diff options
author | Georgiy Bondarenko <69736697+nehilo@users.noreply.github.com> | 2021-03-04 20:54:23 +0300 |
---|---|---|
committer | Georgiy Bondarenko <69736697+nehilo@users.noreply.github.com> | 2021-03-04 20:54:23 +0300 |
commit | e8701195e66f2d27ffe17fb514eae8173795aaf7 (patch) | |
tree | 9f519c4abf6556b9ae7190a6210d87ead1dfadde /Marlin/src/module/planner.cpp | |
download | kp3s-lgvl-e8701195e66f2d27ffe17fb514eae8173795aaf7.tar.xz kp3s-lgvl-e8701195e66f2d27ffe17fb514eae8173795aaf7.zip |
Initial commit
Diffstat (limited to 'Marlin/src/module/planner.cpp')
-rw-r--r-- | Marlin/src/module/planner.cpp | 3099 |
1 files changed, 3099 insertions, 0 deletions
diff --git a/Marlin/src/module/planner.cpp b/Marlin/src/module/planner.cpp new file mode 100644 index 0000000..5897d10 --- /dev/null +++ b/Marlin/src/module/planner.cpp @@ -0,0 +1,3099 @@ +/** + * Marlin 3D Printer Firmware + * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] + * + * Based on Sprinter and grbl. + * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <https://www.gnu.org/licenses/>. + * + */ + +/** + * planner.cpp + * + * Buffer movement commands and manage the acceleration profile plan + * + * Derived from Grbl + * Copyright (c) 2009-2011 Simen Svale Skogsrud + * + * The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. + * + * + * Reasoning behind the mathematics in this module (in the key of 'Mathematica'): + * + * s == speed, a == acceleration, t == time, d == distance + * + * Basic definitions: + * Speed[s_, a_, t_] := s + (a*t) + * Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t] + * + * Distance to reach a specific speed with a constant acceleration: + * Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t] + * d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance() + * + * Speed after a given distance of travel with constant acceleration: + * Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t] + * m -> Sqrt[2 a d + s^2] + * + * DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2] + * + * When to start braking (di) to reach a specified destination speed (s2) after accelerating + * from initial speed s1 without ever stopping at a plateau: + * Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di] + * di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance() + * + * IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a) + * + * -- + * + * The fast inverse function needed for Bézier interpolation for AVR + * was designed, written and tested by Eduardo José Tagle on April/2018 + */ + +#include "planner.h" +#include "stepper.h" +#include "motion.h" +#include "temperature.h" +#include "../lcd/marlinui.h" +#include "../gcode/parser.h" + +#include "../MarlinCore.h" + +#if HAS_LEVELING + #include "../feature/bedlevel/bedlevel.h" +#endif + +#if ENABLED(FILAMENT_WIDTH_SENSOR) + #include "../feature/filwidth.h" +#endif + +#if ENABLED(BARICUDA) + #include "../feature/baricuda.h" +#endif + +#if ENABLED(MIXING_EXTRUDER) + #include "../feature/mixing.h" +#endif + +#if ENABLED(AUTO_POWER_CONTROL) + #include "../feature/power.h" +#endif + +#if ENABLED(EXTERNAL_CLOSED_LOOP_CONTROLLER) + #include "../feature/closedloop.h" +#endif + +#if ENABLED(BACKLASH_COMPENSATION) + #include "../feature/backlash.h" +#endif + +#if ENABLED(CANCEL_OBJECTS) + #include "../feature/cancel_object.h" +#endif + +#if ENABLED(POWER_LOSS_RECOVERY) + #include "../feature/powerloss.h" +#endif + +#if HAS_CUTTER + #include "../feature/spindle_laser.h" +#endif + +// Delay for delivery of first block to the stepper ISR, if the queue contains 2 or +// fewer movements. The delay is measured in milliseconds, and must be less than 250ms +#define BLOCK_DELAY_FOR_1ST_MOVE 100 + +Planner planner; + +// public: + +/** + * A ring buffer of moves described in steps + */ +block_t Planner::block_buffer[BLOCK_BUFFER_SIZE]; +volatile uint8_t Planner::block_buffer_head, // Index of the next block to be pushed + Planner::block_buffer_nonbusy, // Index of the first non-busy block + Planner::block_buffer_planned, // Index of the optimally planned block + Planner::block_buffer_tail; // Index of the busy block, if any +uint16_t Planner::cleaning_buffer_counter; // A counter to disable queuing of blocks +uint8_t Planner::delay_before_delivering; // This counter delays delivery of blocks when queue becomes empty to allow the opportunity of merging blocks + +planner_settings_t Planner::settings; // Initialized by settings.load() + +#if ENABLED(LASER_POWER_INLINE) + laser_state_t Planner::laser_inline; // Current state for blocks +#endif + +uint32_t Planner::max_acceleration_steps_per_s2[XYZE_N]; // (steps/s^2) Derived from mm_per_s2 + +float Planner::steps_to_mm[XYZE_N]; // (mm) Millimeters per step + +#if HAS_JUNCTION_DEVIATION + float Planner::junction_deviation_mm; // (mm) M205 J + #if HAS_LINEAR_E_JERK + float Planner::max_e_jerk[DISTINCT_E]; // Calculated from junction_deviation_mm + #endif +#endif + +#if HAS_CLASSIC_JERK + TERN(HAS_LINEAR_E_JERK, xyz_pos_t, xyze_pos_t) Planner::max_jerk; +#endif + +#if ENABLED(SD_ABORT_ON_ENDSTOP_HIT) + bool Planner::abort_on_endstop_hit = false; +#endif + +#if ENABLED(DISTINCT_E_FACTORS) + uint8_t Planner::last_extruder = 0; // Respond to extruder change +#endif + +#if ENABLED(DIRECT_STEPPING) + uint32_t Planner::last_page_step_rate = 0; + xyze_bool_t Planner::last_page_dir{0}; +#endif + +#if EXTRUDERS + int16_t Planner::flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100); // Extrusion factor for each extruder + float Planner::e_factor[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0f); // The flow percentage and volumetric multiplier combine to scale E movement +#endif + +#if DISABLED(NO_VOLUMETRICS) + float Planner::filament_size[EXTRUDERS], // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder + Planner::volumetric_area_nominal = CIRCLE_AREA(float(DEFAULT_NOMINAL_FILAMENT_DIA) * 0.5f), // Nominal cross-sectional area + Planner::volumetric_multiplier[EXTRUDERS]; // Reciprocal of cross-sectional area of filament (in mm^2). Pre-calculated to reduce computation in the planner +#endif + +#if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT) + float Planner::volumetric_extruder_limit[EXTRUDERS], // max mm^3/sec the extruder is able to handle + Planner::volumetric_extruder_feedrate_limit[EXTRUDERS]; // pre calculated extruder feedrate limit based on volumetric_extruder_limit; pre-calculated to reduce computation in the planner +#endif + +#if HAS_LEVELING + bool Planner::leveling_active = false; // Flag that auto bed leveling is enabled + #if ABL_PLANAR + matrix_3x3 Planner::bed_level_matrix; // Transform to compensate for bed level + #endif + #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) + float Planner::z_fade_height, // Initialized by settings.load() + Planner::inverse_z_fade_height, + Planner::last_fade_z; + #endif +#else + constexpr bool Planner::leveling_active; +#endif + +skew_factor_t Planner::skew_factor; // Initialized by settings.load() + +#if ENABLED(AUTOTEMP) + float Planner::autotemp_max = 250, + Planner::autotemp_min = 210, + Planner::autotemp_factor = 0.1f; + bool Planner::autotemp_enabled = false; +#endif + +// private: + +xyze_long_t Planner::position{0}; + +uint32_t Planner::cutoff_long; + +xyze_float_t Planner::previous_speed; +float Planner::previous_nominal_speed_sqr; + +#if ENABLED(DISABLE_INACTIVE_EXTRUDER) + last_move_t Planner::g_uc_extruder_last_move[EXTRUDERS] = { 0 }; +#endif + +#ifdef XY_FREQUENCY_LIMIT + int8_t Planner::xy_freq_limit_hz = XY_FREQUENCY_LIMIT; + float Planner::xy_freq_min_speed_factor = (XY_FREQUENCY_MIN_PERCENT) * 0.01f; + int32_t Planner::xy_freq_min_interval_us = LROUND(1000000.0 / (XY_FREQUENCY_LIMIT)); +#endif + +#if ENABLED(LIN_ADVANCE) + float Planner::extruder_advance_K[EXTRUDERS]; // Initialized by settings.load() +#endif + +#if HAS_POSITION_FLOAT + xyze_pos_t Planner::position_float; // Needed for accurate maths. Steps cannot be used! +#endif + +#if IS_KINEMATIC + xyze_pos_t Planner::position_cart; +#endif + +#if HAS_WIRED_LCD + volatile uint32_t Planner::block_buffer_runtime_us = 0; +#endif + +/** + * Class and Instance Methods + */ + +Planner::Planner() { init(); } + +void Planner::init() { + position.reset(); + TERN_(HAS_POSITION_FLOAT, position_float.reset()); + TERN_(IS_KINEMATIC, position_cart.reset()); + previous_speed.reset(); + previous_nominal_speed_sqr = 0; + TERN_(ABL_PLANAR, bed_level_matrix.set_to_identity()); + clear_block_buffer(); + delay_before_delivering = 0; + #if ENABLED(DIRECT_STEPPING) + last_page_step_rate = 0; + last_page_dir.reset(); + #endif +} + +#if ENABLED(S_CURVE_ACCELERATION) + #ifdef __AVR__ + /** + * This routine returns 0x1000000 / d, getting the inverse as fast as possible. + * A fast-converging iterative Newton-Raphson method can reach full precision in + * just 1 iteration, and takes 211 cycles (worst case; the mean case is less, up + * to 30 cycles for small divisors), instead of the 500 cycles a normal division + * would take. + * + * Inspired by the following page: + * https://stackoverflow.com/questions/27801397/newton-raphson-division-with-big-integers + * + * Suppose we want to calculate floor(2 ^ k / B) where B is a positive integer + * Then, B must be <= 2^k, otherwise, the quotient is 0. + * + * The Newton - Raphson iteration for x = B / 2 ^ k yields: + * q[n + 1] = q[n] * (2 - q[n] * B / 2 ^ k) + * + * This can be rearranged to: + * q[n + 1] = q[n] * (2 ^ (k + 1) - q[n] * B) >> k + * + * Each iteration requires only integer multiplications and bit shifts. + * It doesn't necessarily converge to floor(2 ^ k / B) but in the worst case + * it eventually alternates between floor(2 ^ k / B) and ceil(2 ^ k / B). + * So it checks for this case and extracts floor(2 ^ k / B). + * + * A simple but important optimization for this approach is to truncate + * multiplications (i.e., calculate only the higher bits of the product) in the + * early iterations of the Newton - Raphson method. This is done so the results + * of the early iterations are far from the quotient. Then it doesn't matter if + * they are done inaccurately. + * It's important to pick a good starting value for x. Knowing how many + * digits the divisor has, it can be estimated: + * + * 2^k / x = 2 ^ log2(2^k / x) + * 2^k / x = 2 ^(log2(2^k)-log2(x)) + * 2^k / x = 2 ^(k*log2(2)-log2(x)) + * 2^k / x = 2 ^ (k-log2(x)) + * 2^k / x >= 2 ^ (k-floor(log2(x))) + * floor(log2(x)) is simply the index of the most significant bit set. + * + * If this estimation can be improved even further the number of iterations can be + * reduced a lot, saving valuable execution time. + * The paper "Software Integer Division" by Thomas L.Rodeheffer, Microsoft + * Research, Silicon Valley,August 26, 2008, available at + * https://www.microsoft.com/en-us/research/wp-content/uploads/2008/08/tr-2008-141.pdf + * suggests, for its integer division algorithm, using a table to supply the first + * 8 bits of precision, then, due to the quadratic convergence nature of the + * Newton-Raphon iteration, just 2 iterations should be enough to get maximum + * precision of the division. + * By precomputing values of inverses for small denominator values, just one + * Newton-Raphson iteration is enough to reach full precision. + * This code uses the top 9 bits of the denominator as index. + * + * The AVR assembly function implements this C code using the data below: + * + * // For small divisors, it is best to directly retrieve the results + * if (d <= 110) return pgm_read_dword(&small_inv_tab[d]); + * + * // Compute initial estimation of 0x1000000/x - + * // Get most significant bit set on divider + * uint8_t idx = 0; + * uint32_t nr = d; + * if (!(nr & 0xFF0000)) { + * nr <<= 8; idx += 8; + * if (!(nr & 0xFF0000)) { nr <<= 8; idx += 8; } + * } + * if (!(nr & 0xF00000)) { nr <<= 4; idx += 4; } + * if (!(nr & 0xC00000)) { nr <<= 2; idx += 2; } + * if (!(nr & 0x800000)) { nr <<= 1; idx += 1; } + * + * // Isolate top 9 bits of the denominator, to be used as index into the initial estimation table + * uint32_t tidx = nr >> 15, // top 9 bits. bit8 is always set + * ie = inv_tab[tidx & 0xFF] + 256, // Get the table value. bit9 is always set + * x = idx <= 8 ? (ie >> (8 - idx)) : (ie << (idx - 8)); // Position the estimation at the proper place + * + * x = uint32_t((x * uint64_t(_BV(25) - x * d)) >> 24); // Refine estimation by newton-raphson. 