aboutsummaryrefslogtreecommitdiff
path: root/Marlin/src/module/settings.cpp
diff options
context:
space:
mode:
authorGeorgiy Bondarenko <69736697+nehilo@users.noreply.github.com>2021-03-04 20:54:23 +0300
committerGeorgiy Bondarenko <69736697+nehilo@users.noreply.github.com>2021-03-04 20:54:23 +0300
commite8701195e66f2d27ffe17fb514eae8173795aaf7 (patch)
tree9f519c4abf6556b9ae7190a6210d87ead1dfadde /Marlin/src/module/settings.cpp
downloadkp3s-lgvl-e8701195e66f2d27ffe17fb514eae8173795aaf7.tar.xz
kp3s-lgvl-e8701195e66f2d27ffe17fb514eae8173795aaf7.zip
Initial commit
Diffstat (limited to 'Marlin/src/module/settings.cpp')
-rw-r--r--Marlin/src/module/settings.cpp3880
1 files changed, 3880 insertions, 0 deletions
diff --git a/Marlin/src/module/settings.cpp b/Marlin/src/module/settings.cpp
new file mode 100644
index 0000000..6908635
--- /dev/null
+++ b/Marlin/src/module/settings.cpp
@@ -0,0 +1,3880 @@
+/**
+ * Marlin 3D Printer Firmware
+ * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
+ *
+ * Based on Sprinter and grbl.
+ * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <https://www.gnu.org/licenses/>.
+ *
+ */
+
+/**
+ * settings.cpp
+ *
+ * Settings and EEPROM storage
+ *
+ * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
+ * in the functions below, also increment the version number. This makes sure that
+ * the default values are used whenever there is a change to the data, to prevent
+ * wrong data being written to the variables.
+ *
+ * ALSO: Variables in the Store and Retrieve sections must be in the same order.
+ * If a feature is disabled, some data must still be written that, when read,
+ * either sets a Sane Default, or results in No Change to the existing value.
+ */
+
+// Change EEPROM version if the structure changes
+#define EEPROM_VERSION "V83"
+#define EEPROM_OFFSET 100
+
+// Check the integrity of data offsets.
+// Can be disabled for production build.
+//#define DEBUG_EEPROM_READWRITE
+
+#include "settings.h"
+
+#include "endstops.h"
+#include "planner.h"
+#include "stepper.h"
+#include "temperature.h"
+
+#include "../lcd/marlinui.h"
+#include "../libs/vector_3.h" // for matrix_3x3
+#include "../gcode/gcode.h"
+#include "../MarlinCore.h"
+
+#if EITHER(EEPROM_SETTINGS, SD_FIRMWARE_UPDATE)
+ #include "../HAL/shared/eeprom_api.h"
+#endif
+
+#include "probe.h"
+
+#if HAS_LEVELING
+ #include "../feature/bedlevel/bedlevel.h"
+#endif
+
+#if ENABLED(Z_STEPPER_AUTO_ALIGN)
+ #include "../feature/z_stepper_align.h"
+#endif
+
+#if ENABLED(EXTENSIBLE_UI)
+ #include "../lcd/extui/ui_api.h"
+#endif
+
+#if HAS_SERVOS
+ #include "servo.h"
+#endif
+
+#if HAS_SERVOS && HAS_SERVO_ANGLES
+ #define EEPROM_NUM_SERVOS NUM_SERVOS
+#else
+ #define EEPROM_NUM_SERVOS NUM_SERVO_PLUGS
+#endif
+
+#include "../feature/fwretract.h"
+
+#if ENABLED(POWER_LOSS_RECOVERY)
+ #include "../feature/powerloss.h"
+#endif
+
+#if HAS_POWER_MONITOR
+ #include "../feature/power_monitor.h"
+#endif
+
+#include "../feature/pause.h"
+
+#if ENABLED(BACKLASH_COMPENSATION)
+ #include "../feature/backlash.h"
+#endif
+
+#if HAS_FILAMENT_SENSOR
+ #include "../feature/runout.h"
+ #ifndef FIL_RUNOUT_ENABLED_DEFAULT
+ #define FIL_RUNOUT_ENABLED_DEFAULT true
+ #endif
+#endif
+
+#if ENABLED(EXTRA_LIN_ADVANCE_K)
+ extern float other_extruder_advance_K[EXTRUDERS];
+#endif
+
+#if HAS_MULTI_EXTRUDER
+ #include "tool_change.h"
+ void M217_report(const bool eeprom);
+#endif
+
+#if ENABLED(BLTOUCH)
+ #include "../feature/bltouch.h"
+#endif
+
+#if HAS_TRINAMIC_CONFIG
+ #include "stepper/indirection.h"
+ #include "../feature/tmc_util.h"
+#endif
+
+#if ENABLED(PROBE_TEMP_COMPENSATION)
+ #include "../feature/probe_temp_comp.h"
+#endif
+
+#include "../feature/controllerfan.h"
+#if ENABLED(CONTROLLER_FAN_EDITABLE)
+ void M710_report(const bool forReplay);
+#endif
+
+#if ENABLED(CASE_LIGHT_ENABLE)
+ #include "../feature/caselight.h"
+#endif
+
+#if ENABLED(PASSWORD_FEATURE)
+ #include "../feature/password/password.h"
+#endif
+
+#if ENABLED(TOUCH_SCREEN_CALIBRATION)
+ #include "../lcd/tft_io/touch_calibration.h"
+#endif
+
+#if HAS_ETHERNET
+ #include "../feature/ethernet.h"
+#endif
+
+#if ENABLED(SOUND_MENU_ITEM)
+ #include "../libs/buzzer.h"
+#endif
+
+#pragma pack(push, 1) // No padding between variables
+
+#if HAS_ETHERNET
+ void ETH0_report();
+ void MAC_report();
+ void M552_report();
+ void M553_report();
+ void M554_report();
+#endif
+
+typedef struct { uint16_t X, Y, Z, X2, Y2, Z2, Z3, Z4, E0, E1, E2, E3, E4, E5, E6, E7; } tmc_stepper_current_t;
+typedef struct { uint32_t X, Y, Z, X2, Y2, Z2, Z3, Z4, E0, E1, E2, E3, E4, E5, E6, E7; } tmc_hybrid_threshold_t;
+typedef struct { int16_t X, Y, Z, X2, Y2, Z2, Z3, Z4; } tmc_sgt_t;
+typedef struct { bool X, Y, Z, X2, Y2, Z2, Z3, Z4, E0, E1, E2, E3, E4, E5, E6, E7; } tmc_stealth_enabled_t;
+
+// Limit an index to an array size
+#define ALIM(I,ARR) _MIN(I, (signed)COUNT(ARR) - 1)
+
+// Defaults for reset / fill in on load
+static const uint32_t _DMA[] PROGMEM = DEFAULT_MAX_ACCELERATION;
+static const float _DASU[] PROGMEM = DEFAULT_AXIS_STEPS_PER_UNIT;
+static const feedRate_t _DMF[] PROGMEM = DEFAULT_MAX_FEEDRATE;
+
+/**
+ * Current EEPROM Layout
+ *
+ * Keep this data structure up to date so
+ * EEPROM size is known at compile time!
+ */
+typedef struct SettingsDataStruct {
+ char version[4]; // Vnn\0
+ uint16_t crc; // Data Checksum
+
+ //
+ // DISTINCT_E_FACTORS
+ //
+ uint8_t esteppers; // XYZE_N - XYZ
+
+ planner_settings_t planner_settings;
+
+ xyze_float_t planner_max_jerk; // M205 XYZE planner.max_jerk
+ float planner_junction_deviation_mm; // M205 J planner.junction_deviation_mm
+
+ xyz_pos_t home_offset; // M206 XYZ / M665 TPZ
+
+ #if HAS_HOTEND_OFFSET
+ xyz_pos_t hotend_offset[HOTENDS - 1]; // M218 XYZ
+ #endif
+
+ //
+ // FILAMENT_RUNOUT_SENSOR
+ //
+ bool runout_sensor_enabled; // M412 S
+ float runout_distance_mm; // M412 D
+
+ //
+ // ENABLE_LEVELING_FADE_HEIGHT
+ //
+ float planner_z_fade_height; // M420 Zn planner.z_fade_height
+
+ //
+ // MESH_BED_LEVELING
+ //
+ float mbl_z_offset; // mbl.z_offset
+ uint8_t mesh_num_x, mesh_num_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
+ float mbl_z_values[TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_X, 3)] // mbl.z_values
+ [TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_Y, 3)];
+
+ //
+ // HAS_BED_PROBE
+ //
+
+ xyz_pos_t probe_offset;
+
+ //
+ // ABL_PLANAR
+ //
+ matrix_3x3 planner_bed_level_matrix; // planner.bed_level_matrix
+
+ //
+ // AUTO_BED_LEVELING_BILINEAR
+ //
+ uint8_t grid_max_x, grid_max_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
+ xy_pos_t bilinear_grid_spacing, bilinear_start; // G29 L F
+ #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
+ bed_mesh_t z_values; // G29
+ #else
+ float z_values[3][3];
+ #endif
+
+ //
+ // AUTO_BED_LEVELING_UBL
+ //
+ bool planner_leveling_active; // M420 S planner.leveling_active
+ int8_t ubl_storage_slot; // ubl.storage_slot
+
+ //
+ // SERVO_ANGLES
+ //
+ uint16_t servo_angles[EEPROM_NUM_SERVOS][2]; // M281 P L U
+
+ //
+ // Temperature first layer compensation values
+ //
+ #if ENABLED(PROBE_TEMP_COMPENSATION)
+ int16_t z_offsets_probe[COUNT(temp_comp.z_offsets_probe)], // M871 P I V
+ z_offsets_bed[COUNT(temp_comp.z_offsets_bed)] // M871 B I V
+ #if ENABLED(USE_TEMP_EXT_COMPENSATION)
+ , z_offsets_ext[COUNT(temp_comp.z_offsets_ext)] // M871 E I V
+ #endif
+ ;
+ #endif
+
+ //
+ // BLTOUCH
+ //
+ bool bltouch_last_written_mode;
+
+ //
+ // DELTA / [XYZ]_DUAL_ENDSTOPS
+ //
+ #if ENABLED(DELTA)
+ float delta_height; // M666 H
+ abc_float_t delta_endstop_adj; // M666 X Y Z
+ float delta_radius, // M665 R
+ delta_diagonal_rod, // M665 L
+ delta_segments_per_second; // M665 S
+ abc_float_t delta_tower_angle_trim, // M665 X Y Z
+ delta_diagonal_rod_trim; // M665 A B C
+ #elif HAS_EXTRA_ENDSTOPS
+ float x2_endstop_adj, // M666 X
+ y2_endstop_adj, // M666 Y
+ z2_endstop_adj, // M666 (S2) Z
+ z3_endstop_adj, // M666 (S3) Z
+ z4_endstop_adj; // M666 (S4) Z
+ #endif
+
+ //
+ // Z_STEPPER_AUTO_ALIGN, Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS
+ //
+ #if ENABLED(Z_STEPPER_AUTO_ALIGN)
+ xy_pos_t z_stepper_align_xy[NUM_Z_STEPPER_DRIVERS]; // M422 S X Y
+ #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
+ xy_pos_t z_stepper_align_stepper_xy[NUM_Z_STEPPER_DRIVERS]; // M422 W X Y
+ #endif
+ #endif
+
+ //
+ // Material Presets
+ //
+ #if PREHEAT_COUNT
+ preheat_t ui_material_preset[PREHEAT_COUNT]; // M145 S0 H B F
+ #endif
+
+ //
+ // PIDTEMP
+ //
+ PIDCF_t hotendPID[HOTENDS]; // M301 En PIDCF / M303 En U
+ int16_t lpq_len; // M301 L
+
+ //
+ // PIDTEMPBED
+ //
+ PID_t bedPID; // M304 PID / M303 E-1 U
+
+ //
+ // User-defined Thermistors
+ //
+ #if HAS_USER_THERMISTORS
+ user_thermistor_t user_thermistor[USER_THERMISTORS]; // M305 P0 R4700 T100000 B3950
+ #endif
+
+ //
+ // Power monitor
+ //
+ uint8_t power_monitor_flags; // M430 I V W
+
+ //
+ // HAS_LCD_CONTRAST
+ //
+ int16_t lcd_contrast; // M250 C
+
+ //
+ // Controller fan settings
+ //
+ controllerFan_settings_t controllerFan_settings; // M710
+
+ //
+ // POWER_LOSS_RECOVERY
+ //
+ bool recovery_enabled; // M413 S
+
+ //
+ // FWRETRACT
+ //
+ fwretract_settings_t fwretract_settings; // M207 S F Z W, M208 S F W R
+ bool autoretract_enabled; // M209 S
+
+ //
+ // !NO_VOLUMETRIC
+ //
+ bool parser_volumetric_enabled; // M200 S parser.volumetric_enabled
+ float planner_filament_size[EXTRUDERS]; // M200 T D planner.filament_size[]
+ float planner_volumetric_extruder_limit[EXTRUDERS]; // M200 T L planner.volumetric_extruder_limit[]
+
+ //
+ // HAS_TRINAMIC_CONFIG
+ //
+ tmc_stepper_current_t tmc_stepper_current; // M906 X Y Z X2 Y2 Z2 Z3 Z4 E0 E1 E2 E3 E4 E5
+ tmc_hybrid_threshold_t tmc_hybrid_threshold; // M913 X Y Z X2 Y2 Z2 Z3 Z4 E0 E1 E2 E3 E4 E5
+ tmc_sgt_t tmc_sgt; // M914 X Y Z X2 Y2 Z2 Z3 Z4
+ tmc_stealth_enabled_t tmc_stealth_enabled; // M569 X Y Z X2 Y2 Z2 Z3 Z4 E0 E1 E2 E3 E4 E5
+
+ //
+ // LIN_ADVANCE
+ //
+ float planner_extruder_advance_K[_MAX(EXTRUDERS, 1)]; // M900 K planner.extruder_advance_K
+
+ //
+ // HAS_MOTOR_CURRENT_PWM
+ //
+ #ifndef MOTOR_CURRENT_COUNT
+ #define MOTOR_CURRENT_COUNT 3
+ #endif
+ uint32_t motor_current_setting[MOTOR_CURRENT_COUNT]; // M907 X Z E
+
+ //
+ // CNC_COORDINATE_SYSTEMS
+ //
+ xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS]; // G54-G59.3
+
+ //
+ // SKEW_CORRECTION
+ //
+ skew_factor_t planner_skew_factor; // M852 I J K planner.skew_factor
+
+ //
+ // ADVANCED_PAUSE_FEATURE
+ //
+ #if EXTRUDERS
+ fil_change_settings_t fc_settings[EXTRUDERS]; // M603 T U L
+ #endif
+
+ //
+ // Tool-change settings
+ //
+ #if HAS_MULTI_EXTRUDER
+ toolchange_settings_t toolchange_settings; // M217 S P R
+ #endif
+
+ //
+ // BACKLASH_COMPENSATION
+ //
+ xyz_float_t backlash_distance_mm; // M425 X Y Z
+ uint8_t backlash_correction; // M425 F
+ float backlash_smoothing_mm; // M425 S
+
+ //
+ // EXTENSIBLE_UI
+ //
+ #if ENABLED(EXTENSIBLE_UI)
+ // This is a significant hardware change; don't reserve space when not present
+ uint8_t extui_data[ExtUI::eeprom_data_size];
+ #endif
+
+ //
+ // CASELIGHT_USES_BRIGHTNESS
+ //
+ #if CASELIGHT_USES_BRIGHTNESS
+ uint8_t caselight_brightness; // M355 P
+ #endif
+
+ //
+ // PASSWORD_FEATURE
+ //
+ #if ENABLED(PASSWORD_FEATURE)
+ bool password_is_set;
+ uint32_t password_value;
+ #endif
+
+ //
+ // TOUCH_SCREEN_CALIBRATION
+ //
+ #if ENABLED(TOUCH_SCREEN_CALIBRATION)
+ touch_calibration_t touch_calibration_data;
+ #endif
+
+ // Ethernet settings
+ #if HAS_ETHERNET
+ bool ethernet_hardware_enabled; // M552 S
+ uint32_t ethernet_ip, // M552 P
+ ethernet_dns,
+ ethernet_gateway, // M553 P
+ ethernet_subnet; // M554 P
+ #endif
+
+ //
+ // Buzzer enable/disable
+ //
+ #if ENABLED(SOUND_MENU_ITEM)
+ bool buzzer_enabled;
+ #endif
+
+ #if HAS_MULTI_LANGUAGE
+ uint8_t ui_language; // M414 S
+ #endif
+
+} SettingsData;
+
+//static_assert(sizeof(SettingsData) <= MARLIN_EEPROM_SIZE, "EEPROM too small to contain SettingsData!");
+
+MarlinSettings settings;
+
+uint16_t MarlinSettings::datasize() { return sizeof(SettingsData); }
+
+/**
+ * Post-process after Retrieve or Reset
+ */
+
+#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
+ float new_z_fade_height;
+#endif
+
+void MarlinSettings::postprocess() {
+ xyze_pos_t oldpos = current_position;
+
+ // steps per s2 needs to be updated to agree with units per s2
+ planner.reset_acceleration_rates();
+
+ // Make sure delta kinematics are updated before refreshing the
+ // planner position so the stepper counts will be set correctly.
+ TERN_(DELTA, recalc_delta_settings());
+
+ TERN_(PIDTEMP, thermalManager.updatePID());
+
+ #if DISABLED(NO_VOLUMETRICS)
+ planner.calculate_volumetric_multipliers();
+ #elif EXTRUDERS
+ for (uint8_t i = COUNT(planner.e_factor); i--;)
+ planner.refresh_e_factor(i);
+ #endif
+
+ // Software endstops depend on home_offset
+ LOOP_XYZ(i) {
+ update_workspace_offset((AxisEnum)i);
+ update_software_endstops((AxisEnum)i);
+ }
+
+ TERN_(ENABLE_LEVELING_FADE_HEIGHT, set_z_fade_height(new_z_fade_height, false)); // false = no report
+
+ TERN_(AUTO_BED_LEVELING_BILINEAR, refresh_bed_level());
+
+ TERN_(HAS_MOTOR_CURRENT_PWM, stepper.refresh_motor_power());
+
+ TERN_(FWRETRACT, fwretract.refresh_autoretract());
+
+ TERN_(HAS_LINEAR_E_JERK, planner.recalculate_max_e_jerk());
+
+ TERN_(CASELIGHT_USES_BRIGHTNESS, caselight.update_brightness());
+
+ // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
+ // and init stepper.count[], planner.position[] with current_position
+ planner.refresh_positioning();
+
+ // Various factors can change the current position
+ if (oldpos != current_position)
+ report_current_position();
+}
+
+#if BOTH(PRINTCOUNTER, EEPROM_SETTINGS)
+ #include "printcounter.h"
+ static_assert(
+ !WITHIN(STATS_EEPROM_ADDRESS, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)) &&
+ !WITHIN(STATS_EEPROM_ADDRESS + sizeof(printStatistics), EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)),
+ "STATS_EEPROM_ADDRESS collides with EEPROM settings storage."
