
+
+ static void G29() _O0; // O0 for no optimization
+ static void smart_fill_wlsf(const float &) _O2; // O2 gives smaller code than Os on A2560
+
+ static int8_t storage_slot;
+
+ static bed_mesh_t z_values;
+ #if ENABLED(OPTIMIZED_MESH_STORAGE)
+ static void set_store_from_mesh(const bed_mesh_t &in_values, mesh_store_t &stored_values);
+ static void set_mesh_from_store(const mesh_store_t &stored_values, bed_mesh_t &out_values);
+ #endif
+ static const float _mesh_index_to_xpos[GRID_MAX_POINTS_X],
+ _mesh_index_to_ypos[GRID_MAX_POINTS_Y];
+
+ #if HAS_LCD_MENU
+ static bool lcd_map_control;
+ static void steppers_were_disabled();
+ #else
+ static inline void steppers_were_disabled() {}
+ #endif
+
+ static volatile int16_t encoder_diff; // Volatile because buttons may changed it at interrupt time
+
+ unified_bed_leveling();
+
+ FORCE_INLINE static void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; }
+
+ static int8_t cell_index_x_raw(const float &x) {
+ return FLOOR((x - (MESH_MIN_X)) * RECIPROCAL(MESH_X_DIST));
+ }
+
+ static int8_t cell_index_y_raw(const float &y) {
+ return FLOOR((y - (MESH_MIN_Y)) * RECIPROCAL(MESH_Y_DIST));
+ }
+
+ static int8_t cell_index_x_valid(const float &x) {
+ return WITHIN(cell_index_x_raw(x), 0, (GRID_MAX_POINTS_X - 2));
+ }
+
+ static int8_t cell_index_y_valid(const float &y) {
+ return WITHIN(cell_index_y_raw(y), 0, (GRID_MAX_POINTS_Y - 2));
+ }
+
+ static int8_t cell_index_x(const float &x) {
+ return constrain(cell_index_x_raw(x), 0, (GRID_MAX_POINTS_X) - 2);
+ }
+
+ static int8_t cell_index_y(const float &y) {
+ return constrain(cell_index_y_raw(y), 0, (GRID_MAX_POINTS_Y) - 2);
+ }
+
+ static inline xy_int8_t cell_indexes(const float &x, const float &y) {
+ return { cell_index_x(x), cell_index_y(y) };
+ }
+ static inline xy_int8_t cell_indexes(const xy_pos_t &xy) { return cell_indexes(xy.x, xy.y); }
+
+ static int8_t closest_x_index(const float &x) {
+ const int8_t px = (x - (MESH_MIN_X) + (MESH_X_DIST) * 0.5) * RECIPROCAL(MESH_X_DIST);
+ return WITHIN(px, 0, GRID_MAX_POINTS_X - 1) ? px : -1;
+ }
+ static int8_t closest_y_index(const float &y) {
+ const int8_t py = (y - (MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * RECIPROCAL(MESH_Y_DIST);
+ return WITHIN(py, 0, GRID_MAX_POINTS_Y - 1) ? py : -1;
+ }
+ static inline xy_int8_t closest_indexes(const xy_pos_t &xy) {
+ return { closest_x_index(xy.x), closest_y_index(xy.y) };
+ }
+
+ /**
+ * z2 --|
+ * z0 | |
+ * | | + (z2-z1)
+ * z1 | | |
+ * ---+-------------+--------+-- --|
+ * a1 a0 a2
+ * |<---delta_a---------->|
+ *
+ * calc_z0 is the basis for all the Mesh Based correction. It is used to
+ * find the expected Z Height at a position between two known Z-Height locations.
+ *
+ * It is fairly expensive with its 4 floating point additions and 2 floating point
+ * multiplications.
+ */
+ FORCE_INLINE static float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) {
+ return z1 + (z2 - z1) * (a0 - a1) / (a2 - a1);
+ }
+
+ #ifdef UBL_Z_RAISE_WHEN_OFF_MESH
+ #define _UBL_OUTER_Z_RAISE UBL_Z_RAISE_WHEN_OFF_MESH
+ #else
+ #define _UBL_OUTER_Z_RAISE NAN
+ #endif
+
+ /**
+ * z_correction_for_x_on_horizontal_mesh_line is an optimization for
+ * the case where the printer is making a vertical line that only crosses horizontal mesh lines.
+ */
+ static inline float z_correction_for_x_on_horizontal_mesh_line(const float &rx0, const int x1_i, const int yi) {
+ if (!WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(yi, 0, GRID_MAX_POINTS_Y - 1)) {
+
+ if (DEBUGGING(LEVELING)) {
+ if (WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1)) DEBUG_ECHOPGM("yi"); else DEBUG_ECHOPGM("x1_i");
+ DEBUG_ECHOLNPAIR(" out of bounds in z_correction_for_x_on_horizontal_mesh_line(rx0=", rx0, ",x1_i=", x1_i, ",yi=", yi, ")");
+ }
+
+ // The requested location is off the mesh. Return UBL_Z_RAISE_WHEN_OFF_MESH or NAN.
+ return _UBL_OUTER_Z_RAISE;
+ }
+
+ const float xratio = (rx0 - mesh_index_to_xpos(x1_i)) * RECIPROCAL(MESH_X_DIST),
+ z1 = z_values[x1_i][yi];
+
+ return z1 + xratio * (z_values[_MIN(x1_i, GRID_MAX_POINTS_X - 2) + 1][yi] - z1); // Don't allow x1_i+1 to be past the end of the array
+ // If it is, it is clamped to the last element of the
+ // z_values[][] array and no correction is applied.
+ }
+
+ //
+ // See comments above for z_correction_for_x_on_horizontal_mesh_line
+ //
+ static inline float z_correction_for_y_on_vertical_mesh_line(const float &ry0, const int xi, const int y1_i) {
+ if (!WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(y1_i, 0, GRID_MAX_POINTS_Y - 1)) {
+
+ if (DEBUGGING(LEVELING)) {
+ if (WITHIN(xi, 0, GRID_MAX_POINTS_X - 1)) DEBUG_ECHOPGM("y1_i"); else DEBUG_ECHOPGM("xi");
+ DEBUG_ECHOLNPAIR(" out of bounds in z_correction_for_y_on_vertical_mesh_line(ry0=", ry0, ", xi=", xi, ", y1_i=", y1_i, ")");
+ }
+
+ // The requested location is off the mesh. Return UBL_Z_RAISE_WHEN_OFF_MESH or NAN.
+ return _UBL_OUTER_Z_RAISE;
+ }
+
+ const float yratio = (ry0 - mesh_index_to_ypos(y1_i)) * RECIPROCAL(MESH_Y_DIST),
+ z1 = z_values[xi][y1_i];
+
+ return z1 + yratio * (z_values[xi][_MIN(y1_i, GRID_MAX_POINTS_Y - 2) + 1] - z1); // Don't allow y1_i+1 to be past the end of the array
+ // If it is, it is clamped to the last element of the
+ // z_values[][] array and no correction is applied.
+ }
+
+ /**
+ * This is the generic Z-Correction. It works anywhere within a Mesh Cell. It first
+ * does a linear interpolation along both of the bounding X-Mesh-Lines to find the
+ * Z-Height at both ends. Then it does a linear interpolation of these heights based
+ * on the Y position within the cell.
+ */
+ static float get_z_correction(const float &rx0, const float &ry0) {
+ const int8_t cx = cell_index_x(rx0), cy = cell_index_y(ry0); // return values are clamped
+
+ /**
+ * Check if the requested location is off the mesh. If so, and
+ * UBL_Z_RAISE_WHEN_OFF_MESH is specified, that value is returned.
+ */
+ #ifdef UBL_Z_RAISE_WHEN_OFF_MESH
+ if (!WITHIN(rx0, MESH_MIN_X, MESH_MAX_X) || !WITHIN(ry0, MESH_MIN_Y, MESH_MAX_Y))
+ return UBL_Z_RAISE_WHEN_OFF_MESH;
+ #endif
+
+ const float z1 = calc_z0(rx0,
+ mesh_index_to_xpos(cx), z_values[cx][cy],
+ mesh_index_to_xpos(cx + 1), z_values[_MIN(cx, GRID_MAX_POINTS_X - 2) + 1][cy]);
+
+ const float z2 = calc_z0(rx0,
+ mesh_index_to_xpos(cx), z_values[cx][_MIN(cy, GRID_MAX_POINTS_Y - 2) + 1],
+ mesh_index_to_xpos(cx + 1), z_values[_MIN(cx, GRID_MAX_POINTS_X - 2) + 1][_MIN(cy, GRID_MAX_POINTS_Y - 2) + 1]);
+
+ float z0 = calc_z0(ry0,
+ mesh_index_to_ypos(cy), z1,
+ mesh_index_to_ypos(cy + 1), z2);
+
+ if (DEBUGGING(MESH_ADJUST)) {
+ DEBUG_ECHOPAIR(" raw get_z_correction(", rx0);
+ DEBUG_CHAR(','); DEBUG_ECHO(ry0);
+ DEBUG_ECHOPAIR_F(") = ", z0, 6);
+ DEBUG_ECHOLNPAIR_F(" >>>---> ", z0, 6);
+ }
+
+ if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
+ z0 = 0.0; // in ubl.z_values[][] and propagate through the
+ // calculations. If our correction is NAN, we throw it out
+ // because part of the Mesh is undefined and we don't have the
+ // information we need to complete the height correction.
+
+ if (DEBUGGING(MESH_ADJUST)) {
+ DEBUG_ECHOPAIR("??? Yikes! NAN in get_z_correction(", rx0);
+ DEBUG_CHAR(',');
+ DEBUG_ECHO(ry0);
+ DEBUG_CHAR(')');
+ DEBUG_EOL();
+ }
+ }
+ return z0;
+ }
+ static inline float get_z_correction(const xy_pos_t &pos) { return get_z_correction(pos.x, pos.y); }
+
+ static inline float mesh_index_to_xpos(const uint8_t i) {
+ return i < GRID_MAX_POINTS_X ? pgm_read_float(&_mesh_index_to_xpos[i]) : MESH_MIN_X + i * (MESH_X_DIST);
+ }
+ static inline float mesh_index_to_ypos(const uint8_t i) {
+ return i < GRID_MAX_POINTS_Y ? pgm_read_float(&_mesh_index_to_ypos[i]) : MESH_MIN_Y + i * (MESH_Y_DIST);
+ }
+
+ #if UBL_SEGMENTED
+ static bool line_to_destination_segmented(const feedRate_t &scaled_fr_mm_s);
+ #else
+ static void line_to_destination_cartesian(const feedRate_t &scaled_fr_mm_s, const uint8_t e);
+ #endif
+
+ static inline bool mesh_is_valid() {
+ GRID_LOOP(x, y) if (isnan(z_values[x][y])) return false;
+ return true;
+ }
+
+}; // class unified_bed_leveling
+
+extern unified_bed_leveling ubl;
+
+#define _GET_MESH_X(I) ubl.mesh_index_to_xpos(I)
+#define _GET_MESH_Y(J) ubl.mesh_index_to_ypos(J)
+#define Z_VALUES_ARR ubl.z_values
+
+// Prevent debugging propagating to other files
+#include "../../../core/debug_out.h"
diff --git a/Marlin/src/feature/bedlevel/ubl/ubl_G29.cpp b/Marlin/src/feature/bedlevel/ubl/ubl_G29.cpp
new file mode 100644
index 0000000..41d2a36
--- /dev/null
+++ b/Marlin/src/feature/bedlevel/ubl/ubl_G29.cpp
@@ -0,0 +1,1783 @@
+/**
+ * Marlin 3D Printer Firmware
+ * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
+ *
+ * Based on Sprinter and grbl.
+ * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <https://www.gnu.org/licenses/>.
+ *
+ */
+
+#include "../../../inc/MarlinConfig.h"
+
+#if ENABLED(AUTO_BED_LEVELING_UBL)
+
+ #include "../bedlevel.h"
+
+ #include "../../../MarlinCore.h"
+ #include "../../../HAL/shared/eeprom_api.h"
+ #include "../../../libs/hex_print.h"
+ #include "../../../module/settings.h"
+ #include "../../../lcd/marlinui.h"
+ #include "../../../module/stepper.h"
+ #include "../../../module/planner.h"
+ #include "../../../module/motion.h"
+ #include "../../../module/probe.h"
+ #include "../../../gcode/gcode.h"
+ #include "../../../libs/least_squares_fit.h"
+
+ #if HAS_MULTI_HOTEND
+ #include "../../../module/tool_change.h"
+ #endif
+
+ #define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE)
+ #include "../../../core/debug_out.h"
+
+ #if ENABLED(EXTENSIBLE_UI)
+ #include "../../../lcd/extui/ui_api.h"
+ #endif
+
+ #include <math.h>
+
+ #define UBL_G29_P31
+
+ #if HAS_LCD_MENU
+
+ bool unified_bed_leveling::lcd_map_control = false;
+
+ void unified_bed_leveling::steppers_were_disabled() {
+ if (lcd_map_control) {
+ lcd_map_control = false;
+ ui.defer_status_screen(false);
+ }
+ }
+
+ void ubl_map_screen();
+
+ #endif
+
+ #define SIZE_OF_LITTLE_RAISE 1
+ #define BIG_RAISE_NOT_NEEDED 0
+
+ int unified_bed_leveling::g29_verbose_level,
+ unified_bed_leveling::g29_phase_value,
+ unified_bed_leveling::g29_repetition_cnt,
+ unified_bed_leveling::g29_storage_slot = 0,
+ unified_bed_leveling::g29_map_type;
+ bool unified_bed_leveling::g29_c_flag;
+ float unified_bed_leveling::g29_card_thickness = 0,
+ unified_bed_leveling::g29_constant = 0;
+ xy_bool_t unified_bed_leveling::xy_seen;
+ xy_pos_t unified_bed_leveling::g29_pos;
+
+ #if HAS_BED_PROBE
+ int unified_bed_leveling::g29_grid_size;
+ #endif
+
+ /**
+ * G29: Unified Bed Leveling by Roxy
+ *
+ * Parameters understood by this leveling system:
+ *
+ * A Activate Activate the Unified Bed Leveling system.