1 iteration is enough + * const uint32_t r = _BV(24) - x * d; // Estimate remainder + * if (r >= d) x++; // Check whether to adjust result + * return uint32_t(x); // x holds the proper estimation + */ + static uint32_t get_period_inverse(uint32_t d) { + + static const uint8_t inv_tab[256] PROGMEM = { + 255,253,252,250,248,246,244,242,240,238,236,234,233,231,229,227, + 225,224,222,220,218,217,215,213,212,210,208,207,205,203,202,200, + 199,197,195,194,192,191,189,188,186,185,183,182,180,179,178,176, + 175,173,172,170,169,168,166,165,164,162,161,160,158,157,156,154, + 153,152,151,149,148,147,146,144,143,142,141,139,138,137,136,135, + 134,132,131,130,129,128,127,126,125,123,122,121,120,119,118,117, + 116,115,114,113,112,111,110,109,108,107,106,105,104,103,102,101, + 100,99,98,97,96,95,94,93,92,91,90,89,88,88,87,86, + 85,84,83,82,81,80,80,79,78,77,76,75,74,74,73,72, + 71,70,70,69,68,67,66,66,65,64,63,62,62,61,60,59, + 59,58,57,56,56,55,54,53,53,52,51,50,50,49,48,48, + 47,46,46,45,44,43,43,42,41,41,40,39,39,38,37,37, + 36,35,35,34,33,33,32,32,31,30,30,29,28,28,27,27, + 26,25,25,24,24,23,22,22,21,21,20,19,19,18,18,17, + 17,16,15,15,14,14,13,13,12,12,11,10,10,9,9,8, + 8,7,7,6,6,5,5,4,4,3,3,2,2,1,0,0 + }; + + // For small denominators, it is cheaper to directly store the result. + // For bigger ones, just ONE Newton-Raphson iteration is enough to get + // maximum precision we need + static const uint32_t small_inv_tab[111] PROGMEM = { + 16777216,16777216,8388608,5592405,4194304,3355443,2796202,2396745,2097152,1864135,1677721,1525201,1398101,1290555,1198372,1118481, + 1048576,986895,932067,883011,838860,798915,762600,729444,699050,671088,645277,621378,599186,578524,559240,541200, + 524288,508400,493447,479349,466033,453438,441505,430185,419430,409200,399457,390167,381300,372827,364722,356962, + 349525,342392,335544,328965,322638,316551,310689,305040,299593,294337,289262,284359,279620,275036,270600,266305, + 262144,258111,254200,250406,246723,243148,239674,236298,233016,229824,226719,223696,220752,217885,215092,212369, + 209715,207126,204600,202135,199728,197379,195083,192841,190650,188508,186413,184365,182361,180400,178481,176602, + 174762,172960,171196,169466,167772,166111,164482,162885,161319,159783,158275,156796,155344,153919,152520 + }; + + // For small divisors, it is best to directly retrieve the results + if (d <= 110) return pgm_read_dword(&small_inv_tab[d]); + + uint8_t r8 = d & 0xFF, + r9 = (d >> 8) & 0xFF, + r10 = (d >> 16) & 0xFF, + r2,r3,r4,r5,r6,r7,r11,r12,r13,r14,r15,r16,r17,r18; + const uint8_t* ptab = inv_tab; + + __asm__ __volatile__( + // %8:%7:%6 = interval + // r31:r30: MUST be those registers, and they must point to the inv_tab + + A("clr %13") // %13 = 0 + + // Now we must compute + // result = 0xFFFFFF / d + // %8:%7:%6 = interval + // %16:%15:%14 = nr + // %13 = 0 + + // A plain division of 24x24 bits should take 388 cycles to complete. We will + // use Newton-Raphson for the calculation, and will strive to get way less cycles + // for the same result - Using C division, it takes 500cycles to complete . + + A("clr %3") // idx = 0 + A("mov %14,%6") + A("mov %15,%7") + A("mov %16,%8") // nr = interval + A("tst %16") // nr & 0xFF0000 == 0 ? + A("brne 2f") // No, skip this + A("mov %16,%15") + A("mov %15,%14") // nr <<= 8, %14 not needed + A("subi %3,-8") // idx += 8 + A("tst %16") // nr & 0xFF0000 == 0 ? + A("brne 2f") // No, skip this + A("mov %16,%15") // nr <<= 8, %14 not needed + A("clr %15") // We clear %14 + A("subi %3,-8") // idx += 8 + + // here %16 != 0 and %16:%15 contains at least 9 MSBits, or both %16:%15 are 0 + L("2") + A("cpi %16,0x10") // (nr & 0xF00000) == 0 ? + A("brcc 3f") // No, skip this + A("swap %15") // Swap nibbles + A("swap %16") // Swap nibbles. Low nibble is 0 + A("mov %14, %15") + A("andi %14,0x0F") // Isolate low nibble + A("andi %15,0xF0") // Keep proper nibble in %15 + A("or %16, %14") // %16:%15 <<= 4 + A("subi %3,-4") // idx += 4 + + L("3") + A("cpi %16,0x40") // (nr & 0xC00000) == 0 ? + A("brcc 4f") // No, skip this + A("add %15,%15") + A("adc %16,%16") + A("add %15,%15") + A("adc %16,%16") // %16:%15 <<= 2 + A("subi %3,-2") // idx += 2 + + L("4") + A("cpi %16,0x80") // (nr & 0x800000) == 0 ? + A("brcc 5f") // No, skip this + A("add %15,%15") + A("adc %16,%16") // %16:%15 <<= 1 + A("inc %3") // idx += 1 + + // Now %16:%15 contains its MSBit set to 1, or %16:%15 is == 0. We are now absolutely sure + // we have at least 9 MSBits available to enter the initial estimation table + L("5") + A("add %15,%15") + A("adc %16,%16") // %16:%15 = tidx = (nr <<= 1), we lose the top MSBit (always set to 1, %16 is the index into the inverse table) + A("add r30,%16") // Only use top 8 bits + A("adc r31,%13") // r31:r30 = inv_tab + (tidx) + A("lpm %14, Z") // %14 = inv_tab[tidx] + A("ldi %15, 1") // %15 = 1 %15:%14 = inv_tab[tidx] + 256 + + // We must scale the approximation to the proper place + A("clr %16") // %16 will always be 0 here + A("subi %3,8") // idx == 8 ? + A("breq 6f") // yes, no need to scale + A("brcs 7f") // If C=1, means idx < 8, result was negative! + + // idx > 8, now %3 = idx - 8. We must perform a left shift. idx range:[1-8] + A("sbrs %3,0") // shift by 1bit position? + A("rjmp 8f") // No + A("add %14,%14") + A("adc %15,%15") // %15:16 <<= 1 + L("8") + A("sbrs %3,1") // shift by 2bit position? + A("rjmp 9f") // No + A("add %14,%14") + A("adc %15,%15") + A("add %14,%14") + A("adc %15,%15") // %15:16 <<= 1 + L("9") + A("sbrs %3,2") // shift by 4bits position? + A("rjmp 16f") // No + A("swap %15") // Swap nibbles. lo nibble of %15 will always be 0 + A("swap %14") // Swap nibbles + A("mov %12,%14") + A("andi %12,0x0F") // isolate low nibble + A("andi %14,0xF0") // and clear it + A("or %15,%12") // %15:%16 <<= 4 + L("16") + A("sbrs %3,3") // shift by 8bits position? + A("rjmp 6f") // No, we are done + A("mov %16,%15") + A("mov %15,%14") + A("clr %14") + A("jmp 6f") + + // idx < 8, now %3 = idx - 8. Get the count of bits + L("7") + A("neg %3") // %3 = -idx = count of bits to move right. idx range:[1...8] + A("sbrs %3,0") // shift by 1 bit position ? + A("rjmp 10f") // No, skip it + A("asr %15") // (bit7 is always 0 here) + A("ror %14") + L("10") + A("sbrs %3,1") // shift by 2 bit position ? + A("rjmp 11f") // No, skip it + A("asr %15") // (bit7 is always 0 here) + A("ror %14") + A("asr %15") // (bit7 is always 0 here) + A("ror %14") + L("11") + A("sbrs %3,2") // shift by 4 bit position ? + A("rjmp 12f") // No, skip it + A("swap %15") // Swap nibbles + A("andi %14, 0xF0") // Lose the lowest nibble + A("swap %14") // Swap nibbles. Upper nibble is 0 + A("or %14,%15") // Pass nibble from upper byte + A("andi %15, 0x0F") // And get rid of that nibble + L("12") + A("sbrs %3,3") // shift by 8 bit position ? + A("rjmp 6f") // No, skip it + A("mov %14,%15") + A("clr %15") + L("6") // %16:%15:%14 = initial estimation of 0x1000000 / d + + // Now, we must refine the estimation present on %16:%15:%14 using 1 iteration + // of Newton-Raphson. As it has a quadratic convergence, 1 iteration is enough + // to get more than 18bits of precision (the initial table lookup gives 9 bits of + // precision to start from). 18bits of precision is all what is needed here for result + + // %8:%7:%6 = d = interval + // %16:%15:%14 = x = initial estimation of 0x1000000 / d + // %13 = 0 + // %3:%2:%1:%0 = working accumulator + + // Compute 1<<25 - x*d. Result should never exceed 25 bits and should always be positive + A("clr %0") + A("clr %1") + A("clr %2") + A("ldi %3,2") // %3:%2:%1:%0 = 0x2000000 + A("mul %6,%14") // r1:r0 = LO(d) * LO(x) + A("sub %0,r0") + A("sbc %1,r1") + A("sbc %2,%13") + A("sbc %3,%13") // %3:%2:%1:%0 -= LO(d) * LO(x) + A("mul %7,%14") // r1:r0 = MI(d) * LO(x) + A("sub %1,r0") + A("sbc %2,r1" ) + A("sbc %3,%13") // %3:%2:%1:%0 -= MI(d) * LO(x) << 8 + A("mul %8,%14") // r1:r0 = HI(d) * LO(x) + A("sub %2,r0") + A("sbc %3,r1") // %3:%2:%1:%0 -= MIL(d) * LO(x) << 16 + A("mul %6,%15") // r1:r0 = LO(d) * MI(x) + A("sub %1,r0") + A("sbc %2,r1") + A("sbc %3,%13") // %3:%2:%1:%0 -= LO(d) * MI(x) << 8 + A("mul %7,%15") // r1:r0 = MI(d) * MI(x) + A("sub %2,r0") + A("sbc %3,r1") // %3:%2:%1:%0 -= MI(d) * MI(x) << 16 + A("mul %8,%15") // r1:r0 = HI(d) * MI(x) + A("sub %3,r0") // %3:%2:%1:%0 -= MIL(d) * MI(x) << 24 + A("mul %6,%16") // r1:r0 = LO(d) * HI(x) + A("sub %2,r0") + A("sbc %3,r1") // %3:%2:%1:%0 -= LO(d) * HI(x) << 16 + A("mul %7,%16") // r1:r0 = MI(d) * HI(x) + A("sub %3,r0") // %3:%2:%1:%0 -= MI(d) * HI(x) << 24 + // %3:%2:%1:%0 = (1<<25) - x*d [169] + + // We need to multiply that result by x, and we are only interested in the top 24bits of that multiply + + // %16:%15:%14 = x = initial estimation of 0x1000000 / d + // %3:%2:%1:%0 = (1<<25) - x*d = acc + // %13 = 0 + + // result = %11:%10:%9:%5:%4 + A("mul %14,%0") // r1:r0 = LO(x) * LO(acc) + A("mov %4,r1") + A("clr %5") + A("clr %9") + A("clr %10") + A("clr %11") // %11:%10:%9:%5:%4 = LO(x) * LO(acc) >> 8 + A("mul %15,%0") // r1:r0 = MI(x) * LO(acc) + A("add %4,r0") + A("adc %5,r1") + A("adc %9,%13") + A("adc %10,%13") + A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * LO(acc) + A("mul %16,%0") // r1:r0 = HI(x) * LO(acc) + A("add %5,r0") + A("adc %9,r1") + A("adc %10,%13") + A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * LO(acc) << 8 + + A("mul %14,%1") // r1:r0 = LO(x) * MIL(acc) + A("add %4,r0") + A("adc %5,r1") + A("adc %9,%13") + A("adc %10,%13") + A("adc %11,%13") // %11:%10:%9:%5:%4 = LO(x) * MIL(acc) + A("mul %15,%1") // r1:r0 = MI(x) * MIL(acc) + A("add %5,r0") + A("adc %9,r1") + A("adc %10,%13") + A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * MIL(acc) << 8 + A("mul %16,%1") // r1:r0 = HI(x) * MIL(acc) + A("add %9,r0") + A("adc %10,r1") + A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * MIL(acc) << 16 + + A("mul %14,%2") // r1:r0 = LO(x) * MIH(acc) + A("add %5,r0") + A("adc %9,r1") + A("adc %10,%13") + A("adc %11,%13") // %11:%10:%9:%5:%4 = LO(x) * MIH(acc) << 8 + A("mul %15,%2") // r1:r0 = MI(x) * MIH(acc) + A("add %9,r0") + A("adc %10,r1") + A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * MIH(acc) << 16 + A("mul %16,%2") // r1:r0 = HI(x) * MIH(acc) + A("add %10,r0") + A("adc %11,r1") // %11:%10:%9:%5:%4 += MI(x) * MIH(acc) << 24 + + A("mul %14,%3") // r1:r0 = LO(x) * HI(acc) + A("add %9,r0") + A("adc %10,r1") + A("adc %11,%13") // %11:%10:%9:%5:%4 = LO(x) * HI(acc) << 16 + A("mul %15,%3") // r1:r0 = MI(x) * HI(acc) + A("add %10,r0") + A("adc %11,r1") // %11:%10:%9:%5:%4 += MI(x) * HI(acc) << 24 + A("mul %16,%3") // r1:r0 = HI(x) * HI(acc) + A("add %11,r0") // %11:%10:%9:%5:%4 += MI(x) * HI(acc) << 32 + + // At this point, %11:%10:%9 contains the new estimation of x. + + // Finally, we must correct the result. Estimate remainder as + // (1<<24) - x*d + // %11:%10:%9 = x + // %8:%7:%6 = d = interval" "\n\t" + A("ldi %3,1") + A("clr %2") + A("clr %1") + A("clr %0") // %3:%2:%1:%0 = 0x1000000 + A("mul %6,%9") // r1:r0 = LO(d) * LO(x) + A("sub %0,r0") + A("sbc %1,r1") + A("sbc %2,%13") + A("sbc %3,%13") // %3:%2:%1:%0 -= LO(d) * LO(x) + A("mul %7,%9") // r1:r0 = MI(d) * LO(x) + A("sub %1,r0") + A("sbc %2,r1") + A("sbc %3,%13") // %3:%2:%1:%0 -= MI(d) * LO(x) << 8 + A("mul %8,%9") // r1:r0 = HI(d) * LO(x) + A("sub %2,r0") + A("sbc %3,r1") // %3:%2:%1:%0 -= MIL(d) * LO(x) << 16 + A("mul %6,%10") // r1:r0 = LO(d) * MI(x) + A("sub %1,r0") + A("sbc %2,r1") + A("sbc %3,%13") // %3:%2:%1:%0 -= LO(d) * MI(x) << 8 + A("mul %7,%10") // r1:r0 = MI(d) * MI(x) + A("sub %2,r0") + A("sbc %3,r1") // %3:%2:%1:%0 -= MI(d) * MI(x) << 16 + A("mul %8,%10") // r1:r0 = HI(d) * MI(x) + A("sub %3,r0") // %3:%2:%1:%0 -= MIL(d) * MI(x) << 24 + A("mul %6,%11") // r1:r0 = LO(d) * HI(x) + A("sub %2,r0") + A("sbc %3,r1") // %3:%2:%1:%0 -= LO(d) * HI(x) << 16 + A("mul %7,%11") // r1:r0 = MI(d) * HI(x) + A("sub %3,r0") // %3:%2:%1:%0 -= MI(d) * HI(x) << 24 + // %3:%2:%1:%0 = r = (1<<24) - x*d + // %8:%7:%6 = d = interval + + // Perform the final correction + A("sub %0,%6") + A("sbc %1,%7") + A("sbc %2,%8") // r -= d + A("brcs 14f") // if ( r >= d) + + // %11:%10:%9 = x + A("ldi %3,1") + A("add %9,%3") + A("adc %10,%13") + A("adc %11,%13") // x++ + L("14") + + // Estimation is done. %11:%10:%9 = x + A("clr __zero_reg__") // Make C runtime happy + // [211 cycles total] + : "=r" (r2), + "=r" (r3), + "=r" (r4), + "=d" (r5), + "=r" (r6), + "=r" (r7), + "+r" (r8), + "+r" (r9), + "+r" (r10), + "=d" (r11), + "=r" (r12), + "=r" (r13), + "=d" (r14), + "=d" (r15), + "=d" (r16), + "=d" (r17), + "=d" (r18), + "+z" (ptab) + : + : "r0", "r1", "cc" + ); + + // Return the result + return r11 | (uint16_t(r12) << 8) | (uint32_t(r13) << 16); + } + #else + // All other 32-bit MPUs can easily do inverse using hardware division, + // so we don't need to reduce precision or to use assembly language at all. + // This routine, for all other archs, returns 0x100000000 / d ~= 0xFFFFFFFF / d + static FORCE_INLINE uint32_t get_period_inverse(const uint32_t d) { + return d ? 0xFFFFFFFF / d : 0xFFFFFFFF; + } + #endif +#endif + +#define MINIMAL_STEP_RATE 120 + +/** + * Get the current block for processing + * and mark the block as busy. + * Return nullptr if the buffer is empty + * or if there is a first-block delay. + * + * WARNING: Called from Stepper ISR context! + */ +block_t* Planner::get_current_block() { + // Get the number of moves in the planner queue so far + const uint8_t nr_moves = movesplanned(); + + // If there are any moves queued ... + if (nr_moves) { + + // If there is still delay of delivery of blocks running, decrement it + if (delay_before_delivering) { + --delay_before_delivering; + // If the number of movements queued is less than 3, and there is still time + // to wait, do not deliver anything + if (nr_moves < 3 && delay_before_delivering) return nullptr; + delay_before_delivering = 0; + } + + // If we are here, there is no excuse to deliver the block + block_t * const block = &block_buffer[block_buffer_tail]; + + // No trapezoid calculated? Don't execute yet. + if (TEST(block->flag, BLOCK_BIT_RECALCULATE)) return nullptr; + + // We can't be sure how long an active block will take, so don't count it. + TERN_(HAS_WIRED_LCD, block_buffer_runtime_us -= block->segment_time_us); + + // As this block is busy, advance the nonbusy block pointer + block_buffer_nonbusy = next_block_index(block_buffer_tail); + + // Push block_buffer_planned pointer, if encountered. + if (block_buffer_tail == block_buffer_planned) + block_buffer_planned = block_buffer_nonbusy; + + // Return the block + return block; + } + + // The queue became empty + TERN_(HAS_WIRED_LCD, clear_block_buffer_runtime()); // paranoia. Buffer is empty now - so reset accumulated time to zero. + + return nullptr; +} + +/** + * Calculate trapezoid parameters, multiplying the entry- and exit-speeds + * by the provided factors. + ** + * ############ VERY IMPORTANT ############ + * NOTE that the PRECONDITION to call this function is that the block is + * NOT BUSY and it is marked as RECALCULATE. That WARRANTIES the Stepper ISR + * is not and will not use the block while we modify it, so it is safe to + * alter its values. + */ +void Planner::calculate_trapezoid_for_block(block_t* const block, const float &entry_factor, const float &exit_factor) { + + uint32_t initial_rate = CEIL(block->nominal_rate * entry_factor), + final_rate = CEIL(block->nominal_rate * exit_factor); // (steps per second) + + // Limit minimal step rate (Otherwise the timer will overflow.) + NOLESS(initial_rate, uint32_t(MINIMAL_STEP_RATE)); + NOLESS(final_rate, uint32_t(MINIMAL_STEP_RATE)); + + #if ENABLED(S_CURVE_ACCELERATION) + uint32_t cruise_rate = initial_rate; + #endif + + const int32_t accel = block->acceleration_steps_per_s2; + + // Steps required for acceleration, deceleration