+ );
+#endif
+
+#if ENABLED(SD_FIRMWARE_UPDATE)
+
+ #if ENABLED(EEPROM_SETTINGS)
+ static_assert(
+ !WITHIN(SD_FIRMWARE_UPDATE_EEPROM_ADDR, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)),
+ "SD_FIRMWARE_UPDATE_EEPROM_ADDR collides with EEPROM settings storage."
+ );
+ #endif
+
+ bool MarlinSettings::sd_update_status() {
+ uint8_t val;
+ persistentStore.read_data(SD_FIRMWARE_UPDATE_EEPROM_ADDR, &val);
+ return (val == SD_FIRMWARE_UPDATE_ACTIVE_VALUE);
+ }
+
+ bool MarlinSettings::set_sd_update_status(const bool enable) {
+ if (enable != sd_update_status())
+ persistentStore.write_data(
+ SD_FIRMWARE_UPDATE_EEPROM_ADDR,
+ enable ? SD_FIRMWARE_UPDATE_ACTIVE_VALUE : SD_FIRMWARE_UPDATE_INACTIVE_VALUE
+ );
+ return true;
+ }
+
+#endif // SD_FIRMWARE_UPDATE
+
+#ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
+ static_assert(EEPROM_OFFSET + sizeof(SettingsData) < ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE,
+ "ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE is insufficient to capture all EEPROM data.");
+#endif
+
+#define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE)
+#include "../core/debug_out.h"
+
+#if ENABLED(EEPROM_SETTINGS)
+
+ #define EEPROM_START() if (!persistentStore.access_start()) { SERIAL_ECHO_MSG("No EEPROM."); return false; } \
+ int eeprom_index = EEPROM_OFFSET
+ #define EEPROM_FINISH() persistentStore.access_finish()
+ #define EEPROM_SKIP(VAR) (eeprom_index += sizeof(VAR))
+ #define EEPROM_WRITE(VAR) do{ persistentStore.write_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc); }while(0)
+ #define EEPROM_READ(VAR) do{ persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc, !validating); }while(0)
+ #define EEPROM_READ_ALWAYS(VAR) do{ persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc); }while(0)
+ #define EEPROM_ASSERT(TST,ERR) do{ if (!(TST)) { SERIAL_ERROR_MSG(ERR); eeprom_error = true; } }while(0)
+
+ #if ENABLED(DEBUG_EEPROM_READWRITE)
+ #define _FIELD_TEST(FIELD) \
+ EEPROM_ASSERT( \
+ eeprom_error || eeprom_index == offsetof(SettingsData, FIELD) + EEPROM_OFFSET, \
+ "Field " STRINGIFY(FIELD) " mismatch." \
+ )
+ #else
+ #define _FIELD_TEST(FIELD) NOOP
+ #endif
+
+ const char version[4] = EEPROM_VERSION;
+
+ bool MarlinSettings::eeprom_error, MarlinSettings::validating;
+
+ bool MarlinSettings::size_error(const uint16_t size) {
+ if (size != datasize()) {
+ DEBUG_ERROR_MSG("EEPROM datasize error.");
+ return true;
+ }
+ return false;
+ }
+
+ /**
+ * M500 - Store Configuration
+ */
+ bool MarlinSettings::save() {
+ float dummyf = 0;
+ char ver[4] = "ERR";
+
+ uint16_t working_crc = 0;
+
+ EEPROM_START();
+
+ eeprom_error = false;
+
+ // Write or Skip version. (Flash doesn't allow rewrite without erase.)
+ TERN(FLASH_EEPROM_EMULATION, EEPROM_SKIP, EEPROM_WRITE)(ver);
+
+ EEPROM_SKIP(working_crc); // Skip the checksum slot
+
+ working_crc = 0; // clear before first "real data"
+
+ _FIELD_TEST(esteppers);
+
+ const uint8_t esteppers = COUNT(planner.settings.axis_steps_per_mm) - XYZ;
+ EEPROM_WRITE(esteppers);
+
+ //
+ // Planner Motion
+ //
+ {
+ EEPROM_WRITE(planner.settings);
+
+ #if HAS_CLASSIC_JERK
+ EEPROM_WRITE(planner.max_jerk);
+ #if HAS_LINEAR_E_JERK
+ dummyf = float(DEFAULT_EJERK);
+ EEPROM_WRITE(dummyf);
+ #endif
+ #else
+ const xyze_pos_t planner_max_jerk = { 10, 10, 0.4, float(DEFAULT_EJERK) };
+ EEPROM_WRITE(planner_max_jerk);
+ #endif
+
+ TERN_(CLASSIC_JERK, dummyf = 0.02f);
+ EEPROM_WRITE(TERN(CLASSIC_JERK, dummyf, planner.junction_deviation_mm));
+ }
+
+ //
+ // Home Offset
+ //
+ {
+ _FIELD_TEST(home_offset);
+
+ #if HAS_SCARA_OFFSET
+ EEPROM_WRITE(scara_home_offset);
+ #else
+ #if !HAS_HOME_OFFSET
+ const xyz_pos_t home_offset{0};
+ #endif
+ EEPROM_WRITE(home_offset);
+ #endif
+ }
+
+ //
+ // Hotend Offsets, if any
+ //
+ {
+ #if HAS_HOTEND_OFFSET
+ // Skip hotend 0 which must be 0
+ LOOP_S_L_N(e, 1, HOTENDS)
+ EEPROM_WRITE(hotend_offset[e]);
+ #endif
+ }
+
+ //
+ // Filament Runout Sensor
+ //
+ {
+ #if HAS_FILAMENT_SENSOR
+ const bool &runout_sensor_enabled = runout.enabled;
+ #else
+ constexpr int8_t runout_sensor_enabled = -1;
+ #endif
+ _FIELD_TEST(runout_sensor_enabled);
+ EEPROM_WRITE(runout_sensor_enabled);
+
+ #if HAS_FILAMENT_RUNOUT_DISTANCE
+ const float &runout_distance_mm = runout.runout_distance();
+ #else
+ constexpr float runout_distance_mm = 0;
+ #endif
+ EEPROM_WRITE(runout_distance_mm);
+ }
+
+ //
+ // Global Leveling
+ //
+ {
+ const float zfh = TERN(ENABLE_LEVELING_FADE_HEIGHT, planner.z_fade_height, (DEFAULT_LEVELING_FADE_HEIGHT));
+ EEPROM_WRITE(zfh);
+ }
+
+ //
+ // Mesh Bed Leveling
+ //
+ {
+ #if ENABLED(MESH_BED_LEVELING)
+ static_assert(
+ sizeof(mbl.z_values) == (GRID_MAX_POINTS) * sizeof(mbl.z_values[0][0]),
+ "MBL Z array is the wrong size."
+ );
+ #else
+ dummyf = 0;
+ #endif
+
+ const uint8_t mesh_num_x = TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_X, 3),
+ mesh_num_y = TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_Y, 3);
+
+ EEPROM_WRITE(TERN(MESH_BED_LEVELING, mbl.z_offset, dummyf));
+ EEPROM_WRITE(mesh_num_x);
+ EEPROM_WRITE(mesh_num_y);
+
+ #if ENABLED(MESH_BED_LEVELING)
+ EEPROM_WRITE(mbl.z_values);
+ #else
+ for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummyf);
+ #endif
+ }
+
+ //
+ // Probe XYZ Offsets
+ //
+ {
+ _FIELD_TEST(probe_offset);
+ #if HAS_BED_PROBE
+ const xyz_pos_t &zpo = probe.offset;
+ #else
+ constexpr xyz_pos_t zpo{0};
+ #endif
+ EEPROM_WRITE(zpo);
+ }
+
+ //
+ // Planar Bed Leveling matrix
+ //
+ {
+ #if ABL_PLANAR
+ EEPROM_WRITE(planner.bed_level_matrix);
+ #else
+ dummyf = 0;
+ for (uint8_t q = 9; q--;) EEPROM_WRITE(dummyf);
+ #endif
+ }
+
+ //
+ // Bilinear Auto Bed Leveling
+ //
+ {
+ #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
+ static_assert(
+ sizeof(z_values) == (GRID_MAX_POINTS) * sizeof(z_values[0][0]),
+ "Bilinear Z array is the wrong size."
+ );
+ #else
+ const xy_pos_t bilinear_start{0}, bilinear_grid_spacing{0};
+ #endif
+
+ const uint8_t grid_max_x = TERN(AUTO_BED_LEVELING_BILINEAR, GRID_MAX_POINTS_X, 3),
+ grid_max_y = TERN(AUTO_BED_LEVELING_BILINEAR, GRID_MAX_POINTS_Y, 3);
+ EEPROM_WRITE(grid_max_x);
+ EEPROM_WRITE(grid_max_y);
+ EEPROM_WRITE(bilinear_grid_spacing);
+ EEPROM_WRITE(bilinear_start);
+
+ #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
+ EEPROM_WRITE(z_values); // 9-256 floats
+ #else
+ dummyf = 0;
+ for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummyf);
+ #endif
+ }
+
+ //
+ // Unified Bed Leveling
+ //
+ {
+ _FIELD_TEST(planner_leveling_active);
+ const bool ubl_active = TERN(AUTO_BED_LEVELING_UBL, planner.leveling_active, false);
+ const int8_t storage_slot = TERN(AUTO_BED_LEVELING_UBL, ubl.storage_slot, -1);
+ EEPROM_WRITE(ubl_active);
+ EEPROM_WRITE(storage_slot);
+ }
+
+ //
+ // Servo Angles
+ //
+ {
+ _FIELD_TEST(servo_angles);
+ #if !HAS_SERVO_ANGLES
+ uint16_t servo_angles[EEPROM_NUM_SERVOS][2] = { { 0, 0 } };
+ #endif
+ EEPROM_WRITE(servo_angles);
+ }
+
+ //
+ // Thermal first layer compensation values
+ //
+ #if ENABLED(PROBE_TEMP_COMPENSATION)
+ EEPROM_WRITE(temp_comp.z_offsets_probe);
+ EEPROM_WRITE(temp_comp.z_offsets_bed);
+ #if ENABLED(USE_TEMP_EXT_COMPENSATION)
+ EEPROM_WRITE(temp_comp.z_offsets_ext);
+ #endif
+ #else
+ // No placeholder data for this feature
+ #endif
+
+ //
+ // BLTOUCH
+ //
+ {
+ _FIELD_TEST(bltouch_last_written_mode);
+ const bool bltouch_last_written_mode = TERN(BLTOUCH, bltouch.last_written_mode, false);
+ EEPROM_WRITE(bltouch_last_written_mode);
+ }
+
+ //
+ // DELTA Geometry or Dual Endstops offsets
+ //
+ {
+ #if ENABLED(DELTA)
+
+ _FIELD_TEST(delta_height);
+
+ EEPROM_WRITE(delta_height); // 1 float
+ EEPROM_WRITE(delta_endstop_adj); // 3 floats
+ EEPROM_WRITE(delta_radius); // 1 float
+ EEPROM_WRITE(delta_diagonal_rod); // 1 float
+ EEPROM_WRITE(delta_segments_per_second); // 1 float
+ EEPROM_WRITE(delta_tower_angle_trim); // 3 floats
+ EEPROM_WRITE(delta_diagonal_rod_trim); // 3 floats
+
+ #elif HAS_EXTRA_ENDSTOPS
+
+ _FIELD_TEST(x2_endstop_adj);
+
+ // Write dual endstops in X, Y, Z order. Unused = 0.0
+ dummyf = 0;
+ EEPROM_WRITE(TERN(X_DUAL_ENDSTOPS, endstops.x2_endstop_adj, dummyf)); // 1 float
+ EEPROM_WRITE(TERN(Y_DUAL_ENDSTOPS, endstops.y2_endstop_adj, dummyf)); // 1 float
+ EEPROM_WRITE(TERN(Z_MULTI_ENDSTOPS, endstops.z2_endstop_adj, dummyf)); // 1 float
+
+ #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 3
+ EEPROM_WRITE(endstops.z3_endstop_adj); // 1 float
+ #else
+ EEPROM_WRITE(dummyf);
+ #endif
+
+ #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 4
+ EEPROM_WRITE(endstops.z4_endstop_adj); // 1 float
+ #else
+ EEPROM_WRITE(dummyf);
+ #endif
+
+ #endif
+ }
+
+ #if ENABLED(Z_STEPPER_AUTO_ALIGN)
+ EEPROM_WRITE(z_stepper_align.xy);
+ #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
+ EEPROM_WRITE(z_stepper_align.stepper_xy);
+ #endif
+ #endif
+
+ //
+ // LCD Preheat settings
+ //
+ #if PREHEAT_COUNT
+ _FIELD_TEST(ui_material_preset);
+ EEPROM_WRITE(ui.material_preset);
+ #endif
+
+ //
+ // PIDTEMP
+ //
+ {
+ _FIELD_TEST(hotendPID);
+ HOTEND_LOOP() {
+ PIDCF_t pidcf = {
+ #if DISABLED(PIDTEMP)
+ NAN, NAN, NAN,
+ NAN, NAN
+ #else
+ PID_PARAM(Kp, e),
+ unscalePID_i(PID_PARAM(Ki, e)),
+ unscalePID_d(PID_PARAM(Kd, e)),
+ PID_PARAM(Kc, e),
+ PID_PARAM(Kf, e)
+ #endif
+ };
+ EEPROM_WRITE(pidcf);
+ }
+
+ _FIELD_TEST(lpq_len);
+ #if DISABLED(PID_EXTRUSION_SCALING)
+ const int16_t lpq_len = 20;
+ #endif
+ EEPROM_WRITE(TERN(PID_EXTRUSION_SCALING, thermalManager.lpq_len, lpq_len));
+ }
+
+ //
+ // PIDTEMPBED
+ //
+ {
+ _FIELD_TEST(bedPID);
+
+ const PID_t bed_pid = {
+ #if DISABLED(PIDTEMPBED)
+ NAN, NAN, NAN
+ #else
+ // Store the unscaled PID values
+ thermalManager.temp_bed.pid.Kp,
+ unscalePID_i(thermalManager.temp_bed.pid.Ki),
+ unscalePID_d(thermalManager.temp_bed.pid.Kd)
+ #endif
+ };
+ EEPROM_WRITE(bed_pid);
+ }
+
+ //
+ // User-defined Thermistors
+ //
+ #if HAS_USER_THERMISTORS
+ {
+ _FIELD_TEST(user_thermistor);
+ EEPROM_WRITE(thermalManager.user_thermistor);
+ }
+ #endif
+
+ //
+ // Power monitor
+ //
+ {
+ #if HAS_POWER_MONITOR
+ const uint8_t &power_monitor_flags = power_monitor.flags;
+ #else
+ constexpr uint8_t power_monitor_flags = 0x00;
+ #endif
+ _FIELD_TEST(power_monitor_flags);
+ EEPROM_WRITE(power_monitor_flags);
+ }
+
+ //
+ // LCD Contrast
+ //
+ {
+ _FIELD_TEST(lcd_contrast);
+
+ const int16_t lcd_contrast =
+ #if HAS_LCD_CONTRAST
+ ui.contrast
+ #else
+ 127
+ #endif
+ ;
+ EEPROM_WRITE(lcd_contrast);
+ }
+
+ //
+ // Controller Fan
+ //
+ {
+ _FIELD_TEST(controllerFan_settings);
+ #if ENABLED(USE_CONTROLLER_FAN)
+ const controllerFan_settings_t &cfs = controllerFan.settings;
+ #else
+ controllerFan_settings_t cfs = controllerFan_defaults;
+ #endif
+ EEPROM_WRITE(cfs);
+ }
+
+ //
+ // Power-Loss Recovery
+ //
+ {
+ _FIELD_TEST(recovery_enabled);
+ const bool recovery_enabled = TERN(POWER_LOSS_RECOVERY, recovery.enabled, ENABLED(PLR_ENABLED_DEFAULT));
+ EEPROM_WRITE(recovery_enabled);
+ }
+
+ //
+ // Firmware Retraction
+ //
+ {
+ _FIELD_TEST(fwretract_settings);
+ #if DISABLED(FWRETRACT)
+ const fwretract_settings_t autoretract_defaults = { 3, 45, 0, 0, 0, 13, 0, 8 };
+ #endif
+ EEPROM_WRITE(TERN(FWRETRACT, fwretract.settings, autoretract_defaults));
+
+ #if DISABLED(FWRETRACT_AUTORETRACT)
+ const bool autoretract_enabled = false;
+ #endif
+ EEPROM_WRITE(TERN(FWRETRACT_AUTORETRACT, fwretract.autoretract_enabled, autoretract_enabled));
+ }
+
+ //
+ // Volumetric & Filament Size
+ //
+ {
+ _FIELD_TEST(parser_volumetric_enabled);
+
+ #if DISABLED(NO_VOLUMETRICS)
+
+ EEPROM_WRITE(parser.volumetric_enabled);
+ EEPROM_WRITE(planner.filament_size);
+ #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
+ EEPROM_WRITE(planner.volumetric_extruder_limit);
+ #else
+ dummyf = DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT;
+ for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf);
+ #endif
+
+ #else
+
+ const bool volumetric_enabled = false;
+ EEPROM_WRITE(volumetric_enabled);
+ dummyf = DEFAULT_NOMINAL_FILAMENT_DIA;
+ for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf);
+ dummyf = DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT;
+ for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf);
+
+ #endif
+ }
+
+ //
+ // TMC Configuration
+ //
+ {
+ _FIELD_TEST(tmc_stepper_current);
+