+ *
+ * B # Business Use the 'Business Card' mode of the Manual Probe subsystem with P2.
+ * Note: A non-compressible Spark Gap feeler gauge is recommended over a business card.
+ * In this mode of G29 P2, a business or index card is used as a shim that the nozzle can
+ * grab onto as it is lowered. In principle, the nozzle-bed distance is the same when the
+ * same resistance is felt in the shim. You can omit the numerical value on first invocation
+ * of G29 P2 B to measure shim thickness. Subsequent use of 'B' will apply the previously-
+ * measured thickness by default.
+ *
+ * C Continue G29 P1 C continues the generation of a partially-constructed Mesh without invalidating
+ * previous measurements.
+ *
+ * C G29 P2 C tells the Manual Probe subsystem to not use the current nozzle
+ * location in its search for the closest unmeasured Mesh Point. Instead, attempt to
+ * start at one end of the uprobed points and Continue sequentially.
+ *
+ * G29 P3 C specifies the Constant for the fill. Otherwise, uses a "reasonable" value.
+ *
+ * C Current G29 Z C uses the Current location (instead of bed center or nearest edge).
+ *
+ * D Disable Disable the Unified Bed Leveling system.
+ *
+ * E Stow_probe Stow the probe after each sampled point.
+ *
+ * F # Fade Fade the amount of Mesh Based Compensation over a specified height. At the
+ * specified height, no correction is applied and natural printer kenimatics take over. If no
+ * number is specified for the command, 10mm is assumed to be reasonable.
+ *
+ * H # Height With P2, 'H' specifies the Height to raise the nozzle after each manual probe of the bed.
+ * If omitted, the nozzle will raise by Z_CLEARANCE_BETWEEN_PROBES.
+ *
+ * H # Offset With P4, 'H' specifies the Offset above the mesh height to place the nozzle.
+ * If omitted, Z_CLEARANCE_BETWEEN_PROBES will be used.
+ *
+ * I # Invalidate Invalidate the specified number of Mesh Points near the given 'X' 'Y'. If X or Y are omitted,
+ * the nozzle location is used. If no 'I' value is given, only the point nearest to the location
+ * is invalidated. Use 'T' to produce a map afterward. This command is useful to invalidate a
+ * portion of the Mesh so it can be adjusted using other UBL tools. When attempting to invalidate
+ * an isolated bad mesh point, the 'T' option shows the nozzle position in the Mesh with (#). You
+ * can move the nozzle around and use this feature to select the center of the area (or cell) to
+ * invalidate.
+ *
+ * J # Grid Perform a Grid Based Leveling of the current Mesh using a grid with n points on a side.
+ * Not specifying a grid size will invoke the 3-Point leveling function.
+ *
+ * L Load Load Mesh from the previously activated location in the EEPROM.
+ *
+ * L # Load Load Mesh from the specified location in the EEPROM. Set this location as activated
+ * for subsequent Load and Store operations.
+ *
+ * The P or Phase commands are used for the bulk of the work to setup a Mesh. In general, your Mesh will
+ * start off being initialized with a G29 P0 or a G29 P1. Further refinement of the Mesh happens with
+ * each additional Phase that processes it.
+ *
+ * P0 Phase 0 Zero Mesh Data and turn off the Mesh Compensation System. This reverts the
+ * 3D Printer to the same state it was in before the Unified Bed Leveling Compensation
+ * was turned on. Setting the entire Mesh to Zero is a special case that allows
+ * a subsequent G or T leveling operation for backward compatibility.
+ *
+ * P1 Phase 1 Invalidate entire Mesh and continue with automatic generation of the Mesh data using
+ * the Z-Probe. Usually the probe can't reach all areas that the nozzle can reach. For delta
+ * printers only the areas where the probe and nozzle can both reach will be automatically probed.
+ *
+ * Unreachable points will be handled in Phase 2 and Phase 3.
+ *
+ * Use 'C' to leave the previous mesh intact and automatically probe needed points. This allows you
+ * to invalidate parts of the Mesh but still use Automatic Probing.
+ *
+ * The 'X' and 'Y' parameters prioritize where to try and measure points. If omitted, the current
+ * probe position is used.
+ *
+ * Use 'T' (Topology) to generate a report of mesh generation.
+ *
+ * P1 will suspend Mesh generation if the controller button is held down. Note that you may need
+ * to press and hold the switch for several seconds if moves are underway.
+ *
+ * P2 Phase 2 Probe unreachable points.
+ *
+ * Use 'H' to set the height between Mesh points. If omitted, Z_CLEARANCE_BETWEEN_PROBES is used.
+ * Smaller values will be quicker. Move the nozzle down till it barely touches the bed. Make sure the
+ * nozzle is clean and unobstructed. Use caution and move slowly. This can damage your printer!
+ * (Uses SIZE_OF_LITTLE_RAISE mm if the nozzle is moving less than BIG_RAISE_NOT_NEEDED mm.)
+ *
+ * The 'H' value can be negative if the Mesh dips in a large area. Press and hold the
+ * controller button to terminate the current Phase 2 command. You can then re-issue "G29 P 2"
+ * with an 'H' parameter more suitable for the area you're manually probing. Note that the command
+ * tries to start in a corner of the bed where movement will be predictable. Override the distance
+ * calculation location with the X and Y parameters. You can print a Mesh Map (G29 T) to see where
+ * the mesh is invalidated and where the nozzle needs to move to complete the command. Use 'C' to
+ * indicate that the search should be based on the current position.
+ *
+ * The 'B' parameter for this command is described above. It places the manual probe subsystem into
+ * Business Card mode where the thickness of a business card is measured and then used to accurately
+ * set the nozzle height in all manual probing for the duration of the command. A Business card can
+ * be used, but you'll get better results with a flexible Shim that doesn't compress. This makes it
+ * easier to produce similar amounts of force and get more accurate measurements. Google if you're
+ * not sure how to use a shim.
+ *
+ * The 'T' (Map) parameter helps track Mesh building progress.
+ *
+ * NOTE: P2 requires an LCD controller!
+ *
+ * P3 Phase 3 Fill the unpopulated regions of the Mesh with a fixed value. There are two different paths to
+ * go down:
+ *
+ * - If a 'C' constant is specified, the closest invalid mesh points to the nozzle will be filled,
+ * and a repeat count can then also be specified with 'R'.
+ *
+ * - Leaving out 'C' invokes Smart Fill, which scans the mesh from the edges inward looking for
+ * invalid mesh points. Adjacent points are used to determine the bed slope. If the bed is sloped
+ * upward from the invalid point, it takes the value of the nearest point. If sloped downward, it's
+ * replaced by a value that puts all three points in a line. This version of G29 P3 is a quick, easy
+ * and (usually) safe way to populate unprobed mesh regions before continuing to G26 Mesh Validation
+ * Pattern. Note that this populates the mesh with unverified values. Pay attention and use caution.
+ *
+ * P4 Phase 4 Fine tune the Mesh. The Delta Mesh Compensation System assumes the existence of
+ * an LCD Panel. It is possible to fine tune the mesh without an LCD Panel using
+ * G42 and M421. See the UBL documentation for further details.
+ *
+ * Phase 4 is meant to be used with G26 Mesh Validation to fine tune the mesh by direct editing
+ * of Mesh Points. Raise and lower points to fine tune the mesh until it gives consistently reliable
+ * adhesion.
+ *
+ * P4 moves to the closest Mesh Point (and/or the given X Y), raises the nozzle above the mesh height
+ * by the given 'H' offset (or default 0), and waits while the controller is used to adjust the nozzle
+ * height. On click the displayed height is saved in the mesh.
+ *
+ * Start Phase 4 at a specific location with X and Y. Adjust a specific number of Mesh Points with
+ * the 'R' (Repeat) parameter. (If 'R' is left out, the whole matrix is assumed.) This command can be
+ * terminated early (e.g., after editing the area of interest) by pressing and holding the encoder button.
+ *
+ * The general form is G29 P4 [R points] [X position] [Y position]
+ *
+ * The H [offset] parameter is useful if a shim is used to fine-tune the mesh. For a 0.4mm shim the
+ * command would be G29 P4 H0.4. The nozzle is moved to the shim height, you adjust height to the shim,
+ * and on click the height minus the shim thickness will be saved in the mesh.
+ *
+ * !!Use with caution, as a very poor mesh could cause the nozzle to crash into the bed!!
+ *
+ * NOTE: P4 is not available unless you have LCD support enabled!
+ *
+ * P5 Phase 5 Find Mean Mesh Height and Standard Deviation. Typically, it is easier to use and
+ * work with the Mesh if it is Mean Adjusted. You can specify a C parameter to
+ * Correct the Mesh to a 0.00 Mean Height. Adding a C parameter will automatically
+ * execute a G29 P6 C <mean height>.
+ *
+ * P6 Phase 6 Shift Mesh height. The entire Mesh's height is adjusted by the height specified
+ * with the C parameter. Being able to adjust the height of a Mesh is useful tool. It
+ * can be used to compensate for poorly calibrated Z-Probes and other errors. Ideally,
+ * you should have the Mesh adjusted for a Mean Height of 0.00 and the Z-Probe measuring
+ * 0.000 at the Z Home location.
+ *
+ * Q Test Load specified Test Pattern to assist in checking correct operation of system. This
+ * command is not anticipated to be of much value to the typical user. It is intended
+ * for developers to help them verify correct operation of the Unified Bed Leveling System.
+ *
+ * R # Repeat Repeat this command the specified number of times. If no number is specified the
+ * command will be repeated GRID_MAX_POINTS_X * GRID_MAX_POINTS_Y times.
+ *
+ * S Store Store the current Mesh in the Activated area of the EEPROM. It will also store the
+ * current state of the Unified Bed Leveling system in the EEPROM.
+ *
+ * S # Store Store the current Mesh at the specified location in EEPROM. Activate this location
+ * for subsequent Load and Store operations. Valid storage slot numbers begin at 0 and
+ * extend to a limit related to the available EEPROM storage.
+ *
+ * S -1 Store Print the current Mesh as G-code that can be used to restore the mesh anytime.
+ *
+ * T Topology Display the Mesh Map Topology.
+ * 'T' can be used alone (e.g., G29 T) or in combination with most of the other commands.
+ * This option works with all Phase commands (e.g., G29 P4 R 5 T X 50 Y100 C -.1 O)
+ * This parameter can also specify a Map Type. T0 (the default) is user-readable. T1
+ * is suitable to paste into a spreadsheet for a 3D graph of the mesh.
+ *
+ * U Unlevel Perform a probe of the outer perimeter to assist in physically leveling unlevel beds.
+ * Only used for G29 P1 T U. This speeds up the probing of the edge of the bed. Useful
+ * when the entire bed doesn't need to be probed because it will be adjusted.
+ *
+ * V # Verbosity Set the verbosity level (0-4) for extra details. (Default 0)
+ *
+ * X # X Location for this command
+ *
+ * Y # Y Location for this command
+ *
+ * With UBL_DEVEL_DEBUGGING:
+ *
+ * K # Kompare Kompare current Mesh with stored Mesh #, replacing current Mesh with the result.
+ * This command literally performs a diff between two Meshes.
+ *
+ * Q-1 Dump EEPROM Dump the UBL contents stored in EEPROM as HEX format. Useful for developers to help
+ * verify correct operation of the UBL.
+ *
+ * W What? Display valuable UBL data.
+ *
+ *
+ * Release Notes:
+ * You MUST do M502, M500 to initialize the storage. Failure to do this will cause all
+ * kinds of problems. Enabling EEPROM Storage is required.
+ *
+ * When you do a G28 and G29 P1 to automatically build your first mesh, you are going to notice that
+ * UBL probes points increasingly further from the starting location. (The starting location defaults
+ * to the center of the bed.) In contrast, ABL and MBL follow a zigzag pattern. The spiral pattern is
+ * especially better for Delta printers, since it populates the center of the mesh first, allowing for
+ * a quicker test print to verify settings. You don't need to populate the entire mesh to use it.
+ * After all, you don't want to spend a lot of time generating a mesh only to realize the resolution
+ * or probe offsets are incorrect. Mesh-generation gathers points starting closest to the nozzle unless
+ * an (X,Y) coordinate pair is given.
+ *
+ * Unified Bed Leveling uses a lot of EEPROM storage to hold its data, and it takes some effort to get
+ * the mesh just right. To prevent this valuable data from being destroyed as the EEPROM structure
+ * evolves, UBL stores all mesh data at the end of EEPROM.
+ *
+ * UBL is founded on Edward Patel's Mesh Bed Leveling code. A big 'Thanks!' to him and the creators of
+ * 3-Point and Grid Based leveling. Combining their contributions we now have the functionality and
+ * features of all three systems combined.
+ */
+
+ void unified_bed_leveling::G29() {
+
+ bool probe_deployed = false;
+ if (g29_parameter_parsing()) return; // Abort on parameter error
+
+ const int8_t p_val = parser.intval('P', -1);
+ const bool may_move = p_val == 1 || p_val == 2 || p_val == 4 || parser.seen('J');
+ TERN_(HAS_MULTI_HOTEND, const uint8_t old_tool_index = active_extruder);
+
+ // Check for commands that require the printer to be homed
+ if (may_move) {
+ planner.synchronize();
+ // Send 'N' to force homing before G29 (internal only)
+ if (axes_should_home() || parser.seen('N')) gcode.home_all_axes();
+ TERN_(HAS_MULTI_HOTEND, if (active_extruder) tool_change(0));
+ }
+
+ // Invalidate Mesh Points. This command is a little bit asymmetrical because
+ // it directly specifies the repetition count and does not use the 'R' parameter.