to/from nominal rate + uint32_t accelerate_steps = CEIL(estimate_acceleration_distance(initial_rate, block->nominal_rate, accel)), + decelerate_steps = FLOOR(estimate_acceleration_distance(block->nominal_rate, final_rate, -accel)); + // Steps between acceleration and deceleration, if any + int32_t plateau_steps = block->step_event_count - accelerate_steps - decelerate_steps; + + // Does accelerate_steps + decelerate_steps exceed step_event_count? + // Then we can't possibly reach the nominal rate, there will be no cruising. + // Use intersection_distance() to calculate accel / braking time in order to + // reach the final_rate exactly at the end of this block. + if (plateau_steps < 0) { + const float accelerate_steps_float = CEIL(intersection_distance(initial_rate, final_rate, accel, block->step_event_count)); + accelerate_steps = _MIN(uint32_t(_MAX(accelerate_steps_float, 0)), block->step_event_count); + plateau_steps = 0; + + #if ENABLED(S_CURVE_ACCELERATION) + // We won't reach the cruising rate. Let's calculate the speed we will reach + cruise_rate = final_speed(initial_rate, accel, accelerate_steps); + #endif + } + #if ENABLED(S_CURVE_ACCELERATION) + else // We have some plateau time, so the cruise rate will be the nominal rate + cruise_rate = block->nominal_rate; + #endif + + #if ENABLED(S_CURVE_ACCELERATION) + // Jerk controlled speed requires to express speed versus time, NOT steps + uint32_t acceleration_time = ((float)(cruise_rate - initial_rate) / accel) * (STEPPER_TIMER_RATE), + deceleration_time = ((float)(cruise_rate - final_rate) / accel) * (STEPPER_TIMER_RATE), + // And to offload calculations from the ISR, we also calculate the inverse of those times here + acceleration_time_inverse = get_period_inverse(acceleration_time), + deceleration_time_inverse = get_period_inverse(deceleration_time); + #endif + + // Store new block parameters + block->accelerate_until = accelerate_steps; + block->decelerate_after = accelerate_steps + plateau_steps; + block->initial_rate = initial_rate; + #if ENABLED(S_CURVE_ACCELERATION) + block->acceleration_time = acceleration_time; + block->deceleration_time = deceleration_time; + block->acceleration_time_inverse = acceleration_time_inverse; + block->deceleration_time_inverse = deceleration_time_inverse; + block->cruise_rate = cruise_rate; + #endif + block->final_rate = final_rate; + + /** + * Laser trapezoid calculations + * + * Approximate the trapezoid with the laser, incrementing the power every `entry_per` while accelerating + * and decrementing it every `exit_power_per` while decelerating, thus ensuring power is related to feedrate. + * + * LASER_POWER_INLINE_TRAPEZOID_CONT doesn't need this as it continuously approximates + * + * Note this may behave unreliably when running with S_CURVE_ACCELERATION + */ + #if ENABLED(LASER_POWER_INLINE_TRAPEZOID) + if (block->laser.power > 0) { // No need to care if power == 0 + const uint8_t entry_power = block->laser.power * entry_factor; // Power on block entry + #if DISABLED(LASER_POWER_INLINE_TRAPEZOID_CONT) + // Speedup power + const uint8_t entry_power_diff = block->laser.power - entry_power; + if (entry_power_diff) { + block->laser.entry_per = accelerate_steps / entry_power_diff; + block->laser.power_entry = entry_power; + } + else { + block->laser.entry_per = 0; + block->laser.power_entry = block->laser.power; + } + // Slowdown power + const uint8_t exit_power = block->laser.power * exit_factor, // Power on block entry + exit_power_diff = block->laser.power - exit_power; + if (exit_power_diff) { + block->laser.exit_per = (block->step_event_count - block->decelerate_after) / exit_power_diff; + block->laser.power_exit = exit_power; + } + else { + block->laser.exit_per = 0; + block->laser.power_exit = block->laser.power; + } + #else + block->laser.power_entry = entry_power; + #endif + } + #endif +} + +/* PLANNER SPEED DEFINITION + +--------+ <- current->nominal_speed + / \ + current->entry_speed -> + \ + | + <- next->entry_speed (aka exit speed) + +-------------+ + time --> + + Recalculates the motion plan according to the following basic guidelines: + + 1. Go over every feasible block sequentially in reverse order and calculate the junction speeds + (i.e. current->entry_speed) such that: + a. No junction speed exceeds the pre-computed maximum junction speed limit or nominal speeds of + neighboring blocks. + b. A block entry speed cannot exceed one reverse-computed from its exit speed (next->entry_speed) + with a maximum allowable deceleration over the block travel distance. + c. The last (or newest appended) block is planned from a complete stop (an exit speed of zero). + 2. Go over every block in chronological (forward) order and dial down junction speed values if + a. The exit speed exceeds the one forward-computed from its entry speed with the maximum allowable + acceleration over the block travel distance. + + When these stages are complete, the planner will have maximized the velocity profiles throughout the all + of the planner blocks, where every block is operating at its maximum allowable acceleration limits. In + other words, for all of the blocks in the planner, the plan is optimal and no further speed improvements + are possible. If a new block is added to the buffer, the plan is recomputed according to the said + guidelines for a new optimal plan. + + To increase computational efficiency of these guidelines, a set of planner block pointers have been + created to indicate stop-compute points for when the planner guidelines cannot logically make any further + changes or improvements to the plan when in normal operation and new blocks are streamed and added to the + planner buffer. For example, if a subset of sequential blocks in the planner have been planned and are + bracketed by junction velocities at their maximums (or by the first planner block as well), no new block + added to the planner buffer will alter the velocity profiles within them. So we no longer have to compute + them. Or, if a set of sequential blocks from the first block in the planner (or a optimal stop-compute + point) are all accelerating, they are all optimal and can not be altered by a new block added to the + planner buffer, as this will only further increase the plan speed to chronological blocks until a maximum + junction velocity is reached. However, if the operational conditions of the plan changes from infrequently + used feed holds or feedrate overrides, the stop-compute pointers will be reset and the entire plan is + recomputed as stated in the general guidelines. + + Planner buffer index mapping: + - block_buffer_tail: Points to the beginning of the planner buffer. First to be executed or being executed. + - block_buffer_head: Points to the buffer block after the last block in the buffer. Used to indicate whether + the buffer is full or empty. As described for standard ring buffers, this block is always empty. + - block_buffer_planned: Points to the first buffer block after the last optimally planned block for normal + streaming operating conditions. Use for planning optimizations by avoiding recomputing parts of the + planner buffer that don't change with the addition of a new block, as describe above. In addition, + this block can never be less than block_buffer_tail and will always be pushed forward and maintain + this requirement when encountered by the Planner::release_current_block() routine during a cycle. + + NOTE: Since the planner only computes on what's in the planner buffer, some motions with lots of short + line segments, like G2/3 arcs or complex curves, may seem to move slow. This is because there simply isn't + enough combined distance traveled in the entire buffer to accelerate up to the nominal speed and then + decelerate to a complete stop at the end of the buffer, as stated by the guidelines. If this happens and + becomes an annoyance, there are a few simple solutions: (1) Maximize the machine acceleration. The planner + will be able to compute higher velocity profiles within the same combined distance. (2) Maximize line + motion(s) distance per block to a desired tolerance. The more combined distance the planner has to use, + the faster it can go. (3) Maximize the planner buffer size. This also will increase the combined distance + for the planner to compute over. It also increases the number of computations the planner has to perform + to compute an optimal plan, so select carefully. +*/ + +// The kernel called by recalculate() when scanning the plan from last to first entry. +void Planner::reverse_pass_kernel(block_t* const current, const block_t * const next) { + if (current) { + // If entry speed is already at the maximum entry speed, and there was no change of speed + // in the next block, there is no need to recheck. Block is cruising and there is no need to + // compute anything for this block, + // If not, block entry speed needs to be recalculated to ensure maximum possible planned speed. + const float max_entry_speed_sqr = current->max_entry_speed_sqr; + + // Compute maximum entry speed decelerating over the current block from its exit speed. + // If not at the maximum entry speed, or the previous block entry speed changed + if (current->entry_speed_sqr != max_entry_speed_sqr || (next && TEST(next->flag, BLOCK_BIT_RECALCULATE))) { + + // If nominal length true, max junction speed is guaranteed to be reached. + // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then + // the current block and next block junction speeds are guaranteed to always be at their maximum + // junction speeds in deceleration and acceleration, respectively. This is due to how the current + // block nominal speed limits both the current and next maximum junction speeds. Hence, in both + // the reverse and forward planners, the corresponding block junction speed will always be at the + // the maximum junction speed and may always be ignored for any speed reduction checks. + + const float new_entry_speed_sqr = TEST(current->flag, BLOCK_BIT_NOMINAL_LENGTH) + ? max_entry_speed_sqr + : _MIN(max_entry_speed_sqr, max_allowable_speed_sqr(-current->acceleration, next ? next->entry_speed_sqr : sq(float(MINIMUM_PLANNER_SPEED)), current->millimeters)); + if (current->entry_speed_sqr != new_entry_speed_sqr) { + + // Need to recalculate the block speed - Mark it now, so the stepper + // ISR does not consume the block before being recalculated + SBI(current->flag, BLOCK_BIT_RECALCULATE); + + // But there is an inherent race condition here, as the block may have + // become BUSY just before being marked RECALCULATE, so check for that! + if (stepper.is_block_busy(current)) { + // Block became busy. Clear the RECALCULATE flag (no point in + // recalculating BUSY blocks). And don't set its speed, as it can't + // be updated at this time. + CBI(current->flag, BLOCK_BIT_RECALCULATE); + } + else { + // Block is not BUSY so this is ahead of the Stepper ISR: + // Just Set the new entry speed. + current->entry_speed_sqr = new_entry_speed_sqr; + } + } + } + } +} + +/** + * recalculate() needs to go over the current plan twice. + * Once in reverse and once forward. This implements the reverse pass. + */ +void Planner::reverse_pass() { + // Initialize block index to the last block in the planner buffer. + uint8_t block_index = prev_block_index(block_buffer_head); + + // Read the index of the last buffer planned block. + // The ISR may change it so get a stable local copy. + uint8_t planned_block_index = block_buffer_planned; + + // If there was a race condition and block_buffer_planned was incremented + // or was pointing at the head (queue empty) break loop now and avoid + // planning already consumed blocks + if (planned_block_index == block_buffer_head) return; + + // Reverse Pass: Coarsely maximize all possible deceleration curves back-planning from the last + // block in buffer. Cease planning when the last optimal planned or tail pointer is reached. + // NOTE: Forward pass will later refine and correct the reverse pass to create an optimal plan. + const block_t *next = nullptr; + while (block_index != planned_block_index) { + + // Perform the reverse pass + block_t *current = &block_buffer[block_index]; + + // Only consider non sync and page blocks + if (!TEST(current->flag, BLOCK_BIT_SYNC_POSITION) && !IS_PAGE(current)) { + reverse_pass_kernel(current, next); + next = current; + } + + // Advance to the next + block_index = prev_block_index(block_index); + + // The ISR could advance the block_buffer_planned while we were doing the reverse pass. + // We must try to avoid using an already consumed block as the last one - So follow + // changes to the pointer and make sure to limit the loop to the currently busy block + while (planned_block_index != block_buffer_planned) { + + // If we reached the busy block or an already processed block, break the loop now + if (block_index == planned_block_index) return; + + // Advance the pointer, following the busy block + planned_block_index = next_block_index(planned_block_index); + } + } +} + +// The kernel called by recalculate() when scanning the plan from first to last entry. +void Planner::forward_pass_kernel(const block_t* const previous, block_t* const current, const uint8_t block_index) { + if (previous) { + // If the previous block is an acceleration block, too short to complete the full speed + // change, adjust the entry speed accordingly. Entry speeds have already been reset, + // maximized, and reverse-planned. If nominal length is set, max junction speed is + // guaranteed to be reached. No need to recheck. + if (!TEST(previous->flag, BLOCK_BIT_NOMINAL_LENGTH) && + previous->entry_speed_sqr < current->entry_speed_sqr) { + + // Compute the maximum allowable speed + const float new_entry_speed_sqr = max_allowable_speed_sqr(-previous->acceleration, previous->entry_speed_sqr, previous->millimeters); + + // If true, current block is full-acceleration and we can move the planned pointer forward. + if (new_entry_speed_sqr < current->entry_speed_sqr) { + + // Mark we need to recompute the trapezoidal