+ tmc_stepper_current_t tmc_stepper_current = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
+
+ #if HAS_TRINAMIC_CONFIG
+ #if AXIS_IS_TMC(X)
+ tmc_stepper_current.X = stepperX.getMilliamps();
+ #endif
+ #if AXIS_IS_TMC(Y)
+ tmc_stepper_current.Y = stepperY.getMilliamps();
+ #endif
+ #if AXIS_IS_TMC(Z)
+ tmc_stepper_current.Z = stepperZ.getMilliamps();
+ #endif
+ #if AXIS_IS_TMC(X2)
+ tmc_stepper_current.X2 = stepperX2.getMilliamps();
+ #endif
+ #if AXIS_IS_TMC(Y2)
+ tmc_stepper_current.Y2 = stepperY2.getMilliamps();
+ #endif
+ #if AXIS_IS_TMC(Z2)
+ tmc_stepper_current.Z2 = stepperZ2.getMilliamps();
+ #endif
+ #if AXIS_IS_TMC(Z3)
+ tmc_stepper_current.Z3 = stepperZ3.getMilliamps();
+ #endif
+ #if AXIS_IS_TMC(Z4)
+ tmc_stepper_current.Z4 = stepperZ4.getMilliamps();
+ #endif
+ #if AXIS_IS_TMC(E0)
+ tmc_stepper_current.E0 = stepperE0.getMilliamps();
+ #endif
+ #if AXIS_IS_TMC(E1)
+ tmc_stepper_current.E1 = stepperE1.getMilliamps();
+ #endif
+ #if AXIS_IS_TMC(E2)
+ tmc_stepper_current.E2 = stepperE2.getMilliamps();
+ #endif
+ #if AXIS_IS_TMC(E3)
+ tmc_stepper_current.E3 = stepperE3.getMilliamps();
+ #endif
+ #if AXIS_IS_TMC(E4)
+ tmc_stepper_current.E4 = stepperE4.getMilliamps();
+ #endif
+ #if AXIS_IS_TMC(E5)
+ tmc_stepper_current.E5 = stepperE5.getMilliamps();
+ #endif
+ #if AXIS_IS_TMC(E6)
+ tmc_stepper_current.E6 = stepperE6.getMilliamps();
+ #endif
+ #if AXIS_IS_TMC(E7)
+ tmc_stepper_current.E7 = stepperE7.getMilliamps();
+ #endif
+ #endif
+ EEPROM_WRITE(tmc_stepper_current);
+ }
+
+ //
+ // TMC Hybrid Threshold, and placeholder values
+ //
+ {
+ _FIELD_TEST(tmc_hybrid_threshold);
+
+ #if ENABLED(HYBRID_THRESHOLD)
+ tmc_hybrid_threshold_t tmc_hybrid_threshold = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
+ #if AXIS_HAS_STEALTHCHOP(X)
+ tmc_hybrid_threshold.X = stepperX.get_pwm_thrs();
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(Y)
+ tmc_hybrid_threshold.Y = stepperY.get_pwm_thrs();
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(Z)
+ tmc_hybrid_threshold.Z = stepperZ.get_pwm_thrs();
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(X2)
+ tmc_hybrid_threshold.X2 = stepperX2.get_pwm_thrs();
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(Y2)
+ tmc_hybrid_threshold.Y2 = stepperY2.get_pwm_thrs();
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(Z2)
+ tmc_hybrid_threshold.Z2 = stepperZ2.get_pwm_thrs();
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(Z3)
+ tmc_hybrid_threshold.Z3 = stepperZ3.get_pwm_thrs();
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(Z4)
+ tmc_hybrid_threshold.Z4 = stepperZ4.get_pwm_thrs();
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(E0)
+ tmc_hybrid_threshold.E0 = stepperE0.get_pwm_thrs();
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(E1)
+ tmc_hybrid_threshold.E1 = stepperE1.get_pwm_thrs();
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(E2)
+ tmc_hybrid_threshold.E2 = stepperE2.get_pwm_thrs();
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(E3)
+ tmc_hybrid_threshold.E3 = stepperE3.get_pwm_thrs();
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(E4)
+ tmc_hybrid_threshold.E4 = stepperE4.get_pwm_thrs();
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(E5)
+ tmc_hybrid_threshold.E5 = stepperE5.get_pwm_thrs();
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(E6)
+ tmc_hybrid_threshold.E6 = stepperE6.get_pwm_thrs();
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(E7)
+ tmc_hybrid_threshold.E7 = stepperE7.get_pwm_thrs();
+ #endif
+ #else
+ const tmc_hybrid_threshold_t tmc_hybrid_threshold = {
+ .X = 100, .Y = 100, .Z = 3,
+ .X2 = 100, .Y2 = 100, .Z2 = 3, .Z3 = 3, .Z4 = 3,
+ .E0 = 30, .E1 = 30, .E2 = 30,
+ .E3 = 30, .E4 = 30, .E5 = 30
+ };
+ #endif
+ EEPROM_WRITE(tmc_hybrid_threshold);
+ }
+
+ //
+ // TMC StallGuard threshold
+ //
+ {
+ tmc_sgt_t tmc_sgt{0};
+ #if USE_SENSORLESS
+ TERN_(X_SENSORLESS, tmc_sgt.X = stepperX.homing_threshold());
+ TERN_(X2_SENSORLESS, tmc_sgt.X2 = stepperX2.homing_threshold());
+ TERN_(Y_SENSORLESS, tmc_sgt.Y = stepperY.homing_threshold());
+ TERN_(Y2_SENSORLESS, tmc_sgt.Y2 = stepperY2.homing_threshold());
+ TERN_(Z_SENSORLESS, tmc_sgt.Z = stepperZ.homing_threshold());
+ TERN_(Z2_SENSORLESS, tmc_sgt.Z2 = stepperZ2.homing_threshold());
+ TERN_(Z3_SENSORLESS, tmc_sgt.Z3 = stepperZ3.homing_threshold());
+ TERN_(Z4_SENSORLESS, tmc_sgt.Z4 = stepperZ4.homing_threshold());
+ #endif
+ EEPROM_WRITE(tmc_sgt);
+ }
+
+ //
+ // TMC stepping mode
+ //
+ {
+ _FIELD_TEST(tmc_stealth_enabled);
+
+ tmc_stealth_enabled_t tmc_stealth_enabled = { false };
+ #if AXIS_HAS_STEALTHCHOP(X)
+ tmc_stealth_enabled.X = stepperX.get_stored_stealthChop();
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(Y)
+ tmc_stealth_enabled.Y = stepperY.get_stored_stealthChop();
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(Z)
+ tmc_stealth_enabled.Z = stepperZ.get_stored_stealthChop();
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(X2)
+ tmc_stealth_enabled.X2 = stepperX2.get_stored_stealthChop();
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(Y2)
+ tmc_stealth_enabled.Y2 = stepperY2.get_stored_stealthChop();
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(Z2)
+ tmc_stealth_enabled.Z2 = stepperZ2.get_stored_stealthChop();
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(Z3)
+ tmc_stealth_enabled.Z3 = stepperZ3.get_stored_stealthChop();
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(Z4)
+ tmc_stealth_enabled.Z4 = stepperZ4.get_stored_stealthChop();
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(E0)
+ tmc_stealth_enabled.E0 = stepperE0.get_stored_stealthChop();
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(E1)
+ tmc_stealth_enabled.E1 = stepperE1.get_stored_stealthChop();
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(E2)
+ tmc_stealth_enabled.E2 = stepperE2.get_stored_stealthChop();
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(E3)
+ tmc_stealth_enabled.E3 = stepperE3.get_stored_stealthChop();
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(E4)
+ tmc_stealth_enabled.E4 = stepperE4.get_stored_stealthChop();
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(E5)
+ tmc_stealth_enabled.E5 = stepperE5.get_stored_stealthChop();
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(E6)
+ tmc_stealth_enabled.E6 = stepperE6.get_stored_stealthChop();
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(E7)
+ tmc_stealth_enabled.E7 = stepperE7.get_stored_stealthChop();
+ #endif
+ EEPROM_WRITE(tmc_stealth_enabled);
+ }
+
+ //
+ // Linear Advance
+ //
+ {
+ _FIELD_TEST(planner_extruder_advance_K);
+
+ #if ENABLED(LIN_ADVANCE)
+ EEPROM_WRITE(planner.extruder_advance_K);
+ #else
+ dummyf = 0;
+ for (uint8_t q = _MAX(EXTRUDERS, 1); q--;) EEPROM_WRITE(dummyf);
+ #endif
+ }
+
+ //
+ // Motor Current PWM
+ //
+ {
+ _FIELD_TEST(motor_current_setting);
+
+ #if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
+ EEPROM_WRITE(stepper.motor_current_setting);
+ #else
+ const uint32_t no_current[MOTOR_CURRENT_COUNT] = { 0 };
+ EEPROM_WRITE(no_current);
+ #endif
+ }
+
+ //
+ // CNC Coordinate Systems
+ //
+
+ _FIELD_TEST(coordinate_system);
+
+ #if DISABLED(CNC_COORDINATE_SYSTEMS)
+ const xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS] = { { 0 } };
+ #endif
+ EEPROM_WRITE(TERN(CNC_COORDINATE_SYSTEMS, gcode.coordinate_system, coordinate_system));
+
+ //
+ // Skew correction factors
+ //
+ _FIELD_TEST(planner_skew_factor);
+ EEPROM_WRITE(planner.skew_factor);
+
+ //
+ // Advanced Pause filament load & unload lengths
+ //
+ #if EXTRUDERS
+ {
+ #if DISABLED(ADVANCED_PAUSE_FEATURE)
+ const fil_change_settings_t fc_settings[EXTRUDERS] = { 0, 0 };
+ #endif
+ _FIELD_TEST(fc_settings);
+ EEPROM_WRITE(fc_settings);
+ }
+ #endif
+
+ //
+ // Multiple Extruders
+ //
+
+ #if HAS_MULTI_EXTRUDER
+ _FIELD_TEST(toolchange_settings);
+ EEPROM_WRITE(toolchange_settings);
+ #endif
+
+ //
+ // Backlash Compensation
+ //
+ {
+ #if ENABLED(BACKLASH_GCODE)
+ const xyz_float_t &backlash_distance_mm = backlash.distance_mm;
+ const uint8_t &backlash_correction = backlash.correction;
+ #else
+ const xyz_float_t backlash_distance_mm{0};
+ const uint8_t backlash_correction = 0;
+ #endif
+ #if ENABLED(BACKLASH_GCODE) && defined(BACKLASH_SMOOTHING_MM)
+ const float &backlash_smoothing_mm = backlash.smoothing_mm;
+ #else
+ const float backlash_smoothing_mm = 3;
+ #endif
+ _FIELD_TEST(backlash_distance_mm);
+ EEPROM_WRITE(backlash_distance_mm);
+ EEPROM_WRITE(backlash_correction);
+ EEPROM_WRITE(backlash_smoothing_mm);
+ }
+
+ //
+ // Extensible UI User Data
+ //
+ #if ENABLED(EXTENSIBLE_UI)
+ {
+ char extui_data[ExtUI::eeprom_data_size] = { 0 };
+ ExtUI::onStoreSettings(extui_data);
+ _FIELD_TEST(extui_data);
+ EEPROM_WRITE(extui_data);
+ }
+ #endif
+
+ //
+ // Case Light Brightness
+ //
+ #if CASELIGHT_USES_BRIGHTNESS
+ EEPROM_WRITE(caselight.brightness);
+ #endif
+
+ //
+ // Password feature
+ //
+ #if ENABLED(PASSWORD_FEATURE)
+ EEPROM_WRITE(password.is_set);
+ EEPROM_WRITE(password.value);
+ #endif
+
+ //
+ // TOUCH_SCREEN_CALIBRATION
+ //
+ #if ENABLED(TOUCH_SCREEN_CALIBRATION)
+ EEPROM_WRITE(touch_calibration.calibration);
+ #endif
+
+ //
+ // Ethernet network info
+ //
+ #if HAS_ETHERNET
+ {
+ _FIELD_TEST(ethernet_hardware_enabled);
+ const bool ethernet_hardware_enabled = ethernet.hardware_enabled;
+ const uint32_t ethernet_ip = ethernet.ip,
+ ethernet_dns = ethernet.myDns,
+ ethernet_gateway = ethernet.gateway,
+ ethernet_subnet = ethernet.subnet;
+ EEPROM_WRITE(ethernet_hardware_enabled);
+ EEPROM_WRITE(ethernet_ip);
+ EEPROM_WRITE(ethernet_dns);
+ EEPROM_WRITE(ethernet_gateway);
+ EEPROM_WRITE(ethernet_subnet);
+ }
+ #endif
+
+ //
+ // Buzzer enable/disable
+ //
+ #if ENABLED(SOUND_MENU_ITEM)
+ EEPROM_WRITE(ui.buzzer_enabled);
+ #endif
+
+ //
+ // Selected LCD language
+ //
+ #if HAS_MULTI_LANGUAGE
+ EEPROM_WRITE(ui.language);
+ #endif
+
+ //
+ // Report final CRC and Data Size
+ //
+ if (!eeprom_error) {
+ const uint16_t eeprom_size = eeprom_index - (EEPROM_OFFSET),
+ final_crc = working_crc;
+
+ // Write the EEPROM header
+ eeprom_index = EEPROM_OFFSET;
+
+ EEPROM_WRITE(version);
+ EEPROM_WRITE(final_crc);
+
+ // Report storage size
+ DEBUG_ECHO_START();
+ DEBUG_ECHOLNPAIR("Settings Stored (", eeprom_size, " bytes; crc ", (uint32_t)final_crc, ")");
+
+ eeprom_error |= size_error(eeprom_size);
+ }
+ EEPROM_FINISH();
+
+ //
+ // UBL Mesh
+ //
+ #if ENABLED(UBL_SAVE_ACTIVE_ON_M500)
+ if (ubl.storage_slot >= 0)
+ store_mesh(ubl.storage_slot);
+ #endif
+
+ if (!eeprom_error) LCD_MESSAGEPGM(MSG_SETTINGS_STORED);
+
+ TERN_(EXTENSIBLE_UI, ExtUI::onConfigurationStoreWritten(!eeprom_error));
+
+ return !eeprom_error;
+ }
+
+ /**
+ * M501 - Retrieve Configuration
+ */
+ bool MarlinSettings::_load() {
+ uint16_t working_crc = 0;
+
+ EEPROM_START();
+
+ char stored_ver[4];
+ EEPROM_READ_ALWAYS(stored_ver);
+
+ uint16_t stored_crc;
+ EEPROM_READ_ALWAYS(stored_crc);
+
+ // Version has to match or defaults are used
+ if (strncmp(version, stored_ver, 3) != 0) {
+ if (stored_ver[3] != '\0') {
+ stored_ver[0] = '?';
+ stored_ver[1] = '\0';
+ }
+ DEBUG_ECHO_START();
+ DEBUG_ECHOLNPAIR("EEPROM version mismatch (EEPROM=", stored_ver, " Marlin=" EEPROM_VERSION ")");
+ IF_DISABLED(EEPROM_AUTO_INIT, ui.eeprom_alert_version());
+ eeprom_error = true;
+ }
+ else {
+ float dummyf = 0;
+ working_crc = 0; // Init to 0. Accumulated by EEPROM_READ
+
+ _FIELD_TEST(esteppers);
+
+ // Number of esteppers may change
+ uint8_t esteppers;
+ EEPROM_READ_ALWAYS(esteppers);
+
+ //
+ // Planner Motion
+ //
+ {
+ // Get only the number of E stepper parameters previously stored
+ // Any steppers added later are set to their defaults
+ uint32_t tmp1[XYZ + esteppers];
+ float tmp2[XYZ + esteppers];
+ feedRate_t tmp3[XYZ + esteppers];
+ EEPROM_READ(tmp1); // max_acceleration_mm_per_s2
+ EEPROM_READ(planner.settings.min_segment_time_us);
+ EEPROM_READ(tmp2); // axis_steps_per_mm
+ EEPROM_READ(tmp3); // max_feedrate_mm_s
+
+ if (!validating) LOOP_XYZE_N(i) {
+ const bool in = (i < esteppers + XYZ);
+ planner.settings.max_acceleration_mm_per_s2[i] = in ? tmp1[i] : pgm_read_dword(&_DMA[ALIM(i, _DMA)]);
+ planner.settings.axis_steps_per_mm[i] = in ? tmp2[i] : pgm_read_float(&_DASU[ALIM(i, _DASU)]);
+ planner.settings.max_feedrate_mm_s[i] = in ? tmp3[i] : pgm_read_float(&_DMF[ALIM(i, _DMF)]);
