aboutsummaryrefslogtreecommitdiff
path: root/Marlin/src/gcode/calibrate/G34_M422.cpp
diff options
context:
space:
mode:
authorGeorgiy Bondarenko <69736697+nehilo@users.noreply.github.com>2021-03-04 20:54:23 +0300
committerGeorgiy Bondarenko <69736697+nehilo@users.noreply.github.com>2021-03-04 20:54:23 +0300
commite8701195e66f2d27ffe17fb514eae8173795aaf7 (patch)
tree9f519c4abf6556b9ae7190a6210d87ead1dfadde /Marlin/src/gcode/calibrate/G34_M422.cpp
downloadkp3s-lgvl-e8701195e66f2d27ffe17fb514eae8173795aaf7.tar.xz
kp3s-lgvl-e8701195e66f2d27ffe17fb514eae8173795aaf7.zip
Initial commit
Diffstat (limited to 'Marlin/src/gcode/calibrate/G34_M422.cpp')
-rw-r--r--Marlin/src/gcode/calibrate/G34_M422.cpp533
1 files changed, 533 insertions, 0 deletions
diff --git a/Marlin/src/gcode/calibrate/G34_M422.cpp b/Marlin/src/gcode/calibrate/G34_M422.cpp
new file mode 100644
index 0000000..0bcf954
--- /dev/null
+++ b/Marlin/src/gcode/calibrate/G34_M422.cpp
@@ -0,0 +1,533 @@
+/**
+ * Marlin 3D Printer Firmware
+ * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
+ *
+ * Based on Sprinter and grbl.
+ * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <https://www.gnu.org/licenses/>.
+ *
+ */
+
+#include "../../inc/MarlinConfigPre.h"
+
+#if EITHER(Z_MULTI_ENDSTOPS, Z_STEPPER_AUTO_ALIGN)
+
+#include "../../feature/z_stepper_align.h"
+
+#include "../gcode.h"
+#include "../../module/motion.h"
+#include "../../module/stepper.h"
+#include "../../module/planner.h"
+#include "../../module/probe.h"
+#include "../../lcd/marlinui.h" // for LCD_MESSAGEPGM
+
+#if HAS_LEVELING
+ #include "../../feature/bedlevel/bedlevel.h"
+#endif
+
+#if HAS_MULTI_HOTEND
+ #include "../../module/tool_change.h"
+#endif
+
+#if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
+ #include "../../libs/least_squares_fit.h"
+#endif
+
+#define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE)
+#include "../../core/debug_out.h"
+
+/**
+ * G34: Z-Stepper automatic alignment
+ *
+ * Manual stepper lock controls (reset by G28):
+ * L Unlock all steppers
+ * Z<1-4> Z stepper to lock / unlock
+ * S<state> 0=UNLOCKED 1=LOCKED. If omitted, assume LOCKED.
+ *
+ * Examples:
+ * G34 Z1 ; Lock Z1
+ * G34 L Z2 ; Unlock all, then lock Z2
+ * G34 Z2 S0 ; Unlock Z2
+ *
+ * With Z_STEPPER_AUTO_ALIGN:
+ * I<iterations> Number of tests. If omitted, Z_STEPPER_ALIGN_ITERATIONS.
+ * T<accuracy> Target Accuracy factor. If omitted, Z_STEPPER_ALIGN_ACC.
+ * A<amplification> Provide an Amplification value. If omitted, Z_STEPPER_ALIGN_AMP.