shape, and do it now, + // so the stepper ISR does not consume the block before being recalculated + SBI(current->flag, BLOCK_BIT_RECALCULATE); + + // But there is an inherent race condition here, as the block maybe + // became BUSY, just before it was marked as RECALCULATE, so check + // if that is the case! + if (stepper.is_block_busy(current)) { + // Block became busy. Clear the RECALCULATE flag (no point in + // recalculating BUSY blocks and don't set its speed, as it can't + // be updated at this time. + CBI(current->flag, BLOCK_BIT_RECALCULATE); + } + else { + // Block is not BUSY, we won the race against the Stepper ISR: + + // Always <= max_entry_speed_sqr. Backward pass sets this. + current->entry_speed_sqr = new_entry_speed_sqr; // Always <= max_entry_speed_sqr. Backward pass sets this. + + // Set optimal plan pointer. + block_buffer_planned = block_index; + } + } + } + + // Any block set at its maximum entry speed also creates an optimal plan up to this + // point in the buffer. When the plan is bracketed by either the beginning of the + // buffer and a maximum entry speed or two maximum entry speeds, every block in between + // cannot logically be further improved. Hence, we don't have to recompute them anymore. + if (current->entry_speed_sqr == current->max_entry_speed_sqr) + block_buffer_planned = block_index; + } +} + +/** + * recalculate() needs to go over the current plan twice. + * Once in reverse and once forward. This implements the forward pass. + */ +void Planner::forward_pass() { + + // Forward Pass: Forward plan the acceleration curve from the planned pointer onward. + // Also scans for optimal plan breakpoints and appropriately updates the planned pointer. + + // Begin at buffer planned pointer. Note that block_buffer_planned can be modified + // by the stepper ISR, so read it ONCE. It it guaranteed that block_buffer_planned + // will never lead head, so the loop is safe to execute. Also note that the forward + // pass will never modify the values at the tail. + uint8_t block_index = block_buffer_planned; + + block_t *block; + const block_t * previous = nullptr; + while (block_index != block_buffer_head) { + + // Perform the forward pass + block = &block_buffer[block_index]; + + // Skip SYNC and page blocks + if (!TEST(block->flag, BLOCK_BIT_SYNC_POSITION) && !IS_PAGE(block)) { + // If there's no previous block or the previous block is not + // BUSY (thus, modifiable) run the forward_pass_kernel. Otherwise, + // the previous block became BUSY, so assume the current block's + // entry speed can't be altered (since that would also require + // updating the exit speed of the previous block). + if (!previous || !stepper.is_block_busy(previous)) + forward_pass_kernel(previous, block, block_index); + previous = block; + } + // Advance to the previous + block_index = next_block_index(block_index); + } +} + +/** + * Recalculate the trapezoid speed profiles for all blocks in the plan + * according to the entry_factor for each junction. Must be called by + * recalculate() after updating the blocks. + */ +void Planner::recalculate_trapezoids() { + // The tail may be changed by the ISR so get a local copy. + uint8_t block_index = block_buffer_tail, + head_block_index = block_buffer_head; + // Since there could be a sync block in the head of the queue, and the + // next loop must not recalculate the head block (as it needs to be + // specially handled), scan backwards to the first non-SYNC block. + while (head_block_index != block_index) { + + // Go back (head always point to the first free block) + const uint8_t prev_index = prev_block_index(head_block_index); + + // Get the pointer to the block + block_t *prev = &block_buffer[prev_index]; + + // If not dealing with a sync block, we are done. The last block is not a SYNC block + if (!TEST(prev->flag, BLOCK_BIT_SYNC_POSITION)) break; + + // Examine the previous block. This and all following are SYNC blocks + head_block_index = prev_index; + } + + // Go from the tail (currently executed block) to the first block, without including it) + block_t *block = nullptr, *next = nullptr; + float current_entry_speed = 0.0, next_entry_speed = 0.0; + while (block_index != head_block_index) { + + next = &block_buffer[block_index]; + + // Skip sync and page blocks + if (!TEST(next->flag, BLOCK_BIT_SYNC_POSITION) && !IS_PAGE(next)) { + next_entry_speed = SQRT(next->entry_speed_sqr); + + if (block) { + // Recalculate if current block entry or exit junction speed has changed. + if (TEST(block->flag, BLOCK_BIT_RECALCULATE) || TEST(next->flag, BLOCK_BIT_RECALCULATE)) { + + // Mark the current block as RECALCULATE, to protect it from the Stepper ISR running it. + // Note that due to the above condition, there's a chance the current block isn't marked as + // RECALCULATE yet, but the next one is. That's the reason for the following line. + SBI(block->flag, BLOCK_BIT_RECALCULATE); + + // But there is an inherent race condition here, as the block maybe + // became BUSY, just before it was marked as RECALCULATE, so check + // if that is the case! + if (!stepper.is_block_busy(block)) { + // Block is not BUSY, we won the race against the Stepper ISR: + + // NOTE: Entry and exit factors always > 0 by all previous logic operations. + const float current_nominal_speed = SQRT(block->nominal_speed_sqr), + nomr = 1.0f / current_nominal_speed; + calculate_trapezoid_for_block(block, current_entry_speed * nomr, next_entry_speed * nomr); + #if ENABLED(LIN_ADVANCE) + if (block->use_advance_lead) { + const float comp = block->e_D_ratio * extruder_advance_K[active_extruder] * settings.axis_steps_per_mm[E_AXIS]; + block->max_adv_steps = current_nominal_speed * comp; + block->final_adv_steps = next_entry_speed * comp; + } + #endif + } + + // Reset current only to ensure next trapezoid is computed - The + // stepper is free to use the block from now on. + CBI(block->flag, BLOCK_BIT_RECALCULATE); + } + } + + block = next; + current_entry_speed = next_entry_speed; + } + + block_index = next_block_index(block_index); + } + + // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated. + if (next) { + + // Mark the next(last) block as RECALCULATE, to prevent the Stepper ISR running it. + // As the last block is always recalculated here, there is a chance the block isn't + // marked as RECALCULATE yet. That's the reason for the following line. + SBI(next->flag, BLOCK_BIT_RECALCULATE); + + // But there is an inherent race condition here, as the block maybe + // became BUSY, just before it was marked as RECALCULATE, so check + // if that is the case! + if (!stepper.is_block_busy(block)) { + // Block is not BUSY, we won the race against the Stepper ISR: + + const float next_nominal_speed = SQRT(next->nominal_speed_sqr), + nomr = 1.0f / next_nominal_speed; + calculate_trapezoid_for_block(next, next_entry_speed * nomr, float(MINIMUM_PLANNER_SPEED) * nomr); + #if ENABLED(LIN_ADVANCE) + if (next->use_advance_lead) { + const float comp = next->e_D_ratio * extruder_advance_K[active_extruder] * settings.axis_steps_per_mm[E_AXIS]; + next->max_adv_steps = next_nominal_speed * comp; + next->final_adv_steps = (MINIMUM_PLANNER_SPEED) * comp; + } + #endif + } + + // Reset next only to ensure its trapezoid is computed - The stepper is free to use + // the block from now on. + CBI(next->flag, BLOCK_BIT_RECALCULATE); + } +} + +void Planner::recalculate() { + // Initialize block index to the last block in the planner buffer. + const uint8_t block_index = prev_block_index(block_buffer_head); + // If there is just one block, no planning can be done. Avoid it! + if (block_index != block_buffer_planned) { + reverse_pass(); + forward_pass(); + } + recalculate_trapezoids(); +} + +#if ENABLED(AUTOTEMP) + + void Planner::getHighESpeed() { + static float oldt = 0; + + if (!autotemp_enabled) return; + if (thermalManager.degTargetHotend(0) + 2 < autotemp_min) return; // probably temperature set to zero. + + float high = 0.0; + for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) { + block_t* block = &block_buffer[b]; + if (block->steps.x || block->steps.y || block->steps.z) { + const float se = (float)block->steps.e / block->step_event_count * SQRT(block->nominal_speed_sqr); // mm/sec; + NOLESS(high, se); + } + } + + float t = autotemp_min + high * autotemp_factor; + LIMIT(t, autotemp_min, autotemp_max); + if (t < oldt) t = t * (1 - float(AUTOTEMP_OLDWEIGHT)) + oldt * float(AUTOTEMP_OLDWEIGHT); + oldt = t; + thermalManager.setTargetHotend(t, 0); + } + +#endif // AUTOTEMP + +/** + * Maintain fans, paste extruder pressure, + */ +void Planner::check_axes_activity() { + + #if ANY(DISABLE_X, DISABLE_Y, DISABLE_Z, DISABLE_E) + xyze_bool_t axis_active = { false }; + #endif + + #if HAS_FAN + uint8_t tail_fan_speed[FAN_COUNT]; + #endif + + #if ENABLED(BARICUDA) + #if HAS_HEATER_1 + uint8_t tail_valve_pressure; + #endif + #if HAS_HEATER_2 + uint8_t tail_e_to_p_pressure; + #endif + #endif + + if (has_blocks_queued()) { + + #if HAS_FAN || ENABLED(BARICUDA) + block_t *block = &block_buffer[block_buffer_tail]; + #endif + + #if HAS_FAN + FANS_LOOP(i) + tail_fan_speed[i] = thermalManager.scaledFanSpeed(i, block->fan_speed[i]); + #endif + + #if ENABLED(BARICUDA) + TERN_(HAS_HEATER_1, tail_valve_pressure = block->valve_pressure); + TERN_(HAS_HEATER_2, tail_e_to_p_pressure = block->e_to_p_pressure); + #endif + + #if ANY(DISABLE_X, DISABLE_Y, DISABLE_Z, DISABLE_E) + for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) { + block_t *block = &block_buffer[b]; + if (ENABLED(DISABLE_X) && block->steps.x) axis_active.x = true; + if (ENABLED(DISABLE_Y) && block->steps.y) axis_active.y = true; + if (ENABLED(DISABLE_Z) && block->steps.z) axis_active.z = true; + if (ENABLED(DISABLE_E) && block->steps.e) axis_active.e = true; + } + #endif + } + else { + + TERN_(HAS_CUTTER, cutter.refresh()); + + #if HAS_FAN + FANS_LOOP(i) + tail_fan_speed[i] = thermalManager.scaledFanSpeed(i); + #endif + + #if ENABLED(BARICUDA) + TERN_(HAS_HEATER_1, tail_valve_pressure = baricuda_valve_pressure); + TERN_(HAS_HEATER_2, tail_e_to_p_pressure = baricuda_e_to_p_pressure); + #endif + } + + // + // Disable inactive axes + // + if (TERN0(DISABLE_X, !axis_active.x)) DISABLE_AXIS_X(); + if (TERN0(DISABLE_Y, !axis_active.y)) DISABLE_AXIS_Y(); + if (TERN0(DISABLE_Z, !axis_active.z)) DISABLE_AXIS_Z(); + if (TERN0(DISABLE_E, !axis_active.e)) disable_e_steppers(); + + // + // Update Fan speeds + // + #if HAS_FAN + + #if FAN_KICKSTART_TIME > 0 + static millis_t fan_kick_end[FAN_COUNT] = { 0 }; + #define KICKSTART_FAN(f) \ + if (tail_fan_speed[f]) { \ + millis_t ms = millis(); \ + if (fan_kick_end[f] == 0) { \ + fan_kick_end[f] = ms + FAN_KICKSTART_TIME; \ + tail_fan_speed[f] = 255; \ + } else if (PENDING(ms, fan_kick_end[f])) \ + tail_fan_speed[f] = 255; \ + } else fan_kick_end[f] = 0 + #else + #define KICKSTART_FAN(f) NOOP + #endif + + #if FAN_MIN_PWM != 0 || FAN_MAX_PWM != 255 + #define CALC_FAN_SPEED(f) (tail_fan_speed[f] ? map(tail_fan_speed[f], 1, 255, FAN_MIN_PWM, FAN_MAX_PWM) : FAN_OFF_PWM) + #else + #define CALC_FAN_SPEED(f) (tail_fan_speed[f] ?: FAN_OFF_PWM) + #endif + + #if ENABLED(FAN_SOFT_PWM) + #define _FAN_SET(F) thermalManager.soft_pwm_amount_fan[F] = CALC_FAN_SPEED(F); + #elif ENABLED(FAST_PWM_FAN) + #define _FAN_SET(F) set_pwm_duty(FAN##F##_PIN, CALC_FAN_SPEED(F)); + #else + #define _FAN_SET(F) analogWrite(pin_t(FAN##F##_PIN), CALC_FAN_SPEED(F)); + #endif + #define FAN_SET(F) do{ KICKSTART_FAN(F); _FAN_SET(F); }while(0) + + TERN_(HAS_FAN0, FAN_SET(0)); + TERN_(HAS_FAN1, FAN_SET(1)); + TERN_(HAS_FAN2, FAN_SET(2)); + TERN_(HAS_FAN3, FAN_SET(3)); + TERN_(HAS_FAN4, FAN_SET(4)); + TERN_(HAS_FAN5, FAN_SET(5)); + TERN_(HAS_FAN6, FAN_SET(6)); + TERN_(HAS_FAN7, FAN_SET(7)); + #endif // HAS_FAN + + TERN_(AUTOTEMP, getHighESpeed()); + + #if ENABLED(BARICUDA) + TERN_(HAS_HEATER_1, analogWrite(pin_t(HEATER_1_PIN), tail_valve_pressure)); + TERN_(HAS_HEATER_2, analogWrite(pin_t(HEATER_2_PIN), tail_e_to_p_pressure)); + #endif +} + +#if DISABLED(NO_VOLUMETRICS) + + /** + * Get a volumetric multiplier from a filament diameter. + * This is the reciprocal of the circular cross-section area. + * Return 1.0 with volumetric off or a diameter of 0.0. + */ + inline float calculate_volumetric_multiplier(const float &diameter) { + return (parser.volumetric_enabled && diameter) ? 