+ }
+
+ EEPROM_READ(planner.settings.acceleration);
+ EEPROM_READ(planner.settings.retract_acceleration);
+ EEPROM_READ(planner.settings.travel_acceleration);
+ EEPROM_READ(planner.settings.min_feedrate_mm_s);
+ EEPROM_READ(planner.settings.min_travel_feedrate_mm_s);
+
+ #if HAS_CLASSIC_JERK
+ EEPROM_READ(planner.max_jerk);
+ #if HAS_LINEAR_E_JERK
+ EEPROM_READ(dummyf);
+ #endif
+ #else
+ for (uint8_t q = 4; q--;) EEPROM_READ(dummyf);
+ #endif
+
+ EEPROM_READ(TERN(CLASSIC_JERK, dummyf, planner.junction_deviation_mm));
+ }
+
+ //
+ // Home Offset (M206 / M665)
+ //
+ {
+ _FIELD_TEST(home_offset);
+
+ #if HAS_SCARA_OFFSET
+ EEPROM_READ(scara_home_offset);
+ #else
+ #if !HAS_HOME_OFFSET
+ xyz_pos_t home_offset;
+ #endif
+ EEPROM_READ(home_offset);
+ #endif
+ }
+
+ //
+ // Hotend Offsets, if any
+ //
+ {
+ #if HAS_HOTEND_OFFSET
+ // Skip hotend 0 which must be 0
+ LOOP_S_L_N(e, 1, HOTENDS)
+ EEPROM_READ(hotend_offset[e]);
+ #endif
+ }
+
+ //
+ // Filament Runout Sensor
+ //
+ {
+ int8_t runout_sensor_enabled;
+ _FIELD_TEST(runout_sensor_enabled);
+ EEPROM_READ(runout_sensor_enabled);
+ #if HAS_FILAMENT_SENSOR
+ runout.enabled = runout_sensor_enabled < 0 ? FIL_RUNOUT_ENABLED_DEFAULT : runout_sensor_enabled;
+ #endif
+
+ TERN_(HAS_FILAMENT_SENSOR, if (runout.enabled) runout.reset());
+
+ float runout_distance_mm;
+ EEPROM_READ(runout_distance_mm);
+ #if HAS_FILAMENT_RUNOUT_DISTANCE
+ if (!validating) runout.set_runout_distance(runout_distance_mm);
+ #endif
+ }
+
+ //
+ // Global Leveling
+ //
+ EEPROM_READ(TERN(ENABLE_LEVELING_FADE_HEIGHT, new_z_fade_height, dummyf));
+
+ //
+ // Mesh (Manual) Bed Leveling
+ //
+ {
+ uint8_t mesh_num_x, mesh_num_y;
+ EEPROM_READ(dummyf);
+ EEPROM_READ_ALWAYS(mesh_num_x);
+ EEPROM_READ_ALWAYS(mesh_num_y);
+
+ #if ENABLED(MESH_BED_LEVELING)
+ if (!validating) mbl.z_offset = dummyf;
+ if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) {
+ // EEPROM data fits the current mesh
+ EEPROM_READ(mbl.z_values);
+ }
+ else {
+ // EEPROM data is stale
+ if (!validating) mbl.reset();
+ for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummyf);
+ }
+ #else
+ // MBL is disabled - skip the stored data
+ for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummyf);
+ #endif // MESH_BED_LEVELING
+ }
+
+ //
+ // Probe Z Offset
+ //
+ {
+ _FIELD_TEST(probe_offset);
+ #if HAS_BED_PROBE
+ const xyz_pos_t &zpo = probe.offset;
+ #else
+ xyz_pos_t zpo;
+ #endif
+ EEPROM_READ(zpo);
+ }
+
+ //
+ // Planar Bed Leveling matrix
+ //
+ {
+ #if ABL_PLANAR
+ EEPROM_READ(planner.bed_level_matrix);
+ #else
+ for (uint8_t q = 9; q--;) EEPROM_READ(dummyf);
+ #endif
+ }
+
+ //
+ // Bilinear Auto Bed Leveling
+ //
+ {
+ uint8_t grid_max_x, grid_max_y;
+ EEPROM_READ_ALWAYS(grid_max_x); // 1 byte
+ EEPROM_READ_ALWAYS(grid_max_y); // 1 byte
+ #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
+ if (grid_max_x == GRID_MAX_POINTS_X && grid_max_y == GRID_MAX_POINTS_Y) {
+ if (!validating) set_bed_leveling_enabled(false);
+ EEPROM_READ(bilinear_grid_spacing); // 2 ints
+ EEPROM_READ(bilinear_start); // 2 ints
+ EEPROM_READ(z_values); // 9 to 256 floats
+ }
+ else // EEPROM data is stale
+ #endif // AUTO_BED_LEVELING_BILINEAR
+ {
+ // Skip past disabled (or stale) Bilinear Grid data
+ xy_pos_t bgs, bs;
+ EEPROM_READ(bgs);
+ EEPROM_READ(bs);
+ for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummyf);
+ }
+ }
+
+ //
+ // Unified Bed Leveling active state
+ //
+ {
+ _FIELD_TEST(planner_leveling_active);
+ #if ENABLED(AUTO_BED_LEVELING_UBL)
+ const bool &planner_leveling_active = planner.leveling_active;
+ const int8_t &ubl_storage_slot = ubl.storage_slot;
+ #else
+ bool planner_leveling_active;
+ int8_t ubl_storage_slot;
+ #endif
+ EEPROM_READ(planner_leveling_active);
+ EEPROM_READ(ubl_storage_slot);
+ }
+
+ //
+ // SERVO_ANGLES
+ //
+ {
+ _FIELD_TEST(servo_angles);
+ #if ENABLED(EDITABLE_SERVO_ANGLES)
+ uint16_t (&servo_angles_arr)[EEPROM_NUM_SERVOS][2] = servo_angles;
+ #else
+ uint16_t servo_angles_arr[EEPROM_NUM_SERVOS][2];
+ #endif
+ EEPROM_READ(servo_angles_arr);
+ }
+
+ //
+ // Thermal first layer compensation values
+ //
+ #if ENABLED(PROBE_TEMP_COMPENSATION)
+ EEPROM_READ(temp_comp.z_offsets_probe);
+ EEPROM_READ(temp_comp.z_offsets_bed);
+ #if ENABLED(USE_TEMP_EXT_COMPENSATION)
+ EEPROM_READ(temp_comp.z_offsets_ext);
+ #endif
+ temp_comp.reset_index();
+ #else
+ // No placeholder data for this feature
+ #endif
+
+ //
+ // BLTOUCH
+ //
+ {
+ _FIELD_TEST(bltouch_last_written_mode);
+ #if ENABLED(BLTOUCH)
+ const bool &bltouch_last_written_mode = bltouch.last_written_mode;
+ #else
+ bool bltouch_last_written_mode;
+ #endif
+ EEPROM_READ(bltouch_last_written_mode);
+ }
+
+ //
+ // DELTA Geometry or Dual Endstops offsets
+ //
+ {
+ #if ENABLED(DELTA)
+
+ _FIELD_TEST(delta_height);
+
+ EEPROM_READ(delta_height); // 1 float
+ EEPROM_READ(delta_endstop_adj); // 3 floats
+ EEPROM_READ(delta_radius); // 1 float
+ EEPROM_READ(delta_diagonal_rod); // 1 float
+ EEPROM_READ(delta_segments_per_second); // 1 float
+ EEPROM_READ(delta_tower_angle_trim); // 3 floats
+ EEPROM_READ(delta_diagonal_rod_trim); // 3 floats
+
+ #elif HAS_EXTRA_ENDSTOPS
+
+ _FIELD_TEST(x2_endstop_adj);
+
+ EEPROM_READ(TERN(X_DUAL_ENDSTOPS, endstops.x2_endstop_adj, dummyf)); // 1 float
+ EEPROM_READ(TERN(Y_DUAL_ENDSTOPS, endstops.y2_endstop_adj, dummyf)); // 1 float
+ EEPROM_READ(TERN(Z_MULTI_ENDSTOPS, endstops.z2_endstop_adj, dummyf)); // 1 float
+
+ #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 3
+ EEPROM_READ(endstops.z3_endstop_adj); // 1 float
+ #else
+ EEPROM_READ(dummyf);
+ #endif
+ #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 4
+ EEPROM_READ(endstops.z4_endstop_adj); // 1 float
+ #else
+ EEPROM_READ(dummyf);
+ #endif
+
+ #endif
+ }
+
+ #if ENABLED(Z_STEPPER_AUTO_ALIGN)
+ EEPROM_READ(z_stepper_align.xy);
+ #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
+ EEPROM_READ(z_stepper_align.stepper_xy);
+ #endif
+ #endif
+
+ //
+ // LCD Preheat settings
+ //
+ #if PREHEAT_COUNT
+ _FIELD_TEST(ui_material_preset);
+ EEPROM_READ(ui.material_preset);
+ #endif
+
+ //
+ // Hotend PID
+ //
+ {
+ HOTEND_LOOP() {
+ PIDCF_t pidcf;
+ EEPROM_READ(pidcf);
+ #if ENABLED(PIDTEMP)
+ if (!validating && !isnan(pidcf.Kp)) {
+ // Scale PID values since EEPROM values are unscaled
+ PID_PARAM(Kp, e) = pidcf.Kp;
+ PID_PARAM(Ki, e) = scalePID_i(pidcf.Ki);
+ PID_PARAM(Kd, e) = scalePID_d(pidcf.Kd);
+ TERN_(PID_EXTRUSION_SCALING, PID_PARAM(Kc, e) = pidcf.Kc);
+ TERN_(PID_FAN_SCALING, PID_PARAM(Kf, e) = pidcf.Kf);
+ }
+ #endif
+ }
+ }
+
+ //
+ // PID Extrusion Scaling
+ //
+ {
+ _FIELD_TEST(lpq_len);
+ #if ENABLED(PID_EXTRUSION_SCALING)
+ const int16_t &lpq_len = thermalManager.lpq_len;
+ #else
+ int16_t lpq_len;
+ #endif
+ EEPROM_READ(lpq_len);
+ }
+
+ //
+ // Heated Bed PID
+ //
+ {
+ PID_t pid;
+ EEPROM_READ(pid);
+ #if ENABLED(PIDTEMPBED)
+ if (!validating && !isnan(pid.Kp)) {
+ // Scale PID values since EEPROM values are unscaled
+ thermalManager.temp_bed.pid.Kp = pid.Kp;
+ thermalManager.temp_bed.pid.Ki = scalePID_i(pid.Ki);
+ thermalManager.temp_bed.pid.Kd = scalePID_d(pid.Kd);
+ }
+ #endif
+ }
+
+ //
+ // User-defined Thermistors
+ //
+ #if HAS_USER_THERMISTORS
+ {
+ _FIELD_TEST(user_thermistor);
+ EEPROM_READ(thermalManager.user_thermistor);
+ }
+ #endif
+
+ //
+ // Power monitor
+ //
+ {
+ #if HAS_POWER_MONITOR
+ uint8_t &power_monitor_flags = power_monitor.flags;
+ #else
+ uint8_t power_monitor_flags;
+ #endif
+ _FIELD_TEST(power_monitor_flags);
+ EEPROM_READ(power_monitor_flags);
+ }
+
+ //
+ // LCD Contrast
+ //
+ {
+ _FIELD_TEST(lcd_contrast);
+ int16_t lcd_contrast;
+ EEPROM_READ(lcd_contrast);
+ if (!validating) {
+ TERN_(HAS_LCD_CONTRAST, ui.set_contrast(lcd_contrast));
+ }
+ }
+
+ //
+ // Controller Fan
+ //
+ {
+ _FIELD_TEST(controllerFan_settings);
+ #if ENABLED(CONTROLLER_FAN_EDITABLE)
+ const controllerFan_settings_t &cfs = controllerFan.settings;
+ #else
+ controllerFan_settings_t cfs = { 0 };
+ #endif
+ EEPROM_READ(cfs);
+ }
+
+ //
+ // Power-Loss Recovery
+ //
+ {
+ _FIELD_TEST(recovery_enabled);
+ #if ENABLED(POWER_LOSS_RECOVERY)
+ const bool &recovery_enabled = recovery.enabled;
+ #else
+ bool recovery_enabled;
+ #endif
+ EEPROM_READ(recovery_enabled);
+ }
+
+ //
+ // Firmware Retraction
+ //
+ {
+ _FIELD_TEST(fwretract_settings);
+
+ #if ENABLED(FWRETRACT)
+ EEPROM_READ(fwretract.settings);
+ #else
+ fwretract_settings_t fwretract_settings;
+ EEPROM_READ(fwretract_settings);
+ #endif
+ #if BOTH(FWRETRACT, FWRETRACT_AUTORETRACT)
+ EEPROM_READ(fwretract.autoretract_enabled);
+ #else
+ bool autoretract_enabled;
+ EEPROM_READ(autoretract_enabled);
+ #endif
+ }
+
+ //
+ // Volumetric & Filament Size
+ //
+ {
+ struct {
+ bool volumetric_enabled;
+ float filament_size[EXTRUDERS];
+ float volumetric_extruder_limit[EXTRUDERS];
+ } storage;
+
+ _FIELD_TEST(parser_volumetric_enabled);
+ EEPROM_READ(storage);
+
+ #if DISABLED(NO_VOLUMETRICS)
+ if (!validating) {
+ parser.volumetric_enabled = storage.volumetric_enabled;
+ COPY(planner.filament_size, storage.filament_size);
+ #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
+ COPY(planner.volumetric_extruder_limit, storage.volumetric_extruder_limit);
+ #endif
+ }
+ #endif
+ }
+
+ //
+ // TMC Stepper Settings
+ //
+
+ if (!validating) reset_stepper_drivers();
+
+ // TMC Stepper Current
+ {
+ _FIELD_TEST(tmc_stepper_current);
+
+ tmc_stepper_current_t currents;
+ EEPROM_READ(currents);
+
+ #if HAS_TRINAMIC_CONFIG
+
+ #define SET_CURR(Q) stepper##Q.rms_current(currents.Q ? currents.Q : Q##_CURRENT)
+ if (!validating) {
+ #if AXIS_IS_TMC(X)
+ SET_CURR(X);
+ #endif
+ #if AXIS_IS_TMC(Y)
+ SET_CURR(Y);
+ #endif
+ #if AXIS_IS_TMC(Z)
+ SET_CURR(Z);
+ #endif
+ #if AXIS_IS_TMC(X2)
+ SET_CURR(X2);
+ #endif
+ #if AXIS_IS_TMC(Y2)
+ SET_CURR(Y2);
+ #endif
+ #if AXIS_IS_TMC(Z2)
+ SET_CURR(Z2);
+ #endif
+ #if AXIS_IS_TMC(Z3)
+ SET_CURR(Z3);
+ #endif
+ #if AXIS_IS_TMC(Z4)
+ SET_CURR(Z4);
+ #endif
+ #if AXIS_IS_TMC(E0)
+ SET_CURR(E0);
+ #endif
+ #if AXIS_IS_TMC(E1)
+ SET_CURR(E1);
+ #endif
+ #if AXIS_IS_TMC(E2)
+ SET_CURR(E2);
+ #endif
+ #if AXIS_IS_TMC(E3)
+ SET_CURR(E3);
+ #endif
+ #if AXIS_IS_TMC(E4)
+ SET_CURR(E4);
+ #endif
+ #if AXIS_IS_TMC(E5)
+ SET_CURR(E5);
+ #endif
+ #if AXIS_IS_TMC(E6)
+ SET_CURR(E6);
+ #endif
+ #if AXIS_IS_TMC(E7)
+ SET_CURR(E7);
+ #endif
+ }
+ #endif
+ }
+
+ // TMC Hybrid Threshold
+ {
+ tmc_hybrid_threshold_t tmc_hybrid_threshold;
+ _FIELD_TEST(tmc_hybrid_threshold);
+ EEPROM_READ(tmc_hybrid_threshold);
+
+ #if ENABLED(HYBRID_THRESHOLD)
+ if (!validating) {
+ #if AXIS_HAS_STEALTHCHOP(X)
+ stepperX.set_pwm_thrs(tmc_hybrid_threshold.X);
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(Y)
+ stepperY.set_pwm_thrs(tmc_hybrid_threshold.Y);
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(Z)
+ stepperZ.set_pwm_thrs(tmc_hybrid_threshold.Z);
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(X2)
+ stepperX2.set_pwm_thrs(tmc_hybrid_threshold.X2);
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(Y2)
+ stepperY2.set_pwm_thrs(tmc_hybrid_threshold.Y2);
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(Z2)
+ stepperZ2.set_pwm_thrs(tmc_hybrid_threshold.Z2);
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(Z3)
+ stepperZ3.set_pwm_thrs(tmc_hybrid_threshold.Z3);
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(Z4)
+ stepperZ4.set_pwm_thrs(tmc_hybrid_threshold.Z4);
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(E0)
+ stepperE0.set_pwm_thrs(tmc_hybrid_threshold.E0);
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(E1)
+ stepperE1.set_pwm_thrs(tmc_hybrid_threshold.E1);
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(E2)
+ stepperE2.set_pwm_thrs(tmc_hybrid_threshold.E2);
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(E3)
+ stepperE3.set_pwm_thrs(tmc_hybrid_threshold.E3);
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(E4)
+ stepperE4.set_pwm_thrs(tmc_hybrid_threshold.E4);
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(E5)
+ stepperE5.set_pwm_thrs(tmc_hybrid_threshold.E5);
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(E6)
+ stepperE6.set_pwm_thrs(tmc_hybrid_threshold.E6);
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(E7)
+ stepperE7.set_pwm_thrs(tmc_hybrid_threshold.E7);
+ #endif
+ }
+ #endif
+ }
+
+ //
+ // TMC StallGuard threshold.