+ if (parser.seen('I')) {
+ uint8_t cnt = 0;
+ g29_repetition_cnt = parser.has_value() ? parser.value_int() : 1;
+ if (g29_repetition_cnt >= GRID_MAX_POINTS) {
+ set_all_mesh_points_to_value(NAN);
+ }
+ else {
+ while (g29_repetition_cnt--) {
+ if (cnt > 20) { cnt = 0; idle(); }
+ const mesh_index_pair closest = find_closest_mesh_point_of_type(REAL, g29_pos);
+ const xy_int8_t &cpos = closest.pos;
+ if (cpos.x < 0) {
+ // No more REAL mesh points to invalidate, so we ASSUME the user
+ // meant to invalidate the ENTIRE mesh, which cannot be done with
+ // find_closest_mesh_point loop which only returns REAL points.
+ set_all_mesh_points_to_value(NAN);
+ SERIAL_ECHOLNPGM("Entire Mesh invalidated.\n");
+ break; // No more invalid Mesh Points to populate
+ }
+ z_values[cpos.x][cpos.y] = NAN;
+ TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(cpos, 0.0f));
+ cnt++;
+ }
+ }
+ SERIAL_ECHOLNPGM("Locations invalidated.\n");
+ }
+
+ if (parser.seen('Q')) {
+ const int test_pattern = parser.has_value() ? parser.value_int() : -99;
+ if (!WITHIN(test_pattern, -1, 2)) {
+ SERIAL_ECHOLNPGM("Invalid test_pattern value. (-1 to 2)\n");
+ return;
+ }
+ SERIAL_ECHOLNPGM("Loading test_pattern values.\n");
+ switch (test_pattern) {
+
+ #if ENABLED(UBL_DEVEL_DEBUGGING)
+ case -1:
+ g29_eeprom_dump();
+ break;
+ #endif
+
+ case 0:
+ GRID_LOOP(x, y) { // Create a bowl shape similar to a poorly-calibrated Delta
+ const float p1 = 0.5f * (GRID_MAX_POINTS_X) - x,
+ p2 = 0.5f * (GRID_MAX_POINTS_Y) - y;
+ z_values[x][y] += 2.0f * HYPOT(p1, p2);
+ TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(x, y, z_values[x][y]));
+ }
+ break;
+
+ case 1:
+ LOOP_L_N(x, GRID_MAX_POINTS_X) { // Create a diagonal line several Mesh cells thick that is raised
+ z_values[x][x] += 9.999f;
+ z_values[x][x + (x < (GRID_MAX_POINTS_Y) - 1) ? 1 : -1] += 9.999f; // We want the altered line several mesh points thick
+ #if ENABLED(EXTENSIBLE_UI)
+ ExtUI::onMeshUpdate(x, x, z_values[x][x]);
+ ExtUI::onMeshUpdate(x, (x + (x < (GRID_MAX_POINTS_Y) - 1) ? 1 : -1), z_values[x][x + (x < (GRID_MAX_POINTS_Y) - 1) ? 1 : -1]);
+ #endif
+
+ }
+ break;
+
+ case 2:
+ // Allow the user to specify the height because 10mm is a little extreme in some cases.
+ for (uint8_t x = (GRID_MAX_POINTS_X) / 3; x < 2 * (GRID_MAX_POINTS_X) / 3; x++) // Create a rectangular raised area in
+ for (uint8_t y = (GRID_MAX_POINTS_Y) / 3; y < 2 * (GRID_MAX_POINTS_Y) / 3; y++) { // the center of the bed
+ z_values[x][y] += parser.seen('C') ? g29_constant : 9.99f;
+ TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(x, y, z_values[x][y]));
+ }
+ break;
+ }
+ }
+
+ #if HAS_BED_PROBE
+
+ if (parser.seen('J')) {
+ save_ubl_active_state_and_disable();
+ tilt_mesh_based_on_probed_grid(g29_grid_size == 0); // Zero size does 3-Point
+ restore_ubl_active_state_and_leave();
+ #if ENABLED(UBL_G29_J_RECENTER)
+ do_blocking_move_to_xy(0.5f * ((MESH_MIN_X) + (MESH_MAX_X)), 0.5f * ((MESH_MIN_Y) + (MESH_MAX_Y)));
+ #endif
+ report_current_position();
+ probe_deployed = true;
+ }
+
+ #endif // HAS_BED_PROBE
+
+ if (parser.seen('P')) {
+ if (WITHIN(g29_phase_value, 0, 1) && storage_slot == -1) {
+ storage_slot = 0;
+ SERIAL_ECHOLNPGM("Default storage slot 0 selected.");
+ }
+
+ switch (g29_phase_value) {
+ case 0:
+ //
+ // Zero Mesh Data
+ //
+ reset();
+ SERIAL_ECHOLNPGM("Mesh zeroed.");
+ break;
+
+ #if HAS_BED_PROBE
+
+ case 1: {
+ //
+ // Invalidate Entire Mesh and Automatically Probe Mesh in areas that can be reached by the probe
+ //
+ if (!parser.seen('C')) {
+ invalidate();
+ SERIAL_ECHOLNPGM("Mesh invalidated. Probing mesh.");
+ }
+ if (g29_verbose_level > 1) {
+ SERIAL_ECHOPAIR("Probing around (", g29_pos.x);
+ SERIAL_CHAR(',');
+ SERIAL_DECIMAL(g29_pos.y);
+ SERIAL_ECHOLNPGM(").\n");
+ }
+ const xy_pos_t near_probe_xy = g29_pos + probe.offset_xy;
+ probe_entire_mesh(near_probe_xy, parser.seen('T'), parser.seen('E'), parser.seen('U'));
+
+ report_current_position();
+ probe_deployed = true;
+ } break;
+
+ #endif // HAS_BED_PROBE
+
+ case 2: {
+ #if HAS_LCD_MENU
+ //
+ // Manually Probe Mesh in areas that can't be reached by the probe
+ //
+ SERIAL_ECHOLNPGM("Manually probing unreachable points.");
+ do_z_clearance(Z_CLEARANCE_BETWEEN_PROBES);
+
+ if (parser.seen('C') && !xy_seen) {
+
+ /**
+ * Use a good default location for the path.
+ * The flipped > and < operators in these comparisons is intentional.
+ * It should cause the probed points to follow a nice path on Cartesian printers.
+ * It may make sense to have Delta printers default to the center of the bed.
+ * Until that is decided, this can be forced with the X and Y parameters.
+ */
+ g29_pos.set(
+ #if IS_KINEMATIC
+ X_HOME_POS, Y_HOME_POS
+ #else
+ probe.offset_xy.x > 0 ? X_BED_SIZE : 0,
+ probe.offset_xy.y < 0 ? Y_BED_SIZE : 0
+ #endif
+ );
+ }
+
+ if (parser.seen('B')) {
+ g29_card_thickness = parser.has_value() ? parser.value_float() : measure_business_card_thickness();
+ if (ABS(g29_card_thickness) > 1.5f) {
+ SERIAL_ECHOLNPGM("?Error in Business Card measurement.");
+ return;
+ }
+ probe_deployed = true;
+ }
+
+ if (!position_is_reachable(g29_pos)) {
+ SERIAL_ECHOLNPGM("XY outside printable radius.");
+ return;
+ }
+
+ const float height = parser.floatval('H', Z_CLEARANCE_BETWEEN_PROBES);
+ manually_probe_remaining_mesh(g29_pos, height, g29_card_thickness, parser.seen('T'));
+
+ SERIAL_ECHOLNPGM("G29 P2 finished.");
+
+ report_current_position();
+
+ #else
+
+ SERIAL_ECHOLNPGM("?P2 is only available when an LCD is present.");
+ return;
+
+ #endif
+ } break;
+
+ case 3: {
+ /**
+ * Populate invalid mesh areas. Proceed with caution.
+ * Two choices are available:
+ * - Specify a constant with the 'C' parameter.
+ * - Allow 'G29 P3' to choose a 'reasonable' constant.
+ */
+
+ if (g29_c_flag) {
+ if (g29_repetition_cnt >= GRID_MAX_POINTS) {
+ set_all_mesh_points_to_value(g29_constant);
+ }
+ else {
+ while (g29_repetition_cnt--) { // this only populates reachable mesh points near
+ const mesh_index_pair closest = find_closest_mesh_point_of_type(INVALID, g29_pos);
+ const xy_int8_t &cpos = closest.pos;
+ if (cpos.x < 0) {
+ // No more REAL INVALID mesh points to populate, so we ASSUME
+ // user meant to populate ALL INVALID mesh points to value
+ GRID_LOOP(x, y) if (isnan(z_values[x][y])) z_values[x][y] = g29_constant;
+ break; // No more invalid Mesh Points to populate
+ }
+ else {
+ z_values[cpos.x][cpos.y] = g29_constant;
+ TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(cpos, g29_constant));
+ }
+ }
+ }
+ }
+ else {
+ const float cvf = parser.value_float();
+ switch ((int)TRUNC(cvf * 10.0f) - 30) { // 3.1 -> 1
+ #if ENABLED(UBL_G29_P31)
+ case 1: {
+
+ // P3.1 use least squares fit to fill missing mesh values
+ // P3.10 zero weighting for distance, all grid points equal, best fit tilted plane
+ // P3.11 10X weighting for nearest grid points versus farthest grid points
+ // P3.12 100X distance weighting
+ // P3.13 1000X distance weighting, approaches simple average of nearest points
+
+ const float weight_power = (cvf - 3.10f) * 100.0f, // 3.12345 -> 2.345
+ weight_factor = weight_power ? POW(10.0f, weight_power) : 0;
+ smart_fill_wlsf(weight_factor);
+ }
+ break;
+ #endif
+ case 0: // P3 or P3.0
+ default: // and anything P3.x that's not P3.1
+ smart_fill_mesh(); // Do a 'Smart' fill using nearby known values
+ break;
+ }
+ }
+ break;
+ }
+
+ case 4: // Fine Tune (i.e., Edit) the Mesh
+ #if HAS_LCD_MENU
+ fine_tune_mesh(g29_pos, parser.seen('T'));
+ #else
+ SERIAL_ECHOLNPGM("?P4 is only available when an LCD is present.");
+ return;
+ #endif
+ break;
+
+ case 5: adjust_mesh_to_mean(g29_c_flag, g29_constant); break;
+
+ case 6: shift_mesh_height(); break;
+ }
+ }
+
+ #if ENABLED(UBL_DEVEL_DEBUGGING)
+
+ //
+ // Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
+ // good to have the extra information. Soon... we prune this to just a few items
+ //
+ if (parser.seen('W')) g29_what_command();
+
+ //
+ // When we are fully debugged, this may go away. But there are some valid
+ // use cases for the users. So we can wait and see what to do with it.
+ //
+
+ if (parser.seen('K')) // Kompare Current Mesh Data to Specified Stored Mesh
+ g29_compare_current_mesh_to_stored_mesh();
+
+ #endif // UBL_DEVEL_DEBUGGING
+
+
+ //
+ // Load a Mesh from the EEPROM
+ //
+
+ if (parser.seen('L')) { // Load Current Mesh Data
+ g29_storage_slot = parser.has_value() ? parser.value_int() : storage_slot;
+
+ int16_t a = settings.calc_num_meshes();
+
+ if (!a) {
+ SERIAL_ECHOLNPGM("?EEPROM storage not available.");
+ return;
+ }
+
+ if (!WITHIN(g29_storage_slot, 0, a - 1)) {
+ SERIAL_ECHOLNPAIR("?Invalid storage slot.\n?Use 0 to ", a - 1);
+ return;
+ }
+
+ settings.load_mesh(g29_storage_slot);
+ storage_slot = g29_storage_slot;
+
+ SERIAL_ECHOLNPGM("Done.");
+ }
+
+ //
+ // Store a Mesh in the EEPROM
+ //
+
+ if (parser.seen('S')) { // Store (or Save) Current Mesh Data
+ g29_storage_slot = parser.has_value() ? parser.value_int() : storage_slot;
+
+ if (g29_storage_slot == -1) // Special case, the user wants to 'Export' the mesh to the
+ return report_current_mesh(); // host program to be saved on the user's computer
+
+ int16_t a = settings.calc_num_meshes();
+
+ if (!a) {
+ SERIAL_ECHOLNPGM("?EEPROM storage not available.");
+ goto LEAVE;
+ }
+
+ if (!WITHIN(g29_storage_slot, 0, a - 1)) {
+ SERIAL_ECHOLNPAIR("?Invalid storage slot.\n?Use 0 to ", a - 1);
+ goto LEAVE;
+ }
+
+ settings.store_mesh(g29_storage_slot);
+ storage_slot = g29_storage_slot;
+
+ SERIAL_ECHOLNPGM("Done.");
+ }
+
+ if (parser.seen('T'))
+ display_map(g29_map_type);
+
+ LEAVE:
+
+ #if HAS_LCD_MENU
+ ui.reset_alert_level();
+ ui.quick_feedback();
+ ui.reset_status();
+ ui.release();
+ #endif
+
+ #ifdef Z_PROBE_END_SCRIPT
+ if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
+ if (probe_deployed) {
+ planner.synchronize();
+ gcode.process_subcommands_now_P(PSTR(Z_PROBE_END_SCRIPT));
+ }
+ #else
+ UNUSED(probe_deployed);
+ #endif
+
+ TERN_(HAS_MULTI_HOTEND, tool_change(old_tool_index));
+ return;
+ }
+
+ void unified_bed_leveling::adjust_mesh_to_mean(const bool cflag, const float value) {
+ float sum = 0;
+ int n = 0;
+ GRID_LOOP(x, y)
+ if (!isnan(z_values[x][y])) {
+ sum += z_values[x][y];
+ n++;
+ }
+
+ const float mean = sum / n;
+
+ //
+ // Sum the squares of difference from mean
+ //
+ float sum_of_diff_squared = 0;
+ GRID_LOOP(x, y)
+ if (!isnan(z_values[x][y]))
+ sum_of_diff_squared += sq(z_values[x][y] - mean);
+
+ SERIAL_ECHOLNPAIR("# of samples: ", n);
+ SERIAL_ECHOLNPAIR_F("Mean Mesh Height: ", mean, 6);
+
+ const float sigma = SQRT(sum_of_diff_squared / (n + 1));
+ SERIAL_ECHOLNPAIR_F("Standard Deviation: ", sigma, 6);
+
+ if (cflag)
+ GRID_LOOP(x, y)
+ if (!isnan(z_values[x][y])) {
+ z_values[x][y] -= mean + value;
+ TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(x, y, z_values[x][y]));
+ }
+ }
+
+ void unified_bed_leveling::shift_mesh_height() {
+ GRID_LOOP(x, y)
+ if (!isnan(z_values[x][y])) {
+ z_values[x][y] += g29_constant;
+ TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(x, y, z_values[x][y]));
+ }
+ }
+
+ #if HAS_BED_PROBE
+ /**
+ * Probe all invalidated locations of the mesh that can be reached by the probe.
