diff options
author | Georgiy Bondarenko <69736697+nehilo@users.noreply.github.com> | 2021-03-04 20:54:23 +0300 |
---|---|---|
committer | Georgiy Bondarenko <69736697+nehilo@users.noreply.github.com> | 2021-03-04 20:54:23 +0300 |
commit | e8701195e66f2d27ffe17fb514eae8173795aaf7 (patch) | |
tree | 9f519c4abf6556b9ae7190a6210d87ead1dfadde /Marlin/src/module/settings.cpp | |
download | kp3s-lgvl-e8701195e66f2d27ffe17fb514eae8173795aaf7.tar.xz kp3s-lgvl-e8701195e66f2d27ffe17fb514eae8173795aaf7.zip |
Initial commit
Diffstat (limited to 'Marlin/src/module/settings.cpp')
-rw-r--r-- | Marlin/src/module/settings.cpp | 3880 |
1 files changed, 3880 insertions, 0 deletions
diff --git a/Marlin/src/module/settings.cpp b/Marlin/src/module/settings.cpp new file mode 100644 index 0000000..6908635 --- /dev/null +++ b/Marlin/src/module/settings.cpp @@ -0,0 +1,3880 @@ +/** + * Marlin 3D Printer Firmware + * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] + * + * Based on Sprinter and grbl. + * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <https://www.gnu.org/licenses/>. + * + */ + +/** + * settings.cpp + * + * Settings and EEPROM storage + * + * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM + * in the functions below, also increment the version number. This makes sure that + * the default values are used whenever there is a change to the data, to prevent + * wrong data being written to the variables. + * + * ALSO: Variables in the Store and Retrieve sections must be in the same order. + * If a feature is disabled, some data must still be written that, when read, + * either sets a Sane Default, or results in No Change to the existing value. + */ + +// Change EEPROM version if the structure changes +#define EEPROM_VERSION "V83" +#define EEPROM_OFFSET 100 + +// Check the integrity of data offsets. +// Can be disabled for production build. +//#define DEBUG_EEPROM_READWRITE + +#include "settings.h" + +#include "endstops.h" +#include "planner.h" +#include "stepper.h" +#include "temperature.h" + +#include "../lcd/marlinui.h" +#include "../libs/vector_3.h" // for matrix_3x3 +#include "../gcode/gcode.h" +#include "../MarlinCore.h" + +#if EITHER(EEPROM_SETTINGS, SD_FIRMWARE_UPDATE) + #include "../HAL/shared/eeprom_api.h" +#endif + +#include "probe.h" + +#if HAS_LEVELING + #include "../feature/bedlevel/bedlevel.h" +#endif + +#if ENABLED(Z_STEPPER_AUTO_ALIGN) + #include "../feature/z_stepper_align.h" +#endif + +#if ENABLED(EXTENSIBLE_UI) + #include "../lcd/extui/ui_api.h" +#endif + +#if HAS_SERVOS + #include "servo.h" +#endif + +#if HAS_SERVOS && HAS_SERVO_ANGLES + #define EEPROM_NUM_SERVOS NUM_SERVOS +#else + #define EEPROM_NUM_SERVOS NUM_SERVO_PLUGS +#endif + +#include "../feature/fwretract.h" + +#if ENABLED(POWER_LOSS_RECOVERY) + #include "../feature/powerloss.h" +#endif + +#if HAS_POWER_MONITOR + #include "../feature/power_monitor.h" +#endif + +#include "../feature/pause.h" + +#if ENABLED(BACKLASH_COMPENSATION) + #include "../feature/backlash.h" +#endif + +#if HAS_FILAMENT_SENSOR + #include "../feature/runout.h" + #ifndef FIL_RUNOUT_ENABLED_DEFAULT + #define FIL_RUNOUT_ENABLED_DEFAULT true + #endif +#endif + +#if ENABLED(EXTRA_LIN_ADVANCE_K) + extern float other_extruder_advance_K[EXTRUDERS]; +#endif + +#if HAS_MULTI_EXTRUDER + #include "tool_change.h" + void M217_report(const bool eeprom); +#endif + +#if ENABLED(BLTOUCH) + #include "../feature/bltouch.h" +#endif + +#if HAS_TRINAMIC_CONFIG + #include "stepper/indirection.h" + #include "../feature/tmc_util.h" +#endif + +#if ENABLED(PROBE_TEMP_COMPENSATION) + #include "../feature/probe_temp_comp.h" +#endif + +#include "../feature/controllerfan.h" +#if ENABLED(CONTROLLER_FAN_EDITABLE) + void M710_report(const bool forReplay); +#endif + +#if ENABLED(CASE_LIGHT_ENABLE) + #include "../feature/caselight.h" +#endif + +#if ENABLED(PASSWORD_FEATURE) + #include "../feature/password/password.h" +#endif + +#if ENABLED(TOUCH_SCREEN_CALIBRATION) + #include "../lcd/tft_io/touch_calibration.h" +#endif + +#if HAS_ETHERNET + #include "../feature/ethernet.h" +#endif + +#if ENABLED(SOUND_MENU_ITEM) + #include "../libs/buzzer.h" +#endif + +#pragma pack(push, 1) // No padding between variables + +#if HAS_ETHERNET + void ETH0_report(); + void MAC_report(); + void M552_report(); + void M553_report(); + void M554_report(); +#endif + +typedef struct { uint16_t X, Y, Z, X2, Y2, Z2, Z3, Z4, E0, E1, E2, E3, E4, E5, E6, E7; } tmc_stepper_current_t; +typedef struct { uint32_t X, Y, Z, X2, Y2, Z2, Z3, Z4, E0, E1, E2, E3, E4, E5, E6, E7; } tmc_hybrid_threshold_t; +typedef struct { int16_t X, Y, Z, X2, Y2, Z2, Z3, Z4; } tmc_sgt_t; +typedef struct { bool X, Y, Z, X2, Y2, Z2, Z3, Z4, E0, E1, E2, E3, E4, E5, E6, E7; } tmc_stealth_enabled_t; + +// Limit an index to an array size +#define