+ //
+ {
+ tmc_sgt_t tmc_sgt;
+ _FIELD_TEST(tmc_sgt);
+ EEPROM_READ(tmc_sgt);
+ #if USE_SENSORLESS
+ if (!validating) {
+ TERN_(X_SENSORLESS, stepperX.homing_threshold(tmc_sgt.X));
+ TERN_(X2_SENSORLESS, stepperX2.homing_threshold(tmc_sgt.X2));
+ TERN_(Y_SENSORLESS, stepperY.homing_threshold(tmc_sgt.Y));
+ TERN_(Y2_SENSORLESS, stepperY2.homing_threshold(tmc_sgt.Y2));
+ TERN_(Z_SENSORLESS, stepperZ.homing_threshold(tmc_sgt.Z));
+ TERN_(Z2_SENSORLESS, stepperZ2.homing_threshold(tmc_sgt.Z2));
+ TERN_(Z3_SENSORLESS, stepperZ3.homing_threshold(tmc_sgt.Z3));
+ TERN_(Z4_SENSORLESS, stepperZ4.homing_threshold(tmc_sgt.Z4));
+ }
+ #endif
+ }
+
+ // TMC stepping mode
+ {
+ _FIELD_TEST(tmc_stealth_enabled);
+
+ tmc_stealth_enabled_t tmc_stealth_enabled;
+ EEPROM_READ(tmc_stealth_enabled);
+
+ #if HAS_TRINAMIC_CONFIG
+
+ #define SET_STEPPING_MODE(ST) stepper##ST.stored.stealthChop_enabled = tmc_stealth_enabled.ST; stepper##ST.refresh_stepping_mode();
+ if (!validating) {
+ #if AXIS_HAS_STEALTHCHOP(X)
+ SET_STEPPING_MODE(X);
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(Y)
+ SET_STEPPING_MODE(Y);
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(Z)
+ SET_STEPPING_MODE(Z);
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(X2)
+ SET_STEPPING_MODE(X2);
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(Y2)
+ SET_STEPPING_MODE(Y2);
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(Z2)
+ SET_STEPPING_MODE(Z2);
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(Z3)
+ SET_STEPPING_MODE(Z3);
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(Z4)
+ SET_STEPPING_MODE(Z4);
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(E0)
+ SET_STEPPING_MODE(E0);
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(E1)
+ SET_STEPPING_MODE(E1);
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(E2)
+ SET_STEPPING_MODE(E2);
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(E3)
+ SET_STEPPING_MODE(E3);
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(E4)
+ SET_STEPPING_MODE(E4);
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(E5)
+ SET_STEPPING_MODE(E5);
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(E6)
+ SET_STEPPING_MODE(E6);
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(E7)
+ SET_STEPPING_MODE(E7);
+ #endif
+ }
+ #endif
+ }
+
+ //
+ // Linear Advance
+ //
+ {
+ float extruder_advance_K[_MAX(EXTRUDERS, 1)];
+ _FIELD_TEST(planner_extruder_advance_K);
+ EEPROM_READ(extruder_advance_K);
+ #if ENABLED(LIN_ADVANCE)
+ if (!validating)
+ COPY(planner.extruder_advance_K, extruder_advance_K);
+ #endif
+ }
+
+ //
+ // Motor Current PWM
+ //
+ {
+ _FIELD_TEST(motor_current_setting);
+ uint32_t motor_current_setting[MOTOR_CURRENT_COUNT]
+ #if HAS_MOTOR_CURRENT_SPI
+ = DIGIPOT_MOTOR_CURRENT
+ #endif
+ ;
+ DEBUG_ECHOLNPGM("DIGIPOTS Loading");
+ EEPROM_READ(motor_current_setting);
+ DEBUG_ECHOLNPGM("DIGIPOTS Loaded");
+ #if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
+ if (!validating)
+ COPY(stepper.motor_current_setting, motor_current_setting);
+ #endif
+ }
+
+ //
+ // CNC Coordinate System
+ //
+ {
+ _FIELD_TEST(coordinate_system);
+ #if ENABLED(CNC_COORDINATE_SYSTEMS)
+ if (!validating) (void)gcode.select_coordinate_system(-1); // Go back to machine space
+ EEPROM_READ(gcode.coordinate_system);
+ #else
+ xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS];
+ EEPROM_READ(coordinate_system);
+ #endif
+ }
+
+ //
+ // Skew correction factors
+ //
+ {
+ skew_factor_t skew_factor;
+ _FIELD_TEST(planner_skew_factor);
+ EEPROM_READ(skew_factor);
+ #if ENABLED(SKEW_CORRECTION_GCODE)
+ if (!validating) {
+ planner.skew_factor.xy = skew_factor.xy;
+ #if ENABLED(SKEW_CORRECTION_FOR_Z)
+ planner.skew_factor.xz = skew_factor.xz;
+ planner.skew_factor.yz = skew_factor.yz;
+ #endif
+ }
+ #endif
+ }
+
+ //
+ // Advanced Pause filament load & unload lengths
+ //
+ #if EXTRUDERS
+ {
+ #if DISABLED(ADVANCED_PAUSE_FEATURE)
+ fil_change_settings_t fc_settings[EXTRUDERS];
+ #endif
+ _FIELD_TEST(fc_settings);
+ EEPROM_READ(fc_settings);
+ }
+ #endif
+
+ //
+ // Tool-change settings
+ //
+ #if HAS_MULTI_EXTRUDER
+ _FIELD_TEST(toolchange_settings);
+ EEPROM_READ(toolchange_settings);
+ #endif
+
+ //
+ // Backlash Compensation
+ //
+ {
+ #if ENABLED(BACKLASH_GCODE)
+ const xyz_float_t &backlash_distance_mm = backlash.distance_mm;
+ const uint8_t &backlash_correction = backlash.correction;
+ #else
+ float backlash_distance_mm[XYZ];
+ uint8_t backlash_correction;
+ #endif
+ #if ENABLED(BACKLASH_GCODE) && defined(BACKLASH_SMOOTHING_MM)
+ const float &backlash_smoothing_mm = backlash.smoothing_mm;
+ #else
+ float backlash_smoothing_mm;
+ #endif
+ _FIELD_TEST(backlash_distance_mm);
+ EEPROM_READ(backlash_distance_mm);
+ EEPROM_READ(backlash_correction);
+ EEPROM_READ(backlash_smoothing_mm);
+ }
+
+ //
+ // Extensible UI User Data
+ //
+ #if ENABLED(EXTENSIBLE_UI)
+ // This is a significant hardware change; don't reserve EEPROM space when not present
+ {
+ const char extui_data[ExtUI::eeprom_data_size] = { 0 };
+ _FIELD_TEST(extui_data);
+ EEPROM_READ(extui_data);
+ if (!validating) ExtUI::onLoadSettings(extui_data);
+ }
+ #endif
+
+ //
+ // Case Light Brightness
+ //
+ #if CASELIGHT_USES_BRIGHTNESS
+ _FIELD_TEST(caselight_brightness);
+ EEPROM_READ(caselight.brightness);
+ #endif
+
+ //
+ // Password feature
+ //
+ #if ENABLED(PASSWORD_FEATURE)
+ _FIELD_TEST(password_is_set);
+ EEPROM_READ(password.is_set);
+ EEPROM_READ(password.value);
+ #endif
+
+ //
+ // TOUCH_SCREEN_CALIBRATION
+ //
+ #if ENABLED(TOUCH_SCREEN_CALIBRATION)
+ _FIELD_TEST(touch_calibration_data);
+ EEPROM_READ(touch_calibration.calibration);
+ #endif
+
+ //
+ // Ethernet network info
+ //
+ #if HAS_ETHERNET
+ _FIELD_TEST(ethernet_hardware_enabled);
+ uint32_t ethernet_ip, ethernet_dns, ethernet_gateway, ethernet_subnet;
+ EEPROM_READ(ethernet.hardware_enabled);
+ EEPROM_READ(ethernet_ip); ethernet.ip = ethernet_ip;
+ EEPROM_READ(ethernet_dns); ethernet.myDns = ethernet_dns;
+ EEPROM_READ(ethernet_gateway); ethernet.gateway = ethernet_gateway;
+ EEPROM_READ(ethernet_subnet); ethernet.subnet = ethernet_subnet;
+ #endif
+
+ //
+ // Buzzer enable/disable
+ //
+ #if ENABLED(SOUND_MENU_ITEM)
+ _FIELD_TEST(buzzer_enabled);
+ EEPROM_READ(ui.buzzer_enabled);
+ #endif
+
+ //
+ // Selected LCD language
+ //
+ #if HAS_MULTI_LANGUAGE
+ {
+ uint8_t ui_language;
+ EEPROM_READ(ui_language);
+ if (ui_language >= NUM_LANGUAGES) ui_language = 0;
+ ui.set_language(ui_language);
+ }
+ #endif
+
+ //
+ // Validate Final Size and CRC
+ //
+ eeprom_error = size_error(eeprom_index - (EEPROM_OFFSET));
+ if (eeprom_error) {
+ DEBUG_ECHO_START();
+ DEBUG_ECHOLNPAIR("Index: ", int(eeprom_index - (EEPROM_OFFSET)), " Size: ", datasize());
+ IF_DISABLED(EEPROM_AUTO_INIT, ui.eeprom_alert_index());
+ }
+ else if (working_crc != stored_crc) {
+ eeprom_error = true;
+ DEBUG_ERROR_START();
+ DEBUG_ECHOLNPAIR("EEPROM CRC mismatch - (stored) ", stored_crc, " != ", working_crc, " (calculated)!");
+ IF_DISABLED(EEPROM_AUTO_INIT, ui.eeprom_alert_crc());
+ }
+ else if (!validating) {
+ DEBUG_ECHO_START();
+ DEBUG_ECHO(version);
+ DEBUG_ECHOLNPAIR(" stored settings retrieved (", eeprom_index - (EEPROM_OFFSET), " bytes; crc ", (uint32_t)working_crc, ")");
+ }
+
+ if (!validating && !eeprom_error) postprocess();
+
+ #if ENABLED(AUTO_BED_LEVELING_UBL)
+ if (!validating) {
+ ubl.report_state();
+
+ if (!ubl.sanity_check()) {
+ SERIAL_EOL();
+ #if BOTH(EEPROM_CHITCHAT, DEBUG_LEVELING_FEATURE)
+ ubl.echo_name();
+ DEBUG_ECHOLNPGM(" initialized.\n");
+ #endif
+ }
+ else {
+ eeprom_error = true;
+ #if BOTH(EEPROM_CHITCHAT, DEBUG_LEVELING_FEATURE)
+ DEBUG_ECHOPGM("?Can't enable ");
+ ubl.echo_name();
+ DEBUG_ECHOLNPGM(".");
+ #endif
+ ubl.reset();
+ }
+
+ if (ubl.storage_slot >= 0) {
+ load_mesh(ubl.storage_slot);
+ DEBUG_ECHOLNPAIR("Mesh ", ubl.storage_slot, " loaded from storage.");
+ }
+ else {
+ ubl.reset();
+ DEBUG_ECHOLNPGM("UBL reset");
+ }
+ }
+ #endif
+ }
+
+ #if ENABLED(EEPROM_CHITCHAT) && DISABLED(DISABLE_M503)
+ // Report the EEPROM settings
+ if (!validating && TERN1(EEPROM_BOOT_SILENT, IsRunning())) report();
+ #endif
+
+ EEPROM_FINISH();
+
+ return !eeprom_error;
+ }
+
+ #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
+ extern bool restoreEEPROM();
+ #endif
+
+ bool MarlinSettings::validate() {
+ validating = true;
+ #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
+ bool success = _load();
+ if (!success && restoreEEPROM()) {
+ SERIAL_ECHOLNPGM("Recovered backup EEPROM settings from SPI Flash");
+ success = _load();
+ }
+ #else
+ const bool success = _load();
+ #endif
+ validating = false;
+ return success;
+ }
+
+ bool MarlinSettings::load() {
+ if (validate()) {
+ const bool success = _load();
+ TERN_(EXTENSIBLE_UI, ExtUI::onConfigurationStoreRead(success));
+ return success;
+ }
+ reset();
+ #if ENABLED(EEPROM_AUTO_INIT)
+ (void)save();
+ SERIAL_ECHO_MSG("EEPROM Initialized");
+ #endif
+ return false;
+ }
+
+ #if ENABLED(AUTO_BED_LEVELING_UBL)
+
+ inline void ubl_invalid_slot(const int s) {
+ #if BOTH(EEPROM_CHITCHAT, DEBUG_OUT)
+ DEBUG_ECHOLNPGM("?Invalid slot.");
+ DEBUG_ECHO(s);
+ DEBUG_ECHOLNPGM(" mesh slots available.");
+ #else
+ UNUSED(s);
+ #endif
+ }
+
+ const uint16_t MarlinSettings::meshes_end = persistentStore.capacity() - 129; // 128 (+1 because of the change to capacity rather than last valid address)
+ // is a placeholder for the size of the MAT; the MAT will always
+ // live at the very end of the eeprom
+
+ uint16_t MarlinSettings::meshes_start_index() {
+ return (datasize() + EEPROM_OFFSET + 32) & 0xFFF8; // Pad the end of configuration data so it can float up
+ // or down a little bit without disrupting the mesh data
+ }
+
+ #define MESH_STORE_SIZE sizeof(TERN(OPTIMIZED_MESH_STORAGE, mesh_store_t, ubl.z_values))
+
+ uint16_t MarlinSettings::calc_num_meshes() {
+ return (meshes_end - meshes_start_index()) / MESH_STORE_SIZE;
+ }
+
+ int MarlinSettings::mesh_slot_offset(const int8_t slot) {
+ return meshes_end - (slot + 1) * MESH_STORE_SIZE;
+ }
+
+ void MarlinSettings::store_mesh(const int8_t slot) {
+
+ #if ENABLED(AUTO_BED_LEVELING_UBL)
+ const int16_t a = calc_num_meshes();
+ if (!WITHIN(slot, 0, a - 1)) {
+ ubl_invalid_slot(a);
+ DEBUG_ECHOLNPAIR("E2END=", persistentStore.capacity() - 1, " meshes_end=", meshes_end, " slot=", slot);
+ DEBUG_EOL();
+ return;
+ }
+
+ int pos = mesh_slot_offset(slot);
+ uint16_t crc = 0;
+
+ #if ENABLED(OPTIMIZED_MESH_STORAGE)
+ int16_t z_mesh_store[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
+ ubl.set_store_from_mesh(ubl.z_values, z_mesh_store);
+ uint8_t * const src = (uint8_t*)&z_mesh_store;
+ #else
+ uint8_t * const src = (uint8_t*)&ubl.z_values;
+ #endif
+
+ // Write crc to MAT along with other data, or just tack on to the beginning or end
+ persistentStore.access_start();
+ const bool status = persistentStore.write_data(pos, src, MESH_STORE_SIZE, &crc);
+ persistentStore.access_finish();
+
+ if (status) SERIAL_ECHOLNPGM("?Unable to save mesh data.");
+ else DEBUG_ECHOLNPAIR("Mesh saved in slot ", slot);
+
+ #else
+
+ // Other mesh types
+
+ #endif
+ }
+
+ void MarlinSettings::load_mesh(const int8_t slot, void * const into/*=nullptr*/) {
+
+ #if ENABLED(AUTO_BED_LEVELING_UBL)
+
+ const int16_t a = settings.calc_num_meshes();
+
+ if (!WITHIN(slot, 0, a - 1)) {
+ ubl_invalid_slot(a);
+ return;
+ }
+
+ int pos = mesh_slot_offset(slot);
+ uint16_t crc = 0;
+ #if ENABLED(OPTIMIZED_MESH_STORAGE)
+ int16_t z_mesh_store[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
+ uint8_t * const dest = (uint8_t*)&z_mesh_store;
+ #else
+ uint8_t * const dest = into ? (uint8_t*)into : (uint8_t*)&ubl.z_values;
+ #endif
+
+ persistentStore.access_start();
+ const uint16_t status = persistentStore.read_data(pos, dest, MESH_STORE_SIZE, &crc);
+ persistentStore.access_finish();
+
+ #if ENABLED(OPTIMIZED_MESH_STORAGE)
+ if (into) {
+ float z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
+ ubl.set_mesh_from_store(z_mesh_store, z_values);
+ memcpy(into, z_values, sizeof(z_values));
+ }
+ else
+ ubl.set_mesh_from_store(z_mesh_store, ubl.z_values);
+ #endif
+
+ if (status) SERIAL_ECHOLNPGM("?Unable to load mesh data.");
+ else DEBUG_ECHOLNPAIR("Mesh loaded from slot ", slot);
+
+ EEPROM_FINISH();
+
+ #else
+
+ // Other mesh types
+
+ #endif
+ }
+
+ //void MarlinSettings::delete_mesh() { return; }
+ //void MarlinSettings::defrag_meshes() { return; }
+
+ #endif // AUTO_BED_LEVELING_UBL
+
+#else // !EEPROM_SETTINGS
+
+ bool MarlinSettings::save() {
+ DEBUG_ERROR_MSG("EEPROM disabled");
+ return false;
+ }
+
+#endif // !EEPROM_SETTINGS
+
+/**
+ * M502 - Reset Configuration
+ */
+void MarlinSettings::reset() {
+ LOOP_XYZE_N(i) {
+ planner.settings.max_acceleration_mm_per_s2[i] = pgm_read_dword(&_DMA[ALIM(i, _DMA)]);
+ planner.settings.axis_steps_per_mm[i] = pgm_read_float(&_DASU[ALIM(i, _DASU)]);
+ planner.settings.max_feedrate_mm_s[i] = pgm_read_float(&_DMF[ALIM(i, _DMF)]);