+ * This attempts to fill in locations closest to the nozzle's start location first.
+ */
+ void unified_bed_leveling::probe_entire_mesh(const xy_pos_t &nearby, const bool do_ubl_mesh_map, const bool stow_probe, const bool do_furthest) {
+ probe.deploy(); // Deploy before ui.capture() to allow for PAUSE_BEFORE_DEPLOY_STOW
+
+ TERN_(HAS_LCD_MENU, ui.capture());
+
+ save_ubl_active_state_and_disable(); // No bed level correction so only raw data is obtained
+ uint8_t count = GRID_MAX_POINTS;
+
+ mesh_index_pair best;
+ TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(best.pos, ExtUI::MESH_START));
+ do {
+ if (do_ubl_mesh_map) display_map(g29_map_type);
+
+ const int point_num = (GRID_MAX_POINTS) - count + 1;
+ SERIAL_ECHOLNPAIR("Probing mesh point ", point_num, "/", int(GRID_MAX_POINTS), ".");
+ TERN_(HAS_DISPLAY, ui.status_printf_P(0, PSTR(S_FMT " %i/%i"), GET_TEXT(MSG_PROBING_MESH), point_num, int(GRID_MAX_POINTS)));
+
+ #if HAS_LCD_MENU
+ if (ui.button_pressed()) {
+ ui.quick_feedback(false); // Preserve button state for click-and-hold
+ SERIAL_ECHOLNPGM("\nMesh only partially populated.\n");
+ ui.wait_for_release();
+ ui.quick_feedback();
+ ui.release();
+ probe.stow(); // Release UI before stow to allow for PAUSE_BEFORE_DEPLOY_STOW
+ return restore_ubl_active_state_and_leave();
+ }
+ #endif
+
+ best = do_furthest
+ ? find_furthest_invalid_mesh_point()
+ : find_closest_mesh_point_of_type(INVALID, nearby, true);
+
+ if (best.pos.x >= 0) { // mesh point found and is reachable by probe
+ TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(best.pos, ExtUI::PROBE_START));
+ const float measured_z = probe.probe_at_point(
+ best.meshpos(),
+ stow_probe ? PROBE_PT_STOW : PROBE_PT_RAISE, g29_verbose_level
+ );
+ z_values[best.pos.x][best.pos.y] = measured_z;
+ #if ENABLED(EXTENSIBLE_UI)
+ ExtUI::onMeshUpdate(best.pos, ExtUI::PROBE_FINISH);
+ ExtUI::onMeshUpdate(best.pos, measured_z);
+ #endif
+ }
+ SERIAL_FLUSH(); // Prevent host M105 buffer overrun.
+
+ } while (best.pos.x >= 0 && --count);
+
+ TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(best.pos, ExtUI::MESH_FINISH));
+
+ // Release UI during stow to allow for PAUSE_BEFORE_DEPLOY_STOW
+ TERN_(HAS_LCD_MENU, ui.release());
+ probe.stow();
+ TERN_(HAS_LCD_MENU, ui.capture());
+
+ probe.move_z_after_probing();
+
+ restore_ubl_active_state_and_leave();
+
+ do_blocking_move_to_xy(
+ constrain(nearby.x - probe.offset_xy.x, MESH_MIN_X, MESH_MAX_X),
+ constrain(nearby.y - probe.offset_xy.y, MESH_MIN_Y, MESH_MAX_Y)
+ );
+ }
+
+ #endif // HAS_BED_PROBE
+
+ #if HAS_LCD_MENU
+
+ typedef void (*clickFunc_t)();
+
+ bool click_and_hold(const clickFunc_t func=nullptr) {
+ if (ui.button_pressed()) {
+ ui.quick_feedback(false); // Preserve button state for click-and-hold
+ const millis_t nxt = millis() + 1500UL;
+ while (ui.button_pressed()) { // Loop while the encoder is pressed. Uses hardware flag!
+ idle(); // idle, of course
+ if (ELAPSED(millis(), nxt)) { // After 1.5 seconds
+ ui.quick_feedback();
+ if (func) (*func)();
+ ui.wait_for_release();
+ return true;
+ }
+ }
+ }
+ serial_delay(15);
+ return false;
+ }
+
+ void unified_bed_leveling::move_z_with_encoder(const float &multiplier) {
+ ui.wait_for_release();
+ while (!ui.button_pressed()) {
+ idle();
+ gcode.reset_stepper_timeout(); // Keep steppers powered
+ if (encoder_diff) {
+ do_blocking_move_to_z(current_position.z + float(encoder_diff) * multiplier);
+ encoder_diff = 0;
+ }
+ }
+ }
+
+ float unified_bed_leveling::measure_point_with_encoder() {
+ KEEPALIVE_STATE(PAUSED_FOR_USER);
+ move_z_with_encoder(0.01f);
+ return current_position.z;
+ }
+
+ static void echo_and_take_a_measurement() { SERIAL_ECHOLNPGM(" and take a measurement."); }
+
+ float unified_bed_leveling::measure_business_card_thickness() {
+ ui.capture();
+ save_ubl_active_state_and_disable(); // Disable bed level correction for probing
+
+ do_blocking_move_to(0.5f * (MESH_MAX_X - (MESH_MIN_X)), 0.5f * (MESH_MAX_Y - (MESH_MIN_Y)), MANUAL_PROBE_START_Z);
+ //, _MIN(planner.settings.max_feedrate_mm_s[X_AXIS], planner.settings.max_feedrate_mm_s[Y_AXIS]) * 0.5f);
+ planner.synchronize();
+
+ SERIAL_ECHOPGM("Place shim under nozzle");
+ LCD_MESSAGEPGM(MSG_UBL_BC_INSERT);
+ ui.return_to_status();
+ echo_and_take_a_measurement();
+
+ const float z1 = measure_point_with_encoder();
+ do_blocking_move_to_z(current_position.z + SIZE_OF_LITTLE_RAISE);
+ planner.synchronize();
+
+ SERIAL_ECHOPGM("Remove shim");
+ LCD_MESSAGEPGM(MSG_UBL_BC_REMOVE);
+ echo_and_take_a_measurement();
+
+ const float z2 = measure_point_with_encoder();
+ do_blocking_move_to_z(current_position.z + Z_CLEARANCE_BETWEEN_PROBES);
+
+ const float thickness = ABS(z1 - z2);
+
+ if (g29_verbose_level > 1) {
+ SERIAL_ECHOPAIR_F("Business Card is ", thickness, 4);
+ SERIAL_ECHOLNPGM("mm thick.");
+ }
+
+ restore_ubl_active_state_and_leave();
+
+ return thickness;
+ }
+
+ void unified_bed_leveling::manually_probe_remaining_mesh(const xy_pos_t &pos, const float &z_clearance, const float &thick, const bool do_ubl_mesh_map) {
+ ui.capture();
+
+ save_ubl_active_state_and_disable(); // No bed level correction so only raw data is obtained
+ do_blocking_move_to_xy_z(current_position, z_clearance);
+
+ ui.return_to_status();
+
+ mesh_index_pair location;
+ const xy_int8_t &lpos = location.pos;
+ do {
+ location = find_closest_mesh_point_of_type(INVALID, pos);
+ // It doesn't matter if the probe can't reach the NAN location. This is a manual probe.
+ if (!location.valid()) continue;
+
+ const xyz_pos_t ppos = {
+ mesh_index_to_xpos(lpos.x),
+ mesh_index_to_ypos(lpos.y),
+ Z_CLEARANCE_BETWEEN_PROBES
+ };
+
+ if (!position_is_reachable(ppos)) break; // SHOULD NOT OCCUR (find_closest_mesh_point only returns reachable points)
+
+ LCD_MESSAGEPGM(MSG_UBL_MOVING_TO_NEXT);
+
+ do_blocking_move_to(ppos);
+ do_z_clearance(z_clearance);
+
+ KEEPALIVE_STATE(PAUSED_FOR_USER);
+ ui.capture();
+
+ if (do_ubl_mesh_map) display_map(g29_map_type); // show user where we're probing
+
+ serialprintPGM(parser.seen('B') ? GET_TEXT(MSG_UBL_BC_INSERT) : GET_TEXT(MSG_UBL_BC_INSERT2));
+
+ const float z_step = 0.01f; // existing behavior: 0.01mm per click, occasionally step
+ //const float z_step = planner.steps_to_mm[Z_AXIS]; // approx one step each click
+
+ move_z_with_encoder(z_step);
+
+ if (click_and_hold()) {
+ SERIAL_ECHOLNPGM("\nMesh only partially populated.");
+ do_z_clearance(Z_CLEARANCE_DEPLOY_PROBE);
+ return restore_ubl_active_state_and_leave();
+ }
+
+ z_values[lpos.x][lpos.y] = current_position.z - thick;
+ TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(location, z_values[lpos.x][lpos.y]));
+
+ if (g29_verbose_level > 2)
+ SERIAL_ECHOLNPAIR_F("Mesh Point Measured at: ", z_values[lpos.x][lpos.y], 6);
+ SERIAL_FLUSH(); // Prevent host M105 buffer overrun.
+ } while (location.valid());
+
+ if (do_ubl_mesh_map) display_map(g29_map_type); // show user where we're probing
+
+ restore_ubl_active_state_and_leave();
+ do_blocking_move_to_xy_z(pos, Z_CLEARANCE_DEPLOY_PROBE);
+ }
+
+ inline void set_message_with_feedback(PGM_P const msg_P) {
+ ui.set_status_P(msg_P);
+ ui.quick_feedback();
+ }
+
+ void abort_fine_tune() {
+ ui.return_to_status();
+ do_z_clearance(Z_CLEARANCE_BETWEEN_PROBES);
+ set_message_with_feedback(GET_TEXT(MSG_EDITING_STOPPED));
+ }
+
+ void unified_bed_leveling::fine_tune_mesh(const xy_pos_t &pos, const bool do_ubl_mesh_map) {
+ if (!parser.seen('R')) // fine_tune_mesh() is special. If no repetition count flag is specified
+ g29_repetition_cnt = 1; // do exactly one mesh location. Otherwise use what the parser decided.
+
+ #if ENABLED(UBL_MESH_EDIT_MOVES_Z)
+ const float h_offset = parser.seenval('H') ? parser.value_linear_units() : MANUAL_PROBE_START_Z;
+ if (!WITHIN(h_offset, 0, 10)) {
+ SERIAL_ECHOLNPGM("Offset out of bounds. (0 to 10mm)\n");
+ return;
+ }
+ #endif
+
+ mesh_index_pair location;
+
+ if (!position_is_reachable(pos)) {
+ SERIAL_ECHOLNPGM("(X,Y) outside printable radius.");
+ return;
+ }
+
+ save_ubl_active_state_and_disable();
+
+ LCD_MESSAGEPGM(MSG_UBL_FINE_TUNE_MESH);
+ ui.capture(); // Take over control of the LCD encoder
+
+ do_blocking_move_to_xy_z(pos, Z_CLEARANCE_BETWEEN_PROBES); // Move to the given XY with probe clearance
+
+ MeshFlags done_flags{0};
+ const xy_int8_t &lpos = location.pos;
+
+ #if IS_TFTGLCD_PANEL
+ lcd_mesh_edit_setup(0); // Change current screen before calling ui.ubl_plot
+ safe_delay(50);
+ #endif
+
+ do {
+ location = find_closest_mesh_point_of_type(SET_IN_BITMAP, pos, false, &done_flags);
+
+ if (lpos.x < 0) break; // Stop when there are no more reachable points
+
+ done_flags.mark(lpos); // Mark this location as 'adjusted' so a new
+ // location is used on the next loop
+ const xyz_pos_t raw = {
+ mesh_index_to_xpos(lpos.x),
+ mesh_index_to_ypos(lpos.y),
+ Z_CLEARANCE_BETWEEN_PROBES
+ };
+
+ if (!position_is_reachable(raw)) break; // SHOULD NOT OCCUR (find_closest_mesh_point_of_type only returns reachable)
+
+ do_blocking_move_to(raw); // Move the nozzle to the edit point with probe clearance
+
+ TERN_(UBL_MESH_EDIT_MOVES_Z, do_blocking_move_to_z(h_offset)); // Move Z to the given 'H' offset before editing
+
+ KEEPALIVE_STATE(PAUSED_FOR_USER);
+
+ if (do_ubl_mesh_map) display_map(g29_map_type); // Display the current point
+
+ #if IS_TFTGLCD_PANEL
+ ui.ubl_plot(lpos.x, lpos.y); // update plot screen
+ #endif
+
+ ui.refresh();
+
+ float new_z = z_values[lpos.x][lpos.y];
+ if (isnan(new_z)) new_z = 0; // Invalid points begin at 0
+ new_z = FLOOR(new_z * 1000) * 0.001f; // Chop off digits after the 1000ths place
+
+ lcd_mesh_edit_setup(new_z);
+
+ SET_SOFT_ENDSTOP_LOOSE(true);
+
+ do {
+ idle();
+ new_z = lcd_mesh_edit();
+ TERN_(UBL_MESH_EDIT_MOVES_Z, do_blocking_move_to_z(h_offset + new_z)); // Move the nozzle as the point is edited
+ SERIAL_FLUSH(); // Prevent host M105 buffer overrun.