+ * R Flag to recalculate points based on current probe offsets
+ */
+void GcodeSuite::G34() {
+ DEBUG_SECTION(log_G34, "G34", DEBUGGING(LEVELING));
+ if (DEBUGGING(LEVELING)) log_machine_info();
+
+ planner.synchronize(); // Prevent damage
+
+ const bool seenL = parser.seen('L');
+ if (seenL) stepper.set_all_z_lock(false);
+
+ const bool seenZ = parser.seenval('Z');
+ if (seenZ) {
+ const bool state = parser.boolval('S', true);
+ switch (parser.intval('Z')) {
+ case 1: stepper.set_z1_lock(state); break;
+ case 2: stepper.set_z2_lock(state); break;
+ #if NUM_Z_STEPPER_DRIVERS >= 3
+ case 3: stepper.set_z3_lock(state); break;
+ #if NUM_Z_STEPPER_DRIVERS >= 4
+ case 4: stepper.set_z4_lock(state); break;
+ #endif
+ #endif
+ }
+ }
+
+ if (seenL || seenZ) {
+ stepper.set_separate_multi_axis(seenZ);
+ return;
+ }
+
+ #if ENABLED(Z_STEPPER_AUTO_ALIGN)
+ do { // break out on error
+
+ #if NUM_Z_STEPPER_DRIVERS == 4
+ SERIAL_ECHOLNPGM("Alignment for 4 steppers is Experimental!");
+ #elif NUM_Z_STEPPER_DRIVERS > 4
+ SERIAL_ECHOLNPGM("Alignment not supported for over 4 steppers");
+ break;
+ #endif
+
+ const int8_t z_auto_align_iterations = parser.intval('I', Z_STEPPER_ALIGN_ITERATIONS);
+ if (!WITHIN(z_auto_align_iterations, 1, 30)) {
+ SERIAL_ECHOLNPGM("?(I)teration out of bounds (1-30).");
+ break;
+ }
+
+ const float z_auto_align_accuracy = parser.floatval('T', Z_STEPPER_ALIGN_ACC);
+ if (!WITHIN(z_auto_align_accuracy, 0.01f, 1.0f)) {
+ SERIAL_ECHOLNPGM("?(T)arget accuracy out of bounds (0.01-1.0).");
+ break;
+ }
+
+ const float z_auto_align_amplification = TERN(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS, Z_STEPPER_ALIGN_AMP, parser.floatval('A', Z_STEPPER_ALIGN_AMP));
+ if (!WITHIN(ABS(z_auto_align_amplification), 0.5f, 2.0f)) {
+ SERIAL_ECHOLNPGM("?(A)mplification out of bounds (0.5-2.0).");
+ break;
+ }
+
+ if (parser.seen('R')) z_stepper_align.reset_to_default();
+
+ const ProbePtRaise raise_after = parser.boolval('E') ? PROBE_PT_STOW : PROBE_PT_RAISE;
+
+ // Disable the leveling matrix before auto-aligning
+ #if HAS_LEVELING
+ TERN_(RESTORE_LEVELING_AFTER_G34, const bool leveling_was_active = planner.leveling_active);
+ set_bed_leveling_enabled(false);
+ #endif
+
+ TERN_(CNC_WORKSPACE_PLANES, workspace_plane = PLANE_XY);
+
+ // Always home with tool 0 active
+ #if HAS_MULTI_HOTEND
+ const uint8_t old_tool_index = active_extruder;
+ tool_change(0, true);
+ #endif
+
+ TERN_(HAS_DUPLICATION_MODE, set_duplication_enabled(false));
+
+ // In BLTOUCH HS mode, the probe travels in a deployed state.
+ // Users of G34 might have a badly misaligned bed, so raise Z by the
+ // length of the deployed pin (BLTOUCH stroke < 7mm)
+ #define Z_BASIC_CLEARANCE (Z_CLEARANCE_BETWEEN_PROBES + 7.0f * BOTH(BLTOUCH, BLTOUCH_HS_MODE))
+
+ // Compute a worst-case clearance height to probe from. After the first
+ // iteration this will be re-calculated based on the actual bed position
+ auto magnitude2 = [&](const uint8_t i, const uint8_t j) {
+ const xy_pos_t diff = z_stepper_align.xy[i] - z_stepper_align.xy[j];
+ return HYPOT2(diff.x, diff.y);
+ };
+ float z_probe = Z_BASIC_CLEARANCE + (G34_MAX_GRADE) * 0.01f * SQRT(
+ #if NUM_Z_STEPPER_DRIVERS == 3
+ _MAX(magnitude2(0, 1), magnitude2(1, 2), magnitude2(2, 0))
+ #elif NUM_Z_STEPPER_DRIVERS == 4
+ _MAX(magnitude2(0, 1), magnitude2(1, 2), magnitude2(2, 3),
+ magnitude2(3, 0), magnitude2(0, 2), magnitude2(1, 3))
+ #else
+ magnitude2(0, 1)
+ #endif
+ );
+
+ // Home before the alignment procedure
+ if (!all_axes_trusted()) home_all_axes();
+
+ // Move the Z coordinate realm towards the positive - dirty trick
+ current_position.z += z_probe * 0.5f;
+ sync_plan_position();
+ // Now, the Z origin lies below the build plate. That allows to probe deeper, before run_z_probe throws an error.