+ }
+
+ planner.settings.min_segment_time_us = DEFAULT_MINSEGMENTTIME;
+ planner.settings.acceleration = DEFAULT_ACCELERATION;
+ planner.settings.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
+ planner.settings.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
+ planner.settings.min_feedrate_mm_s = feedRate_t(DEFAULT_MINIMUMFEEDRATE);
+ planner.settings.min_travel_feedrate_mm_s = feedRate_t(DEFAULT_MINTRAVELFEEDRATE);
+
+ #if HAS_CLASSIC_JERK
+ #ifndef DEFAULT_XJERK
+ #define DEFAULT_XJERK 0
+ #endif
+ #ifndef DEFAULT_YJERK
+ #define DEFAULT_YJERK 0
+ #endif
+ #ifndef DEFAULT_ZJERK
+ #define DEFAULT_ZJERK 0
+ #endif
+ planner.max_jerk.set(DEFAULT_XJERK, DEFAULT_YJERK, DEFAULT_ZJERK);
+ TERN_(HAS_CLASSIC_E_JERK, planner.max_jerk.e = DEFAULT_EJERK;);
+ #endif
+
+ #if HAS_JUNCTION_DEVIATION
+ planner.junction_deviation_mm = float(JUNCTION_DEVIATION_MM);
+ #endif
+
+ #if HAS_SCARA_OFFSET
+ scara_home_offset.reset();
+ #elif HAS_HOME_OFFSET
+ home_offset.reset();
+ #endif
+
+ TERN_(HAS_HOTEND_OFFSET, reset_hotend_offsets());
+
+ //
+ // Filament Runout Sensor
+ //
+
+ #if HAS_FILAMENT_SENSOR
+ runout.enabled = FIL_RUNOUT_ENABLED_DEFAULT;
+ runout.reset();
+ TERN_(HAS_FILAMENT_RUNOUT_DISTANCE, runout.set_runout_distance(FILAMENT_RUNOUT_DISTANCE_MM));
+ #endif
+
+ //
+ // Tool-change Settings
+ //
+
+ #if HAS_MULTI_EXTRUDER
+ #if ENABLED(TOOLCHANGE_FILAMENT_SWAP)
+ toolchange_settings.swap_length = TOOLCHANGE_FS_LENGTH;
+ toolchange_settings.extra_resume = TOOLCHANGE_FS_EXTRA_RESUME_LENGTH;
+ toolchange_settings.retract_speed = TOOLCHANGE_FS_RETRACT_SPEED;
+ toolchange_settings.unretract_speed = TOOLCHANGE_FS_UNRETRACT_SPEED;
+ toolchange_settings.extra_prime = TOOLCHANGE_FS_EXTRA_PRIME;
+ toolchange_settings.prime_speed = TOOLCHANGE_FS_PRIME_SPEED;
+ toolchange_settings.fan_speed = TOOLCHANGE_FS_FAN_SPEED;
+ toolchange_settings.fan_time = TOOLCHANGE_FS_FAN_TIME;
+ #endif
+
+ #if ENABLED(TOOLCHANGE_FS_PRIME_FIRST_USED)
+ enable_first_prime = false;
+ #endif
+
+ #if ENABLED(TOOLCHANGE_PARK)
+ constexpr xyz_pos_t tpxy = TOOLCHANGE_PARK_XY;
+ toolchange_settings.enable_park = true;
+ toolchange_settings.change_point = tpxy;
+ #endif
+
+ toolchange_settings.z_raise = TOOLCHANGE_ZRAISE;
+
+ #if ENABLED(TOOLCHANGE_MIGRATION_FEATURE)
+ migration = migration_defaults;
+ #endif
+
+ #endif
+
+ #if ENABLED(BACKLASH_GCODE)
+ backlash.correction = (BACKLASH_CORRECTION) * 255;
+ constexpr xyz_float_t tmp = BACKLASH_DISTANCE_MM;
+ backlash.distance_mm = tmp;
+ #ifdef BACKLASH_SMOOTHING_MM
+ backlash.smoothing_mm = BACKLASH_SMOOTHING_MM;
+ #endif
+ #endif
+
+ TERN_(EXTENSIBLE_UI, ExtUI::onFactoryReset());
+
+ //
+ // Case Light Brightness
+ //
+ TERN_(CASELIGHT_USES_BRIGHTNESS, caselight.brightness = CASE_LIGHT_DEFAULT_BRIGHTNESS);
+
+ //
+ // TOUCH_SCREEN_CALIBRATION
+ //
+ TERN_(TOUCH_SCREEN_CALIBRATION, touch_calibration.calibration_reset());
+
+ //
+ // Buzzer enable/disable
+ //
+ TERN_(SOUND_MENU_ITEM, ui.buzzer_enabled = true);
+
+ //
+ // Magnetic Parking Extruder
+ //
+ TERN_(MAGNETIC_PARKING_EXTRUDER, mpe_settings_init());
+
+ //
+ // Global Leveling
+ //
+ TERN_(ENABLE_LEVELING_FADE_HEIGHT, new_z_fade_height = (DEFAULT_LEVELING_FADE_HEIGHT));
+ TERN_(HAS_LEVELING, reset_bed_level());
+
+ #if HAS_BED_PROBE
+ constexpr float dpo[] = NOZZLE_TO_PROBE_OFFSET;
+ static_assert(COUNT(dpo) == 3, "NOZZLE_TO_PROBE_OFFSET must contain offsets for X, Y, and Z.");
+ #if HAS_PROBE_XY_OFFSET
+ LOOP_XYZ(a) probe.offset[a] = dpo[a];
+ #else
+ probe.offset.set(0, 0, dpo[Z_AXIS]);
+ #endif
+ #endif
+
+ //
+ // Z Stepper Auto-alignment points
+ //
+ TERN_(Z_STEPPER_AUTO_ALIGN, z_stepper_align.reset_to_default());
+
+ //
+ // Servo Angles
+ //
+ TERN_(EDITABLE_SERVO_ANGLES, COPY(servo_angles, base_servo_angles)); // When not editable only one copy of servo angles exists
+
+ //
+ // BLTOUCH
+ //
+ //#if ENABLED(BLTOUCH)
+ // bltouch.last_written_mode;
+ //#endif
+
+ //
+ // Endstop Adjustments
+ //
+
+ #if ENABLED(DELTA)
+ const abc_float_t adj = DELTA_ENDSTOP_ADJ, dta = DELTA_TOWER_ANGLE_TRIM, ddr = DELTA_DIAGONAL_ROD_TRIM_TOWER;
+ delta_height = DELTA_HEIGHT;
+ delta_endstop_adj = adj;
+ delta_radius = DELTA_RADIUS;
+ delta_diagonal_rod = DELTA_DIAGONAL_ROD;
+ delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
+ delta_tower_angle_trim = dta;
+ delta_diagonal_rod_trim = ddr;
+ #endif
+
+ #if ENABLED(X_DUAL_ENDSTOPS)
+ #ifndef X2_ENDSTOP_ADJUSTMENT
+ #define X2_ENDSTOP_ADJUSTMENT 0
+ #endif
+ endstops.x2_endstop_adj = X2_ENDSTOP_ADJUSTMENT;
+ #endif
+
+ #if ENABLED(Y_DUAL_ENDSTOPS)
+ #ifndef Y2_ENDSTOP_ADJUSTMENT
+ #define Y2_ENDSTOP_ADJUSTMENT 0
+ #endif
+ endstops.y2_endstop_adj = Y2_ENDSTOP_ADJUSTMENT;
+ #endif
+
+ #if ENABLED(Z_MULTI_ENDSTOPS)
+ #ifndef Z2_ENDSTOP_ADJUSTMENT
+ #define Z2_ENDSTOP_ADJUSTMENT 0
+ #endif
+ endstops.z2_endstop_adj = Z2_ENDSTOP_ADJUSTMENT;
+ #if NUM_Z_STEPPER_DRIVERS >= 3
+ #ifndef Z3_ENDSTOP_ADJUSTMENT
+ #define Z3_ENDSTOP_ADJUSTMENT 0
+ #endif
+ endstops.z3_endstop_adj = Z3_ENDSTOP_ADJUSTMENT;
+ #endif
+ #if NUM_Z_STEPPER_DRIVERS >= 4
+ #ifndef Z4_ENDSTOP_ADJUSTMENT
+ #define Z4_ENDSTOP_ADJUSTMENT 0
+ #endif
+ endstops.z4_endstop_adj = Z4_ENDSTOP_ADJUSTMENT;
+ #endif
+ #endif
+
+ //
+ // Preheat parameters
+ //
+ #if PREHEAT_COUNT
+ #if HAS_HOTEND
+ constexpr uint16_t hpre[] = ARRAY_N(PREHEAT_COUNT, PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND, PREHEAT_3_TEMP_HOTEND, PREHEAT_4_TEMP_HOTEND, PREHEAT_5_TEMP_HOTEND);
+ #endif
+ #if HAS_HEATED_BED
+ constexpr uint16_t bpre[] = ARRAY_N(PREHEAT_COUNT, PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED, PREHEAT_3_TEMP_BED, PREHEAT_4_TEMP_BED, PREHEAT_5_TEMP_BED);
+ #endif
+ #if HAS_FAN
+ constexpr uint8_t fpre[] = ARRAY_N(PREHEAT_COUNT, PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED, PREHEAT_3_FAN_SPEED, PREHEAT_4_FAN_SPEED, PREHEAT_5_FAN_SPEED);
+ #endif
+ LOOP_L_N(i, PREHEAT_COUNT) {
+ #if HAS_HOTEND
+ ui.material_preset[i].hotend_temp = hpre[i];
+ #endif
+ #if HAS_HEATED_BED
+ ui.material_preset[i].bed_temp = bpre[i];
+ #endif
+ #if HAS_FAN
+ ui.material_preset[i].fan_speed = fpre[i];
+ #endif
+ }
+ #endif
+
+ //
+ // Hotend PID
+ //
+
+ #if ENABLED(PIDTEMP)
+ #if ENABLED(PID_PARAMS_PER_HOTEND)
+ constexpr float defKp[] =
+ #ifdef DEFAULT_Kp_LIST
+ DEFAULT_Kp_LIST
+ #else
+ ARRAY_BY_HOTENDS1(DEFAULT_Kp)
+ #endif
+ , defKi[] =
+ #ifdef DEFAULT_Ki_LIST
+ DEFAULT_Ki_LIST
+ #else
+ ARRAY_BY_HOTENDS1(DEFAULT_Ki)
+ #endif
+ , defKd[] =
+ #ifdef DEFAULT_Kd_LIST
+ DEFAULT_Kd_LIST
+ #else
+ ARRAY_BY_HOTENDS1(DEFAULT_Kd)
+ #endif
+ ;
+ static_assert(WITHIN(COUNT(defKp), 1, HOTENDS), "DEFAULT_Kp_LIST must have between 1 and HOTENDS items.");
+ static_assert(WITHIN(COUNT(defKi), 1, HOTENDS), "DEFAULT_Ki_LIST must have between 1 and HOTENDS items.");
+ static_assert(WITHIN(COUNT(defKd), 1, HOTENDS), "DEFAULT_Kd_LIST must have between 1 and HOTENDS items.");
+ #if ENABLED(PID_EXTRUSION_SCALING)
+ constexpr float defKc[] =
+ #ifdef DEFAULT_Kc_LIST
+ DEFAULT_Kc_LIST
+ #else
+ ARRAY_BY_HOTENDS1(DEFAULT_Kc)
+ #endif
+ ;
+ static_assert(WITHIN(COUNT(defKc), 1, HOTENDS), "DEFAULT_Kc_LIST must have between 1 and HOTENDS items.");
+ #endif
+ #if ENABLED(PID_FAN_SCALING)
+ constexpr float defKf[] =
+ #ifdef DEFAULT_Kf_LIST
+ DEFAULT_Kf_LIST
+ #else
+ ARRAY_BY_HOTENDS1(DEFAULT_Kf)
+ #endif
+ ;
+ static_assert(WITHIN(COUNT(defKf), 1, HOTENDS), "DEFAULT_Kf_LIST must have between 1 and HOTENDS items.");
+ #endif
+ #define PID_DEFAULT(N,E) def##N[E]
+ #else
+ #define PID_DEFAULT(N,E) DEFAULT_##N
+ #endif
+ HOTEND_LOOP() {
+ PID_PARAM(Kp, e) = float(PID_DEFAULT(Kp, ALIM(e, defKp)));
+ PID_PARAM(Ki, e) = scalePID_i(PID_DEFAULT(Ki, ALIM(e, defKi)));
+ PID_PARAM(Kd, e) = scalePID_d(PID_DEFAULT(Kd, ALIM(e, defKd)));
+ TERN_(PID_EXTRUSION_SCALING, PID_PARAM(Kc, e) = float(PID_DEFAULT(Kc, ALIM(e, defKc))));
+ TERN_(PID_FAN_SCALING, PID_PARAM(Kf, e) = float(PID_DEFAULT(Kf, ALIM(e, defKf))));
+ }
+ #endif
+
+ //
+ // PID Extrusion Scaling
+ //
+ TERN_(PID_EXTRUSION_SCALING, thermalManager.lpq_len = 20); // Default last-position-queue size
+
+ //
+ // Heated Bed PID
+ //
+
+ #if ENABLED(PIDTEMPBED)
+ thermalManager.temp_bed.pid.Kp = DEFAULT_bedKp;
+ thermalManager.temp_bed.pid.Ki = scalePID_i(DEFAULT_bedKi);
+ thermalManager.temp_bed.pid.Kd = scalePID_d(DEFAULT_bedKd);
+ #endif
+
+ //
+ // User-Defined Thermistors
+ //
+ TERN_(HAS_USER_THERMISTORS, thermalManager.reset_user_thermistors());
+
+ //
+ // Power Monitor
+ //
+ TERN_(POWER_MONITOR, power_monitor.reset());
+
+ //
+ // LCD Contrast
+ //
+ TERN_(HAS_LCD_CONTRAST, ui.set_contrast(DEFAULT_LCD_CONTRAST));
+
+ //
+ // Controller Fan
+ //
+ TERN_(USE_CONTROLLER_FAN, controllerFan.reset());
+
+ //
+ // Power-Loss Recovery
+ //
+ TERN_(POWER_LOSS_RECOVERY, recovery.enable(ENABLED(PLR_ENABLED_DEFAULT)));
+
+ //
+ // Firmware Retraction
+ //
+ TERN_(FWRETRACT, fwretract.reset());
+
+ //
+ // Volumetric & Filament Size
+ //
+
+ #if DISABLED(NO_VOLUMETRICS)
+ parser.volumetric_enabled = ENABLED(VOLUMETRIC_DEFAULT_ON);
+ LOOP_L_N(q, COUNT(planner.filament_size))
+ planner.filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
+ #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
+ LOOP_L_N(q, COUNT(planner.volumetric_extruder_limit))
+ planner.volumetric_extruder_limit[q] = DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT;
+ #endif
+ #endif
+
+ endstops.enable_globally(ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT));
+
+ reset_stepper_drivers();
+
+ //
+ // Linear Advance
+ //
+
+ #if ENABLED(LIN_ADVANCE)
+ LOOP_L_N(i, EXTRUDERS) {
+ planner.extruder_advance_K[i] = LIN_ADVANCE_K;
+ TERN_(EXTRA_LIN_ADVANCE_K, other_extruder_advance_K[i] = LIN_ADVANCE_K);
+ }
+ #endif
+
+ //
+ // Motor Current PWM
+ //
+
+ #if HAS_MOTOR_CURRENT_PWM
+ constexpr uint32_t tmp_motor_current_setting[MOTOR_CURRENT_COUNT] = PWM_MOTOR_CURRENT;
+ LOOP_L_N(q, MOTOR_CURRENT_COUNT)
+ stepper.set_digipot_current(q, (stepper.motor_current_setting[q] = tmp_motor_current_setting[q]));
+ #endif
+
+ //
+ // DIGIPOTS
+ //
+ #if HAS_MOTOR_CURRENT_SPI
+ static constexpr uint32_t tmp_motor_current_setting[] = DIGIPOT_MOTOR_CURRENT;
+ DEBUG_ECHOLNPGM("Writing Digipot");
+ LOOP_L_N(q, COUNT(tmp_motor_current_setting))
+ stepper.set_digipot_current(q, tmp_motor_current_setting[q]);
+ DEBUG_ECHOLNPGM("Digipot Written");
+ #endif
+
+ //
+ // CNC Coordinate System
+ //
+ TERN_(CNC_COORDINATE_SYSTEMS, (void)gcode.select_coordinate_system(-1)); // Go back to machine space
+
+ //
+ // Skew Correction
+ //
+ #if ENABLED(SKEW_CORRECTION_GCODE)
+ planner.skew_factor.xy = XY_SKEW_FACTOR;
+ #if ENABLED(SKEW_CORRECTION_FOR_Z)
+ planner.skew_factor.xz = XZ_SKEW_FACTOR;
+ planner.skew_factor.yz = YZ_SKEW_FACTOR;
+ #endif
+ #endif
+
+ //
+ // Advanced Pause filament load & unload lengths
+ //
+ #if ENABLED(ADVANCED_PAUSE_FEATURE)
+ LOOP_L_N(e, EXTRUDERS) {
+ fc_settings[e].unload_length = FILAMENT_CHANGE_UNLOAD_LENGTH;
+ fc_settings[e].load_length = FILAMENT_CHANGE_FAST_LOAD_LENGTH;
+ }
+ #endif
+
+ #if ENABLED(PASSWORD_FEATURE)
+ #ifdef PASSWORD_DEFAULT_VALUE
+ password.is_set = true;
+ password.value = PASSWORD_DEFAULT_VALUE;
+ #else
+ password.is_set = false;
+ #endif
+ #endif
+
+ postprocess();
+
+ DEBUG_ECHO_START();
+ DEBUG_ECHOLNPGM("Hardcoded Default Settings Loaded");
+
+ TERN_(EXTENSIBLE_UI, ExtUI::onFactoryReset());
+}
+
+#if DISABLED(DISABLE_M503)
+
+ static void config_heading(const bool repl, PGM_P const pstr, const bool eol=true) {
+ if (!repl) {
+ SERIAL_ECHO_START();
+ SERIAL_ECHOPGM("; ");
+ serialprintPGM(pstr);
+ if (eol) SERIAL_EOL();
+ }
+ }
+
+ #define CONFIG_ECHO_START() do{ if (!forReplay) SERIAL_ECHO_START(); }while(0)
+ #define CONFIG_ECHO_MSG(STR) do{ CONFIG_ECHO_START(); SERIAL_ECHOLNPGM(STR); }while(0)
+ #define CONFIG_ECHO_HEADING(STR) config_heading(forReplay, PSTR(STR))
+
+ #if HAS_TRINAMIC_CONFIG
+ inline void say_M906(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M906"); }
+ #if HAS_STEALTHCHOP
+ void say_M569(const bool forReplay, const char * const etc=nullptr, const bool newLine = false) {
+ CONFIG_ECHO_START();
+ SERIAL_ECHOPGM(" M569 S1");
+ if (etc) {
+ SERIAL_CHAR(' ');
+ serialprintPGM(etc);
+ }
+ if (newLine) SERIAL_EOL();
+ }
+ #endif
+ #if ENABLED(HYBRID_THRESHOLD)
+ inline void say_M913(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M913"); }
+ #endif
+ #if USE_SENSORLESS
+ inline void say_M914() { SERIAL_ECHOPGM(" M914"); }
+ #endif
+ #endif
+
+ #if ENABLED(ADVANCED_PAUSE_FEATURE)
+ inline void say_M603(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M603 "); }
+ #endif
+
+ inline void say_units(const bool colon) {
+ serialprintPGM(
+ #if ENABLED(INCH_MODE_SUPPORT)
+ parser.linear_unit_factor != 1.0 ? PSTR(" (in)") :
+ #endif
+ PSTR(" (mm)")
+ );
+ if (colon) SERIAL_ECHOLNPGM(":");
+ }
+
+ void report_M92(const bool echo=true, const int8_t e=-1);
+
+ /**
+ * M503 - Report current settings in RAM
+ *