+ } while (!ui.button_pressed());
+
+ SET_SOFT_ENDSTOP_LOOSE(false);
+
+ if (!lcd_map_control) ui.return_to_status(); // Just editing a single point? Return to status
+
+ if (click_and_hold(abort_fine_tune)) break; // Button held down? Abort editing
+
+ z_values[lpos.x][lpos.y] = new_z; // Save the updated Z value
+ TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(location, new_z));
+
+ serial_delay(20); // No switch noise
+ ui.refresh();
+
+ } while (lpos.x >= 0 && --g29_repetition_cnt > 0);
+
+ if (do_ubl_mesh_map) display_map(g29_map_type);
+ restore_ubl_active_state_and_leave();
+
+ do_blocking_move_to_xy_z(pos, Z_CLEARANCE_BETWEEN_PROBES);
+
+ LCD_MESSAGEPGM(MSG_UBL_DONE_EDITING_MESH);
+ SERIAL_ECHOLNPGM("Done Editing Mesh");
+
+ if (lcd_map_control)
+ ui.goto_screen(ubl_map_screen);
+ else
+ ui.return_to_status();
+ }
+
+ #endif // HAS_LCD_MENU
+
+ bool unified_bed_leveling::g29_parameter_parsing() {
+ bool err_flag = false;
+
+ TERN_(HAS_LCD_MENU, set_message_with_feedback(GET_TEXT(MSG_UBL_DOING_G29)));
+
+ g29_constant = 0;
+ g29_repetition_cnt = 0;
+
+ if (parser.seen('R')) {
+ g29_repetition_cnt = parser.has_value() ? parser.value_int() : GRID_MAX_POINTS;
+ NOMORE(g29_repetition_cnt, GRID_MAX_POINTS);
+ if (g29_repetition_cnt < 1) {
+ SERIAL_ECHOLNPGM("?(R)epetition count invalid (1+).\n");
+ return UBL_ERR;
+ }
+ }
+
+ g29_verbose_level = parser.seen('V') ? parser.value_int() : 0;
+ if (!WITHIN(g29_verbose_level, 0, 4)) {
+ SERIAL_ECHOLNPGM("?(V)erbose level implausible (0-4).\n");
+ err_flag = true;
+ }
+
+ if (parser.seen('P')) {
+ const int pv = parser.value_int();
+ #if !HAS_BED_PROBE
+ if (pv == 1) {
+ SERIAL_ECHOLNPGM("G29 P1 requires a probe.\n");
+ err_flag = true;
+ }
+ else
+ #endif
+ {
+ g29_phase_value = pv;
+ if (!WITHIN(g29_phase_value, 0, 6)) {
+ SERIAL_ECHOLNPGM("?(P)hase value invalid (0-6).\n");
+ err_flag = true;
+ }
+ }
+ }
+
+ if (parser.seen('J')) {
+ #if HAS_BED_PROBE
+ g29_grid_size = parser.has_value() ? parser.value_int() : 0;
+ if (g29_grid_size && !WITHIN(g29_grid_size, 2, 9)) {
+ SERIAL_ECHOLNPGM("?Invalid grid size (J) specified (2-9).\n");
+ err_flag = true;
+ }
+ #else
+ SERIAL_ECHOLNPGM("G29 J action requires a probe.\n");
+ err_flag = true;
+ #endif
+ }
+
+ xy_seen.x = parser.seenval('X');
+ float sx = xy_seen.x ? parser.value_float() : current_position.x;
+ xy_seen.y = parser.seenval('Y');
+ float sy = xy_seen.y ? parser.value_float() : current_position.y;
+
+ if (xy_seen.x != xy_seen.y) {
+ SERIAL_ECHOLNPGM("Both X & Y locations must be specified.\n");
+ err_flag = true;
+ }
+
+ // If X or Y are not valid, use center of the bed values
+ if (!WITHIN(sx, X_MIN_BED, X_MAX_BED)) sx = X_CENTER;
+ if (!WITHIN(sy, Y_MIN_BED, Y_MAX_BED)) sy = Y_CENTER;
+
+ if (err_flag) return UBL_ERR;
+
+ g29_pos.set(sx, sy);
+
+ /**
+ * Activate or deactivate UBL
+ * Note: UBL's G29 restores the state set here when done.
+ * Leveling is being enabled here with old data, possibly
+ * none. Error handling should disable for safety...
+ */
+ if (parser.seen('A')) {
+ if (parser.seen('D')) {
+ SERIAL_ECHOLNPGM("?Can't activate and deactivate at the same time.\n");
+ return UBL_ERR;
+ }
+ set_bed_leveling_enabled(true);
+ report_state();
+ }
+ else if (parser.seen('D')) {
+ set_bed_leveling_enabled(false);
+ report_state();
+ }
+
+ // Set global 'C' flag and its value
+ if ((g29_c_flag = parser.seen('C')))
+ g29_constant = parser.value_float();
+
+ #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
+ if (parser.seenval('F')) {
+ const float fh = parser.value_float();
+ if (!WITHIN(fh, 0, 100)) {
+ SERIAL_ECHOLNPGM("?(F)ade height for Bed Level Correction not plausible.\n");
+ return UBL_ERR;
+ }
+ set_z_fade_height(fh);
+ }
+ #endif
+
+ g29_map_type = parser.intval('T');
+ if (!WITHIN(g29_map_type, 0, 2)) {
+ SERIAL_ECHOLNPGM("Invalid map type.\n");
+ return UBL_ERR;
+ }
+ return UBL_OK;
+ }
+
+ static uint8_t ubl_state_at_invocation = 0;
+
+ #if ENABLED(UBL_DEVEL_DEBUGGING)
+ static uint8_t ubl_state_recursion_chk = 0;
+ #endif
+
+ void unified_bed_leveling::save_ubl_active_state_and_disable() {
+ #if ENABLED(UBL_DEVEL_DEBUGGING)
+ ubl_state_recursion_chk++;
+ if (ubl_state_recursion_chk != 1) {
+ SERIAL_ECHOLNPGM("save_ubl_active_state_and_disabled() called multiple times in a row.");
+ TERN_(HAS_LCD_MENU, set_message_with_feedback(GET_TEXT(MSG_UBL_SAVE_ERROR)));
+ return;
+ }
+ #endif
+ ubl_state_at_invocation = planner.leveling_active;
+ set_bed_leveling_enabled(false);
+ }
+
+ void unified_bed_leveling::restore_ubl_active_state_and_leave() {
+ TERN_(HAS_LCD_MENU, ui.release());
+ #if ENABLED(UBL_DEVEL_DEBUGGING)
+ if (--ubl_state_recursion_chk) {
+ SERIAL_ECHOLNPGM("restore_ubl_active_state_and_leave() called too many times.");
+ TERN_(HAS_LCD_MENU, set_message_with_feedback(GET_TEXT(MSG_UBL_RESTORE_ERROR)));
+ return;
+ }
+ #endif
+ set_bed_leveling_enabled(ubl_state_at_invocation);
+ }
+
+ mesh_index_pair unified_bed_leveling::find_furthest_invalid_mesh_point() {
+
+ bool found_a_NAN = false, found_a_real = false;
+
+ mesh_index_pair farthest { -1, -1, -99999.99 };
+
+ GRID_LOOP(i, j) {
+ if (!isnan(z_values[i][j])) continue; // Skip valid mesh points
+
+ // Skip unreachable points
+ if (!probe.can_reach(mesh_index_to_xpos(i), mesh_index_to_ypos(j)))
+ continue;
+
+ found_a_NAN = true;
+
+ xy_int8_t nearby { -1, -1 };
+ float d1, d2 = 99999.9f;
+ GRID_LOOP(k, l) {
+ if (isnan(z_values[k][l])) continue;
+
+ found_a_real = true;
+
+ // Add in a random weighting factor that scrambles the probing of the
+ // last half of the mesh (when every unprobed mesh point is one index
+ // from a probed location).
+
+ d1 = HYPOT(i - k, j - l) + (1.0f / ((millis() % 47) + 13));
+
+ if (d1 < d2) { // Invalid mesh point (i,j) is closer to the defined point (k,l)
+ d2 = d1;
+ nearby.set(i, j);
+ }
+ }
+
+ //
+ // At this point d2 should have the near defined mesh point to invalid mesh point (i,j)
+ //
+
+ if (found_a_real && nearby.x >= 0 && d2 > farthest.distance) {
+ farthest.pos = nearby; // Found an invalid location farther from the defined mesh point
+ farthest.distance = d2;
+ }
+ } // GRID_LOOP
+
+ if (!found_a_real && found_a_NAN) { // if the mesh is totally unpopulated, start the probing
+ farthest.pos.set((GRID_MAX_POINTS_X) / 2, (GRID_MAX_POINTS_Y) / 2);
+ farthest.distance = 1;
+ }
+ return farthest;
+ }
+
+ mesh_index_pair unified_bed_leveling::find_closest_mesh_point_of_type(const MeshPointType type, const xy_pos_t &pos, const bool probe_relative/*=false*/, MeshFlags *done_flags/*=nullptr*/) {
+ mesh_index_pair closest;
+ closest.invalidate();
+ closest.distance = -99999.9f;
+
+ // Get the reference position, either nozzle or probe
+ const xy_pos_t ref = probe_relative ? pos + probe.offset_xy : pos;
+
+ float best_so_far = 99999.99f;
+
+ GRID_LOOP(i, j) {
+ if ( (type == (isnan(z_values[i][j]) ? INVALID : REAL))
+ || (type == SET_IN_BITMAP && !done_flags->marked(i, j))
+ ) {
+ // Found a Mesh Point of the specified type!
+ const xy_pos_t mpos = { mesh_index_to_xpos(i), mesh_index_to_ypos(j) };
+
+ // If using the probe as the reference there are some unreachable locations.
+ // Also for round beds, there are grid points outside the bed the nozzle can't reach.
+ // Prune them from the list and ignore them till the next Phase (manual nozzle probing).
+
+ if (!(probe_relative ? probe.can_reach(mpos) : position_is_reachable(mpos)))
+ continue;
+
+ // Reachable. Check if it's the best_so_far location to the nozzle.
+
+ const xy_pos_t diff = current_position - mpos;
+ const float distance = (ref - mpos).magnitude() + diff.magnitude() * 0.1f;
+
+ // factor in the distance from the current location for the normal case
+ // so the nozzle isn't running all over the bed.
+ if (distance < best_so_far) {
+ best_so_far = distance; // Found a closer location with the desired value type.
+ closest.pos.set(i, j);
+ closest.distance = best_so_far;
+ }
+ }
+ } // GRID_LOOP
+
+ return closest;
+ }
+
+ /**
+ * 'Smart Fill': Scan from the outward edges of the mesh towards the center.
+ * If an invalid location is found, use the next two points (if valid) to
+ * calculate a 'reasonable' value for the unprobed mesh point.
+ */
+
+ bool unified_bed_leveling::smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir) {
+ const float v = z_values[x][y];
+ if (isnan(v)) { // A NAN...
+ const int8_t dx = x + xdir, dy = y + ydir;
+ const float v1 = z_values[dx][dy];
+ if (!isnan(v1)) { // ...next to a pair of real values?