ALIM(I,ARR) _MIN(I, (signed)COUNT(ARR) - 1) + +// Defaults for reset / fill in on load +static const uint32_t _DMA[] PROGMEM = DEFAULT_MAX_ACCELERATION; +static const float _DASU[] PROGMEM = DEFAULT_AXIS_STEPS_PER_UNIT; +static const feedRate_t _DMF[] PROGMEM = DEFAULT_MAX_FEEDRATE; + +/** + * Current EEPROM Layout + * + * Keep this data structure up to date so + * EEPROM size is known at compile time! + */ +typedef struct SettingsDataStruct { + char version[4]; // Vnn\0 + uint16_t crc; // Data Checksum + + // + // DISTINCT_E_FACTORS + // + uint8_t esteppers; // XYZE_N - XYZ + + planner_settings_t planner_settings; + + xyze_float_t planner_max_jerk; // M205 XYZE planner.max_jerk + float planner_junction_deviation_mm; // M205 J planner.junction_deviation_mm + + xyz_pos_t home_offset; // M206 XYZ / M665 TPZ + + #if HAS_HOTEND_OFFSET + xyz_pos_t hotend_offset[HOTENDS - 1]; // M218 XYZ + #endif + + // + // FILAMENT_RUNOUT_SENSOR + // + bool runout_sensor_enabled; // M412 S + float runout_distance_mm; // M412 D + + // + // ENABLE_LEVELING_FADE_HEIGHT + // + float planner_z_fade_height; // M420 Zn planner.z_fade_height + + // + // MESH_BED_LEVELING + // + float mbl_z_offset; // mbl.z_offset + uint8_t mesh_num_x, mesh_num_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y + float mbl_z_values[TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_X, 3)] // mbl.z_values + [TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_Y, 3)]; + + // + // HAS_BED_PROBE + // + + xyz_pos_t probe_offset; + + // + // ABL_PLANAR + // + matrix_3x3 planner_bed_level_matrix; // planner.bed_level_matrix + + // + // AUTO_BED_LEVELING_BILINEAR + // + uint8_t grid_max_x, grid_max_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y + xy_pos_t bilinear_grid_spacing, bilinear_start; // G29 L F + #if ENABLED(AUTO_BED_LEVELING_BILINEAR) + bed_mesh_t z_values; // G29 + #else + float z_values[3][3]; + #endif + + // + // AUTO_BED_LEVELING_UBL + // + bool planner_leveling_active; // M420 S planner.leveling_active + int8_t ubl_storage_slot; // ubl.storage_slot + + // + // SERVO_ANGLES + // + uint16_t servo_angles[EEPROM_NUM_SERVOS][2]; // M281 P L U + + // + // Temperature first layer compensation values + // + #if ENABLED(PROBE_TEMP_COMPENSATION) + int16_t z_offsets_probe[COUNT(temp_comp.z_offsets_probe)], // M871 P I V + z_offsets_bed[COUNT(temp_comp.z_offsets_bed)] // M871 B I V + #if ENABLED(USE_TEMP_EXT_COMPENSATION) + , z_offsets_ext[COUNT(temp_comp.z_offsets_ext)] // M871 E I V + #endif + ; + #endif + + // + // BLTOUCH + // + bool bltouch_last_written_mode; + + // + // DELTA / [XYZ]_DUAL_ENDSTOPS + // + #if ENABLED(DELTA) + float delta_height; // M666 H + abc_float_t delta_endstop_adj; // M666 X Y Z + float delta_radius, // M665 R + delta_diagonal_rod, // M665 L + delta_segments_per_second; // M665 S + abc_float_t delta_tower_angle_trim, // M665 X Y Z + delta_diagonal_rod_trim; // M665 A B C + #elif HAS_EXTRA_ENDSTOPS + float x2_endstop_adj, // M666 X + y2_endstop_adj, // M666 Y + z2_endstop_adj, // M666 (S2) Z + z3_endstop_adj, // M666 (S3) Z + z4_endstop_adj; // M666 (S4) Z + #endif + + // + // Z_STEPPER_AUTO_ALIGN, Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS + // + #if ENABLED(Z_STEPPER_AUTO_ALIGN) + xy_pos_t z_stepper_align_xy[NUM_Z_STEPPER_DRIVERS]; // M422 S X Y + #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS) + xy_pos_t z_stepper_align_stepper_xy[NUM_Z_STEPPER_DRIVERS]; // M422 W X Y + #endif + #endif + + // + // Material Presets + // + #if PREHEAT_COUNT + preheat_t ui_material_preset[PREHEAT_COUNT]; // M145 S0 H B F + #endif + + // + // PIDTEMP + // + PIDCF_t hotendPID[HOTENDS]; // M301 En PIDCF / M303 En U + int16_t lpq_len; // M301 L + + // + // PIDTEMPBED + // + PID_t bedPID; // M304 PID / M303 E-1 U + + // + // User-defined Thermistors + // + #if HAS_USER_THERMISTORS + user_thermistor_t user_thermistor[USER_THERMISTORS]; // M305 P0 R4700 T100000 B3950 + #endif + + // + // Power monitor + // + uint8_t power_monitor_flags; // M430 I V W + + // + // HAS_LCD_CONTRAST + // + int16_t lcd_contrast; // M250 C + + // + // Controller fan settings + // + controllerFan_settings_t controllerFan_settings; // M710 + + // + // POWER_LOSS_RECOVERY + // + bool recovery_enabled; // M413 S + + // + // FWRETRACT + // + fwretract_settings_t fwretract_settings; // M207 S F Z W, M208 S F W R + bool autoretract_enabled; // M209 S + + // + // !NO_VOLUMETRIC + // + bool parser_volumetric_enabled; // M200 S parser.volumetric_enabled + float planner_filament_size[EXTRUDERS]; // M200 T D planner.filament_size[] + float planner_volumetric_extruder_limit[EXTRUDERS]; // M200 T L planner.volumetric_extruder_limit[] + + // + // HAS_TRINAMIC_CONFIG + // + tmc_stepper_current_t tmc_stepper_current; // M906 X Y Z X2 