+ * Unless specifically disabled, M503 is available even without EEPROM
+ */
+ void MarlinSettings::report(const bool forReplay) {
+ /**
+ * Announce current units, in case inches are being displayed
+ */
+ CONFIG_ECHO_START();
+ #if ENABLED(INCH_MODE_SUPPORT)
+ SERIAL_ECHOPGM(" G2");
+ SERIAL_CHAR(parser.linear_unit_factor == 1.0 ? '1' : '0');
+ SERIAL_ECHOPGM(" ;");
+ say_units(false);
+ #else
+ SERIAL_ECHOPGM(" G21 ; Units in mm");
+ say_units(false);
+ #endif
+ SERIAL_EOL();
+
+ #if HAS_LCD_MENU
+
+ // Temperature units - for Ultipanel temperature options
+
+ CONFIG_ECHO_START();
+ #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
+ SERIAL_ECHOPGM(" M149 ");
+ SERIAL_CHAR(parser.temp_units_code());
+ SERIAL_ECHOPGM(" ; Units in ");
+ serialprintPGM(parser.temp_units_name());
+ #else
+ SERIAL_ECHOLNPGM(" M149 C ; Units in Celsius");
+ #endif
+
+ #endif
+
+ SERIAL_EOL();
+
+ #if EXTRUDERS && DISABLED(NO_VOLUMETRICS)
+
+ /**
+ * Volumetric extrusion M200
+ */
+ if (!forReplay) {
+ config_heading(forReplay, PSTR("Filament settings:"), false);
+ if (parser.volumetric_enabled)
+ SERIAL_EOL();
+ else
+ SERIAL_ECHOLNPGM(" Disabled");
+ }
+
+ #if EXTRUDERS == 1
+ CONFIG_ECHO_START();
+ SERIAL_ECHOLNPAIR(" M200 S", int(parser.volumetric_enabled)
+ , " D", LINEAR_UNIT(planner.filament_size[0])
+ #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
+ , " L", LINEAR_UNIT(planner.volumetric_extruder_limit[0])
+ #endif
+ );
+ #else
+ LOOP_L_N(i, EXTRUDERS) {
+ CONFIG_ECHO_START();
+ SERIAL_ECHOLNPAIR(" M200 T", int(i)
+ , " D", LINEAR_UNIT(planner.filament_size[i])
+ #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
+ , " L", LINEAR_UNIT(planner.volumetric_extruder_limit[i])
+ #endif
+ );
+ }
+ CONFIG_ECHO_START();
+ SERIAL_ECHOLNPAIR(" M200 S", int(parser.volumetric_enabled));
+ #endif
+ #endif // EXTRUDERS && !NO_VOLUMETRICS
+
+ CONFIG_ECHO_HEADING("Steps per unit:");
+ report_M92(!forReplay);
+
+ CONFIG_ECHO_HEADING("Maximum feedrates (units/s):");
+ CONFIG_ECHO_START();
+ SERIAL_ECHOLNPAIR_P(
+ PSTR(" M203 X"), LINEAR_UNIT(planner.settings.max_feedrate_mm_s[X_AXIS])
+ , SP_Y_STR, LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Y_AXIS])
+ , SP_Z_STR, LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Z_AXIS])
+ #if DISABLED(DISTINCT_E_FACTORS)
+ , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS])
+ #endif
+ );
+ #if ENABLED(DISTINCT_E_FACTORS)
+ LOOP_L_N(i, E_STEPPERS) {
+ CONFIG_ECHO_START();
+ SERIAL_ECHOLNPAIR_P(
+ PSTR(" M203 T"), (int)i
+ , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS_N(i)])
+ );
+ }
+ #endif
+
+ CONFIG_ECHO_HEADING("Maximum Acceleration (units/s2):");
+ CONFIG_ECHO_START();
+ SERIAL_ECHOLNPAIR_P(
+ PSTR(" M201 X"), LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[X_AXIS])
+ , SP_Y_STR, LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Y_AXIS])
+ , SP_Z_STR, LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Z_AXIS])
+ #if DISABLED(DISTINCT_E_FACTORS)
+ , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS])
+ #endif
+ );
+ #if ENABLED(DISTINCT_E_FACTORS)
+ LOOP_L_N(i, E_STEPPERS) {
+ CONFIG_ECHO_START();
+ SERIAL_ECHOLNPAIR_P(
+ PSTR(" M201 T"), (int)i
+ , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS_N(i)])
+ );
+ }
+ #endif
+
+ CONFIG_ECHO_HEADING("Acceleration (units/s2): P<print_accel> R<retract_accel> T<travel_accel>");
+ CONFIG_ECHO_START();
+ SERIAL_ECHOLNPAIR_P(
+ PSTR(" M204 P"), LINEAR_UNIT(planner.settings.acceleration)
+ , PSTR(" R"), LINEAR_UNIT(planner.settings.retract_acceleration)
+ , SP_T_STR, LINEAR_UNIT(planner.settings.travel_acceleration)
+ );
+
+ CONFIG_ECHO_HEADING(
+ "Advanced: B<min_segment_time_us> S<min_feedrate> T<min_travel_feedrate>"
+ #if HAS_JUNCTION_DEVIATION
+ " J<junc_dev>"
+ #endif
+ #if HAS_CLASSIC_JERK
+ " X<max_x_jerk> Y<max_y_jerk> Z<max_z_jerk>"
+ TERN_(HAS_CLASSIC_E_JERK, " E<max_e_jerk>")
+ #endif
+ );
+ CONFIG_ECHO_START();
+ SERIAL_ECHOLNPAIR_P(
+ PSTR(" M205 B"), LINEAR_UNIT(planner.settings.min_segment_time_us)
+ , PSTR(" S"), LINEAR_UNIT(planner.settings.min_feedrate_mm_s)
+ , SP_T_STR, LINEAR_UNIT(planner.settings.min_travel_feedrate_mm_s)
+ #if HAS_JUNCTION_DEVIATION
+ , PSTR(" J"), LINEAR_UNIT(planner.junction_deviation_mm)
+ #endif
+ #if HAS_CLASSIC_JERK
+ , SP_X_STR, LINEAR_UNIT(planner.max_jerk.x)
+ , SP_Y_STR, LINEAR_UNIT(planner.max_jerk.y)
+ , SP_Z_STR, LINEAR_UNIT(planner.max_jerk.z)
+ #if HAS_CLASSIC_E_JERK
+ , SP_E_STR, LINEAR_UNIT(planner.max_jerk.e)
+ #endif
+ #endif
+ );
+
+ #if HAS_M206_COMMAND
+ CONFIG_ECHO_HEADING("Home offset:");
+ CONFIG_ECHO_START();
+ SERIAL_ECHOLNPAIR_P(
+ #if IS_CARTESIAN
+ PSTR(" M206 X"), LINEAR_UNIT(home_offset.x)
+ , SP_Y_STR, LINEAR_UNIT(home_offset.y)
+ , SP_Z_STR
+ #else
+ PSTR(" M206 Z")
+ #endif
+ , LINEAR_UNIT(home_offset.z)
+ );
+ #endif
+
+ #if HAS_HOTEND_OFFSET
+ CONFIG_ECHO_HEADING("Hotend offsets:");
+ CONFIG_ECHO_START();
+ LOOP_S_L_N(e, 1, HOTENDS) {
+ SERIAL_ECHOPAIR_P(
+ PSTR(" M218 T"), (int)e,
+ SP_X_STR, LINEAR_UNIT(hotend_offset[e].x),
+ SP_Y_STR, LINEAR_UNIT(hotend_offset[e].y)
+ );
+ SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(hotend_offset[e].z), 3);
+ }
+ #endif
+
+ /**
+ * Bed Leveling
+ */
+ #if HAS_LEVELING
+
+ #if ENABLED(MESH_BED_LEVELING)
+
+ CONFIG_ECHO_HEADING("Mesh Bed Leveling:");
+
+ #elif ENABLED(AUTO_BED_LEVELING_UBL)
+
+ config_heading(forReplay, NUL_STR, false);
+ if (!forReplay) {
+ ubl.echo_name();
+ SERIAL_CHAR(':');
+ SERIAL_EOL();
+ }
+
+ #elif HAS_ABL_OR_UBL
+
+ CONFIG_ECHO_HEADING("Auto Bed Leveling:");
+
+ #endif
+
+ CONFIG_ECHO_START();
+ SERIAL_ECHOLNPAIR_P(
+ PSTR(" M420 S"), planner.leveling_active ? 1 : 0
+ #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
+ , SP_Z_STR, LINEAR_UNIT(planner.z_fade_height)
+ #endif
+ );
+
+ #if ENABLED(MESH_BED_LEVELING)
+
+ if (leveling_is_valid()) {
+ LOOP_L_N(py, GRID_MAX_POINTS_Y) {
+ LOOP_L_N(px, GRID_MAX_POINTS_X) {
+ CONFIG_ECHO_START();
+ SERIAL_ECHOPAIR_P(PSTR(" G29 S3 I"), (int)px, PSTR(" J"), (int)py);
+ SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(mbl.z_values[px][py]), 5);
+ }
+ }
+ CONFIG_ECHO_START();
+ SERIAL_ECHOLNPAIR_F_P(PSTR(" G29 S4 Z"), LINEAR_UNIT(mbl.z_offset), 5);
+ }
+
+ #elif ENABLED(AUTO_BED_LEVELING_UBL)
+
+ if (!forReplay) {
+ SERIAL_EOL();
+ ubl.report_state();
+ SERIAL_EOL();
+ config_heading(false, PSTR("Active Mesh Slot: "), false);
+ SERIAL_ECHOLN(ubl.storage_slot);
+ config_heading(false, PSTR("EEPROM can hold "), false);
+ SERIAL_ECHO(calc_num_meshes());
+ SERIAL_ECHOLNPGM(" meshes.\n");
+ }
+
+ //ubl.report_current_mesh(); // This is too verbose for large meshes. A better (more terse)
+ // solution needs to be found.
+ #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
+
+ if (leveling_is_valid()) {
+ LOOP_L_N(py, GRID_MAX_POINTS_Y) {
+ LOOP_L_N(px, GRID_MAX_POINTS_X) {
+ CONFIG_ECHO_START();
+ SERIAL_ECHOPAIR(" G29 W I", (int)px, " J", (int)py);
+ SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(z_values[px][py]), 5);
+ }
+ }
+ }
+
+ #endif
+
+ #endif // HAS_LEVELING
+
+ #if ENABLED(EDITABLE_SERVO_ANGLES)
+
+ CONFIG_ECHO_HEADING("Servo Angles:");
+ LOOP_L_N(i, NUM_SERVOS) {
+ switch (i) {
+ #if ENABLED(SWITCHING_EXTRUDER)
+ case SWITCHING_EXTRUDER_SERVO_NR:
+ #if EXTRUDERS > 3
+ case SWITCHING_EXTRUDER_E23_SERVO_NR:
+ #endif
+ #elif ENABLED(SWITCHING_NOZZLE)
+ case SWITCHING_NOZZLE_SERVO_NR:
+ #elif ENABLED(BLTOUCH) || (HAS_Z_SERVO_PROBE && defined(Z_SERVO_ANGLES))
+ case Z_PROBE_SERVO_NR:
+ #endif
+ CONFIG_ECHO_START();
+ SERIAL_ECHOLNPAIR(" M281 P", int(i), " L", servo_angles[i][0], " U", servo_angles[i][1]);
+ default: break;
+ }
+ }
+
+ #endif // EDITABLE_SERVO_ANGLES
+
+ #if HAS_SCARA_OFFSET
+
+ CONFIG_ECHO_HEADING("SCARA settings: S<seg-per-sec> P<theta-psi-offset> T<theta-offset>");
+ CONFIG_ECHO_START();
+ SERIAL_ECHOLNPAIR_P(
+ PSTR(" M665 S"), delta_segments_per_second
+ , SP_P_STR, scara_home_offset.a
+ , SP_T_STR, scara_home_offset.b
+ , SP_Z_STR, LINEAR_UNIT(scara_home_offset.z)
+ );
+
+ #elif ENABLED(DELTA)
+
+ CONFIG_ECHO_HEADING("Endstop adjustment:");
+ CONFIG_ECHO_START();
+ SERIAL_ECHOLNPAIR_P(
+ PSTR(" M666 X"), LINEAR_UNIT(delta_endstop_adj.a)
+ , SP_Y_STR, LINEAR_UNIT(delta_endstop_adj.b)
+ , SP_Z_STR, LINEAR_UNIT(delta_endstop_adj.c)
+ );
+
+ CONFIG_ECHO_HEADING("Delta settings: L<diagonal rod> R<radius> H<height> S<segments per sec> XYZ<tower angle trim> ABC<rod trim>");
+ CONFIG_ECHO_START();
+ SERIAL_ECHOLNPAIR_P(
+ PSTR(" M665 L"), LINEAR_UNIT(delta_diagonal_rod)
+ , PSTR(" R"), LINEAR_UNIT(delta_radius)
+ , PSTR(" H"), LINEAR_UNIT(delta_height)
+ , PSTR(" S"), delta_segments_per_second
+ , SP_X_STR, LINEAR_UNIT(delta_tower_angle_trim.a)
+ , SP_Y_STR, LINEAR_UNIT(delta_tower_angle_trim.b)
+ , SP_Z_STR, LINEAR_UNIT(delta_tower_angle_trim.c)
+ , PSTR(" A"), LINEAR_UNIT(delta_diagonal_rod_trim.a)
+ , PSTR(" B"), LINEAR_UNIT(delta_diagonal_rod_trim.b)
+ , PSTR(" C"), LINEAR_UNIT(delta_diagonal_rod_trim.c)
+ );
+
+ #elif HAS_EXTRA_ENDSTOPS
+
+ CONFIG_ECHO_HEADING("Endstop adjustment:");
+ CONFIG_ECHO_START();
+ SERIAL_ECHOPGM(" M666");
+ #if ENABLED(X_DUAL_ENDSTOPS)
+ SERIAL_ECHOLNPAIR_P(SP_X_STR, LINEAR_UNIT(endstops.x2_endstop_adj));
+ #endif
+ #if ENABLED(Y_DUAL_ENDSTOPS)
+ SERIAL_ECHOLNPAIR_P(SP_Y_STR, LINEAR_UNIT(endstops.y2_endstop_adj));
+ #endif
+ #if ENABLED(Z_MULTI_ENDSTOPS)
+ #if NUM_Z_STEPPER_DRIVERS >= 3
+ SERIAL_ECHOPAIR(" S2 Z", LINEAR_UNIT(endstops.z3_endstop_adj));
+ CONFIG_ECHO_START();
+ SERIAL_ECHOPAIR(" M666 S3 Z", LINEAR_UNIT(endstops.z3_endstop_adj));
+ #if NUM_Z_STEPPER_DRIVERS >= 4
+ CONFIG_ECHO_START();
+ SERIAL_ECHOPAIR(" M666 S4 Z", LINEAR_UNIT(endstops.z4_endstop_adj));
+ #endif
+ #else
+ SERIAL_ECHOLNPAIR_P(SP_Z_STR, LINEAR_UNIT(endstops.z2_endstop_adj));
+ #endif
+ #endif
+
+ #endif // [XYZ]_DUAL_ENDSTOPS
+
+ #if PREHEAT_COUNT
+
+ CONFIG_ECHO_HEADING("Material heatup parameters:");
+ LOOP_L_N(i, PREHEAT_COUNT) {
+ CONFIG_ECHO_START();
+ SERIAL_ECHOLNPAIR_P(
+ PSTR(" M145 S"), (int)i
+ #if HAS_HOTEND
+ , PSTR(" H"), TEMP_UNIT(ui.material_preset[i].hotend_temp)
+ #endif
+ #if HAS_HEATED_BED
+ , SP_B_STR, TEMP_UNIT(ui.material_preset[i].bed_temp)
+ #endif
+ #if HAS_FAN
+ , PSTR(" F"), ui.material_preset[i].fan_speed
+ #endif
+ );
+ }
+
+ #endif
+
+ #if HAS_PID_HEATING
+
+ CONFIG_ECHO_HEADING("PID settings:");
+
+ #if ENABLED(PIDTEMP)
+ HOTEND_LOOP() {
+ CONFIG_ECHO_START();
+ SERIAL_ECHOPAIR_P(
+ #if ENABLED(PID_PARAMS_PER_HOTEND)
+ PSTR(" M301 E"), e,
+ SP_P_STR
+ #else
+ PSTR(" M301 P")
+ #endif
+ , PID_PARAM(Kp, e)
+ , PSTR(" I"), unscalePID_i(PID_PARAM(Ki, e))
+ , PSTR(" D"), unscalePID_d(PID_PARAM(Kd, e))
+ );
+ #if ENABLED(PID_EXTRUSION_SCALING)
+ SERIAL_ECHOPAIR_P(SP_C_STR, PID_PARAM(Kc, e));
+ if (e == 0) SERIAL_ECHOPAIR(" L", thermalManager.lpq_len);
+ #endif
+ #if ENABLED(PID_FAN_SCALING)
+ SERIAL_ECHOPAIR(" F", PID_PARAM(Kf, e));
+ #endif
+ SERIAL_EOL();
+ }
+ #endif // PIDTEMP
+
+ #if ENABLED(PIDTEMPBED)
+ CONFIG_ECHO_START();
+ SERIAL_ECHOLNPAIR(
+ " M304 P", thermalManager.temp_bed.pid.Kp
+ , " I", unscalePID_i(thermalManager.temp_bed.pid.Ki)
+ , " D", unscalePID_d(thermalManager.temp_bed.pid.Kd)
+ );
+ #endif
+
+ #endif // PIDTEMP || PIDTEMPBED
+
+ #if HAS_USER_THERMISTORS
+ CONFIG_ECHO_HEADING("User thermistors:");
+ LOOP_L_N(i, USER_THERMISTORS)
+ thermalManager.log_user_thermistor(i, true);
+ #endif
+
+ #if HAS_LCD_CONTRAST
+ CONFIG_ECHO_HEADING("LCD Contrast:");
+ CONFIG_ECHO_START();
+ SERIAL_ECHOLNPAIR(" M250 C", ui.contrast);
+ #endif
+
+ TERN_(CONTROLLER_FAN_EDITABLE, M710_report(forReplay));
+
+ #if ENABLED(POWER_LOSS_RECOVERY)
+ CONFIG_ECHO_HEADING("Power-Loss Recovery:");
+ CONFIG_ECHO_START();
+ SERIAL_ECHOLNPAIR(" M413 S", int(recovery.enabled));
+ #endif
+
+ #if ENABLED(FWRETRACT)
+
+ CONFIG_ECHO_HEADING("Retract: S<length> F<units/m> Z<lift>");
+ CONFIG_ECHO_START();
+ SERIAL_ECHOLNPAIR_P(
+ PSTR(" M207 S"), LINEAR_UNIT(fwretract.settings.retract_length)
+ , PSTR(" W"), LINEAR_UNIT(fwretract.settings.swap_retract_length)
+ , PSTR(" F"), LINEAR_UNIT(MMS_TO_MMM(fwretract.settings.retract_feedrate_mm_s))
+ , SP_Z_STR, LINEAR_UNIT(fwretract.settings.retract_zraise)
+ );
+
+ CONFIG_ECHO_HEADING("Recover: S<length> F<units/m>");
+ CONFIG_ECHO_START();
+ SERIAL_ECHOLNPAIR(
+ " M208 S", LINEAR_UNIT(fwretract.settings.retract_recover_extra)
+ , " W", LINEAR_UNIT(fwretract.settings.swap_retract_recover_extra)
+ , " F", LINEAR_UNIT(MMS_TO_MMM(fwretract.settings.retract_recover_feedrate_mm_s))
+ );
+
+ #if ENABLED(FWRETRACT_AUTORETRACT)
+
+ CONFIG_ECHO_HEADING("Auto-Retract: S=0 to disable, 1 to interpret E-only moves as retract/recover");
+ CONFIG_ECHO_START();
+ SERIAL_ECHOLNPAIR(" M209 S", fwretract.autoretract_enabled ? 1 : 0);
+
+ #endif // FWRETRACT_AUTORETRACT
+
+ #endif // FWRETRACT
+
+ /**
+ * Probe Offset
+ */
+ #if HAS_BED_PROBE
+ config_heading(forReplay, PSTR("Z-Probe Offset"), false);
+ if (!forReplay) say_units(true);
+ CONFIG_ECHO_START();
+ SERIAL_ECHOLNPAIR_P(