+ const float v2 = z_values[dx + xdir][dy + ydir];
+ if (!isnan(v2)) {
+ z_values[x][y] = v1 < v2 ? v1 : v1 + v1 - v2;
+ TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(x, y, z_values[x][y]));
+ return true;
+ }
+ }
+ }
+ return false;
+ }
+
+ typedef struct { uint8_t sx, ex, sy, ey; bool yfirst; } smart_fill_info;
+
+ void unified_bed_leveling::smart_fill_mesh() {
+ static const smart_fill_info
+ info0 PROGMEM = { 0, GRID_MAX_POINTS_X, 0, GRID_MAX_POINTS_Y - 2, false }, // Bottom of the mesh looking up
+ info1 PROGMEM = { 0, GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y - 1, 0, false }, // Top of the mesh looking down
+ info2 PROGMEM = { 0, GRID_MAX_POINTS_X - 2, 0, GRID_MAX_POINTS_Y, true }, // Left side of the mesh looking right
+ info3 PROGMEM = { GRID_MAX_POINTS_X - 1, 0, 0, GRID_MAX_POINTS_Y, true }; // Right side of the mesh looking left
+ static const smart_fill_info * const info[] PROGMEM = { &info0, &info1, &info2, &info3 };
+
+ LOOP_L_N(i, COUNT(info)) {
+ const smart_fill_info *f = (smart_fill_info*)pgm_read_ptr(&info[i]);
+ const int8_t sx = pgm_read_byte(&f->sx), sy = pgm_read_byte(&f->sy),
+ ex = pgm_read_byte(&f->ex), ey = pgm_read_byte(&f->ey);
+ if (pgm_read_byte(&f->yfirst)) {
+ const int8_t dir = ex > sx ? 1 : -1;
+ for (uint8_t y = sy; y != ey; ++y)
+ for (uint8_t x = sx; x != ex; x += dir)
+ if (smart_fill_one(x, y, dir, 0)) break;
+ }
+ else {
+ const int8_t dir = ey > sy ? 1 : -1;
+ for (uint8_t x = sx; x != ex; ++x)
+ for (uint8_t y = sy; y != ey; y += dir)
+ if (smart_fill_one(x, y, 0, dir)) break;
+ }
+ }
+ }
+
+ #if HAS_BED_PROBE
+
+ //#define VALIDATE_MESH_TILT
+
+ #include "../../../libs/vector_3.h"
+
+ void unified_bed_leveling::tilt_mesh_based_on_probed_grid(const bool do_3_pt_leveling) {
+ const float x_min = probe.min_x(), x_max = probe.max_x(),
+ y_min = probe.min_y(), y_max = probe.max_y(),
+ dx = (x_max - x_min) / (g29_grid_size - 1),
+ dy = (y_max - y_min) / (g29_grid_size - 1);
+
+ xy_float_t points[3];
+ probe.get_three_points(points);
+
+ float measured_z;
+ bool abort_flag = false;
+
+ #ifdef VALIDATE_MESH_TILT
+ float z1, z2, z3; // Needed for algorithm validation below
+ #endif
+
+ struct linear_fit_data lsf_results;
+ incremental_LSF_reset(&lsf_results);
+
+ if (do_3_pt_leveling) {
+ SERIAL_ECHOLNPGM("Tilting mesh (1/3)");
+ TERN_(HAS_DISPLAY, ui.status_printf_P(0, PSTR(S_FMT " 1/3"), GET_TEXT(MSG_LCD_TILTING_MESH)));
+
+ measured_z = probe.probe_at_point(points[0], PROBE_PT_RAISE, g29_verbose_level);
+ if (isnan(measured_z))
+ abort_flag = true;
+ else {
+ measured_z -= get_z_correction(points[0]);
+ #ifdef VALIDATE_MESH_TILT
+ z1 = measured_z;
+ #endif
+ if (g29_verbose_level > 3) {
+ serial_spaces(16);
+ SERIAL_ECHOLNPAIR("Corrected_Z=", measured_z);
+ }
+ incremental_LSF(&lsf_results, points[0], measured_z);
+ }
+
+ if (!abort_flag) {
+ SERIAL_ECHOLNPGM("Tilting mesh (2/3)");
+ TERN_(HAS_DISPLAY, ui.status_printf_P(0, PSTR(S_FMT " 2/3"), GET_TEXT(MSG_LCD_TILTING_MESH)));
+
+ measured_z = probe.probe_at_point(points[1], PROBE_PT_RAISE, g29_verbose_level);
+ #ifdef VALIDATE_MESH_TILT
+ z2 = measured_z;
+ #endif
+ if (isnan(measured_z))
+ abort_flag = true;
+ else {
+ measured_z -= get_z_correction(points[1]);
+ if (g29_verbose_level > 3) {
+ serial_spaces(16);
+ SERIAL_ECHOLNPAIR("Corrected_Z=", measured_z);
+ }
+ incremental_LSF(&lsf_results, points[1], measured_z);
+ }
+ }
+
+ if (!abort_flag) {
+ SERIAL_ECHOLNPGM("Tilting mesh (3/3)");
+ TERN_(HAS_DISPLAY, ui.status_printf_P(0, PSTR(S_FMT " 3/3"), GET_TEXT(MSG_LCD_TILTING_MESH)));
+
+ measured_z = probe.probe_at_point(points[2], PROBE_PT_STOW, g29_verbose_level);
+ #ifdef VALIDATE_MESH_TILT
+ z3 = measured_z;
+ #endif
+ if (isnan(measured_z))
+ abort_flag = true;
+ else {
+ measured_z -= get_z_correction(points[2]);
+ if (g29_verbose_level > 3) {
+ serial_spaces(16);
+ SERIAL_ECHOLNPAIR("Corrected_Z=", measured_z);
+ }
+ incremental_LSF(&lsf_results, points[2], measured_z);
+ }
+ }
+
+ probe.stow();
+ probe.move_z_after_probing();
+
+ if (abort_flag) {
+ SERIAL_ECHOLNPGM("?Error probing point. Aborting operation.");
+ return;
+ }
+ }
+ else { // !do_3_pt_leveling
+
+ bool zig_zag = false;
+
+ const uint16_t total_points = sq(g29_grid_size);
+ uint16_t point_num = 1;
+
+ xy_pos_t rpos;
+ LOOP_L_N(ix, g29_grid_size) {
+ rpos.x = x_min + ix * dx;
+ LOOP_L_N(iy, g29_grid_size) {
+ rpos.y = y_min + dy * (zig_zag ? g29_grid_size - 1 - iy : iy);
+
+ if (!abort_flag) {
+ SERIAL_ECHOLNPAIR("Tilting mesh point ", point_num, "/", total_points, "\n");
+ TERN_(HAS_DISPLAY, ui.status_printf_P(0, PSTR(S_FMT " %i/%i"), GET_TEXT(MSG_LCD_TILTING_MESH), point_num, total_points));
+
+ measured_z = probe.probe_at_point(rpos, parser.seen('E') ? PROBE_PT_STOW : PROBE_PT_RAISE, g29_verbose_level); // TODO: Needs error handling
+
+ abort_flag = isnan(measured_z);
+
+ #if ENABLED(DEBUG_LEVELING_FEATURE)
+ if (DEBUGGING(LEVELING)) {
+ const xy_pos_t lpos = rpos.asLogical();
+ DEBUG_CHAR('(');
+ DEBUG_ECHO_F(rpos.x, 7);
+ DEBUG_CHAR(',');
+ DEBUG_ECHO_F(rpos.y, 7);
+ DEBUG_ECHOPAIR_F(") logical: (", lpos.x, 7);
+ DEBUG_CHAR(',');
+ DEBUG_ECHO_F(lpos.y, 7);
+ DEBUG_ECHOPAIR_F(") measured: ", measured_z, 7);
+ DEBUG_ECHOPAIR_F(" correction: ", get_z_correction(rpos), 7);
+ }
+ #endif
+
+ measured_z -= get_z_correction(rpos) /* + probe.offset.z */ ;
+
+ if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR_F(" final >>>---> ", measured_z, 7);
+
+ if (g29_verbose_level > 3) {
+ serial_spaces(16);
+ SERIAL_ECHOLNPAIR("Corrected_Z=", measured_z);
+ }
+ incremental_LSF(&lsf_results, rpos, measured_z);
+ }
+
+ point_num++;
+ }
+
+ zig_zag ^= true;
+ }
+ }
+ probe.stow();
+ probe.move_z_after_probing();
+
+ if (abort_flag || finish_incremental_LSF(&lsf_results)) {
+ SERIAL_ECHOPGM("Could not complete LSF!");
+ return;
+ }
+
+ vector_3 normal = vector_3(lsf_results.A, lsf_results.B, 1).get_normal();
+
+ if (g29_verbose_level > 2) {
+ SERIAL_ECHOPAIR_F("bed plane normal = [", normal.x, 7);
+ SERIAL_CHAR(',');
+ SERIAL_ECHO_F(normal.y, 7);
+ SERIAL_CHAR(',');
+ SERIAL_ECHO_F(normal.z, 7);
+ SERIAL_ECHOLNPGM("]");
+ }
+
+ matrix_3x3 rotation = matrix_3x3::create_look_at(vector_3(lsf_results.A, lsf_results.B, 1));
+
+ GRID_LOOP(i, j) {
+ float mx = mesh_index_to_xpos(i),
+ my = mesh_index_to_ypos(j),
+ mz = z_values[i][j];
+
+ if (DEBUGGING(LEVELING)) {
+ DEBUG_ECHOPAIR_F("before rotation = [", mx, 7);
+ DEBUG_CHAR(',');
+ DEBUG_ECHO_F(my, 7);
+ DEBUG_CHAR(',');
+ DEBUG_ECHO_F(mz, 7);
+ DEBUG_ECHOPGM("] ---> ");
+ DEBUG_DELAY(20);
+ }
+
+ apply_rotation_xyz(rotation, mx, my, mz);
+
+ if (DEBUGGING(LEVELING)) {
+ DEBUG_ECHOPAIR_F("after rotation = [", mx, 7);
+ DEBUG_CHAR(',');
+ DEBUG_ECHO_F(my, 7);
+ DEBUG_CHAR(',');
+ DEBUG_ECHO_F(mz, 7);
+ DEBUG_ECHOLNPGM("]");
+ DEBUG_DELAY(20);
+ }
+
+ z_values[i][j] = mz - lsf_results.D;
+ TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(i, j, z_values[i][j]));
+ }
+
+ if (DEBUGGING(LEVELING)) {
+ rotation.debug(PSTR("rotation matrix:\n"));
+ DEBUG_ECHOPAIR_F("LSF Results A=", lsf_results.A, 7);
+ DEBUG_ECHOPAIR_F(" B=", lsf_results.B, 7);
+ DEBUG_ECHOLNPAIR_F(" D=", lsf_results.D, 7);
+ DEBUG_DELAY(55);
+
+ DEBUG_ECHOPAIR_F("bed plane normal = [", normal.x, 7);
+ DEBUG_CHAR(',');
+ DEBUG_ECHO_F(normal.y, 7);
+ DEBUG_CHAR(',');
+ DEBUG_ECHO_F(normal.z, 7);
+ DEBUG_ECHOLNPGM("]");
+ DEBUG_EOL();
+
+ /**
+ * Use the code below to check the validity of the mesh tilting algorithm.
+ * 3-Point Mesh Tilt uses the same algorithm as grid-based tilting, but only
+ * three points are used in the calculation. This guarantees that each probed point
+ * has an exact match when get_z_correction() for that location is calculated.
+ * The Z error between the probed point locations and the get_z_correction()
+ * numbers for those locations should be 0.
+ */
+ #ifdef VALIDATE_MESH_TILT
+ auto d_from = []{ DEBUG_ECHOPGM("D from "); };
+ auto normed = [&](const xy_pos_t &pos, const float &zadd) {
+ return normal.x * pos.x + normal.y * pos.y + zadd;
+ };
+ auto debug_pt = [](PGM_P const pre, const xy_pos_t &pos, const float &zadd) {
+ d_from(); serialprintPGM(pre);
+ DEBUG_ECHO_F(normed(pos, zadd), 6);
+ DEBUG_ECHOLNPAIR_F(" Z error = ", zadd - get_z_correction(pos), 6);
+ };
+ debug_pt(PSTR("1st point: "), probe_pt[0], normal.z * z1);
+ debug_pt(PSTR("2nd point: "), probe_pt[1], normal.z * z2);
+ debug_pt(PSTR("3rd point: "), probe_pt[2], normal.z * z3);
+ d_from(); DEBUG_ECHOPGM("safe home with Z=");
+ DEBUG_ECHOLNPAIR_F("0 : ", normed(safe_homing_xy, 0), 6);
+ d_from(); DEBUG_ECHOPGM("safe home with Z=");
+ DEBUG_ECHOLNPAIR_F("mesh value ", normed(safe_homing_xy, get_z_correction(safe_homing_xy)), 6);
+ DEBUG_ECHOPAIR(" Z error = (", Z_SAFE_HOMING_X_POINT, ",", Z_SAFE_HOMING_Y_POINT);
+ DEBUG_ECHOLNPAIR_F(") = ", get_z_correction(safe_homing_xy), 6);
+ #endif
+ } // DEBUGGING(LEVELING)
+
+ }
+
+ #endif // HAS_BED_PROBE
+
+ #if ENABLED(UBL_G29_P31)
+ void unified_bed_leveling::smart_fill_wlsf(const float &weight_factor) {
+
+ // For each undefined mesh point, compute a distance-weighted least squares fit
+ // from all the originally populated mesh points, weighted toward the point
+ // being extrapolated so that nearby points will have greater influence on
+ // the point being extrapolated. Then extrapolate the mesh point from WLSF.
+
+ static_assert((GRID_MAX_POINTS_Y) <= 16, "GRID_MAX_POINTS_Y too big");
+ uint16_t bitmap[GRID_MAX_POINTS_X] = { 0 };
+ struct linear_fit_data lsf_results;
+
+ SERIAL_ECHOPGM("Extrapolating mesh...");
+
+ const float weight_scaled = weight_factor * _MAX(MESH_X_DIST, MESH_Y_DIST);
+
+ GRID_LOOP(jx, jy) if (!isnan(z_values[jx][jy])) SBI(bitmap[jx], jy);
+
+ xy_pos_t ppos;
+ LOOP_L_N(ix, GRID_MAX_POINTS_X) {
+ ppos.x = mesh_index_to_xpos(ix);
+ LOOP_L_N(iy, GRID_MAX_POINTS_Y) {
+ ppos.y = mesh_index_to_ypos(iy);
+ if (isnan(z_values[ix][iy])) {
+ // undefined mesh point at (ppos.x,ppos.y), compute weighted LSF from original valid mesh points.