1.0f / CIRCLE_AREA(diameter * 0.5f) : 1; + } + + /** + * Convert the filament sizes into volumetric multipliers. + * The multiplier converts a given E value into a length. + */ + void Planner::calculate_volumetric_multipliers() { + LOOP_L_N(i, COUNT(filament_size)) { + volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]); + refresh_e_factor(i); + } + #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT) + calculate_volumetric_extruder_limits(); // update volumetric_extruder_limits as well. + #endif + } + +#endif // !NO_VOLUMETRICS + +#if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT) + + /** + * Convert volumetric based limits into pre calculated extruder feedrate limits. + */ + void Planner::calculate_volumetric_extruder_limit(const uint8_t e) { + const float &lim = volumetric_extruder_limit[e], &siz = filament_size[e]; + volumetric_extruder_feedrate_limit[e] = (lim && siz) ? lim / CIRCLE_AREA(siz * 0.5f) : 0; + } + void Planner::calculate_volumetric_extruder_limits() { + LOOP_L_N(e, EXTRUDERS) calculate_volumetric_extruder_limit(e); + } + +#endif + +#if ENABLED(FILAMENT_WIDTH_SENSOR) + /** + * Convert the ratio value given by the filament width sensor + * into a volumetric multiplier. Conversion differs when using + * linear extrusion vs volumetric extrusion. + */ + void Planner::apply_filament_width_sensor(const int8_t encoded_ratio) { + // Reconstitute the nominal/measured ratio + const float nom_meas_ratio = 1 + 0.01f * encoded_ratio, + ratio_2 = sq(nom_meas_ratio); + + volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = parser.volumetric_enabled + ? ratio_2 / CIRCLE_AREA(filwidth.nominal_mm * 0.5f) // Volumetric uses a true volumetric multiplier + : ratio_2; // Linear squares the ratio, which scales the volume + + refresh_e_factor(FILAMENT_SENSOR_EXTRUDER_NUM); + } +#endif + +#if HAS_LEVELING + + constexpr xy_pos_t level_fulcrum = { + TERN(Z_SAFE_HOMING, Z_SAFE_HOMING_X_POINT, X_HOME_POS), + TERN(Z_SAFE_HOMING, Z_SAFE_HOMING_Y_POINT, Y_HOME_POS) + }; + + /** + * rx, ry, rz - Cartesian positions in mm + * Leveled XYZ on completion + */ + void Planner::apply_leveling(xyz_pos_t &raw) { + if (!leveling_active) return; + + #if ABL_PLANAR + + xy_pos_t d = raw - level_fulcrum; + apply_rotation_xyz(bed_level_matrix, d.x, d.y, raw.z); + raw = d + level_fulcrum; + + #elif HAS_MESH + + #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) + const float fade_scaling_factor = fade_scaling_factor_for_z(raw.z); + #elif DISABLED(MESH_BED_LEVELING) + constexpr float fade_scaling_factor = 1.0; + #endif + + raw.z += ( + #if ENABLED(MESH_BED_LEVELING) + mbl.get_z(raw + #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) + , fade_scaling_factor + #endif + ) + #elif ENABLED(AUTO_BED_LEVELING_UBL) + fade_scaling_factor ? fade_scaling_factor * ubl.get_z_correction(raw) : 0.0 + #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) + fade_scaling_factor ? fade_scaling_factor * bilinear_z_offset(raw) : 0.0 + #endif + ); + + #endif + } + + void Planner::unapply_leveling(xyz_pos_t &raw) { + + if (leveling_active) { + + #if ABL_PLANAR + + matrix_3x3 inverse = matrix_3x3::transpose(bed_level_matrix); + + xy_pos_t d = raw - level_fulcrum; + apply_rotation_xyz(inverse, d.x, d.y, raw.z); + raw = d + level_fulcrum; + + #elif HAS_MESH + + #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) + const float fade_scaling_factor = fade_scaling_factor_for_z(raw.z); + #elif DISABLED(MESH_BED_LEVELING) + constexpr float fade_scaling_factor = 1.0; + #endif + + raw.z -= ( + #if ENABLED(MESH_BED_LEVELING) + mbl.get_z(raw + #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) + , fade_scaling_factor + #endif + ) + #elif ENABLED(AUTO_BED_LEVELING_UBL) + fade_scaling_factor ? fade_scaling_factor * ubl.get_z_correction(raw) : 0.0 + #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) + fade_scaling_factor ? fade_scaling_factor * bilinear_z_offset(raw) : 0.0 + #endif + ); + + #endif + } + } + +#endif // HAS_LEVELING + +#if ENABLED(FWRETRACT) + /** + * rz, e - Cartesian positions in mm + */ + void Planner::apply_retract(float &rz, float &e) { + rz += fwretract.current_hop; + e -= fwretract.current_retract[active_extruder]; + } + + void Planner::unapply_retract(float &rz, float &e) { + rz -= fwretract.current_hop; + e += fwretract.current_retract[active_extruder]; + } + +#endif + +void Planner::quick_stop() { + + // Remove all the queued blocks. Note that this function is NOT + // called from the Stepper ISR, so we must consider tail as readonly! + // that is why we set head to tail - But there is a race condition that + // must be handled: The tail could change between the read and the assignment + // so this must be enclosed in a critical section + + const bool was_enabled = stepper.suspend(); + + // Drop all queue entries + block_buffer_nonbusy = block_buffer_planned = block_buffer_head = block_buffer_tail; + + // Restart the block delay for the first movement - As the queue was + // forced to empty, there's no risk the ISR will touch this. + delay_before_delivering = BLOCK_DELAY_FOR_1ST_MOVE; + + #if HAS_WIRED_LCD + // Clear the accumulated runtime + clear_block_buffer_runtime(); + #endif + + // Make sure to drop any attempt of queuing moves for 1 second + cleaning_buffer_counter = TEMP_TIMER_FREQUENCY; + + // Reenable Stepper ISR + if (was_enabled) stepper.wake_up(); + + // And stop the stepper ISR + stepper.quick_stop(); +} + +void Planner::endstop_triggered(const AxisEnum axis) { + // Record stepper position and discard the current block + stepper.endstop_triggered(axis); +} + +float Planner::triggered_position_mm(const AxisEnum axis) { + return stepper.triggered_position(axis) * steps_to_mm[axis]; +} + +void Planner::finish_and_disable() { + while (has_blocks_queued() || cleaning_buffer_counter) idle(); + disable_all_steppers(); +} + +/** + * Get an axis position according to stepper position(s) + * For CORE machines apply translation from ABC to XYZ. + */ +float Planner::get_axis_position_mm(const AxisEnum axis) { + float axis_steps; + #if IS_CORE + + // Requesting one of the "core" axes? + if (axis == CORE_AXIS_1 || axis == CORE_AXIS_2) { + + // Protect the access to the position. + const bool was_enabled = stepper.suspend(); + + const int32_t p1 = stepper.position(CORE_AXIS_1), + p2 = stepper.position(CORE_AXIS_2); + + if (was_enabled) stepper.wake_up(); + + // ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1 + // ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2 + axis_steps = (axis == CORE_AXIS_2 ? CORESIGN(p1 - p2) : p1 + p2) * 0.5f; + } + else + axis_steps = stepper.position(axis); + + #elif ENABLED(MARKFORGED_XY) + + // Requesting one of the joined axes? + if (axis == CORE_AXIS_1 || axis == CORE_AXIS_2) { + // Protect the access to the position. + const bool was_enabled = stepper.suspend(); + + const int32_t p1 = stepper.position(CORE_AXIS_1), + p2 = stepper.position(CORE_AXIS_2); + + if (was_enabled) stepper.wake_up(); + + axis_steps = ((axis == CORE_AXIS_1) ? p1 - p2 : p2); + } + else + axis_steps = stepper.position(axis); + + #else + + axis_steps = stepper.position(axis); + + #endif + + return axis_steps * steps_to_mm[axis]; +} + +/** + * Block until all buffered steps are executed / cleaned + */ +void Planner::synchronize() { + while (has_blocks_queued() || cleaning_buffer_counter + || TERN0(EXTERNAL_CLOSED_LOOP_CONTROLLER, CLOSED_LOOP_WAITING()) + ) idle(); +} + +/** + * Planner::_buffer_steps + * + * Add a new linear movement to the planner queue (in terms of steps). + * + * target - target position in steps units + * target_float - target position in direct (mm, degrees) units. optional + * fr_mm_s - (target) speed of the move + * extruder - target extruder + * millimeters - the length of the movement, if known + * + * Returns true if movement was properly queued, false otherwise (if cleaning) + */ +bool Planner::_buffer_steps(const xyze_long_t &target + #if HAS_POSITION_FLOAT + , const xyze_pos_t &target_float + #endif + #if HAS_DIST_MM_ARG + , const xyze_float_t &cart_dist_mm + #endif + , feedRate_t fr_mm_s, const uint8_t extruder, const float &millimeters +) { + + // If we are cleaning, do not accept queuing of movements + if (cleaning_buffer_counter) return false; + + // Wait for the next available block + uint8_t next_buffer_head; + block_t * const block = get_next_free_block(next_buffer_head); + + // Fill the block with the specified movement + if (!_populate_block(block, false, target + #if HAS_POSITION_FLOAT + , target_float + #endif + #if HAS_DIST_MM_ARG + , cart_dist_mm + #endif + , fr_mm_s, extruder, millimeters + )) { + // Movement was not queued, probably because it was too short. + // Simply accept that as movement queued and done + return true; + } + + // If this is the first added movement, reload the delay, otherwise, cancel it. + if (block_buffer_head == block_buffer_tail) { + // If it was the first queued block, restart the 1st block delivery delay, to + // give the planner an opportunity to queue more movements and plan them + // As there are no queued movements, the Stepper ISR will not touch this + // variable, so there is no risk setting this here (but it MUST be done + // before the following line!!) + delay_before_delivering = BLOCK_DELAY_FOR_1ST_MOVE; + } + + // Move buffer head + block_buffer_head = next_buffer_head; + + // Recalculate and optimize trapezoidal speed profiles + recalculate(); + + // Movement successfully queued! + return true; +} + +/** + * Planner::_populate_block + * + * Fills a new linear movement in the block (in terms of steps). + * + * target - target position in steps units + * fr_mm_s - (target) speed of the move + * extruder - target extruder + * + * Returns true if movement is acceptable, false otherwise + */ +bool Planner::_populate_block(block_t * const block, bool split_move, + const abce_long_t &target + #if HAS_POSITION_FLOAT + , const xyze_pos_t &target_float + #endif + #if HAS_DIST_MM_ARG + , const xyze_float_t &cart_dist_mm + #endif + , feedRate_t fr_mm_s, const uint8_t extruder, const float &millimeters/*=0.0*/ +) { + + const int32_t da = target.a - position.a, + db = target.b - position.b, + dc = target.c - position.c; + + #if EXTRUDERS + int32_t de = target.e - position.e; + #else + constexpr int32_t de = 0; + #endif + + /* <-- add a slash to enable + SERIAL_ECHOLNPAIR( + " _populate_block FR:", fr_mm_s, + " A:", target.a, " (", da, " steps)" + " B:", target.b, " (", db, " steps)" + " C:", target.c, " (", dc, " steps)" + #if EXTRUDERS + " E:", target.e, " (", de, " steps)" + #endif + ); + //*/ + + #if EITHER(PREVENT_COLD_EXTRUSION, PREVENT_LENGTHY_EXTRUDE) + if (de) { + #if ENABLED(PREVENT_COLD_EXTRUSION) + if (thermalManager.tooColdToExtrude(extruder)) { + position.e = target.e; // Behave as if the move really took place, but ignore E part + TERN_(HAS_POSITION_FLOAT, position_float.e = target_float.e); + de = 0; // no difference + SERIAL_ECHO_MSG(STR_ERR_COLD_EXTRUDE_STOP); + } + #endif // PREVENT_COLD_EXTRUSION + #if ENABLED(PREVENT_LENGTHY_EXTRUDE) + const float e_steps = ABS(de * e_factor[extruder]); + const float max_e_steps = settings.axis_steps_per_mm[E_AXIS_N(extruder)] * (EXTRUDE_MAXLENGTH); + if (e_steps > max_e_steps) { + #if ENABLED(MIXING_EXTRUDER) + bool ignore_e = false; + float collector[MIXING_STEPPERS]; + mixer.refresh_collector(1.0, mixer.get_current_vtool(), collector); + MIXER_STEPPER_LOOP(e) + if (e_steps * collector[e] > max_e_steps) { ignore_e = true; break; } + #else + constexpr bool ignore_e = true; + #endif + if (ignore_e) { + position.e = target.e; // Behave as if the move really took place, but ignore E part + TERN_(HAS_POSITION_FLOAT, position_float.e = target_float.e); + de = 0; // no difference + SERIAL_ECHO_MSG(STR_ERR_LONG_EXTRUDE_STOP); + } + } + #endif // PREVENT_LENGTHY_EXTRUDE + } + #endif // PREVENT_COLD_EXTRUSION || PREVENT_LENGTHY_EXTRUDE + + // Compute direction bit-mask for this block + uint8_t dm = 0; + #if CORE_IS_XY + if (da < 0) SBI(dm, X_HEAD); // Save the real Extruder (head) direction in X Axis + if (db < 0) SBI(dm, Y_HEAD); // ...and Y + if (dc < 0) SBI(dm, Z_AXIS); + if (da + db < 0) SBI(dm, A_AXIS); // Motor A direction + if (CORESIGN(da - db) < 0) SBI(dm, B_AXIS); // Motor B direction + #elif CORE_IS_XZ + if (da < 0) SBI(dm, X_HEAD); // Save the real Extruder (head) direction in X Axis + if (db < 0) SBI(dm, Y_AXIS); + if (dc < 0) SBI(dm, Z_HEAD); // ...and Z + if (da + dc < 0) SBI(dm, A_AXIS); // Motor A direction + if (CORESIGN(da - dc) < 0) SBI(dm, C_AXIS); // Motor C direction + #elif CORE_IS_YZ + if (da < 0) SBI(dm, X_AXIS); + if (db < 0) SBI(dm, Y_HEAD); // Save the real Extruder (head) direction in Y Axis + if (dc < 0) SBI(dm, Z_HEAD); // ...and Z + if (db + dc < 0) SBI(dm, B_AXIS); // Motor B direction + if (CORESIGN(db - dc) < 0) SBI(dm, C_AXIS); // Motor C direction + #elif ENABLED(MARKFORGED_XY) + if (da < 0) SBI(dm, X_HEAD); // Save the real Extruder (head) direction in X Axis + if (db < 0) SBI(dm, Y_HEAD); // ...and Y + if (dc < 0) SBI(dm, Z_AXIS); + if (da + db < 0) SBI(dm, A_AXIS); // Motor A direction + if (db < 0) SBI(dm, B_AXIS); // Motor B direction + #else + if (da < 0) SBI(dm, X_AXIS); + if (db < 0) SBI(dm, Y_AXIS); + if (dc < 0) SBI(dm, Z_AXIS); + #endif + if (de < 0) SBI(dm, E_AXIS); + + #if EXTRUDERS + const float esteps_float = de * e_factor[extruder]; + const uint32_t esteps = ABS(esteps_float) + 0.5f; + #else + constexpr uint32_t esteps = 0; + #endif + + // Clear all flags, including the "busy" bit + block->flag = 0x00; + + // Set direction bits + block->direction_bits = dm; + + // Update block laser power + #if ENABLED(LASER_POWER_INLINE) + laser_inline.status.isPlanned = true; + block->laser.status = laser_inline.status; + block->laser.power = laser_inline.power; + #endif + + // Number of steps for each axis + // See https://www.corexy.com/theory.html + #if CORE_IS_XY + block->steps.set(ABS(da + db), ABS(da - db), ABS(dc)); + #elif CORE_IS_XZ + block->steps.set(ABS(da + dc), ABS(db), ABS(da - dc)); + #elif CORE_IS_YZ + block->steps.set(ABS(da), ABS(db + dc), ABS(db - dc)); + #elif ENABLED(MARKFORGED_XY) + block->steps.set(ABS(da + db), ABS(db), ABS(dc)); + #elif IS_SCARA + block->steps.set(ABS(da), ABS(db), ABS(dc)); + #else + // default non-h-bot planning + block->steps.set(ABS(da), ABS(db), ABS(dc)); + #endif + + /** + * This part of the code calculates the total length of the movement. + * For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS. + * But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS + * and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y. + * So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head. + * Having the real displacement of the head, we can calculate the total movement length and apply the desired speed. + */ + struct DistanceMM : abce_float_t { + #if EITHER(IS_CORE, MARKFORGED_XY) + xyz_pos_t head; + #endif + } steps_dist_mm; + #if IS_CORE + #if CORE_IS_XY + steps_dist_mm.head.x = da * steps_to_mm[A_AXIS]; + steps_dist_mm.head.y = db * steps_to_mm[B_AXIS]; + steps_dist_mm.z = dc * steps_to_mm[Z_AXIS]; + steps_dist_mm.a = (da + db) * steps_to_mm[A_AXIS]; + steps_dist_mm.b = CORESIGN(da - db) * steps_to_mm[B_AXIS]; + #elif CORE_IS_XZ + steps_dist_mm.head.x = da * steps_to_mm[A_AXIS]; + steps_dist_mm.y = db * steps_to_mm[Y_AXIS]; + steps_dist_mm.head.z = dc * steps_to_mm[C_AXIS]; + steps_dist_mm.a = (da + dc) * steps_to_mm[A_AXIS]; + steps_dist_mm.c = CORESIGN(da - dc) * steps_to_mm[C_AXIS]; + #elif CORE_IS_YZ + steps_dist_mm.x = da * steps_to_mm[X_AXIS]; + steps_dist_mm.head.y = db * steps_to_mm[B_AXIS]; + steps_dist_mm.head.z = dc * steps_to_mm[C_AXIS]; + steps_dist_mm.b = (db + dc) * steps_to_mm[B_AXIS]; + steps_dist_mm.c = CORESIGN(db - dc) * steps_to_mm[C_AXIS]; + #endif + #elif ENABLED(MARKFORGED_XY) + steps_dist_mm.head.x = da * steps_to_mm[A_AXIS]; + steps_dist_mm.head.y = db * steps_to_mm[B_AXIS]; + steps_dist_mm.z = dc * steps_to_mm[Z_AXIS]; + steps_dist_mm.a = (da - db) * steps_to_mm[A_AXIS]; + steps_dist_mm.b = db * steps_to_mm[B_AXIS]; + #else + steps_dist_mm.a = da * steps_to_mm[A_AXIS]; + steps_dist_mm.b = db * steps_to_mm[B_AXIS]; + steps_dist_mm.c = dc * steps_to_mm[C_AXIS]; + #endif + + #if EXTRUDERS + steps_dist_mm.e = esteps_float * steps_to_mm[E_AXIS_N(extruder)]; + #else + steps_dist_mm.e = 0.0f; + #endif + + TERN_(LCD_SHOW_E_TOTAL, e_move_accumulator += steps_dist_mm.e); + + if (block->steps.a < MIN_STEPS_PER_SEGMENT && block->steps.b < MIN_STEPS_PER_SEGMENT && block->steps.c < MIN_STEPS_PER_SEGMENT) { + block->millimeters = (0 + #if EXTRUDERS + + ABS(steps_dist_mm.e) + #endif + ); + } + else { + if (millimeters) + block->millimeters = millimeters; + else + block->millimeters = SQRT( + #if EITHER(CORE_IS_XY, MARKFORGED_XY) + sq(steps_dist_mm.head.x) + sq(steps_dist_mm.head.y) + sq(steps_dist_mm.z) + #elif CORE_IS_XZ + sq(steps_dist_mm.head.x) + sq(steps_dist_mm.y) + sq(steps_dist_mm.head.z) + #elif CORE_IS_YZ + sq(steps_dist_mm.x) + sq(steps_dist_mm.head.y) + sq(steps_dist_mm.head.z) + #else + sq(steps_dist_mm.x) + sq(steps_dist_mm.y) + sq(steps_dist_mm.z) + #endif + ); + + /** + * At this point at least one of the axes has more steps than + * MIN_STEPS_PER_SEGMENT, ensuring the segment won't get dropped as + * zero-length. It's important to not apply corrections + * to blocks that would get dropped! + * + * A correction function is permitted to add steps to an axis, it + * should *never* remove steps! + */ + TERN_(BACKLASH_COMPENSATION, backlash.add_correction_steps(da, db, dc, dm, block)); + } + + #if EXTRUDERS + block->steps.e = esteps; + #endif + + block->step_event_count = _MAX(block->steps.a, block->steps.b, block->steps.c, esteps); + + // Bail if this is a zero-length block + if (block->step_event_count < MIN_STEPS_PER_SEGMENT) return false; + + #if ENABLED(MIXING_EXTRUDER) + MIXER_POPULATE_BLOCK(); + #endif + + TERN_(HAS_CUTTER, block->cutter_power = cutter.power); + + #if HAS_FAN + FANS_LOOP(i) block->fan_speed[i] = thermalManager.fan_speed[i]; + #endif + + #if ENABLED(BARICUDA) + block->valve_pressure = baricuda_valve_pressure; + block->e_to_p_pressure = baricuda_e_to_p_pressure; + #endif + + #if HAS_MULTI_EXTRUDER + block->extruder = extruder; + #endif + + #if ENABLED(AUTO_POWER_CONTROL) + if (block->steps.x || block->steps.y || block->steps.z) + powerManager.power_on(); + #endif + + // Enable active axes + #if EITHER(CORE_IS_XY, MARKFORGED_XY) + if (block->steps.a || block->steps.b) { + ENABLE_AXIS_X(); + ENABLE_AXIS_Y(); + } + #if DISABLED(Z_LATE_ENABLE) + if (block->steps.z) ENABLE_AXIS_Z(); + #endif + #elif CORE_IS_XZ + if (block->steps.a || block->steps.c) { + ENABLE_AXIS_X(); + ENABLE_AXIS_Z(); + } + if (block->steps.y) ENABLE_AXIS_Y(); + #elif CORE_IS_YZ + if (block->steps.b || block->steps.c) { + ENABLE_AXIS_Y(); + ENABLE_AXIS_Z(); + } + if (block->steps.x) ENABLE_AXIS_X(); + #else + if (block->steps.x) ENABLE_AXIS_X(); + if (block->steps.y) ENABLE_AXIS_Y(); + #if DISABLED(Z_LATE_ENABLE) + if (block->steps.z) ENABLE_AXIS_Z(); + #endif + #endif + + // Enable extruder(s) + #if EXTRUDERS + if (esteps) { + TERN_(AUTO_POWER_CONTROL, powerManager.power_on()); + + #if ENABLED(DISABLE_INACTIVE_EXTRUDER) // Enable only the selected extruder + + LOOP_L_N(i, EXTRUDERS) + if (g_uc_extruder_last_move[i]) g_uc_extruder_last_move[i]--; + + #define ENABLE_ONE_E(N) do{ \ + if (extruder == N) { \ + ENABLE_AXIS_E##N(); \ + g_uc_extruder_last_move[N] = (BLOCK_BUFFER_SIZE) * 2; \ + if ((N) == 0 && TERN0(HAS_DUPLICATION_MODE, extruder_duplication_enabled)) \ + ENABLE_AXIS_E1(); \ + } \ + else if (!g_uc_extruder_last_move[N]) { \ + DISABLE_AXIS_E##N(); \ + if ((N) == 0 && TERN0(HAS_DUPLICATION_MODE, extruder_duplication_enabled)) \ + DISABLE_AXIS_E1(); \ + } \ + }while(0); + + #else + + #define ENABLE_ONE_E(N) ENABLE_AXIS_E##N(); + + #endif + + REPEAT(EXTRUDERS, ENABLE_ONE_E); // (ENABLE_ONE_E must end with semicolon) + } + #endif // EXTRUDERS + + if (esteps) + NOLESS(fr_mm_s, settings.min_feedrate_mm_s); + else + NOLESS(fr_mm_s, settings.min_travel_feedrate_mm_s); + + const float inverse_millimeters = 1.0f / block->millimeters; // Inverse millimeters to remove multiple divides + + // Calculate inverse time for this move. No divide by zero due to previous checks. + // Example: At 120mm/s a 60mm move takes 0.5s. So this will give 2.0. + float inverse_secs = fr_mm_s * inverse_millimeters; + + // Get the number of non busy movements in queue (non busy means that they can be altered) + const uint8_t moves_queued = nonbusy_movesplanned(); + + // Slow down when the buffer starts to empty, rather than wait at the corner for a buffer refill + #if EITHER(SLOWDOWN, HAS_WIRED_LCD) || defined(XY_FREQUENCY_LIMIT) + // Segment time im micro seconds + int32_t segment_time_us = LROUND(1000000.0f / inverse_secs); + #endif + + #if ENABLED(SLOWDOWN) + #ifndef SLOWDOWN_DIVISOR + #define SLOWDOWN_DIVISOR 2 + #endif + if (WITHIN(moves_queued, 2, (BLOCK_BUFFER_SIZE) / (SLOWDOWN_DIVISOR) - 1)) { + const int32_t time_diff = settings.min_segment_time_us - segment_time_us; + if (time_diff > 0) { + // Buffer is draining so add extra time. The amount of time added increases if the buffer is still emptied more. + const int32_t nst = segment_time_us + LROUND(2 * time_diff / moves_queued); + inverse_secs = 1000000.0f / nst; + #if defined(XY_FREQUENCY_LIMIT) || HAS_WIRED_LCD + segment_time_us = nst; + #endif + } + } + #endif + + #if HAS_WIRED_LCD + // Protect the access to the position. + const bool was_enabled = stepper.suspend(); + + block_buffer_runtime_us += segment_time_us; + block->segment_time_us = segment_time_us; + + if (was_enabled) stepper.wake_up(); + #endif + + block->nominal_speed_sqr = sq(block->millimeters * inverse_secs); // (mm/sec)^2 Always > 0 + block->nominal_rate = CEIL(block->step_event_count * inverse_secs); // (step/sec) Always > 0 + + #if ENABLED(FILAMENT_WIDTH_SENSOR) + if (extruder == FILAMENT_SENSOR_EXTRUDER_NUM) // Only for extruder with filament sensor + filwidth.advance_e(steps_dist_mm.e); + #endif + + // Calculate and limit speed in mm/sec + + xyze_float_t current_speed; + float speed_factor = 1.0f; // factor <1 decreases speed + + // Linear axes first with less logic + LOOP_XYZ(i) { + current_speed[i] = steps_dist_mm[i] * inverse_secs; + const feedRate_t cs = ABS(current_speed[i]), + max_fr = settings.max_feedrate_mm_s[i]; + if (cs > max_fr) NOMORE(speed_factor, max_fr / cs); + } + + // Limit speed on extruders, if any + #if EXTRUDERS + { + current_speed.e = steps_dist_mm.e * inverse_secs; + #if HAS_MIXER_SYNC_CHANNEL + // Move all mixing extruders at the specified rate + if (mixer.get_current_vtool() == MIXER_AUTORETRACT_TOOL) + current_speed.e *= MIXING_STEPPERS; + #endif + + const feedRate_t cs = ABS(current_speed.e), + max_fr = settings.max_feedrate_mm_s[E_AXIS_N(extruder)] + * TERN(HAS_MIXER_SYNC_CHANNEL, MIXING_STEPPERS, 1); + + if (cs > max_fr) NOMORE(speed_factor, max_fr / cs); //respect max feedrate on any movement (doesn't matter if E axes only or not) + + #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT) + const feedRate_t max_vfr = volumetric_extruder_feedrate_limit[extruder] + * TERN(HAS_MIXER_SYNC_CHANNEL, MIXING_STEPPERS, 1); + + // TODO: Doesn't work properly for joined segments. Set MIN_STEPS_PER_SEGMENT 1 as workaround. + + if (block->steps.a || block->steps.b || block->steps.c) { + + if (max_vfr > 0 && cs > max_vfr) { + NOMORE(speed_factor, max_vfr / cs); // respect volumetric extruder limit (if any) + /* <-- add a slash to enable + SERIAL_ECHOPAIR("volumetric extruder limit enforced: ", (cs * CIRCLE_AREA(filament_size[extruder] * 0.5f))); + SERIAL_ECHOPAIR(" mm^3/s (", cs); + SERIAL_ECHOPAIR(" mm/s) limited to ", (max_vfr * CIRCLE_AREA(filament_size[extruder] * 0.5f))); + SERIAL_ECHOPAIR(" mm^3/s (", max_vfr); + SERIAL_ECHOLNPGM(" mm/s)"); + //*/ + } + } + #endif + } + #endif + + #ifdef XY_FREQUENCY_LIMIT + + static uint8_t old_direction_bits; // = 0 + + if (xy_freq_limit_hz) { + // Check and limit the xy direction change frequency + const uint8_t direction_change = block->direction_bits ^ old_direction_bits; + old_direction_bits = block->direction_bits; + segment_time_us = LROUND(float(segment_time_us) / speed_factor); + + static int32_t xs0, xs1, xs2, ys0, ys1, ys2; + if (segment_time_us > xy_freq_min_interval_us) + xs2 = xs1 = ys2 = ys1 = xy_freq_min_interval_us; + else { + xs2 = xs1; xs1 = xs0; + ys2 = ys1; ys1 = ys0; + } + xs0 = TEST(direction_change, X_AXIS) ? segment_time_us : xy_freq_min_interval_us; + ys0 = TEST(direction_change, Y_AXIS) ? segment_time_us : xy_freq_min_interval_us; + + if (segment_time_us < xy_freq_min_interval_us) { + const int32_t least_xy_segment_time = _MIN(_MAX(xs0, xs1, xs2), _MAX(ys0, ys1, ys2)); + if (least_xy_segment_time < xy_freq_min_interval_us) { + float freq_xy_feedrate = (speed_factor * least_xy_segment_time) / xy_freq_min_interval_us; + NOLESS(freq_xy_feedrate, xy_freq_min_speed_factor); + NOMORE(speed_factor, freq_xy_feedrate); + } + } + } + + #endif // XY_FREQUENCY_LIMIT + + // Correct the speed + if (speed_factor < 1.0f) { + current_speed *= speed_factor; + block->nominal_rate *= speed_factor; + block->nominal_speed_sqr = block->nominal_speed_sqr * sq(speed_factor); + } + + // Compute and limit the acceleration rate for the trapezoid generator. + const float steps_per_mm = block->step_event_count * inverse_millimeters; + uint32_t accel; + if (!block->steps.a && !block->steps.b && !block->steps.c) { + // convert to: acceleration steps/sec^2 + accel = CEIL(settings.retract_acceleration * steps_per_mm); + TERN_(LIN_ADVANCE, block->use_advance_lead = false); + } + else { + #define LIMIT_ACCEL_LONG(AXIS,INDX) do{ \ + if (block->steps[AXIS] && max_acceleration_steps_per_s2[AXIS+INDX] < accel) { \ + const uint32_t comp = max_acceleration_steps_per_s2[AXIS+INDX] * block->step_event_count; \ + if (accel * block->steps[AXIS] > comp) accel = comp / block->steps[AXIS]; \ + } \ + }while(0) + + #define LIMIT_ACCEL_FLOAT(AXIS,INDX) do{ \ + if (block->steps[AXIS] && max_acceleration_steps_per_s2[AXIS+INDX] < accel) { \ + const float comp = (float)max_acceleration_steps_per_s2[AXIS+INDX] * (float)block->step_event_count; \ + if ((float)accel * (float)block->steps[AXIS] > comp) accel = comp / (float)block->steps[AXIS]; \ + } \ + }while(0) + + // Start with print or travel acceleration + accel = CEIL((esteps ? settings.acceleration : settings.travel_acceleration) * steps_per_mm); + + #if ENABLED(LIN_ADVANCE) + + #define MAX_E_JERK(N) TERN(HAS_LINEAR_E_JERK, max_e_jerk[E_INDEX_N(N)], max_jerk.e) + + /** + * Use LIN_ADVANCE for blocks if all these are true: + * + * esteps : This is a print move, because we checked for A, B, C steps before. + * + * extruder_advance_K[active_extruder] : There is an advance factor set for this extruder. + * + * de > 0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves) + */ + block->use_advance_lead = esteps + && extruder_advance_K[active_extruder] + && de > 0; + + if (block->use_advance_lead) { + block->e_D_ratio = (target_float.e - position_float.e) / + #if IS_KINEMATIC + block->millimeters + #else + SQRT(sq(target_float.x - position_float.x) + + sq(target_float.y - position_float.y) + + sq(target_float.z - position_float.z)) + #endif + ; + + // Check for unusual high e_D ratio to detect if a retract move was combined with the last print move due to min. steps per segment. Never execute this with advance! + // This assumes no one will use a retract length of 0mm < retr_length < ~0.2mm and no one will print 100mm wide lines using 3mm filament or 35mm wide lines using 1.75mm filament. + if (block->e_D_ratio > 3.0f) + block->use_advance_lead = false; + else { + const uint32_t max_accel_steps_per_s2 = MAX_E_JERK(extruder) / (extruder_advance_K[active_extruder] * block->e_D_ratio) * steps_per_mm; + if (TERN0(LA_DEBUG, accel > max_accel_steps_per_s2)) + SERIAL_ECHOLNPGM("Acceleration limited."); + NOMORE(accel, max_accel_steps_per_s2); + } + } + #endif + + // Limit acceleration per axis + if (block->step_event_count <= cutoff_long) { + LIMIT_ACCEL_LONG(A_AXIS, 0); + LIMIT_ACCEL_LONG(B_AXIS, 0); + LIMIT_ACCEL_LONG(C_AXIS, 0); + LIMIT_ACCEL_LONG(E_AXIS, E_INDEX_N(extruder)); + } + else { + LIMIT_ACCEL_FLOAT(A_AXIS, 0); + LIMIT_ACCEL_FLOAT(B_AXIS, 0); + LIMIT_ACCEL_FLOAT(C_AXIS, 0); + LIMIT_ACCEL_FLOAT(E_AXIS, E_INDEX_N(extruder)); + } + } + block->acceleration_steps_per_s2 = accel; + block->acceleration = accel / steps_per_mm; + #if DISABLED(S_CURVE_ACCELERATION) + block->acceleration_rate = (uint32_t)(accel * (4096.0f * 4096.0f / (STEPPER_TIMER_RATE))); + #endif + #if ENABLED(LIN_ADVANCE) + if (block->use_advance_lead) { + block->advance_speed = (STEPPER_TIMER_RATE) / (extruder_advance_K[active_extruder] * block->e_D_ratio * block->acceleration * settings.axis_steps_per_mm[E_AXIS_N(extruder)]); + #if ENABLED(LA_DEBUG) + if (extruder_advance_K[active_extruder] * block->e_D_ratio * block->acceleration * 2 < SQRT(block->nominal_speed_sqr) * block->e_D_ratio) + SERIAL_ECHOLNPGM("More than 2 steps per eISR loop executed."); + if (block->advance_speed < 200) + SERIAL_ECHOLNPGM("eISR running at > 10kHz."); + #endif + } + #endif + + float vmax_junction_sqr; // Initial limit on the segment entry velocity (mm/s)^2 + + #if HAS_JUNCTION_DEVIATION + /** + * Compute maximum allowable entry speed at junction by centripetal acceleration approximation. + * Let a circle be tangent to both previous and current path line segments, where the junction + * deviation is defined as the distance from the junction to the closest edge of the circle, + * colinear with the circle center. The circular segment joining the two paths represents the + * path of centripetal acceleration. Solve for max velocity based on max acceleration about the + * radius of the circle, defined indirectly by junction deviation. This may be also viewed as + * path width or max_jerk in the