+ // This hack is un-done at the end of G34 - either by re-homing, or by using the probed heights of the last iteration.
+
+ #if DISABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
+ float last_z_align_move[NUM_Z_STEPPER_DRIVERS] = ARRAY_N(NUM_Z_STEPPER_DRIVERS, 10000.0f, 10000.0f, 10000.0f, 10000.0f);
+ #else
+ float last_z_align_level_indicator = 10000.0f;
+ #endif
+ float z_measured[NUM_Z_STEPPER_DRIVERS] = { 0 },
+ z_maxdiff = 0.0f,
+ amplification = z_auto_align_amplification;
+
+ #if DISABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
+ bool adjustment_reverse = false;
+ #endif
+
+ #if HAS_DISPLAY
+ PGM_P const msg_iteration = GET_TEXT(MSG_ITERATION);
+ const uint8_t iter_str_len = strlen_P(msg_iteration);
+ #endif
+
+ // Final z and iteration values will be used after breaking the loop
+ float z_measured_min;
+ uint8_t iteration = 0;
+ bool err_break = false; // To break out of nested loops
+ while (iteration < z_auto_align_iterations) {
+ if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("> probing all positions.");
+
+ const int iter = iteration + 1;
+ SERIAL_ECHOLNPAIR("\nG34 Iteration: ", iter);
+ #if HAS_DISPLAY
+ char str[iter_str_len + 2 + 1];
+ sprintf_P(str, msg_iteration, iter);
+ ui.set_status(str);
+ #endif
+
+ // Initialize minimum value
+ z_measured_min = 100000.0f;
+ float z_measured_max = -100000.0f;
+
+ // Probe all positions (one per Z-Stepper)
+ LOOP_L_N(i, NUM_Z_STEPPER_DRIVERS) {
+ // iteration odd/even --> downward / upward stepper sequence
+ const uint8_t iprobe = (iteration & 1) ? NUM_Z_STEPPER_DRIVERS - 1 - i : i;
+
+ // Safe clearance even on an incline
+ if ((iteration == 0 || i > 0) && z_probe > current_position.z) do_blocking_move_to_z(z_probe);
+
+ if (DEBUGGING(LEVELING))
+ DEBUG_ECHOLNPAIR_P(PSTR("Probing X"), z_stepper_align.xy[iprobe].x, SP_Y_STR, z_stepper_align.xy[iprobe].y);
+
+ // Probe a Z height for each stepper.
+ // Probing sanity check is disabled, as it would trigger even in normal cases because
+ // current_position.z has been manually altered in the "dirty trick" above.
+ const float z_probed_height = probe.probe_at_point(z_stepper_align.xy[iprobe], raise_after, 0, true, false);
+ if (isnan(z_probed_height)) {
+ SERIAL_ECHOLNPGM("Probing failed");
+ LCD_MESSAGEPGM(MSG_LCD_PROBING_FAILED);
+ err_break = true;
+ break;
+ }
+
+ // Add height to each value, to provide a more useful target height for
+ // the next iteration of probing. This allows adjustments to be made away from the bed.
+ z_measured[iprobe] = z_probed_height + Z_CLEARANCE_BETWEEN_PROBES;
+
+ if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("> Z", int(iprobe + 1), " measured position is ", z_measured[iprobe]);
+
+ // Remember the minimum measurement to calculate the correction later on
+ z_measured_min = _MIN(z_measured_min, z_measured[iprobe]);
+ z_measured_max = _MAX(z_measured_max, z_measured[iprobe]);
+ } // for (i)
+
+ if (err_break) break;
+
+ // Adapt the next probe clearance height based on the new measurements.
+ // Safe_height = lowest distance to bed (= highest measurement) plus highest measured misalignment.