+ incremental_LSF_reset(&lsf_results);
+ xy_pos_t rpos;
+ LOOP_L_N(jx, GRID_MAX_POINTS_X) {
+ rpos.x = mesh_index_to_xpos(jx);
+ LOOP_L_N(jy, GRID_MAX_POINTS_Y) {
+ if (TEST(bitmap[jx], jy)) {
+ rpos.y = mesh_index_to_ypos(jy);
+ const float rz = z_values[jx][jy],
+ w = 1.0f + weight_scaled / (rpos - ppos).magnitude();
+ incremental_WLSF(&lsf_results, rpos, rz, w);
+ }
+ }
+ }
+ if (finish_incremental_LSF(&lsf_results)) {
+ SERIAL_ECHOLNPGM("Insufficient data");
+ return;
+ }
+ const float ez = -lsf_results.D - lsf_results.A * ppos.x - lsf_results.B * ppos.y;
+ z_values[ix][iy] = ez;
+ TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(ix, iy, z_values[ix][iy]));
+ idle(); // housekeeping
+ }
+ }
+ }
+
+ SERIAL_ECHOLNPGM("done");
+ }
+ #endif // UBL_G29_P31
+
+ #if ENABLED(UBL_DEVEL_DEBUGGING)
+ /**
+ * Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
+ * good to have the extra information. Soon... we prune this to just a few items
+ */
+ void unified_bed_leveling::g29_what_command() {
+ report_state();
+
+ if (storage_slot == -1)
+ SERIAL_ECHOPGM("No Mesh Loaded.");
+ else
+ SERIAL_ECHOPAIR("Mesh ", storage_slot, " Loaded.");
+ SERIAL_EOL();
+ serial_delay(50);
+
+ #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
+ SERIAL_ECHOLNPAIR_F("Fade Height M420 Z", planner.z_fade_height, 4);
+ #endif
+
+ adjust_mesh_to_mean(g29_c_flag, g29_constant);
+
+ #if HAS_BED_PROBE
+ SERIAL_ECHOLNPAIR_F("Probe Offset M851 Z", probe.offset.z, 7);
+ #endif
+
+ SERIAL_ECHOLNPAIR("MESH_MIN_X " STRINGIFY(MESH_MIN_X) "=", MESH_MIN_X); serial_delay(50);
+ SERIAL_ECHOLNPAIR("MESH_MIN_Y " STRINGIFY(MESH_MIN_Y) "=", MESH_MIN_Y); serial_delay(50);
+ SERIAL_ECHOLNPAIR("MESH_MAX_X " STRINGIFY(MESH_MAX_X) "=", MESH_MAX_X); serial_delay(50);
+ SERIAL_ECHOLNPAIR("MESH_MAX_Y " STRINGIFY(MESH_MAX_Y) "=", MESH_MAX_Y); serial_delay(50);
+ SERIAL_ECHOLNPAIR("GRID_MAX_POINTS_X ", GRID_MAX_POINTS_X); serial_delay(50);
+ SERIAL_ECHOLNPAIR("GRID_MAX_POINTS_Y ", GRID_MAX_POINTS_Y); serial_delay(50);
+ SERIAL_ECHOLNPAIR("MESH_X_DIST ", MESH_X_DIST);
+ SERIAL_ECHOLNPAIR("MESH_Y_DIST ", MESH_Y_DIST); serial_delay(50);
+
+ SERIAL_ECHOPGM("X-Axis Mesh Points at: ");
+ LOOP_L_N(i, GRID_MAX_POINTS_X) {
+ SERIAL_ECHO_F(LOGICAL_X_POSITION(mesh_index_to_xpos(i)), 3);
+ SERIAL_ECHOPGM(" ");
+ serial_delay(25);
+ }
+ SERIAL_EOL();
+
+ SERIAL_ECHOPGM("Y-Axis Mesh Points at: ");
+ LOOP_L_N(i, GRID_MAX_POINTS_Y) {
+ SERIAL_ECHO_F(LOGICAL_Y_POSITION(mesh_index_to_ypos(i)), 3);
+ SERIAL_ECHOPGM(" ");
+ serial_delay(25);
+ }
+ SERIAL_EOL();
+
+ #if HAS_KILL
+ SERIAL_ECHOLNPAIR("Kill pin on :", int(KILL_PIN), " state:", int(kill_state()));
+ #endif
+
+ SERIAL_EOL();
+ serial_delay(50);
+
+ #if ENABLED(UBL_DEVEL_DEBUGGING)
+ SERIAL_ECHOLNPAIR("ubl_state_at_invocation :", ubl_state_at_invocation, "\nubl_state_recursion_chk :", ubl_state_recursion_chk);
+ serial_delay(50);
+
+ SERIAL_ECHOLNPAIR("Meshes go from ", hex_address((void*)settings.meshes_start_index()), " to ", hex_address((void*)settings.meshes_end_index()));
+ serial_delay(50);
+
+ SERIAL_ECHOLNPAIR("sizeof(ubl) : ", (int)sizeof(ubl)); SERIAL_EOL();
+ SERIAL_ECHOLNPAIR("z_value[][] size: ", (int)sizeof(z_values)); SERIAL_EOL();
+ serial_delay(25);
+
+ SERIAL_ECHOLNPAIR("EEPROM free for UBL: ", hex_address((void*)(settings.meshes_end_index() - settings.meshes_start_index())));
+ serial_delay(50);
+
+ SERIAL_ECHOLNPAIR("EEPROM can hold ", settings.calc_num_meshes(), " meshes.\n");
+ serial_delay(25);
+ #endif // UBL_DEVEL_DEBUGGING
+
+ if (!sanity_check()) {
+ echo_name();
+ SERIAL_ECHOLNPGM(" sanity checks passed.");
+ }
+ }
+
+ /**
+ * When we are fully debugged, the EEPROM dump command will get deleted also. But
+ * right now, it is good to have the extra information. Soon... we prune this.
+ */
+ void unified_bed_leveling::g29_eeprom_dump() {
+ uint8_t cccc;
+
+ SERIAL_ECHO_MSG("EEPROM Dump:");
+ persistentStore.access_start();
+ for (uint16_t i = 0; i < persistentStore.capacity(); i += 16) {
+ if (!(i & 0x3)) idle();
+ print_hex_word(i);
+ SERIAL_ECHOPGM(": ");
+ for (uint16_t j = 0; j < 16; j++) {
+ persistentStore.read_data(i + j, &cccc, sizeof(uint8_t));
+ print_hex_byte(cccc);
+ SERIAL_CHAR(' ');
+ }
+ SERIAL_EOL();
+ }
+ SERIAL_EOL();
+ persistentStore.access_finish();
+ }
+
+ /**
+ * When we are fully debugged, this may go away. But there are some valid
+ * use cases for the users. So we can wait and see what to do with it.
+ */
+ void unified_bed_leveling::g29_compare_current_mesh_to_stored_mesh() {
+ const int16_t a = settings.calc_num_meshes();
+
+ if (!a) {
+ SERIAL_ECHOLNPGM("?EEPROM storage not available.");
+ return;
+ }
+
+ if (!parser.has_value() || !WITHIN(g29_storage_slot, 0, a - 1)) {
+ SERIAL_ECHOLNPAIR("?Invalid storage slot.\n?Use 0 to ", a - 1);
+ return;
+ }
+
+ g29_storage_slot = parser.value_int();
+
+ float tmp_z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
+ settings.load_mesh(g29_storage_slot, &tmp_z_values);
+
+ SERIAL_ECHOLNPAIR("Subtracting mesh in slot ", g29_storage_slot, " from current mesh.");
+
+ GRID_LOOP(x, y) {
+ z_values[x][y] -= tmp_z_values[x][y];
+ TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(x, y, z_values[x][y]));
+ }
+ }
+
+ #endif // UBL_DEVEL_DEBUGGING
+
+#endif // AUTO_BED_LEVELING_UBL
diff --git a/Marlin/src/feature/bedlevel/ubl/ubl_motion.cpp b/Marlin/src/feature/bedlevel/ubl/ubl_motion.cpp
new file mode 100644
index 0000000..8b7cd15
--- /dev/null
+++ b/Marlin/src/feature/bedlevel/ubl/ubl_motion.cpp
@@ -0,0 +1,474 @@
+/**
+ * Marlin 3D Printer Firmware
+ * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
+ *
+ * Based on Sprinter and grbl.
+ * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <https://www.gnu.org/licenses/>.
+ *
+ */
+#include "../../../inc/MarlinConfig.h"
+
+#if ENABLED(AUTO_BED_LEVELING_UBL)
+
+#include "../bedlevel.h"
+#include "../../../module/planner.h"
+#include "../../../module/stepper.h"
+#include "../../../module/motion.h"
+
+#if ENABLED(DELTA)
+ #include "../../../module/delta.h"
+#endif
+
+#include "../../../MarlinCore.h"
+#include <math.h>
+
+#if !UBL_SEGMENTED
+
+ void unified_bed_leveling::line_to_destination_cartesian(const feedRate_t &scaled_fr_mm_s, const uint8_t extruder) {
+ /**
+ * Much of the nozzle movement will be within the same cell. So we will do as little computation
+ * as possible to determine if this is the case. If this move is within the same cell, we will
+ * just do the required Z-Height correction, call the Planner's buffer_line() routine, and leave
+ */
+ #if HAS_POSITION_MODIFIERS
+ xyze_pos_t start = current_position, end = destination;
+ planner.apply_modifiers(start);
+ planner.apply_modifiers(end);
+ #else
+ const xyze_pos_t &start = current_position, &end = destination;
+ #endif
+
+ const xy_int8_t istart = cell_indexes(start), iend = cell_indexes(end);
+
+ // A move within the same cell needs no splitting
+ if (istart == iend) {
+
+ FINAL_MOVE:
+
+ // When UBL_Z_RAISE_WHEN_OFF_MESH is disabled Z correction is extrapolated from the edge of the mesh
+ #ifdef UBL_Z_RAISE_WHEN_OFF_MESH
+ // For a move off the UBL mesh, use a constant Z raise
+ if (!cell_index_x_valid(end.x) || !cell_index_y_valid(end.y)) {
+
+ // Note: There is no Z Correction in this case. We are off the mesh and don't know what
+ // a reasonable correction would be, UBL_Z_RAISE_WHEN_OFF_MESH will be used instead of
+ // a calculated (Bi-Linear interpolation) correction.
+
+ end.z += UBL_Z_RAISE_WHEN_OFF_MESH;
+ planner.buffer_segment(end, scaled_fr_mm_s, extruder);
+ current_position = destination;
+ return;
+ }
+ #endif
+
+ // The distance is always MESH_X_DIST so multiply by the constant reciprocal.
+ const float xratio = (end.x - mesh_index_to_xpos(iend.x)) * RECIPROCAL(MESH_X_DIST),
+ yratio = (end.y - mesh_index_to_ypos(iend.y)) * RECIPROCAL(MESH_Y_DIST),
+ z1 = z_values[iend.x][iend.y ] + xratio * (z_values[iend.x + 1][iend.y ] - z_values[iend.x][iend.y ]),
+ z2 = z_values[iend.x][iend.y + 1] + xratio * (z_values[iend.x + 1][iend.y + 1] - z_values[iend.x][iend.y + 1]);
+
+ // X cell-fraction done. Interpolate the two Z offsets with the Y fraction for the final Z offset.
+ const float z0 = (z1 + (z2 - z1) * yratio) * planner.fade_scaling_factor_for_z(end.z);
+
+ // Undefined parts of the Mesh in z_values[][] are NAN.
+ // Replace NAN corrections with 0.0 to prevent NAN propagation.
+ if (!isnan(z0)) end.z += z0;
+ planner.buffer_segment(end, scaled_fr_mm_s, extruder);
+ current_position = destination;
+ return;
+ }
+
+ /**
+ * Past this point the move is known to cross one or more mesh lines. Check for the most common
+ * case - crossing only one X or Y line - after details are worked out to reduce computation.
+ */
+
+ const xy_float_t dist = end - start;
+ const xy_bool_t neg { dist.x < 0, dist.y < 0 };
+ const xy_int8_t ineg { int8_t(neg.x), int8_t(neg.y) };
+ const xy_float_t sign { neg.x ? -1.0f : 1.0f, neg.y ? -1.0f : 1.0f };
+ const xy_int8_t iadd { int8_t(iend.x == istart.x ? 0 : sign.x), int8_t(iend.y == istart.y ? 0 : sign.y) };
+
+ /**
+ * Compute the extruder scaling factor for each partial move, checking for
+ * zero-length moves that would result in an infinite scaling factor.
+ * A float divide is required for this, but then it just multiplies.
+ * Also select a scaling factor based on the larger of the X and Y
+ * components. The larger of the two is used to preserve precision.
+ */
+
+ const xy_float_t ad = sign * dist;
+ const bool use_x_dist = ad.x > ad.y;
+
+ float on_axis_distance = use_x_dist ? dist.x : dist.y,
+ e_position = end.e - start.e,
+ z_position = end.z - start.z;
+
+ const float e_normalized_dist = e_position / on_axis_distance, // Allow divide by zero
+ z_normalized_dist = z_position / on_axis_distance;
+
+ xy_int8_t icell = istart;
+
+ const float ratio = dist.y / dist.x, // Allow divide by zero
+ c = start.y - ratio * start.x;
+
+ const bool inf_normalized_flag = isinf(e_normalized_dist),
+ inf_ratio_flag = isinf(ratio);
+
+ /**
+ * Handle vertical lines that stay within one column.
+ * These need not be perfectly vertical.
+ */
+ if (iadd.x == 0) { // Vertical line?
+ icell.y += ineg.y; // Line going down? Just go to the bottom.
+ while (icell.y != iend.y + ineg.y) {
+ icell.y += iadd.y;
+ const float next_mesh_line_y = mesh_index_to_ypos(icell.y);
+
+ /**
+ * Skip the calculations for an infinite slope.
+ * For others the next X is the same so this can continue.
+ * Calculate X at the next Y mesh line.
+ */
+ const float rx = inf_ratio_flag ? start.x : (next_mesh_line_y - c) / ratio;
+
+ float z0 = z_correction_for_x_on_horizontal_mesh_line(rx, icell.x, icell.y)
+ * planner.fade_scaling_factor_for_z(end.z);
+
+ // Undefined parts of the Mesh in z_values[][] are NAN.
+ // Replace NAN corrections with 0.0 to prevent NAN propagation.
+ if (isnan(z0)) z0 = 0.0;
+
+ const float ry = mesh_index_to_ypos(icell.y);
+
+ /**
+ * Without this check, it's possible to generate a zero length move, as in the case where
+ * the line is heading down, starting exactly on a mesh line boundary. Since this is rare
+ * it might be fine to remove this check and let planner.buffer_segment() filter it out.
+ */
+ if (ry != start.y) {
+ if (!inf_normalized_flag) { // fall-through faster than branch
+ on_axis_distance = use_x_dist ? rx - start.x : ry - start.y;
+ e_position = start.e + on_axis_distance * e_normalized_dist;
+ z_position = start.z + on_axis_distance * z_normalized_dist;
+ }
+ else {
+ e_position = end.e;
+ z_position = end.z;
+ }
+
+ planner.buffer_segment(rx, ry, z_position + z0, e_position, scaled_fr_mm_s, extruder);
+ } //else printf("FIRST MOVE PRUNED ");
+ }
+
+ // At the final destination? Usually not, but when on a Y Mesh Line it's completed.