previous Grbl version. This approach does not actually deviate + * from path, but used as a robust way to compute cornering speeds, as it takes into account the + * nonlinearities of both the junction angle and junction velocity. + * + * NOTE: If the junction deviation value is finite, Grbl executes the motions in an exact path + * mode (G61). If the junction deviation value is zero, Grbl will execute the motion in an exact + * stop mode (G61.1) manner. In the future, if continuous mode (G64) is desired, the math here + * is exactly the same. Instead of motioning all the way to junction point, the machine will + * just follow the arc circle defined here. The Arduino doesn't have the CPU cycles to perform + * a continuous mode path, but ARM-based microcontrollers most certainly do. + * + * NOTE: The max junction speed is a fixed value, since machine acceleration limits cannot be + * changed dynamically during operation nor can the line move geometry. This must be kept in + * memory in the event of a feedrate override changing the nominal speeds of blocks, which can + * change the overall maximum entry speed conditions of all blocks. + * + * ####### + * https://github.com/MarlinFirmware/Marlin/issues/10341#issuecomment-388191754 + * + * hoffbaked: on May 10 2018 tuned and improved the GRBL algorithm for Marlin: + Okay! It seems to be working good. I somewhat arbitrarily cut it off at 1mm + on then on anything with less sides than an octagon. With this, and the + reverse pass actually recalculating things, a corner acceleration value + of 1000 junction deviation of .05 are pretty reasonable. If the cycles + can be spared, a better acos could be used. For all I know, it may be + already calculated in a different place. */ + + // Unit vector of previous path line segment + static xyze_float_t prev_unit_vec; + + xyze_float_t unit_vec = + #if HAS_DIST_MM_ARG + cart_dist_mm + #else + { steps_dist_mm.x, steps_dist_mm.y, steps_dist_mm.z, steps_dist_mm.e } + #endif + ; + + /** + * On CoreXY the length of the vector [A,B] is SQRT(2) times the length of the head movement vector [X,Y]. + * So taking Z and E into account, we cannot scale to a unit vector with "inverse_millimeters". + * => normalize the complete junction vector. + * Elsewise, when needed JD will factor-in the E component + */ + if (EITHER(IS_CORE, MARKFORGED_XY) || esteps > 0) + normalize_junction_vector(unit_vec); // Normalize with XYZE components + else + unit_vec *= inverse_millimeters; // Use pre-calculated (1 / SQRT(x^2 + y^2 + z^2)) + + // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles. + if (moves_queued && !UNEAR_ZERO(previous_nominal_speed_sqr)) { + // Compute cosine of angle between previous and current path. (prev_unit_vec is negative) + // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity. + float junction_cos_theta = (-prev_unit_vec.x * unit_vec.x) + (-prev_unit_vec.y * unit_vec.y) + + (-prev_unit_vec.z * unit_vec.z) + (-prev_unit_vec.e * unit_vec.e); + + // NOTE: Computed without any expensive trig, sin() or acos(), by trig half angle identity of cos(theta). + if (junction_cos_theta > 0.999999f) { + // For a 0 degree acute junction, just set minimum junction speed. + vmax_junction_sqr = sq(float(MINIMUM_PLANNER_SPEED)); + } + else { + NOLESS(junction_cos_theta, -0.999999f); // Check for numerical round-off to avoid divide by zero. + + // Convert delta vector to unit vector + xyze_float_t junction_unit_vec = unit_vec - prev_unit_vec; + normalize_junction_vector(junction_unit_vec); + + const float junction_acceleration = limit_value_by_axis_maximum(block->acceleration, junction_unit_vec), + sin_theta_d2 = SQRT(0.5f * (1.0f - junction_cos_theta)); // Trig half angle identity. Always positive. + + vmax_junction_sqr = junction_acceleration * junction_deviation_mm * sin_theta_d2 / (1.0f - sin_theta_d2); + + #if ENABLED(JD_HANDLE_SMALL_SEGMENTS) + + // For small moves with >135° junction (octagon) find speed for approximate arc + if (block->millimeters < 1 && junction_cos_theta < -0.7071067812f) { + + #if ENABLED(JD_USE_MATH_ACOS) + + #error "TODO: Inline maths with the MCU / FPU." + + #elif ENABLED(JD_USE_LOOKUP_TABLE) + + // Fast acos approximation (max. error +-0.01 rads) + // Based on LUT table and linear interpolation + + /** + * // Generate the JD Lookup Table + * constexpr float c = 1.00751495f; // Correction factor to center error around 0 + * for (int i = 0; i < jd_lut_count - 1; ++i) { + * const float x0 = (sq(i) - 1) / sq(i), + * y0 = acos(x0) * (i == 0 ? 1 : c), + * x1 = i < jd_lut_count - 1 ? 0.5 * x0 + 0.5 : 0.999999f, + * y1 = acos(x1) * (i < jd_lut_count - 1 ? c : 1); + * jd_lut_k[i] = (y0 - y1) / (x0 - x1); + * jd_lut_b[i] = (y1 * x0 - y0 * x1) / (x0 - x1); + * } + * + * // Compute correction factor (Set c to 1.0f first!) + * float min = INFINITY, max = -min; + * for (float t = 0; t <= 1; t += 0.0003f) { + * const float e = acos(t) / approx(t); + * if (isfinite(e)) { + * if (e < min) min = e; + * if (e > max) max = e; + * } + * } + * fprintf(stderr, "%.9gf, ", (min + max) / 2); + */ + static constexpr int16_t jd_lut_count = 16; + static constexpr uint16_t jd_lut_tll = _BV(jd_lut_count - 1); + static constexpr int16_t jd_lut_tll0 = __builtin_clz(jd_lut_tll) + 1; // i.e., 16 - jd_lut_count + 1 + static constexpr float jd_lut_k[jd_lut_count] PROGMEM = { + -1.03145837f, -1.30760646f, -1.75205851f, -2.41705704f, + -3.37769222f, -4.74888992f, -6.69649887f, -9.45661736f, + -13.3640480f, -18.8928222f, -26.7136841f, -37.7754593f, + -53.4201813f, -75.5458374f, -106.836761f, -218.532821f }; + static constexpr float jd_lut_b[jd_lut_count] PROGMEM = { + 1.57079637f, 1.70887053f, 2.04220939f, 2.62408352f, + 3.52467871f, 4.85302639f, 6.77020454f, 9.50875854f, + 13.4009285f, 18.9188995f, 26.7321243f, 37.7885055f, + 53.4293975f, 75.5523529f, 106.841369f, 218.534011f }; + + const float neg = junction_cos_theta < 0 ? -1 : 1, + t = neg * junction_cos_theta; + + const int16_t idx = (t < 0.00000003f) ? 0 : __builtin_clz(uint16_t((1.0f - t) * jd_lut_tll)) - jd_lut_tll0; + + float junction_theta = t * pgm_read_float(&jd_lut_k[idx]) + pgm_read_float(&jd_lut_b[idx]); + if (neg > 0) junction_theta = RADIANS(180) - junction_theta; // acos(-t) + + #else + + // Fast acos(-t) approximation (max. error +-0.033rad = 1.89°) + // Based on MinMax polynomial published by W. Randolph Franklin, see + // https://wrf.ecse.rpi.edu/Research/Short_Notes/arcsin/onlyelem.html + // acos( t) = pi / 2 - asin(x) + // acos(-t) = pi - acos(t) ... pi / 2 + asin(x) + + const float neg = junction_cos_theta < 0 ? -1 : 1, + t = neg * junction_cos_theta, + asinx = 0.032843707f + + t * (-1.451838349f + + t * ( 29.66153956f + + t * (-131.1123477f + + t * ( 262.8130562f + + t * (-242.7199627f + + t * ( 84.31466202f ) ))))), + junction_theta = RADIANS(90) + neg * asinx; // acos(-t) + + // NOTE: junction_theta bottoms out at 0.033 which avoids divide by 0. + + #endif + + const float limit_sqr = (block->millimeters * junction_acceleration) / junction_theta; + NOMORE(vmax_junction_sqr, limit_sqr); + } + + #endif // JD_HANDLE_SMALL_SEGMENTS + } + + // Get the lowest speed + vmax_junction_sqr = _MIN(vmax_junction_sqr, block->nominal_speed_sqr, previous_nominal_speed_sqr); + } + else // Init entry speed to zero. Assume it starts from rest. Planner will correct this later. + vmax_junction_sqr = 0; + + prev_unit_vec = unit_vec; + + #endif + + #ifdef USE_CACHED_SQRT + #define CACHED_SQRT(N, V) \ + static float saved_V, N; \ + if (V != saved_V) { N = SQRT(V); saved_V = V; } + #else + #define CACHED_SQRT(N, V) const float N = SQRT(V) + #endif + + #if HAS_CLASSIC_JERK + + /** + * Adapted from Průša MKS firmware + * https://github.com/prusa3d/Prusa-Firmware + */ + CACHED_SQRT(nominal_speed, block->nominal_speed_sqr); + + // Exit speed limited by a jerk to full halt of a previous last segment + static float previous_safe_speed; + + // Start with a safe speed (from which the machine may halt to stop immediately). + float safe_speed = nominal_speed; + + #ifndef TRAVEL_EXTRA_XYJERK + #define TRAVEL_EXTRA_XYJERK 0 + #endif + const float extra_xyjerk = (de <= 0) ? TRAVEL_EXTRA_XYJERK : 0; + + uint8_t limited = 0; + TERN(HAS_LINEAR_E_JERK, LOOP_XYZ, LOOP_XYZE)(i) { + const float jerk = ABS(current_speed[i]), // cs : Starting from zero, change in speed for this axis + maxj = (max_jerk[i] + (i == X_AXIS || i == Y_AXIS ? extra_xyjerk : 0.0f)); // mj : The max jerk setting for this axis + if (jerk > maxj) { // cs > mj : New current speed too fast? + if (limited) { // limited already? + const float mjerk = nominal_speed * maxj; // ns*mj + if (jerk * safe_speed > mjerk) safe_speed = mjerk / jerk; // ns*mj/cs + } + else { + safe_speed *= maxj / jerk; // Initial limit: ns*mj/cs + ++limited; // Initially limited + } + } + } + + float vmax_junction; + if (moves_queued && !UNEAR_ZERO(previous_nominal_speed_sqr)) { + // Estimate a maximum velocity allowed at a joint of two successive segments. + // If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities, + // then the machine is not coasting anymore and the safe entry / exit velocities shall be used. + + // Factor to multiply the previous / current nominal velocities to get componentwise limited velocities. + float v_factor = 1; + limited = 0; + + // The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum. + // Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting. + CACHED_SQRT(previous_nominal_speed, previous_nominal_speed_sqr); + + float smaller_speed_factor = 1.0f; + if (nominal_speed < previous_nominal_speed) { + vmax_junction = nominal_speed; + smaller_speed_factor = vmax_junction / previous_nominal_speed; + } + else + vmax_junction = previous_nominal_speed; + + // Now limit the jerk in all axes. + TERN(HAS_LINEAR_E_JERK, LOOP_XYZ, LOOP_XYZE)(axis) { + // Limit an axis. We have to differentiate: coasting, reversal of an axis, full stop. + float v_exit = previous_speed[axis] * smaller_speed_factor, + v_entry = current_speed[axis]; + if (limited) { + v_exit *= v_factor; + v_entry *= v_factor; + } + + // Calculate jerk depending on whether the axis is coasting in the same direction or reversing. + const float jerk = (v_exit > v_entry) + ? // coasting axis reversal + ( (v_entry > 0 || v_exit < 0) ? (v_exit - v_entry) : _MAX(v_exit, -v_entry) ) + : // v_exit <= v_entry coasting axis reversal + ( (v_entry < 0 || v_exit > 0) ? (v_entry - v_exit) : _MAX(-v_exit, v_entry) ); + + const float maxj = (max_jerk[axis] + (axis == X_AXIS || axis == Y_AXIS ? extra_xyjerk : 0.0f)); + + if (jerk > maxj) { + v_factor *= maxj / jerk; + ++limited; + } + } + if (limited) vmax_junction *= v_factor; + // Now the transition velocity is known, which maximizes the shared exit / entry velocity while + // respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints. + const float vmax_junction_threshold = vmax_junction * 0.99f; + if (previous_safe_speed > vmax_junction_threshold && safe_speed > vmax_junction_threshold) + vmax_junction = safe_speed; + } + else + vmax_junction = safe_speed; + + previous_safe_speed = safe_speed; + + #if HAS_JUNCTION_DEVIATION + NOMORE(vmax_junction_sqr, sq(vmax_junction)); // Throttle down to max speed + #else + vmax_junction_sqr = sq(vmax_junction); // Go up or down to the new speed + #endif + + #endif // Classic Jerk Limiting + + // Max entry speed of this block equals the max exit speed of the previous block. + block->max_entry_speed_sqr = vmax_junction_sqr; + + // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED. + const float v_allowable_sqr = max_allowable_speed_sqr(-block->acceleration, sq(float(MINIMUM_PLANNER_SPEED)), block->millimeters); + + // If we are trying to add a split block, start with the + // max. allowed speed to avoid an interrupted first move. + block->entry_speed_sqr = !split_move ? sq(float(MINIMUM_PLANNER_SPEED)) : _MIN(vmax_junction_sqr, v_allowable_sqr); + + // Initialize planner efficiency flags + // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds. + // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then + // the current block and next block junction speeds are guaranteed to always be at their maximum + // junction speeds in deceleration and acceleration, respectively. This is due to how the current + // block nominal speed limits both the current and next maximum junction speeds. Hence, in both + // the reverse and forward planners, the corresponding block junction speed will always be at the + // the maximum junction speed and may always be ignored for any speed reduction checks. + block->flag |= block->nominal_speed_sqr <= v_allowable_sqr ? BLOCK_FLAG_RECALCULATE | BLOCK_FLAG_NOMINAL_LENGTH : BLOCK_FLAG_RECALCULATE; + + // Update previous path unit_vector and nominal speed + previous_speed = current_speed; + previous_nominal_speed_sqr = block->nominal_speed_sqr; + + position = target; // Update the position + + TERN_(HAS_POSITION_FLOAT, position_float = target_float); + TERN_(GRADIENT_MIX, mixer.gradient_control(target_float.z)); + TERN_(POWER_LOSS_RECOVERY, block->sdpos = recovery.command_sdpos()); + + return true; // Movement was accepted + +} // _populate_block() + +/** + * Planner::buffer_sync_block + * Add a block to the buffer that just updates the position + */ +void Planner::buffer_sync_block() { + // Wait for the next available block + uint8_t next_buffer_head; + block_t * const block = get_next_free_block(next_buffer_head); + + // Clear block + memset(block, 0, sizeof(block_t)); + + block->flag = BLOCK_FLAG_SYNC_POSITION; + + block->position = position; + + // If this is the first added movement, reload the delay, otherwise, cancel it. + if (block_buffer_head == block_buffer_tail) { + // If it was the first queued block, restart the 1st block delivery delay, to + // give the planner an opportunity to queue more movements and plan them + // As there are no queued movements, the Stepper ISR will not touch this + // variable, so there is no risk setting this here (but it MUST be done + // before the following line!!) + delay_before_delivering = BLOCK_DELAY_FOR_1ST_MOVE; + } + + block_buffer_head = next_buffer_head; + + stepper.wake_up(); +} // buffer_sync_block() + +/** + * Planner::buffer_segment + * + * Add a new linear movement to the buffer in axis units. + * + * Leveling and kinematics should be applied ahead of calling this. + * + * a,b,c,e - target positions in mm and/or degrees + * fr_mm_s - (target) speed of the move + * extruder - target extruder + * millimeters - the length of the movement, if known + * + * Return 'false' if no segment was queued due to cleaning, cold extrusion, full queue, etc. + */ +bool Planner::buffer_segment(const float &a, const float &b, const float &c, const float &e + #if HAS_DIST_MM_ARG + , const xyze_float_t &cart_dist_mm + #endif + , const feedRate_t &fr_mm_s, const uint8_t extruder, const float &millimeters/*=0.0*/ +) { + + // If we are cleaning, do not accept queuing of movements + if (cleaning_buffer_counter) return false; + + // When changing extruders recalculate steps corresponding to the E position + #if ENABLED(DISTINCT_E_FACTORS) + if (last_extruder != extruder && settings.axis_steps_per_mm[E_AXIS_N(extruder)] != settings.axis_steps_per_mm[E_AXIS_N(last_extruder)]) { + position.e = LROUND(position.e * settings.axis_steps_per_mm[E_AXIS_N(extruder)] * steps_to_mm[E_AXIS_N(last_extruder)]); + last_extruder = extruder; + } + #endif + + // The target position of the tool in absolute steps + // Calculate target position in absolute steps + const abce_long_t target = { + int32_t(LROUND(a * settings.axis_steps_per_mm[A_AXIS])), + int32_t(LROUND(b * settings.axis_steps_per_mm[B_AXIS])), + int32_t(LROUND(c * settings.axis_steps_per_mm[C_AXIS])), + int32_t(LROUND(e * settings.axis_steps_per_mm[E_AXIS_N(extruder)])) + }; + + #if HAS_POSITION_FLOAT + const xyze_pos_t target_float = { a, b, c, e }; + #endif + + // DRYRUN prevents E moves from taking place + if (DEBUGGING(DRYRUN) || TERN0(CANCEL_OBJECTS, cancelable.skipping)) { + position.e = target.e; + TERN_(HAS_POSITION_FLOAT, position_float.e = e); + } + + /* <-- add a slash to enable + SERIAL_ECHOPAIR(" buffer_segment FR:", fr_mm_s); + #if IS_KINEMATIC + SERIAL_ECHOPAIR(" A:", a); + SERIAL_ECHOPAIR(" (", position.a); + SERIAL_ECHOPAIR("->", target.a); + SERIAL_ECHOPAIR(") B:", b); + #else + SERIAL_ECHOPAIR_P(SP_X_LBL, a); + SERIAL_ECHOPAIR(" (", position.x); + SERIAL_ECHOPAIR("->", target.x); + SERIAL_CHAR(')'); + SERIAL_ECHOPAIR_P(SP_Y_LBL, b); + #endif + SERIAL_ECHOPAIR(" (", position.y); + SERIAL_ECHOPAIR("->", target.y); + #if ENABLED(DELTA) + SERIAL_ECHOPAIR(") C:", c); + #else + SERIAL_CHAR(')'); + SERIAL_ECHOPAIR_P(SP_Z_LBL, c); + #endif + SERIAL_ECHOPAIR(" (", position.z); + SERIAL_ECHOPAIR("->", target.z); + SERIAL_CHAR(')'); + SERIAL_ECHOPAIR_P(SP_E_LBL, e); + SERIAL_ECHOPAIR(" (", position.e); + SERIAL_ECHOPAIR("->", target.e); + SERIAL_ECHOLNPGM(")"); + //*/ + + // Queue the movement. Return 'false' if the move was not queued. + if (!_buffer_steps(target + #if HAS_POSITION_FLOAT + , target_float + #endif + #if HAS_DIST_MM_ARG + , cart_dist_mm + #endif + , fr_mm_s, extruder, millimeters) + ) return false; + + stepper.wake_up(); + return true; +} // buffer_segment() + +/** + * Add a new linear movement to the buffer. + * The target is cartesian. It's translated to + * delta/scara if needed. + * + * rx,ry,rz,e - target position in mm or degrees + * fr_mm_s - (target) speed of the move (mm/s) + * extruder - target extruder + * millimeters - the length of the movement, if known + * inv_duration - the reciprocal if the duration of the movement, if known (kinematic only if feeedrate scaling is enabled) + */ +bool Planner::buffer_line(const float &rx, const float &ry, const float &rz, const float &e, const feedRate_t &fr_mm_s, const uint8_t extruder, const float millimeters + #if ENABLED(SCARA_FEEDRATE_SCALING) + , const float &inv_duration + #endif +) { + xyze_pos_t machine = { rx, ry, rz, e }; + TERN_(HAS_POSITION_MODIFIERS, apply_modifiers(machine)); + + #if IS_KINEMATIC + + #if HAS_JUNCTION_DEVIATION + const xyze_pos_t cart_dist_mm = { + rx - position_cart.x, ry - position_cart.y, + rz - position_cart.z, e - position_cart.e + }; + #else + const xyz_pos_t cart_dist_mm = { rx - position_cart.x, ry - position_cart.y, rz - position_cart.z }; + #endif + + float mm = millimeters; + if (mm == 0.0) + mm = (cart_dist_mm.x != 0.0 || cart_dist_mm.y != 0.0) ? cart_dist_mm.magnitude() : ABS(cart_dist_mm.z); + + // Cartesian XYZ to kinematic ABC, stored in global 'delta' + inverse_kinematics(machine); + + #if ENABLED(SCARA_FEEDRATE_SCALING) + // For SCARA scale the feed rate from mm/s to degrees/s + // i.e., Complete the angular vector in the given time. + const float duration_recip = inv_duration ?: fr_mm_s / mm; + const xyz_pos_t diff = delta - position_float; + const feedRate_t feedrate = diff.magnitude() * duration_recip; + #else + const feedRate_t feedrate = fr_mm_s; + #endif + if (buffer_segment(delta.a, delta.b, delta.c, machine.e + #if HAS_JUNCTION_DEVIATION + , cart_dist_mm + #endif + , feedrate, extruder, mm + )) { + position_cart.set(rx, ry, rz, e); + return true; + } + else + return false; + #else + return buffer_segment(machine, fr_mm_s, extruder, millimeters); + #endif +} // buffer_line() + +#if ENABLED(DIRECT_STEPPING) + + void Planner::buffer_page(const page_idx_t page_idx, const uint8_t extruder, const uint16_t num_steps) { + if (!last_page_step_rate) { + kill(GET_TEXT(MSG_BAD_PAGE_SPEED)); + return; + } + + uint8_t next_buffer_head; + block_t * const block = get_next_free_block(next_buffer_head); + + block->flag = BLOCK_FLAG_IS_PAGE; + + #if FAN_COUNT > 0 + FANS_LOOP(i) block->fan_speed[i] = thermalManager.fan_speed[i]; + #endif + + #if HAS_MULTI_EXTRUDER + block->extruder = extruder; + #endif + + block->page_idx = page_idx; + + block->step_event_count = num_steps; + block->initial_rate = + block->final_rate = + block->nominal_rate = last_page_step_rate; // steps/s + + block->accelerate_until = 0; + block->decelerate_after = block->step_event_count; + + // Will be set to last direction later if directional format. + block->direction_bits = 0; + + #define PAGE_UPDATE_DIR(AXIS) \ + if (!last_page_dir[_AXIS(AXIS)]) SBI(block->direction_bits, _AXIS(AXIS)); + + if (!DirectStepping::Config::DIRECTIONAL) { + PAGE_UPDATE_DIR(X); + PAGE_UPDATE_DIR(Y); + PAGE_UPDATE_DIR(Z); + PAGE_UPDATE_DIR(E); + } + + // If this is the first added movement, reload the delay, otherwise, cancel it. + if (block_buffer_head == block_buffer_tail) { + // If it was the first queued block, restart the 1st block delivery delay, to + // give the planner an opportunity to queue more movements and plan them + // As there are no queued movements, the Stepper ISR will not touch this + // variable, so there is no risk setting this here (but it MUST be done + // before the following line!!) + delay_before_delivering = BLOCK_DELAY_FOR_1ST_MOVE; + } + + // Move buffer head + block_buffer_head = next_buffer_head; + + enable_all_steppers(); + stepper.wake_up(); + } + +#endif // DIRECT_STEPPING + +/** + * Directly set the planner ABC position (and stepper positions) + * converting mm (or angles for SCARA) into steps. + * + * The provided ABC position is in machine units. + */ + +void Planner::set_machine_position_mm(const float &a, const float &b, const float &c, const float &e) { + TERN_(DISTINCT_E_FACTORS, last_extruder = active_extruder); + TERN_(HAS_POSITION_FLOAT, position_float.set(a, b, c, e)); + position.set(LROUND(a * settings.axis_steps_per_mm[A_AXIS]), + LROUND(b * settings.axis_steps_per_mm[B_AXIS]), + LROUND(c * settings.axis_steps_per_mm[C_AXIS]), + LROUND(e * settings.axis_steps_per_mm[E_AXIS_N(active_extruder)])); + if (has_blocks_queued()) { + //previous_nominal_speed_sqr = 0.0; // Reset planner junction speeds. Assume start from rest. + //previous_speed.reset(); + buffer_sync_block(); + } + else + stepper.set_position(position); +} + +void Planner::set_position_mm(const float &rx, const float &ry, const float &rz, const float &e) { + xyze_pos_t machine = { rx, ry, rz, e }; + #if HAS_POSITION_MODIFIERS + apply_modifiers(machine, true); + #endif + #if IS_KINEMATIC + position_cart.set(rx, ry, rz, e); + inverse_kinematics(machine); + set_machine_position_mm(delta.a, delta.b, delta.c, machine.e); + #else + set_machine_position_mm(machine); + #endif +} + +/** + * Setters for planner position (also setting stepper position). + */ +void Planner::set_e_position_mm(const float &e) { + const uint8_t axis_index = E_AXIS_N(active_extruder); + TERN_(DISTINCT_E_FACTORS, last_extruder = active_extruder); + + const float e_new = e - TERN0(FWRETRACT, fwretract.current_retract[active_extruder]); + position.e = LROUND(settings.axis_steps_per_mm[axis_index] * e_new); + TERN_(HAS_POSITION_FLOAT, position_float.e = e_new); + TERN_(IS_KINEMATIC, position_cart.e = e); + + if (has_blocks_queued()) + buffer_sync_block(); + else + stepper.set_axis_position(E_AXIS, position.e); +} + +// Recalculate the steps/s^2 acceleration rates, based on the mm/s^2 +void Planner::reset_acceleration_rates() { + #if ENABLED(DISTINCT_E_FACTORS) + #define AXIS_CONDITION (i < E_AXIS || i == E_AXIS_N(active_extruder)) + #else + #define AXIS_CONDITION true + #endif + uint32_t highest_rate = 1; + LOOP_XYZE_N(i) { + max_acceleration_steps_per_s2[i] = settings.max_acceleration_mm_per_s2[i] * settings.axis_steps_per_mm[i]; + if (AXIS_CONDITION) NOLESS(highest_rate, max_acceleration_steps_per_s2[i]); + } + cutoff_long = 4294967295UL / highest_rate; // 0xFFFFFFFFUL + TERN_(HAS_LINEAR_E_JERK, recalculate_max_e_jerk()); +} + +// Recalculate position, steps_to_mm if settings.axis_steps_per_mm changes! +void Planner::refresh_positioning() { + LOOP_XYZE_N(i) steps_to_mm[i] = 1.0f / settings.axis_steps_per_mm[i]; + set_position_mm(current_position); + reset_acceleration_rates(); +} + +inline void limit_and_warn(float &val, const uint8_t axis, PGM_P const setting_name, const xyze_float_t &max_limit) { + const uint8_t lim_axis = axis > E_AXIS ? E_AXIS : axis; + const float before = val; + LIMIT(val, 0.1, max_limit[lim_axis]); + if (before != val) { + SERIAL_CHAR(axis_codes[lim_axis]); + SERIAL_ECHOPGM(" Max "); + serialprintPGM(setting_name); + SERIAL_ECHOLNPAIR(" limited to ", val); + } +} + +void Planner::set_max_acceleration(const uint8_t axis, float targetValue) { + #if ENABLED(LIMITED_MAX_ACCEL_EDITING) + #ifdef MAX_ACCEL_EDIT_VALUES + constexpr xyze_float_t max_accel_edit = MAX_ACCEL_EDIT_VALUES; + const xyze_float_t &max_acc_edit_scaled = max_accel_edit; + #else + constexpr xyze_float_t max_accel_edit = DEFAULT_MAX_ACCELERATION; + const xyze_float_t max_acc_edit_scaled = max_accel_edit * 2; + #endif + limit_and_warn(targetValue, axis, PSTR("Acceleration"), max_acc_edit_scaled); + #endif + settings.max_acceleration_mm_per_s2[axis] = targetValue; + + // Update steps per s2 to agree with the units per s2 (since they are used in the planner) + reset_acceleration_rates(); +} + +void Planner::set_max_feedrate(const uint8_t axis, float targetValue) { + #if ENABLED(LIMITED_MAX_FR_EDITING) + #ifdef MAX_FEEDRATE_EDIT_VALUES + constexpr xyze_float_t max_fr_edit = MAX_FEEDRATE_EDIT_VALUES; + const xyze_float_t &max_fr_edit_scaled = max_fr_edit; + #else + constexpr xyze_float_t max_fr_edit = DEFAULT_MAX_FEEDRATE; + const xyze_float_t max_fr_edit_scaled = max_fr_edit * 2; + #endif + limit_and_warn(targetValue, axis, PSTR("Feedrate"), max_fr_edit_scaled); + #endif + settings.max_feedrate_mm_s[axis] = targetValue; +} + +void Planner::set_max_jerk(const AxisEnum axis, float targetValue) { + #if HAS_CLASSIC_JERK + #if ENABLED(LIMITED_JERK_EDITING) + constexpr xyze_float_t max_jerk_edit = + #ifdef MAX_JERK_EDIT_VALUES + MAX_JERK_EDIT_VALUES + #else + { (DEFAULT_XJERK) * 2, (DEFAULT_YJERK) * 2, + (DEFAULT_ZJERK) * 2, (DEFAULT_EJERK) * 2 } + #endif + ; + limit_and_warn(targetValue, axis, PSTR("Jerk"), max_jerk_edit); + #endif + max_jerk[axis] = targetValue; + #else + UNUSED(axis); UNUSED(targetValue); + #endif +} + +#if HAS_WIRED_LCD + + uint16_t Planner::block_buffer_runtime() { + #ifdef __AVR__ + // Protect the access to the variable. Only required for AVR, as + // any 32bit CPU offers atomic access to 32bit variables + const bool was_enabled = stepper.suspend(); + #endif + + uint32_t bbru = block_buffer_runtime_us; + + #ifdef __AVR__ + // Reenable Stepper ISR + if (was_enabled) stepper.wake_up(); + #endif + + // To translate µs to ms a division by 1000 would be required. + // We introduce 2.4% error here by dividing by 1024. + // Doesn't matter because block_buffer_runtime_us is already too small an estimation. + bbru >>= 10; + // limit to about a minute. + NOMORE(bbru, 0x0000FFFFUL); + return bbru; + } + + void Planner::clear_block_buffer_runtime() { + #ifdef __AVR__ + // Protect the access to the variable. Only required for AVR, as + // any 32bit CPU offers atomic access to 32bit variables + const bool was_enabled = stepper.suspend(); + #endif + + block_buffer_runtime_us = 0; + + #ifdef __AVR__ + // Reenable Stepper ISR + if (was_enabled) stepper.wake_up(); + #endif + } + +#endif + +#if ENABLED(AUTOTEMP) + +void Planner::autotemp_update() { + #if ENABLED(AUTOTEMP_PROPORTIONAL) + const int16_t target = thermalManager.degTargetHotend(active_extruder); + autotemp_min = target + AUTOTEMP_MIN_P; + autotemp_max = target + AUTOTEMP_MAX_P; + #endif + autotemp_factor = TERN(AUTOTEMP_PROPORTIONAL, AUTOTEMP_FACTOR_P, 0); + autotemp_enabled = autotemp_factor != 0; +} + + void Planner::autotemp_M104_M109() { + + #if ENABLED(AUTOTEMP_PROPORTIONAL) + const int16_t target = thermalManager.degTargetHotend(active_extruder); + autotemp_min = target + AUTOTEMP_MIN_P; + autotemp_max = target + AUTOTEMP_MAX_P; + #endif + + if (parser.seenval('S')) autotemp_min = parser.value_celsius(); + if (parser.seenval('B')) autotemp_max = parser.value_celsius(); + + // When AUTOTEMP_PROPORTIONAL is enabled, F0 disables autotemp. + // Normally, leaving off F also disables autotemp. + autotemp_factor = parser.seen('F') ? parser.value_float() : TERN(AUTOTEMP_PROPORTIONAL, AUTOTEMP_FACTOR_P, 0); + autotemp_enabled = autotemp_factor != 0; + } +#endif |