+ z_maxdiff = z_measured_max - z_measured_min;
+ z_probe = Z_BASIC_CLEARANCE + z_measured_max + z_maxdiff;
+
+ #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
+ // Replace the initial values in z_measured with calculated heights at
+ // each stepper position. This allows the adjustment algorithm to be
+ // shared between both possible probing mechanisms.
+
+ // This must be done after the next z_probe height is calculated, so that
+ // the height is calculated from actual print area positions, and not
+ // extrapolated motor movements.
+
+ // Compute the least-squares fit for all probed points.
+ // Calculate the Z position of each stepper and store it in z_measured.
+ // This allows the actual adjustment logic to be shared by both algorithms.
+ linear_fit_data lfd;
+ incremental_LSF_reset(&lfd);
+ LOOP_L_N(i, NUM_Z_STEPPER_DRIVERS) {
+ SERIAL_ECHOLNPAIR("PROBEPT_", int(i), ": ", z_measured[i]);
+ incremental_LSF(&lfd, z_stepper_align.xy[i], z_measured[i]);
+ }
+ finish_incremental_LSF(&lfd);
+
+ z_measured_min = 100000.0f;
+ LOOP_L_N(i, NUM_Z_STEPPER_DRIVERS) {
+ z_measured[i] = -(lfd.A * z_stepper_align.stepper_xy[i].x + lfd.B * z_stepper_align.stepper_xy[i].y + lfd.D);
+ z_measured_min = _MIN(z_measured_min, z_measured[i]);
+ }
+
+ SERIAL_ECHOLNPAIR("CALCULATED STEPPER POSITIONS: Z1=", z_measured[0], " Z2=", z_measured[1], " Z3=", z_measured[2]);
+ #endif
+
+ SERIAL_ECHOLNPAIR("\n"
+ "DIFFERENCE Z1-Z2=", ABS(z_measured[0] - z_measured[1])
+ #if NUM_Z_STEPPER_DRIVERS == 3
+ , " Z2-Z3=", ABS(z_measured[1] - z_measured[2])
+ , " Z3-Z1=", ABS(z_measured[2] - z_measured[0])
+ #endif
+ );
+ #if HAS_DISPLAY
+ char fstr1[10];
+ #if NUM_Z_STEPPER_DRIVERS == 2
+ char msg[6 + (6 + 5) * 1 + 1];
+ #else
+ char msg[6 + (6 + 5) * 3 + 1], fstr2[10], fstr3[10];
+ #endif
+ sprintf_P(msg,
+ PSTR("Diffs Z1-Z2=%s"
+ #if NUM_Z_STEPPER_DRIVERS == 3
+ " Z2-Z3=%s"
+ " Z3-Z1=%s"
+ #endif
+ ), dtostrf(ABS(z_measured[0] - z_measured[1]), 1, 3, fstr1)
+ #if NUM_Z_STEPPER_DRIVERS == 3
+ , dtostrf(ABS(z_measured[1] - z_measured[2]), 1, 3, fstr2)
+ , dtostrf(ABS(z_measured[2] - z_measured[0]), 1, 3, fstr3)
+ #endif
+ );
+ ui.set_status(msg);
+ #endif
+
+ auto decreasing_accuracy = [](const float &v1, const float &v2){
+ if (v1 < v2 * 0.7f) {
+ SERIAL_ECHOLNPGM("Decreasing Accuracy Detected.");
+ LCD_MESSAGEPGM(MSG_DECREASING_ACCURACY);
+ return true;
+ }
+ return false;
+ };
+
+ #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
+ // Check if the applied corrections go in the correct direction.
+ // Calculate the sum of the absolute deviations from the mean of the probe measurements.
+ // Compare to the last iteration to ensure it's getting better.