+ if (xy_pos_t(current_position) != xy_pos_t(end))
+ goto FINAL_MOVE;
+
+ current_position = destination;
+ return;
+ }
+
+ /**
+ * Handle horizontal lines that stay within one row.
+ * These need not be perfectly horizontal.
+ */
+ if (iadd.y == 0) { // Horizontal line?
+ icell.x += ineg.x; // Heading left? Just go to the left edge of the cell for the first move.
+ while (icell.x != iend.x + ineg.x) {
+ icell.x += iadd.x;
+ const float rx = mesh_index_to_xpos(icell.x);
+ const float ry = ratio * rx + c; // Calculate Y at the next X mesh line
+
+ float z0 = z_correction_for_y_on_vertical_mesh_line(ry, icell.x, icell.y)
+ * planner.fade_scaling_factor_for_z(end.z);
+
+ // Undefined parts of the Mesh in z_values[][] are NAN.
+ // Replace NAN corrections with 0.0 to prevent NAN propagation.
+ if (isnan(z0)) z0 = 0.0;
+
+ /**
+ * Without this check, it's possible to generate a zero length move, as in the case where
+ * the line is heading left, starting exactly on a mesh line boundary. Since this is rare
+ * it might be fine to remove this check and let planner.buffer_segment() filter it out.
+ */
+ if (rx != start.x) {
+ if (!inf_normalized_flag) {
+ on_axis_distance = use_x_dist ? rx - start.x : ry - start.y;
+ e_position = start.e + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a horizontal move
+ z_position = start.z + on_axis_distance * z_normalized_dist;
+ }
+ else {
+ e_position = end.e;
+ z_position = end.z;
+ }
+
+ if (!planner.buffer_segment(rx, ry, z_position + z0, e_position, scaled_fr_mm_s, extruder))
+ break;
+ } //else printf("FIRST MOVE PRUNED ");
+ }
+
+ if (xy_pos_t(current_position) != xy_pos_t(end))
+ goto FINAL_MOVE;
+
+ current_position = destination;
+ return;
+ }
+
+ /**
+ * Generic case of a line crossing both X and Y Mesh lines.
+ */
+
+ xy_int8_t cnt = (istart - iend).ABS();
+
+ icell += ineg;
+
+ while (cnt) {
+
+ const float next_mesh_line_x = mesh_index_to_xpos(icell.x + iadd.x),
+ next_mesh_line_y = mesh_index_to_ypos(icell.y + iadd.y),
+ ry = ratio * next_mesh_line_x + c, // Calculate Y at the next X mesh line
+ rx = (next_mesh_line_y - c) / ratio; // Calculate X at the next Y mesh line
+ // (No need to worry about ratio == 0.
+ // In that case, it was already detected
+ // as a vertical line move above.)
+
+ if (neg.x == (rx > next_mesh_line_x)) { // Check if we hit the Y line first
+ // Yes! Crossing a Y Mesh Line next
+ float z0 = z_correction_for_x_on_horizontal_mesh_line(rx, icell.x - ineg.x, icell.y + iadd.y)
+ * planner.fade_scaling_factor_for_z(end.z);
+
+ // Undefined parts of the Mesh in z_values[][] are NAN.
+ // Replace NAN corrections with 0.0 to prevent NAN propagation.
+ if (isnan(z0)) z0 = 0.0;
+
+ if (!inf_normalized_flag) {
+ on_axis_distance = use_x_dist ? rx - start.x : next_mesh_line_y - start.y;
+ e_position = start.e + on_axis_distance * e_normalized_dist;
+ z_position = start.z + on_axis_distance * z_normalized_dist;
+ }
+ else {
+ e_position = end.e;
+ z_position = end.z;
+ }
+ if (!planner.buffer_segment(rx, next_mesh_line_y, z_position + z0, e_position, scaled_fr_mm_s, extruder))
+ break;
+ icell.y += iadd.y;
+ cnt.y--;
+ }
+ else {
+ // Yes! Crossing a X Mesh Line next
+ float z0 = z_correction_for_y_on_vertical_mesh_line(ry, icell.x + iadd.x, icell.y - ineg.y)
+ * planner.fade_scaling_factor_for_z(end.z);
+
+ // Undefined parts of the Mesh in z_values[][] are NAN.
+ // Replace NAN corrections with 0.0 to prevent NAN propagation.
+ if (isnan(z0)) z0 = 0.0;
+
+ if (!inf_normalized_flag) {
+ on_axis_distance = use_x_dist ? next_mesh_line_x - start.x : ry - start.y;
+ e_position = start.e + on_axis_distance * e_normalized_dist;
+ z_position = start.z + on_axis_distance * z_normalized_dist;
+ }
+ else {
+ e_position = end.e;
+ z_position = end.z;
+ }
+
+ if (!planner.buffer_segment(next_mesh_line_x, ry, z_position + z0, e_position, scaled_fr_mm_s, extruder))
+ break;
+ icell.x += iadd.x;
+ cnt.x--;
+ }
+
+ if (cnt.x < 0 || cnt.y < 0) break; // Too far! Exit the loop and go to FINAL_MOVE
+ }
+
+ if (xy_pos_t(current_position) != xy_pos_t(end))
+ goto FINAL_MOVE;
+
+ current_position = destination;
+ }
+
+#else // UBL_SEGMENTED
+
+ #if IS_SCARA
+ #define DELTA_SEGMENT_MIN_LENGTH 0.25 // SCARA minimum segment size is 0.25mm
+ #elif ENABLED(DELTA)
+ #define DELTA_SEGMENT_MIN_LENGTH 0.10 // mm (still subject to DELTA_SEGMENTS_PER_SECOND)
+ #else // CARTESIAN
+ #ifdef LEVELED_SEGMENT_LENGTH
+ #define DELTA_SEGMENT_MIN_LENGTH LEVELED_SEGMENT_LENGTH
+ #else
+ #define DELTA_SEGMENT_MIN_LENGTH 1.00 // mm (similar to G2/G3 arc segmentation)
+ #endif
+ #endif
+
+ /**
+ * Prepare a segmented linear move for DELTA/SCARA/CARTESIAN with UBL and FADE semantics.
+ * This calls planner.buffer_segment multiple times for small incremental moves.
+ * Returns true if did NOT move, false if moved (requires current_position update).
+ */
+
+ bool _O2 unified_bed_leveling::line_to_destination_segmented(const feedRate_t &scaled_fr_mm_s) {
+
+ if (!position_is_reachable(destination)) // fail if moving outside reachable boundary
+ return true; // did not move, so current_position still accurate
+
+ const xyze_pos_t total = destination - current_position;
+
+ const float cart_xy_mm_2 = HYPOT2(total.x, total.y),
+ cart_xy_mm = SQRT(cart_xy_mm_2); // Total XY distance
+
+ #if IS_KINEMATIC
+ const float seconds = cart_xy_mm / scaled_fr_mm_s; // Duration of XY move at requested rate
+ uint16_t segments = LROUND(delta_segments_per_second * seconds), // Preferred number of segments for distance @ feedrate
+ seglimit = LROUND(cart_xy_mm * RECIPROCAL(DELTA_SEGMENT_MIN_LENGTH)); // Number of segments at minimum segment length
+ NOMORE(segments, seglimit); // Limit to minimum segment length (fewer segments)
+ #else
+ uint16_t segments = LROUND(cart_xy_mm * RECIPROCAL(DELTA_SEGMENT_MIN_LENGTH)); // Cartesian fixed segment length
+ #endif
+
+ NOLESS(segments, 1U); // Must have at least one segment
+ const float inv_segments = 1.0f / segments, // Reciprocal to save calculation
+ segment_xyz_mm = SQRT(cart_xy_mm_2 + sq(total.z)) * inv_segments; // Length of each segment
+
+ #if ENABLED(SCARA_FEEDRATE_SCALING)
+ const float inv_duration = scaled_fr_mm_s / segment_xyz_mm;
+ #endif
+
+ xyze_float_t diff = total * inv_segments;
+
+ // Note that E segment distance could vary slightly as z mesh height
+ // changes for each segment, but small enough to ignore.
+
+ xyze_pos_t raw = current_position;
+
+ // Just do plain segmentation if UBL is inactive or the target is above the fade height
+ if (!planner.leveling_active || !planner.leveling_active_at_z(destination.z)) {
+ while (--segments) {
+ raw += diff;
+ planner.buffer_line(raw, scaled_fr_mm_s, active_extruder, segment_xyz_mm
+ #if ENABLED(SCARA_FEEDRATE_SCALING)
+ , inv_duration
+ #endif
+ );
+ }
+ planner.buffer_line(destination, scaled_fr_mm_s, active_extruder, segment_xyz_mm
+ #if ENABLED(SCARA_FEEDRATE_SCALING)
+ , inv_duration
+ #endif
+ );
+ return false; // Did not set current from destination
+ }
+
+ // Otherwise perform per-segment leveling
+
+ #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
+ const float fade_scaling_factor = planner.fade_scaling_factor_for_z(destination.z);
+ #endif
+
+ // Move to first segment destination
+ raw += diff;
+
+ for (;;) { // for each mesh cell encountered during the move
+
+ // Compute mesh cell invariants that remain constant for all segments within cell.
+ // Note for cell index, if point is outside the mesh grid (in MESH_INSET perimeter)
+ // the bilinear interpolation from the adjacent cell within the mesh will still work.
+ // Inner loop will exit each time (because out of cell bounds) but will come back
+ // in top of loop and again re-find same adjacent cell and use it, just less efficient
+ // for mesh inset area.
+
+ xy_int8_t icell = {
+ int8_t((raw.x - (MESH_MIN_X)) * RECIPROCAL(MESH_X_DIST)),
+ int8_t((raw.y - (MESH_MIN_Y)) * RECIPROCAL(MESH_Y_DIST))
+ };
+ LIMIT(icell.x, 0, (GRID_MAX_POINTS_X) - 1);
+ LIMIT(icell.y, 0, (GRID_MAX_POINTS_Y) - 1);
+
+ float z_x0y0 = z_values[icell.x ][icell.y ], // z at lower left corner
+ z_x1y0 = z_values[icell.x+1][icell.y ], // z at upper left corner
+ z_x0y1 = z_values[icell.x ][icell.y+1], // z at lower right corner
+ z_x1y1 = z_values[icell.x+1][icell.y+1]; // z at upper right corner
+
+ if (isnan(z_x0y0)) z_x0y0 = 0; // ideally activating planner.leveling_active (G29 A)
+ if (isnan(z_x1y0)) z_x1y0 = 0; // should refuse if any invalid mesh points
+ if (isnan(z_x0y1)) z_x0y1 = 0; // in order to avoid isnan tests per cell,
+ if (isnan(z_x1y1)) z_x1y1 = 0; // thus guessing zero for undefined points
+
+ const xy_pos_t pos = { mesh_index_to_xpos(icell.x), mesh_index_to_ypos(icell.y) };
+ xy_pos_t cell = raw - pos;
+
+ const float z_xmy0 = (z_x1y0 - z_x0y0) * RECIPROCAL(MESH_X_DIST), // z slope per x along y0 (lower left to lower right)
+ z_xmy1 = (z_x1y1 - z_x0y1) * RECIPROCAL(MESH_X_DIST); // z slope per x along y1 (upper left to upper right)
+
+ float z_cxy0 = z_x0y0 + z_xmy0 * cell.x; // z height along y0 at cell.x (changes for each cell.x in cell)
+
+ const float z_cxy1 = z_x0y1 + z_xmy1 * cell.x, // z height along y1 at cell.x
+ z_cxyd = z_cxy1 - z_cxy0; // z height difference along cell.x from y0 to y1
+
+ float z_cxym = z_cxyd * RECIPROCAL(MESH_Y_DIST); // z slope per y along cell.x from pos.y to y1 (changes for each cell.x in cell)
+
+ // float z_cxcy = z_cxy0 + z_cxym * cell.y; // interpolated mesh z height along cell.x at cell.y (do inside the segment loop)
+
+ // As subsequent segments step through this cell, the z_cxy0 intercept will change
+ // and the z_cxym slope will change, both as a function of cell.x within the cell, and
+ // each change by a constant for fixed segment lengths.
+
+ const float z_sxy0 = z_xmy0 * diff.x, // per-segment adjustment to z_cxy0
+ z_sxym = (z_xmy1 - z_xmy0) * RECIPROCAL(MESH_Y_DIST) * diff.x; // per-segment adjustment to z_cxym
+
+ for (;;) { // for all segments within this mesh cell
+
+ if (--segments == 0) raw = destination; // if this is last segment, use destination for exact
+
+ const float z_cxcy = (z_cxy0 + z_cxym * cell.y) // interpolated mesh z height along cell.x at cell.y
+ #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
+ * fade_scaling_factor // apply fade factor to interpolated mesh height
+ #endif
+ ;
+
+ planner.buffer_line(raw.x, raw.y, raw.z + z_cxcy, raw.e, scaled_fr_mm_s, active_extruder, segment_xyz_mm
+ #if ENABLED(SCARA_FEEDRATE_SCALING)
+ , inv_duration
+ #endif
+ );
+
+ if (segments == 0) // done with last segment
+ return false; // didn't set current from destination
+
+ raw += diff;
+ cell += diff;
+
+ if (!WITHIN(cell.x, 0, MESH_X_DIST) || !WITHIN(cell.y, 0, MESH_Y_DIST)) // done within this cell, break to next
+ break;
+
+ // Next segment still within same mesh cell, adjust the per-segment
+ // slope and intercept to compute next z height.
+
+ z_cxy0 += z_sxy0; // adjust z_cxy0 by per-segment z_sxy0
+ z_cxym += z_sxym; // adjust z_cxym by per-segment z_sxym
+
+ } // segment loop
+ } // cell loop
+
+ return false; // caller will update current_position
+ }
+
+#endif // UBL_SEGMENTED
+
+#endif // AUTO_BED_LEVELING_UBL