+ #if HAS_PROBE_XY_OFFSET
+ PSTR(" M851 X"), LINEAR_UNIT(probe.offset_xy.x),
+ SP_Y_STR, LINEAR_UNIT(probe.offset_xy.y),
+ SP_Z_STR
+ #else
+ PSTR(" M851 X0 Y0 Z")
+ #endif
+ , LINEAR_UNIT(probe.offset.z)
+ );
+ #endif
+
+ /**
+ * Bed Skew Correction
+ */
+ #if ENABLED(SKEW_CORRECTION_GCODE)
+ CONFIG_ECHO_HEADING("Skew Factor: ");
+ CONFIG_ECHO_START();
+ #if ENABLED(SKEW_CORRECTION_FOR_Z)
+ SERIAL_ECHOPAIR_F(" M852 I", LINEAR_UNIT(planner.skew_factor.xy), 6);
+ SERIAL_ECHOPAIR_F(" J", LINEAR_UNIT(planner.skew_factor.xz), 6);
+ SERIAL_ECHOLNPAIR_F(" K", LINEAR_UNIT(planner.skew_factor.yz), 6);
+ #else
+ SERIAL_ECHOLNPAIR_F(" M852 S", LINEAR_UNIT(planner.skew_factor.xy), 6);
+ #endif
+ #endif
+
+ #if HAS_TRINAMIC_CONFIG
+
+ /**
+ * TMC stepper driver current
+ */
+ CONFIG_ECHO_HEADING("Stepper driver current:");
+
+ #if AXIS_IS_TMC(X) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Z)
+ say_M906(forReplay);
+ #if AXIS_IS_TMC(X)
+ SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.getMilliamps());
+ #endif
+ #if AXIS_IS_TMC(Y)
+ SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.getMilliamps());
+ #endif
+ #if AXIS_IS_TMC(Z)
+ SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.getMilliamps());
+ #endif
+ SERIAL_EOL();
+ #endif
+
+ #if AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z2)
+ say_M906(forReplay);
+ SERIAL_ECHOPGM(" I1");
+ #if AXIS_IS_TMC(X2)
+ SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.getMilliamps());
+ #endif
+ #if AXIS_IS_TMC(Y2)
+ SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.getMilliamps());
+ #endif
+ #if AXIS_IS_TMC(Z2)
+ SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.getMilliamps());
+ #endif
+ SERIAL_EOL();
+ #endif
+
+ #if AXIS_IS_TMC(Z3)
+ say_M906(forReplay);
+ SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.getMilliamps());
+ #endif
+
+ #if AXIS_IS_TMC(Z4)
+ say_M906(forReplay);
+ SERIAL_ECHOLNPAIR(" I3 Z", stepperZ4.getMilliamps());
+ #endif
+
+ #if AXIS_IS_TMC(E0)
+ say_M906(forReplay);
+ SERIAL_ECHOLNPAIR(" T0 E", stepperE0.getMilliamps());
+ #endif
+ #if AXIS_IS_TMC(E1)
+ say_M906(forReplay);
+ SERIAL_ECHOLNPAIR(" T1 E", stepperE1.getMilliamps());
+ #endif
+ #if AXIS_IS_TMC(E2)
+ say_M906(forReplay);
+ SERIAL_ECHOLNPAIR(" T2 E", stepperE2.getMilliamps());
+ #endif
+ #if AXIS_IS_TMC(E3)
+ say_M906(forReplay);
+ SERIAL_ECHOLNPAIR(" T3 E", stepperE3.getMilliamps());
+ #endif
+ #if AXIS_IS_TMC(E4)
+ say_M906(forReplay);
+ SERIAL_ECHOLNPAIR(" T4 E", stepperE4.getMilliamps());
+ #endif
+ #if AXIS_IS_TMC(E5)
+ say_M906(forReplay);
+ SERIAL_ECHOLNPAIR(" T5 E", stepperE5.getMilliamps());
+ #endif
+ #if AXIS_IS_TMC(E6)
+ say_M906(forReplay);
+ SERIAL_ECHOLNPAIR(" T6 E", stepperE6.getMilliamps());
+ #endif
+ #if AXIS_IS_TMC(E7)
+ say_M906(forReplay);
+ SERIAL_ECHOLNPAIR(" T7 E", stepperE7.getMilliamps());
+ #endif
+ SERIAL_EOL();
+
+ /**
+ * TMC Hybrid Threshold
+ */
+ #if ENABLED(HYBRID_THRESHOLD)
+ CONFIG_ECHO_HEADING("Hybrid Threshold:");
+ #if AXIS_HAS_STEALTHCHOP(X) || AXIS_HAS_STEALTHCHOP(Y) || AXIS_HAS_STEALTHCHOP(Z)
+ say_M913(forReplay);
+ #if AXIS_HAS_STEALTHCHOP(X)
+ SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.get_pwm_thrs());
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(Y)
+ SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.get_pwm_thrs());
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(Z)
+ SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.get_pwm_thrs());
+ #endif
+ SERIAL_EOL();
+ #endif
+
+ #if AXIS_HAS_STEALTHCHOP(X2) || AXIS_HAS_STEALTHCHOP(Y2) || AXIS_HAS_STEALTHCHOP(Z2)
+ say_M913(forReplay);
+ SERIAL_ECHOPGM(" I1");
+ #if AXIS_HAS_STEALTHCHOP(X2)
+ SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.get_pwm_thrs());
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(Y2)
+ SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.get_pwm_thrs());
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(Z2)
+ SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.get_pwm_thrs());
+ #endif
+ SERIAL_EOL();
+ #endif
+
+ #if AXIS_HAS_STEALTHCHOP(Z3)
+ say_M913(forReplay);
+ SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.get_pwm_thrs());
+ #endif
+
+ #if AXIS_HAS_STEALTHCHOP(Z4)
+ say_M913(forReplay);
+ SERIAL_ECHOLNPAIR(" I3 Z", stepperZ4.get_pwm_thrs());
+ #endif
+
+ #if AXIS_HAS_STEALTHCHOP(E0)
+ say_M913(forReplay);
+ SERIAL_ECHOLNPAIR(" T0 E", stepperE0.get_pwm_thrs());
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(E1)
+ say_M913(forReplay);
+ SERIAL_ECHOLNPAIR(" T1 E", stepperE1.get_pwm_thrs());
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(E2)
+ say_M913(forReplay);
+ SERIAL_ECHOLNPAIR(" T2 E", stepperE2.get_pwm_thrs());
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(E3)
+ say_M913(forReplay);
+ SERIAL_ECHOLNPAIR(" T3 E", stepperE3.get_pwm_thrs());
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(E4)
+ say_M913(forReplay);
+ SERIAL_ECHOLNPAIR(" T4 E", stepperE4.get_pwm_thrs());
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(E5)
+ say_M913(forReplay);
+ SERIAL_ECHOLNPAIR(" T5 E", stepperE5.get_pwm_thrs());
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(E6)
+ say_M913(forReplay);
+ SERIAL_ECHOLNPAIR(" T6 E", stepperE6.get_pwm_thrs());
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(E7)
+ say_M913(forReplay);
+ SERIAL_ECHOLNPAIR(" T7 E", stepperE7.get_pwm_thrs());
+ #endif
+ SERIAL_EOL();
+ #endif // HYBRID_THRESHOLD
+
+ /**
+ * TMC Sensorless homing thresholds
+ */
+ #if USE_SENSORLESS
+ CONFIG_ECHO_HEADING("StallGuard threshold:");
+ #if X_SENSORLESS || Y_SENSORLESS || Z_SENSORLESS
+ CONFIG_ECHO_START();
+ say_M914();
+ #if X_SENSORLESS
+ SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.homing_threshold());
+ #endif
+ #if Y_SENSORLESS
+ SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.homing_threshold());
+ #endif
+ #if Z_SENSORLESS
+ SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.homing_threshold());
+ #endif
+ SERIAL_EOL();
+ #endif
+
+ #if X2_SENSORLESS || Y2_SENSORLESS || Z2_SENSORLESS
+ CONFIG_ECHO_START();
+ say_M914();
+ SERIAL_ECHOPGM(" I1");
+ #if X2_SENSORLESS
+ SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.homing_threshold());
+ #endif
+ #if Y2_SENSORLESS
+ SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.homing_threshold());
+ #endif
+ #if Z2_SENSORLESS
+ SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.homing_threshold());
+ #endif
+ SERIAL_EOL();
+ #endif
+
+ #if Z3_SENSORLESS
+ CONFIG_ECHO_START();
+ say_M914();
+ SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.homing_threshold());
+ #endif
+
+ #if Z4_SENSORLESS
+ CONFIG_ECHO_START();
+ say_M914();
+ SERIAL_ECHOLNPAIR(" I3 Z", stepperZ4.homing_threshold());
+ #endif
+
+ #endif // USE_SENSORLESS
+
+ /**
+ * TMC stepping mode
+ */
+ #if HAS_STEALTHCHOP
+ CONFIG_ECHO_HEADING("Driver stepping mode:");
+ #if AXIS_HAS_STEALTHCHOP(X)
+ const bool chop_x = stepperX.get_stored_stealthChop();
+ #else
+ constexpr bool chop_x = false;
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(Y)
+ const bool chop_y = stepperY.get_stored_stealthChop();
+ #else
+ constexpr bool chop_y = false;
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(Z)
+ const bool chop_z = stepperZ.get_stored_stealthChop();
+ #else
+ constexpr bool chop_z = false;
+ #endif
+
+ if (chop_x || chop_y || chop_z) {
+ say_M569(forReplay);
+ if (chop_x) SERIAL_ECHOPGM_P(SP_X_STR);
+ if (chop_y) SERIAL_ECHOPGM_P(SP_Y_STR);
+ if (chop_z) SERIAL_ECHOPGM_P(SP_Z_STR);
+ SERIAL_EOL();
+ }
+
+ #if AXIS_HAS_STEALTHCHOP(X2)
+ const bool chop_x2 = stepperX2.get_stored_stealthChop();
+ #else
+ constexpr bool chop_x2 = false;
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(Y2)
+ const bool chop_y2 = stepperY2.get_stored_stealthChop();
+ #else
+ constexpr bool chop_y2 = false;
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(Z2)
+ const bool chop_z2 = stepperZ2.get_stored_stealthChop();
+ #else
+ constexpr bool chop_z2 = false;
+ #endif
+
+ if (chop_x2 || chop_y2 || chop_z2) {
+ say_M569(forReplay, PSTR("I1"));
+ if (chop_x2) SERIAL_ECHOPGM_P(SP_X_STR);
+ if (chop_y2) SERIAL_ECHOPGM_P(SP_Y_STR);
+ if (chop_z2) SERIAL_ECHOPGM_P(SP_Z_STR);
+ SERIAL_EOL();
+ }
+
+ #if AXIS_HAS_STEALTHCHOP(Z3)
+ if (stepperZ3.get_stored_stealthChop()) { say_M569(forReplay, PSTR("I2 Z"), true); }
+ #endif
+
+ #if AXIS_HAS_STEALTHCHOP(Z4)
+ if (stepperZ4.get_stored_stealthChop()) { say_M569(forReplay, PSTR("I3 Z"), true); }
+ #endif
+
+ #if AXIS_HAS_STEALTHCHOP(E0)
+ if (stepperE0.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T0 E"), true); }
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(E1)
+ if (stepperE1.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T1 E"), true); }
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(E2)
+ if (stepperE2.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T2 E"), true); }
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(E3)
+ if (stepperE3.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T3 E"), true); }
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(E4)
+ if (stepperE4.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T4 E"), true); }
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(E5)
+ if (stepperE5.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T5 E"), true); }
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(E6)
+ if (stepperE6.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T6 E"), true); }
+ #endif
+ #if AXIS_HAS_STEALTHCHOP(E7)
+ if (stepperE7.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T7 E"), true); }
+ #endif
+
+ #endif // HAS_STEALTHCHOP
+
+ #endif // HAS_TRINAMIC_CONFIG
+
+ /**
+ * Linear Advance
+ */
+ #if ENABLED(LIN_ADVANCE)
+ CONFIG_ECHO_HEADING("Linear Advance:");
+ #if EXTRUDERS < 2
+ CONFIG_ECHO_START();
+ SERIAL_ECHOLNPAIR(" M900 K", planner.extruder_advance_K[0]);
+ #else
+ LOOP_L_N(i, EXTRUDERS) {
+ CONFIG_ECHO_START();
+ SERIAL_ECHOLNPAIR(" M900 T", int(i), " K", planner.extruder_advance_K[i]);
+ }
+ #endif
+ #endif
+
+ #if EITHER(HAS_MOTOR_CURRENT_SPI, HAS_MOTOR_CURRENT_PWM)
+ CONFIG_ECHO_HEADING("Stepper motor currents:");
+ CONFIG_ECHO_START();
+ #if HAS_MOTOR_CURRENT_PWM
+ SERIAL_ECHOLNPAIR_P( // PWM-based has 3 values:
+ PSTR(" M907 X"), stepper.motor_current_setting[0] // X and Y
+ , SP_Z_STR, stepper.motor_current_setting[1] // Z
+ , SP_E_STR, stepper.motor_current_setting[2] // E
+ );
+ #elif HAS_MOTOR_CURRENT_SPI
+ SERIAL_ECHOPGM(" M907"); // SPI-based has 5 values:
+ LOOP_XYZE(q) { // X Y Z E (map to X Y Z E0 by default)
+ SERIAL_CHAR(' ', axis_codes[q]);
+ SERIAL_ECHO(stepper.motor_current_setting[q]);
+ }
+ SERIAL_CHAR(' ', 'B'); // B (maps to E1 by default)
+ SERIAL_ECHOLN(stepper.motor_current_setting[4]);
+ #endif
+ #elif ENABLED(HAS_MOTOR_CURRENT_I2C) // i2c-based has any number of values
+ // Values sent over i2c are not stored.
+ // Indexes map directly to drivers, not axes.
+ #elif ENABLED(HAS_MOTOR_CURRENT_DAC) // DAC-based has 4 values, for X Y Z E
+ // Values sent over i2c are not stored. Uses indirect mapping.
+ #endif
+
+ /**
+ * Advanced Pause filament load & unload lengths
+ */
+ #if ENABLED(ADVANCED_PAUSE_FEATURE)
+ CONFIG_ECHO_HEADING("Filament load/unload lengths:");
+ #if EXTRUDERS == 1
+ say_M603(forReplay);
+ SERIAL_ECHOLNPAIR("L", LINEAR_UNIT(fc_settings[0].load_length), " U", LINEAR_UNIT(fc_settings[0].unload_length));
+ #else
+ #define _ECHO_603(N) do{ say_M603(forReplay); SERIAL_ECHOLNPAIR("T" STRINGIFY(N) " L", LINEAR_UNIT(fc_settings[N].load_length), " U", LINEAR_UNIT(fc_settings[N].unload_length)); }while(0);
+ REPEAT(EXTRUDERS, _ECHO_603)
+ #endif
+ #endif
+
+ #if HAS_MULTI_EXTRUDER
+ CONFIG_ECHO_HEADING("Tool-changing:");
+ CONFIG_ECHO_START();
+ M217_report(true);
+ #endif
+
+ #if ENABLED(BACKLASH_GCODE)
+ CONFIG_ECHO_HEADING("Backlash compensation:");
+ CONFIG_ECHO_START();
+ SERIAL_ECHOLNPAIR_P(
+ PSTR(" M425 F"), backlash.get_correction()
+ , SP_X_STR, LINEAR_UNIT(backlash.distance_mm.x)
+ , SP_Y_STR, LINEAR_UNIT(backlash.distance_mm.y)
+ , SP_Z_STR, LINEAR_UNIT(backlash.distance_mm.z)
+ #ifdef BACKLASH_SMOOTHING_MM
+ , PSTR(" S"), LINEAR_UNIT(backlash.smoothing_mm)
+ #endif
+ );
+ #endif
+
+ #if HAS_FILAMENT_SENSOR
+ CONFIG_ECHO_HEADING("Filament runout sensor:");
+ CONFIG_ECHO_START();
+ SERIAL_ECHOLNPAIR(
+ " M412 S", int(runout.enabled)
+ #if HAS_FILAMENT_RUNOUT_DISTANCE
+ , " D", LINEAR_UNIT(runout.runout_distance())
+ #endif
+ );
+ #endif
+
+ #if HAS_ETHERNET
+ CONFIG_ECHO_HEADING("Ethernet:");
+ if (!forReplay) { CONFIG_ECHO_START(); ETH0_report(); }
+ CONFIG_ECHO_START(); SERIAL_ECHO_SP(2); MAC_report();
+ CONFIG_ECHO_START(); SERIAL_ECHO_SP(2); M552_report();
+ CONFIG_ECHO_START(); SERIAL_ECHO_SP(2); M553_report();
+ CONFIG_ECHO_START(); SERIAL_ECHO_SP(2); M554_report();
+ #endif
+
+ #if HAS_MULTI_LANGUAGE
+ CONFIG_ECHO_HEADING("UI Language:");
+ SERIAL_ECHO_MSG(" M414 S", int(ui.language));
+ #endif
+ }
+
+#endif // !DISABLE_M503
+
+#pragma pack(pop)