+
+ // Calculate mean value as a reference
+ float z_measured_mean = 0.0f;
+ LOOP_L_N(zstepper, NUM_Z_STEPPER_DRIVERS) z_measured_mean += z_measured[zstepper];
+ z_measured_mean /= NUM_Z_STEPPER_DRIVERS;
+
+ // Calculate the sum of the absolute deviations from the mean value
+ float z_align_level_indicator = 0.0f;
+ LOOP_L_N(zstepper, NUM_Z_STEPPER_DRIVERS)
+ z_align_level_indicator += ABS(z_measured[zstepper] - z_measured_mean);
+
+ // If it's getting worse, stop and throw an error
+ err_break = decreasing_accuracy(last_z_align_level_indicator, z_align_level_indicator);
+ if (err_break) break;
+
+ last_z_align_level_indicator = z_align_level_indicator;
+ #endif
+
+ // The following correction actions are to be enabled for select Z-steppers only
+ stepper.set_separate_multi_axis(true);
+
+ bool success_break = true;
+ // Correct the individual stepper offsets
+ LOOP_L_N(zstepper, NUM_Z_STEPPER_DRIVERS) {
+ // Calculate current stepper move
+ float z_align_move = z_measured[zstepper] - z_measured_min;
+ const float z_align_abs = ABS(z_align_move);
+
+ #if DISABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
+ // Optimize one iteration's correction based on the first measurements
+ if (z_align_abs) amplification = (iteration == 1) ? _MIN(last_z_align_move[zstepper] / z_align_abs, 2.0f) : z_auto_align_amplification;
+
+ // Check for less accuracy compared to last move
+ if (decreasing_accuracy(last_z_align_move[zstepper], z_align_abs)) {
+ if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("> Z", int(zstepper + 1), " last_z_align_move = ", last_z_align_move[zstepper]);
+ if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("> Z", int(zstepper + 1), " z_align_abs = ", z_align_abs);
+ adjustment_reverse = !adjustment_reverse;
+ }
+
+ // Remember the alignment for the next iteration, but only if steppers move,
+ // otherwise it would be just zero (in case this stepper was at z_measured_min already)
+ if (z_align_abs > 0) last_z_align_move[zstepper] = z_align_abs;
+ #endif
+
+ // Stop early if all measured points achieve accuracy target
+ if (z_align_abs > z_auto_align_accuracy) success_break = false;
+
+ if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("> Z", int(zstepper + 1), " corrected by ", z_align_move);
+
+ // Lock all steppers except one
+ stepper.set_all_z_lock(true, zstepper);
+
+ #if DISABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
+ // Decreasing accuracy was detected so move was inverted.
+ // Will match reversed Z steppers on dual steppers. Triple will need more work to map.
+ if (adjustment_reverse) {
+ z_align_move = -z_align_move;
+ if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("> Z", int(zstepper + 1), " correction reversed to ", z_align_move);
+ }
+ #endif
+
+ // Do a move to correct part of the misalignment for the current stepper
+ do_blocking_move_to_z(amplification * z_align_move + current_position.z);
+ } // for (zstepper)
+
+ // Back to normal stepper operations
+ stepper.set_all_z_lock(false);
+ stepper.set_separate_multi_axis(false);
+
+ if (err_break) break;
+
+ if (success_break) {
+ SERIAL_ECHOLNPGM("Target accuracy achieved.");
+ LCD_MESSAGEPGM(MSG_ACCURACY_ACHIEVED);
+ break;
+ }
+
+ iteration++;
+ } // while (iteration < z_auto_align_iterations)
+
+ if (err_break)
+ SERIAL_ECHOLNPGM("G34 aborted.");
+ else {
+ SERIAL_ECHOLNPAIR("Did ", int(iteration + (iteration != z_auto_align_iterations)), " of ", int(z_auto_align_iterations));
+ SERIAL_ECHOLNPAIR_F("Accuracy: ", z_maxdiff);
+ }
+
+ // Stow the probe, as the last call to probe.probe_at_point(...) left
+ // the probe deployed if it was successful.
+ probe.stow();
+
+ #if ENABLED(HOME_AFTER_G34)
+ // After this operation the z position needs correction
+ set_axis_never_homed(Z_AXIS);
+ // Home Z after the alignment procedure
+ process_subcommands_now_P(PSTR("G28Z"));
+ #else
+ // Use the probed height from the last iteration to determine the Z height.
+ // z_measured_min is used, because all steppers are aligned to z_measured_min.
+ // Ideally, this would be equal to the 'z_probe * 0.5f' which was added earlier.
+ current_position.z -= z_measured_min - (float)Z_CLEARANCE_BETWEEN_PROBES;
+ sync_plan_position();
+ #endif
+
+ // Restore the active tool after homing
+ TERN_(HAS_MULTI_HOTEND, tool_change(old_tool_index, DISABLED(PARKING_EXTRUDER))); // Fetch previous tool for parking extruder
+
+ #if BOTH(HAS_LEVELING, RESTORE_LEVELING_AFTER_G34)
+ set_bed_leveling_enabled(leveling_was_active);
+ #endif
+
+ }while(0);
+ #endif
+}
+
+#endif // Z_MULTI_ENDSTOPS || Z_STEPPER_AUTO_ALIGN
+
+#if ENABLED(Z_STEPPER_AUTO_ALIGN)
+
+/**
+ * M422: Set a Z-Stepper automatic alignment XY point.
+ * Use repeatedly to set multiple points.
+ *
+ * S<index> : Index of the probe point to set
+ *
+ * With Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS:
+ * W<index> : Index of the Z stepper position to set
+ * The W and S parameters may not be combined.
+ *
+ * S and W require an X and/or Y parameter
+ * X<pos> : X position to set (Unchanged if omitted)
+ * Y<pos> : Y position to set (Unchanged if omitted)
+ *
+ * R : Recalculate points based on current probe offsets
+ */
+void GcodeSuite::M422() {
+
+ if (parser.seen('R')) {
+ z_stepper_align.reset_to_default();
+ return;
+ }
+
+ if (!parser.seen_any()) {
+ LOOP_L_N(i, NUM_Z_STEPPER_DRIVERS)
+ SERIAL_ECHOLNPAIR_P(PSTR("M422 S"), int(i + 1), SP_X_STR, z_stepper_align.xy[i].x, SP_Y_STR, z_stepper_align.xy[i].y);
+ #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
+ LOOP_L_N(i, NUM_Z_STEPPER_DRIVERS)
+ SERIAL_ECHOLNPAIR_P(PSTR("M422 W"), int(i + 1), SP_X_STR, z_stepper_align.stepper_xy[i].x, SP_Y_STR, z_stepper_align.stepper_xy[i].y);
+ #endif
+ return;
+ }
+
+ const bool is_probe_point = parser.seen('S');
+
+ if (TERN0(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS, is_probe_point && parser.seen('W'))) {
+ SERIAL_ECHOLNPGM("?(S) and (W) may not be combined.");
+ return;
+ }
+
+ xy_pos_t *pos_dest = (
+ TERN_(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS, !is_probe_point ? z_stepper_align.stepper_xy :)
+ z_stepper_align.xy
+ );
+
+ if (!is_probe_point && TERN1(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS, !parser.seen('W'))) {
+ SERIAL_ECHOLNPGM("?(S)" TERN_(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS, " or (W)") " is required.");
+ return;
+ }
+
+ // Get the Probe Position Index or Z Stepper Index
+ int8_t position_index;
+ if (is_probe_point) {
+ position_index = parser.intval('S') - 1;
+ if (!WITHIN(position_index, 0, int8_t(NUM_Z_STEPPER_DRIVERS) - 1)) {
+ SERIAL_ECHOLNPGM("?(S) Probe-position index invalid.");
+ return;
+ }
+ }
+ else {
+ #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
+ position_index = parser.intval('W') - 1;
+ if (!WITHIN(position_index, 0, NUM_Z_STEPPER_DRIVERS - 1)) {
+ SERIAL_ECHOLNPGM("?(W) Z-stepper index invalid.");
+ return;
+ }
+ #endif
+ }
+
+ const xy_pos_t pos = {
+ parser.floatval('X', pos_dest[position_index].x),
+ parser.floatval('Y', pos_dest[position_index].y)
+ };
+
+ if (is_probe_point) {
+ if (!probe.can_reach(pos.x, Y_CENTER)) {
+ SERIAL_ECHOLNPGM("?(X) out of bounds.");
+ return;
+ }
+ if (!probe.can_reach(pos)) {
+ SERIAL_ECHOLNPGM("?(Y) out of bounds.");
+ return;
+ }
+ }
+
+ pos_dest[position_index] = pos;
+}
+
+#endif // Z_STEPPER_AUTO_ALIGN