Y2 Z2 Z3 Z4 E0 E1 E2 E3 E4 E5 + tmc_hybrid_threshold_t tmc_hybrid_threshold; // M913 X Y Z X2 Y2 Z2 Z3 Z4 E0 E1 E2 E3 E4 E5 + tmc_sgt_t tmc_sgt; // M914 X Y Z X2 Y2 Z2 Z3 Z4 + tmc_stealth_enabled_t tmc_stealth_enabled; // M569 X Y Z X2 Y2 Z2 Z3 Z4 E0 E1 E2 E3 E4 E5 + + // + // LIN_ADVANCE + // + float planner_extruder_advance_K[_MAX(EXTRUDERS, 1)]; // M900 K planner.extruder_advance_K + + // + // HAS_MOTOR_CURRENT_PWM + // + #ifndef MOTOR_CURRENT_COUNT + #define MOTOR_CURRENT_COUNT 3 + #endif + uint32_t motor_current_setting[MOTOR_CURRENT_COUNT]; // M907 X Z E + + // + // CNC_COORDINATE_SYSTEMS + // + xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS]; // G54-G59.3 + + // + // SKEW_CORRECTION + // + skew_factor_t planner_skew_factor; // M852 I J K planner.skew_factor + + // + // ADVANCED_PAUSE_FEATURE + // + #if EXTRUDERS + fil_change_settings_t fc_settings[EXTRUDERS]; // M603 T U L + #endif + + // + // Tool-change settings + // + #if HAS_MULTI_EXTRUDER + toolchange_settings_t toolchange_settings; // M217 S P R + #endif + + // + // BACKLASH_COMPENSATION + // + xyz_float_t backlash_distance_mm; // M425 X Y Z + uint8_t backlash_correction; // M425 F + float backlash_smoothing_mm; // M425 S + + // + // EXTENSIBLE_UI + // + #if ENABLED(EXTENSIBLE_UI) + // This is a significant hardware change; don't reserve space when not present + uint8_t extui_data[ExtUI::eeprom_data_size]; + #endif + + // + // CASELIGHT_USES_BRIGHTNESS + // + #if CASELIGHT_USES_BRIGHTNESS + uint8_t caselight_brightness; // M355 P + #endif + + // + // PASSWORD_FEATURE + // + #if ENABLED(PASSWORD_FEATURE) + bool password_is_set; + uint32_t password_value; + #endif + + // + // TOUCH_SCREEN_CALIBRATION + // + #if ENABLED(TOUCH_SCREEN_CALIBRATION) + touch_calibration_t touch_calibration_data; + #endif + + // Ethernet settings + #if HAS_ETHERNET + bool ethernet_hardware_enabled; // M552 S + uint32_t ethernet_ip, // M552 P + ethernet_dns, + ethernet_gateway, // M553 P + ethernet_subnet; // M554 P + #endif + + // + // Buzzer enable/disable + // + #if ENABLED(SOUND_MENU_ITEM) + bool buzzer_enabled; + #endif + + #if HAS_MULTI_LANGUAGE + uint8_t ui_language; // M414 S + #endif + +} SettingsData; + +//static_assert(sizeof(SettingsData) <= MARLIN_EEPROM_SIZE, "EEPROM too small to contain SettingsData!"); + +MarlinSettings settings; + +uint16_t MarlinSettings::datasize() { return sizeof(SettingsData); } + +/** + * Post-process after Retrieve or Reset + */ + +#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) + float new_z_fade_height; +#endif + +void MarlinSettings::postprocess() { + xyze_pos_t oldpos = current_position; + + // steps per s2 needs to be updated to agree with units per s2 + planner.reset_acceleration_rates(); + + // Make sure delta kinematics are updated before refreshing the + // planner position so the stepper counts will be set correctly. + TERN_(DELTA, recalc_delta_settings()); + + TERN_(PIDTEMP, thermalManager.updatePID()); + + #if DISABLED(NO_VOLUMETRICS) + planner.calculate_volumetric_multipliers(); + #elif EXTRUDERS + for (uint8_t i = COUNT(planner.e_factor); i--;) + planner.refresh_e_factor(i); + #endif + + // Software endstops depend on home_offset + LOOP_XYZ(i) { + update_workspace_offset((AxisEnum)i); + update_software_endstops((AxisEnum)i); + } + + TERN_(ENABLE_LEVELING_FADE_HEIGHT, set_z_fade_height(new_z_fade_height, false)); // false = no report + + TERN_(AUTO_BED_LEVELING_BILINEAR, refresh_bed_level()); + + TERN_(HAS_MOTOR_CURRENT_PWM, stepper.refresh_motor_power()); + + TERN_(FWRETRACT, fwretract.refresh_autoretract()); + + TERN_(HAS_LINEAR_E_JERK, planner.recalculate_max_e_jerk()); + + TERN_(CASELIGHT_USES_BRIGHTNESS, caselight.update_brightness()); + + // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm + // and init stepper.count[], planner.position[] with current_position + planner.refresh_positioning(); + + // Various factors can change the current position + if (oldpos != current_position) + report_current_position(); +} + +#if BOTH(PRINTCOUNTER, EEPROM_SETTINGS) + #include "printcounter.h" + static_assert( + !WITHIN(STATS_EEPROM_ADDRESS, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)) && + !WITHIN(STATS_EEPROM_ADDRESS + sizeof(printStatistics), EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)), + "STATS_EEPROM_ADDRESS collides with EEPROM settings storage." + ); +#endif + +#if ENABLED(SD_FIRMWARE_UPDATE) + + #if ENABLED(EEPROM_SETTINGS) + static_assert( + !WITHIN(SD_FIRMWARE_UPDATE_EEPROM_ADDR, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)), + "SD_FIRMWARE_UPDATE_EEPROM_ADDR collides with EEPROM settings storage." + ); + #endif + + bool MarlinSettings::sd_update_status() { + uint8_t val; + persistentStore.read_data(SD_FIRMWARE_UPDATE_EEPROM_ADDR, &val); + return (val == SD_FIRMWARE_UPDATE_ACTIVE_VALUE); + } + + bool MarlinSettings::set_sd_update_status(const bool enable) { + if (enable != sd_update_status()) + persistentStore.write_data( + SD_FIRMWARE_UPDATE_EEPROM_ADDR, + enable ? SD_FIRMWARE_UPDATE_ACTIVE_VALUE : SD_FIRMWARE_UPDATE_INACTIVE_VALUE + ); + return true; + } + +#endif // SD_FIRMWARE_UPDATE + +#ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE + static_assert(EEPROM_OFFSET + sizeof(SettingsData) < ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE, + "ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE is insufficient to capture all EEPROM data."); +#endif + +#define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE) +#include "../core/debug_out.h" + +#if ENABLED(EEPROM_SETTINGS) + + #define EEPROM_START() if (!persistentStore.access_start()) { SERIAL_ECHO_MSG("No EEPROM."); return false; } \ + int eeprom_index = EEPROM_OFFSET + #define EEPROM_FINISH() persistentStore.access_finish() + #define EEPROM_SKIP(VAR) (eeprom_index += sizeof(VAR)) + #define EEPROM_WRITE(VAR) do{ persistentStore.write_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc); }while(0) + #define EEPROM_READ(VAR) do{ persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc, !validating); }while(0) + #define EEPROM_READ_ALWAYS(VAR) do{ persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc); }while(0) + #define EEPROM_ASSERT(TST,ERR) do{ if (!(TST)) { SERIAL_ERROR_MSG(ERR); eeprom_error = true; } }while(0) + + #if ENABLED(DEBUG_EEPROM_READWRITE) + #define _FIELD_TEST(FIELD) \ + EEPROM_ASSERT( \ + eeprom_error || eeprom_index == offsetof(SettingsData, FIELD) + EEPROM_OFFSET, \ + "Field " STRINGIFY(FIELD) " mismatch." \ + ) + #else + #define _FIELD_TEST(FIELD) NOOP + #endif + + const char version[4] = EEPROM_VERSION; + + bool MarlinSettings::eeprom_error, MarlinSettings::validating; + + bool MarlinSettings::size_error(const uint16_t size) { + if (size != datasize()) { + DEBUG_ERROR_MSG("EEPROM datasize error."); + return true; + } + return false; + } + + /** + * M500 - Store Configuration + */ + bool MarlinSettings::save() { + float dummyf = 0; + char ver[4] = "ERR"; + + uint16_t working_crc = 0; + + EEPROM_START(); + + eeprom_error = false; + + // Write or Skip version. (Flash doesn't allow rewrite without erase.) + TERN(FLASH_EEPROM_EMULATION, EEPROM_SKIP, EEPROM_WRITE)(ver); + + EEPROM_SKIP(working_crc); // Skip the checksum slot + + working_crc = 0; // clear before first "real data" + + _FIELD_TEST(esteppers); + + const uint8_t esteppers = COUNT(planner.settings.axis_steps_per_mm) - XYZ; + EEPROM_WRITE(esteppers); + + // + // Planner Motion + // + { + EEPROM_WRITE(planner.settings); + + #if HAS_CLASSIC_JERK + EEPROM_WRITE(planner.max_jerk); + #if HAS_LINEAR_E_JERK + dummyf = float(DEFAULT_EJERK); + EEPROM_WRITE(dummyf); + #endif + #else + const xyze_pos_t planner_max_jerk = { 10, 10, 0.4, float(DEFAULT_EJERK) }; + EEPROM_WRITE(planner_max_jerk); + #endif + + TERN_(CLASSIC_JERK, dummyf = 0.02f); + EEPROM_WRITE(TERN(CLASSIC_JERK, dummyf, planner.junction_deviation_mm)); + } + + // + // Home Offset + // + { + _FIELD_TEST(home_offset); + + #if HAS_SCARA_OFFSET + EEPROM_WRITE(scara_home_offset); + #else + #if !HAS_HOME_OFFSET + const xyz_pos_t home_offset{0}; + #endif + EEPROM_WRITE(home_offset); + #endif + } + + // + // Hotend Offsets, if any + // + { + #if HAS_HOTEND_OFFSET + // Skip hotend 0 which must be 0 + LOOP_S_L_N(e, 1, HOTENDS) + EEPROM_WRITE(hotend_offset[e]); + #endif + } + + // + // Filament Runout Sensor + // + { + #if HAS_FILAMENT_SENSOR + const bool &runout_sensor_enabled = runout.enabled; + #else + constexpr int8_t runout_sensor_enabled = -1; + #endif + _FIELD_TEST(runout_sensor_enabled); + EEPROM_WRITE(runout_sensor_enabled); + + #if HAS_FILAMENT_RUNOUT_DISTANCE + const float &runout_distance_mm = runout.runout_distance(); + #else + constexpr float runout_distance_mm = 0; + #endif + EEPROM_WRITE(runout_distance_mm); + } + + // + // Global Leveling + // + { + const float zfh = TERN(ENABLE_LEVELING_FADE_HEIGHT, planner.z_fade_height, (DEFAULT_LEVELING_FADE_HEIGHT)); + EEPROM_WRITE(zfh); + } + + // + // Mesh Bed Leveling + // + { + #if ENABLED(MESH_BED_LEVELING) + static_assert( + sizeof(mbl.z_values) == (GRID_MAX_POINTS) * sizeof(mbl.z_values[0][0]), + "MBL Z array is the wrong size." + ); + #else + dummyf = 0; + #endif + + const uint8_t mesh_num_x = TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_X, 3), + mesh_num_y = TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_Y, 3); + + EEPROM_WRITE(TERN(MESH_BED_LEVELING, mbl.z_offset, dummyf)); + EEPROM_WRITE(mesh_num_x); + EEPROM_WRITE(mesh_num_y); + + #if ENABLED(MESH_BED_LEVELING) + EEPROM_WRITE(mbl.z_values); + #else + for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummyf); + #endif + } + + // + // Probe XYZ Offsets + // + { + _FIELD_TEST(probe_offset); + #if HAS_BED_PROBE + const xyz_pos_t &zpo = probe.offset; + #else + constexpr xyz_pos_t zpo{0}; + #endif + EEPROM_WRITE(zpo); + } + + // + // Planar Bed Leveling matrix + // + { + #if ABL_PLANAR + EEPROM_WRITE(planner.bed_level_matrix); + #else + dummyf = 0; + for (uint8_t q = 9; q--;) EEPROM_WRITE(dummyf); + #endif + } + + // + // Bilinear Auto Bed Leveling + // + { + #if ENABLED(AUTO_BED_LEVELING_BILINEAR) + static_assert( + sizeof(z_values) == (GRID_MAX_POINTS) * sizeof(z_values[0][0]), + "Bilinear Z array is the wrong size." + ); + #else + const xy_pos_t bilinear_start{0}, bilinear_grid_spacing{0}; + #endif + + const uint8_t grid_max_x = TERN(AUTO_BED_LEVELING_BILINEAR, GRID_MAX_POINTS_X, 3), + grid_max_y = TERN(AUTO_BED_LEVELING_BILINEAR, GRID_MAX_POINTS_Y, 3); + EEPROM_WRITE(grid_max_x); + EEPROM_WRITE(grid_max_y); + EEPROM_WRITE(bilinear_grid_spacing); + EEPROM_WRITE(bilinear_start); + + #if ENABLED(AUTO_BED_LEVELING_BILINEAR) + EEPROM_WRITE(z_values); // 9-256 floats + #else + dummyf = 0; + for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummyf); + #endif + } + + // + // Unified Bed Leveling + // + { + _FIELD_TEST(planner_leveling_active); + const bool ubl_active = TERN(AUTO_BED_LEVELING_UBL, planner.leveling_active, false); + const int8_t storage_slot = TERN(AUTO_BED_LEVELING_UBL, ubl.storage_slot, -1); + EEPROM_WRITE(ubl_active); + EEPROM_WRITE(storage_slot); + } + + // + // Servo Angles + // + { + _FIELD_TEST(servo_angles); + #if !HAS_SERVO_ANGLES + uint16_t servo_angles[EEPROM_NUM_SERVOS][2] = { { 0, 0 } }; + #endif + EEPROM_WRITE(servo_angles); + } + + // + // Thermal first layer compensation values + // + #if ENABLED(PROBE_TEMP_COMPENSATION) + EEPROM_WRITE(temp_comp.z_offsets_probe); + EEPROM_WRITE(temp_comp.z_offsets_bed); + #if ENABLED(USE_TEMP_EXT_COMPENSATION) + EEPROM_WRITE(temp_comp.z_offsets_ext); + #endif + #else + // No placeholder data for this feature + #endif + + // + // BLTOUCH + // + { + _FIELD_TEST(bltouch_last_written_mode); + const bool bltouch_last_written_mode = TERN(BLTOUCH, bltouch.last_written_mode, false); + EEPROM_WRITE(bltouch_last_written_mode); + } + + // + // DELTA Geometry or Dual Endstops offsets + // + { + #if ENABLED(DELTA) + + _FIELD_TEST(delta_height); + + EEPROM_WRITE(delta_height); // 1 float + EEPROM_WRITE(delta_endstop_adj); // 3 floats + EEPROM_WRITE(delta_radius); // 1 float + EEPROM_WRITE(delta_diagonal_rod); // 1 float + EEPROM_WRITE(delta_segments_per_second); // 1 float + EEPROM_WRITE(delta_tower_angle_trim); // 3 floats + EEPROM_WRITE(delta_diagonal_rod_trim); // 3 floats + + #elif HAS_EXTRA_ENDSTOPS + + _FIELD_TEST(x2_endstop_adj); + + // Write dual endstops in X, Y, Z order. Unused = 0.0 + dummyf = 0; + EEPROM_WRITE(TERN(X_DUAL_ENDSTOPS, endstops.x2_endstop_adj, dummyf)); // 1 float + EEPROM_WRITE(TERN(Y_DUAL_ENDSTOPS, endstops.y2_endstop_adj, dummyf)); // 1 float + EEPROM_WRITE(TERN(Z_MULTI_ENDSTOPS, endstops.z2_endstop_adj, dummyf)); // 1 float + + #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 3 + EEPROM_WRITE(endstops.z3_endstop_adj); // 1 float + #else + EEPROM_WRITE(dummyf); + #endif + + #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 4 + EEPROM_WRITE(endstops.z4_endstop_adj); // 1 float + #else + EEPROM_WRITE(dummyf); + #endif + + #endif + } + + #if ENABLED(Z_STEPPER_AUTO_ALIGN) + EEPROM_WRITE(z_stepper_align.xy); + #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS) + EEPROM_WRITE(z_stepper_align.stepper_xy); + #endif + #endif + + // + // LCD Preheat settings + // + #if PREHEAT_COUNT + _FIELD_TEST(ui_material_preset); + EEPROM_WRITE(ui.material_preset); + #endif + + // + // PIDTEMP + // + { + _FIELD_TEST(hotendPID); + HOTEND_LOOP() { + PIDCF_t pidcf = { + #if DISABLED(PIDTEMP) + NAN, NAN, NAN, + NAN, NAN + #else + PID_PARAM(Kp, e), + unscalePID_i(PID_PARAM(Ki, e)), + unscalePID_d(PID_PARAM(Kd, e)), + PID_PARAM(Kc, e), + PID_PARAM(Kf, e) + #endif + }; + EEPROM_WRITE(pidcf); + } + + _FIELD_TEST(lpq_len); + #if DISABLED(PID_EXTRUSION_SCALING) + const int16_t lpq_len = 20; + #endif + EEPROM_WRITE(TERN(PID_EXTRUSION_SCALING, thermalManager.lpq_len, lpq_len)); + } + + // + // PIDTEMPBED + // + { + _FIELD_TEST(bedPID); + + const PID_t bed_pid = { + #if DISABLED(PIDTEMPBED) + NAN, NAN, NAN + #else + // Store the unscaled PID values + thermalManager.temp_bed.pid.Kp, + unscalePID_i(thermalManager.temp_bed.pid.Ki), + unscalePID_d(thermalManager.temp_bed.pid.Kd) + #endif + }; + EEPROM_WRITE(bed_pid); + } + + // + // User-defined Thermistors + // + #if HAS_USER_THERMISTORS + { + _FIELD_TEST(user_thermistor); + EEPROM_WRITE(thermalManager.user_thermistor); + } + #endif + + // + // Power monitor + // + { + #if HAS_POWER_MONITOR + const uint8_t &power_monitor_flags = power_monitor.flags; + #else + constexpr uint8_t power_monitor_flags = 0x00; + #endif + _FIELD_TEST(power_monitor_flags); + EEPROM_WRITE(power_monitor_flags); + } + + // + // LCD Contrast + // + { + _FIELD_TEST(lcd_contrast); + + const int16_t lcd_contrast = + #if HAS_LCD_CONTRAST + ui.contrast + #else + 127 + #endif + ; + EEPROM_WRITE(lcd_contrast); + } + + // + // Controller Fan + // + { + _FIELD_TEST(controllerFan_settings); + #if ENABLED(USE_CONTROLLER_FAN) + const controllerFan_settings_t &cfs = controllerFan.settings; + #else + controllerFan_settings_t cfs = controllerFan_defaults; + #endif + EEPROM_WRITE(cfs); + } + + // + // Power-Loss Recovery + // + { + _FIELD_TEST(recovery_enabled); + const bool recovery_enabled = TERN(POWER_LOSS_RECOVERY, recovery.enabled, ENABLED(PLR_ENABLED_DEFAULT)); + EEPROM_WRITE(recovery_enabled); + } + + // + // Firmware Retraction + // + { + _FIELD_TEST(fwretract_settings); + #if DISABLED(FWRETRACT) + const fwretract_settings_t autoretract_defaults = { 3, 45, 0, 0, 0, 13, 0, 8 }; + #endif + EEPROM_WRITE(TERN(FWRETRACT, fwretract.settings, autoretract_defaults)); + + #if DISABLED(FWRETRACT_AUTORETRACT) + const bool autoretract_enabled = false; + #endif + EEPROM_WRITE(TERN(FWRETRACT_AUTORETRACT, fwretract.autoretract_enabled, autoretract_enabled)); + } + + // + // Volumetric & Filament Size + // + { + _FIELD_TEST(parser_volumetric_enabled); + + #if DISABLED(NO_VOLUMETRICS) + + EEPROM_WRITE(parser.volumetric_enabled); + EEPROM_WRITE(planner.filament_size); + #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT) + EEPROM_WRITE(planner.volumetric_extruder_limit); + #else + dummyf = DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT; + for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf); + #endif + + #else + + const bool volumetric_enabled = false; + EEPROM_WRITE(volumetric_enabled); + dummyf = DEFAULT_NOMINAL_FILAMENT_DIA; + for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf); + dummyf = DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT; + for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf); + + #endif + } + + // + // TMC Configuration + // + { + _FIELD_TEST(tmc_stepper_current); + + tmc_stepper_current_t tmc_stepper_current = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; + + #if HAS_TRINAMIC_CONFIG + #if AXIS_IS_TMC(X) + tmc_stepper_current.X = stepperX.getMilliamps(); + #endif + #if AXIS_IS_TMC(Y) + tmc_stepper_current.Y = stepperY.getMilliamps(); + #endif + #if AXIS_IS_TMC(Z) + tmc_stepper_current.Z = stepperZ.getMilliamps(); + #endif + #if AXIS_IS_TMC(X2) + tmc_stepper_current.X2 = stepperX2.getMilliamps(); + #endif + #if AXIS_IS_TMC(Y2) + tmc_stepper_current.Y2 = stepperY2.getMilliamps(); + #endif + #if AXIS_IS_TMC(Z2) + tmc_stepper_current.Z2 = stepperZ2.getMilliamps(); + #endif + #if AXIS_IS_TMC(Z3) + tmc_stepper_current.Z3 = stepperZ3.getMilliamps(); + #endif + #if AXIS_IS_TMC(Z4) + tmc_stepper_current.Z4 = stepperZ4.getMilliamps(); + #endif + #if AXIS_IS_TMC(E0) + tmc_stepper_current.E0 = stepperE0.getMilliamps(); + #endif + #if AXIS_IS_TMC(E1) + tmc_stepper_current.E1 = stepperE1.getMilliamps(); + #endif + #if AXIS_IS_TMC(E2) + tmc_stepper_current.E2 = stepperE2.getMilliamps(); + #endif + #if AXIS_IS_TMC(E3) + tmc_stepper_current.E3 = stepperE3.getMilliamps(); + #endif + #if AXIS_IS_TMC(E4) + tmc_stepper_current.E4 = stepperE4.getMilliamps(); + #endif + #if AXIS_IS_TMC(E5) + tmc_stepper_current.E5 = stepperE5.getMilliamps(); + #endif + #if AXIS_IS_TMC(E6) + tmc_stepper_current.E6 = stepperE6.getMilliamps(); + #endif + #if AXIS_IS_TMC(E7) + tmc_stepper_current.E7 = stepperE7.getMilliamps(); + #endif + #endif + EEPROM_WRITE(tmc_stepper_current); + } + + // + // TMC Hybrid Threshold, and placeholder values + // + { + _FIELD_TEST(tmc_hybrid_threshold); + + #if ENABLED(HYBRID_THRESHOLD) + tmc_hybrid_threshold_t tmc_hybrid_threshold = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; + #if AXIS_HAS_STEALTHCHOP(X) + tmc_hybrid_threshold.X = stepperX.get_pwm_thrs(); + #endif + #if AXIS_HAS_STEALTHCHOP(Y) + tmc_hybrid_threshold.Y = stepperY.get_pwm_thrs(); + #endif + #if AXIS_HAS_STEALTHCHOP(Z) + tmc_hybrid_threshold.Z = stepperZ.get_pwm_thrs(); + #endif + #if AXIS_HAS_STEALTHCHOP(X2) + tmc_hybrid_threshold.X2 = stepperX2.get_pwm_thrs(); + #endif + #if AXIS_HAS_STEALTHCHOP(Y2) + tmc_hybrid_threshold.Y2 = stepperY2.get_pwm_thrs(); + #endif + #if AXIS_HAS_STEALTHCHOP(Z2) + tmc_hybrid_threshold.Z2 = stepperZ2.get_pwm_thrs(); + #endif + #if AXIS_HAS_STEALTHCHOP(Z3) + tmc_hybrid_threshold.Z3 = stepperZ3.get_pwm_thrs(); + #endif + #if AXIS_HAS_STEALTHCHOP(Z4) + tmc_hybrid_threshold.Z4 = stepperZ4.get_pwm_thrs(); + #endif + #if AXIS_HAS_STEALTHCHOP(E0) + tmc_hybrid_threshold.E0 = stepperE0.get_pwm_thrs(); + #endif + #if AXIS_HAS_STEALTHCHOP(E1) + tmc_hybrid_threshold.E1 = stepperE1.get_pwm_thrs(); + #endif + #if AXIS_HAS_STEALTHCHOP(E2) + tmc_hybrid_threshold.E2 = stepperE2.get_pwm_thrs(); + #endif + #if AXIS_HAS_STEALTHCHOP(E3) + tmc_hybrid_threshold.E3 = stepperE3.get_pwm_thrs(); + #endif + #if AXIS_HAS_STEALTHCHOP(E4) + tmc_hybrid_threshold.E4 = stepperE4.get_pwm_thrs(); + #endif + #if AXIS_HAS_STEALTHCHOP(E5) + tmc_hybrid_threshold.E5 = stepperE5.get_pwm_thrs(); + #endif + #if AXIS_HAS_STEALTHCHOP(E6) + tmc_hybrid_threshold.E6 = stepperE6.get_pwm_thrs(); + #endif + #if AXIS_HAS_STEALTHCHOP(E7) + tmc_hybrid_threshold.E7 = stepperE7.get_pwm_thrs(); + #endif + #else + const tmc_hybrid_threshold_t tmc_hybrid_threshold = { + .X = 100, .Y = 100, .Z = 3, + .X2 = 100, .Y2 = 100, .Z2 = 3, .Z3 = 3, .Z4 = 3, + .E0 = 30, .E1 = 30, .E2 = 30, + .E3 = 30, .E4 = 30, .E5 = 30 + }; + #endif + EEPROM_WRITE(tmc_hybrid_threshold); + } + + // + // TMC StallGuard threshold + // + { + tmc_sgt_t tmc_sgt{0}; + #if USE_SENSORLESS + TERN_(X_SENSORLESS, tmc_sgt.X = stepperX.homing_threshold()); + TERN_(X2_SENSORLESS, tmc_sgt.X2 = stepperX2.homing_threshold()); + TERN_(Y_SENSORLESS, tmc_sgt.Y = stepperY.homing_threshold()); + TERN_(Y2_SENSORLESS, tmc_sgt.Y2 = stepperY2.homing_threshold()); + TERN_(Z_SENSORLESS, tmc_sgt.Z = stepperZ.homing_threshold()); + TERN_(Z2_SENSORLESS, tmc_sgt.Z2 = stepperZ2.homing_threshold()); + TERN_(Z3_SENSORLESS, tmc_sgt.Z3 = stepperZ3.homing_threshold()); + TERN_(Z4_SENSORLESS, tmc_sgt.Z4 = stepperZ4.homing_threshold()); + #endif + EEPROM_WRITE(tmc_sgt); + } + + // + // TMC stepping mode + // + { + _FIELD_TEST(tmc_stealth_enabled); + + tmc_stealth_enabled_t tmc_stealth_enabled = { false }; + #if AXIS_HAS_STEALTHCHOP(X) + tmc_stealth_enabled.X = stepperX.get_stored_stealthChop(); + #endif + #if AXIS_HAS_STEALTHCHOP(Y) + tmc_stealth_enabled.Y = stepperY.get_stored_stealthChop(); + #endif + #if AXIS_HAS_STEALTHCHOP(Z) + tmc_stealth_enabled.Z = stepperZ.get_stored_stealthChop(); + #endif + #if AXIS_HAS_STEALTHCHOP(X2) + tmc_stealth_enabled.X2 = stepperX2.get_stored_stealthChop(); + #endif + #if AXIS_HAS_STEALTHCHOP(Y2) + tmc_stealth_enabled.Y2 = stepperY2.get_stored_stealthChop(); + #endif + #if AXIS_HAS_STEALTHCHOP(Z2) + tmc_stealth_enabled.Z2 = stepperZ2.get_stored_stealthChop(); + #endif + #if AXIS_HAS_STEALTHCHOP(Z3) + tmc_stealth_enabled.Z3 = stepperZ3.get_stored_stealthChop(); + #endif + #if AXIS_HAS_STEALTHCHOP(Z4) + tmc_stealth_enabled.Z4 = stepperZ4.get_stored_stealthChop(); + #endif + #if AXIS_HAS_STEALTHCHOP(E0) + tmc_stealth_enabled.E0 = stepperE0.get_stored_stealthChop(); + #endif + #if AXIS_HAS_STEALTHCHOP(E1) + tmc_stealth_enabled.E1 = stepperE1.get_stored_stealthChop(); + #endif + #if AXIS_HAS_STEALTHCHOP(E2) + tmc_stealth_enabled.E2 = stepperE2.get_stored_stealthChop(); + #endif + #if AXIS_HAS_STEALTHCHOP(E3) + tmc_stealth_enabled.E3 = stepperE3.get_stored_stealthChop(); + #endif + #if AXIS_HAS_STEALTHCHOP(E4) + tmc_stealth_enabled.E4 = stepperE4.get_stored_stealthChop(); + #endif + #if AXIS_HAS_STEALTHCHOP(E5) + tmc_stealth_enabled.E5 = stepperE5.get_stored_stealthChop(); + #endif + #if AXIS_HAS_STEALTHCHOP(E6) + tmc_stealth_enabled.E6 = stepperE6.get_stored_stealthChop(); + #endif + #if AXIS_HAS_STEALTHCHOP(E7) + tmc_stealth_enabled.E7 = stepperE7.get_stored_stealthChop(); + #endif + EEPROM_WRITE(tmc_stealth_enabled); + } + + // + // Linear Advance + // + { + _FIELD_TEST(planner_extruder_advance_K); + + #if ENABLED(LIN_ADVANCE) + EEPROM_WRITE(planner.extruder_advance_K); + #else + dummyf = 0; + for (uint8_t q = _MAX(EXTRUDERS, 1); q--;) EEPROM_WRITE(dummyf); + #endif + } + + // + // Motor Current PWM + // + { + _FIELD_TEST(motor_current_setting); + + #if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM + EEPROM_WRITE(stepper.motor_current_setting); + #else + const uint32_t no_current[MOTOR_CURRENT_COUNT] = { 0 }; + EEPROM_WRITE(no_current); + #endif + } + + // + // CNC Coordinate Systems + // + + _FIELD_TEST(coordinate_system); + + #if DISABLED(CNC_COORDINATE_SYSTEMS) + const xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS] = { { 0 } }; + #endif + EEPROM_WRITE(TERN(CNC_COORDINATE_SYSTEMS, gcode.coordinate_system, coordinate_system)); + + // + // Skew correction factors + // + _FIELD_TEST(planner_skew_factor); + EEPROM_WRITE(planner.skew_factor); + + // + // Advanced Pause filament load & unload lengths + // + #if EXTRUDERS + { + #if DISABLED(ADVANCED_PAUSE_FEATURE) + const fil_change_settings_t fc_settings[EXTRUDERS] = { 0, 0 }; + #endif + _FIELD_TEST(fc_settings); + EEPROM_WRITE(fc_settings); + } + #endif + + // + // Multiple Extruders + // + + #if HAS_MULTI_EXTRUDER + _FIELD_TEST(toolchange_settings); + EEPROM_WRITE(toolchange_settings); + #endif + + // + // Backlash Compensation + // + { + #if ENABLED(BACKLASH_GCODE) + const xyz_float_t &backlash_distance_mm = backlash.distance_mm; + const uint8_t &backlash_correction = backlash.correction; + #else + const xyz_float_t backlash_distance_mm{0}; + const uint8_t backlash_correction = 0; + #endif + #if ENABLED(BACKLASH_GCODE) && defined(BACKLASH_SMOOTHING_MM) + const float &backlash_smoothing_mm = backlash.smoothing_mm; + #else + const float backlash_smoothing_mm = 3; + #endif + _FIELD_TEST(backlash_distance_mm); + EEPROM_WRITE(backlash_distance_mm); + EEPROM_WRITE(backlash_correction); + EEPROM_WRITE(backlash_smoothing_mm); + } + + // + // Extensible UI User Data + // + #if ENABLED(EXTENSIBLE_UI) + { + char extui_data[ExtUI::eeprom_data_size] = { 0 }; + ExtUI::onStoreSettings(extui_data); + _FIELD_TEST(extui_data); + EEPROM_WRITE(extui_data); + } + #endif + + // + // Case Light Brightness + // + #if CASELIGHT_USES_BRIGHTNESS + EEPROM_WRITE(caselight.brightness); + #endif + + // + // Password feature + // + #if ENABLED(PASSWORD_FEATURE) + EEPROM_WRITE(password.is_set); + EEPROM_WRITE(password.value); + #endif + + // + // TOUCH_SCREEN_CALIBRATION + // + #if ENABLED(TOUCH_SCREEN_CALIBRATION) + EEPROM_WRITE(touch_calibration.calibration); + #endif + + // + // Ethernet network info + // + #if HAS_ETHERNET + { + _FIELD_TEST(ethernet_hardware_enabled); + const bool ethernet_hardware_enabled = ethernet.hardware_enabled; + const uint32_t ethernet_ip = ethernet.ip, + ethernet_dns = ethernet.myDns, + ethernet_gateway = ethernet.gateway, + ethernet_subnet = ethernet.subnet; + EEPROM_WRITE(ethernet_hardware_enabled); + EEPROM_WRITE(ethernet_ip); + EEPROM_WRITE(ethernet_dns); + EEPROM_WRITE(ethernet_gateway); + EEPROM_WRITE(ethernet_subnet); + } + #endif + + // + // Buzzer enable/disable + // + #if ENABLED(SOUND_MENU_ITEM) + EEPROM_WRITE(ui.buzzer_enabled); + #endif + + // + // Selected LCD language + // + #if HAS_MULTI_LANGUAGE + EEPROM_WRITE(ui.language); + #endif + + // + // Report final CRC and Data Size + // + if (!eeprom_error) { + const uint16_t eeprom_size = eeprom_index - (EEPROM_OFFSET), + final_crc = working_crc; + + // Write the EEPROM header + eeprom_index = EEPROM_OFFSET; + + EEPROM_WRITE(version); + EEPROM_WRITE(final_crc); + + // Report storage size + DEBUG_ECHO_START(); + DEBUG_ECHOLNPAIR("Settings Stored (", eeprom_size, " bytes; crc ", (uint32_t)final_crc, ")"); + + eeprom_error |= size_error(eeprom_size); + } + EEPROM_FINISH(); + + // + // UBL Mesh + // + #if ENABLED(UBL_SAVE_ACTIVE_ON_M500) + if (ubl.storage_slot >= 0) + store_mesh(ubl.storage_slot); + #endif + + if (!eeprom_error) LCD_MESSAGEPGM(MSG_SETTINGS_STORED); + + TERN_(EXTENSIBLE_UI, ExtUI::onConfigurationStoreWritten(!eeprom_error)); + + return !eeprom_error; + } + + /** + * M501 - Retrieve Configuration + */ + bool MarlinSettings::_load() { + uint16_t working_crc = 0; + + EEPROM_START(); + + char stored_ver[4]; + EEPROM_READ_ALWAYS(stored_ver); + + uint16_t stored_crc; + EEPROM_READ_ALWAYS(stored_crc); + + // Version has to match or defaults are used + if (strncmp(version, stored_ver, 3) != 0) { + if (stored_ver[3] != '\0') { + stored_ver[0] = '?'; + stored_ver[1] = '\0'; + } + DEBUG_ECHO_START(); + DEBUG_ECHOLNPAIR("EEPROM version mismatch (EEPROM=", stored_ver, " Marlin=" EEPROM_VERSION ")"); + IF_DISABLED(EEPROM_AUTO_INIT, ui.eeprom_alert_version()); + eeprom_error = true; + } + else { + float dummyf = 0; + working_crc = 0; // Init to 0. Accumulated by EEPROM_READ + + _FIELD_TEST(esteppers); + + // Number of esteppers may change + uint8_t esteppers; + EEPROM_READ_ALWAYS(esteppers); + + // + // Planner Motion + // + { + // Get only the number of E stepper parameters previously stored + // Any steppers added later are set to their defaults + uint32_t tmp1[XYZ + esteppers]; + float tmp2[XYZ + esteppers]; + feedRate_t tmp3[XYZ + esteppers]; + EEPROM_READ(tmp1); // max_acceleration_mm_per_s2 + EEPROM_READ(planner.settings.min_segment_time_us); + EEPROM_READ(tmp2); // axis_steps_per_mm + EEPROM_READ(tmp3); // max_feedrate_mm_s + + if (!validating) LOOP_XYZE_N(i) { + const bool in = (i < esteppers + XYZ); + planner.settings.max_acceleration_mm_per_s2[i] = in ? tmp1[i] : pgm_read_dword(&_DMA[ALIM(i, _DMA)]); + planner.settings.axis_steps_per_mm[i] = in ? tmp2[i] : pgm_read_float(&_DASU[ALIM(i, _DASU)]); + planner.settings.max_feedrate_mm_s[i] = in ? tmp3[i] : pgm_read_float(&_DMF[ALIM(i, _DMF)]); + } + + EEPROM_READ(planner.settings.acceleration); + EEPROM_READ(planner.settings.retract_acceleration); + EEPROM_READ(planner.settings.travel_acceleration); + EEPROM_READ(planner.settings.min_feedrate_mm_s); + EEPROM_READ(planner.settings.min_travel_feedrate_mm_s); + + #if HAS_CLASSIC_JERK + EEPROM_READ(planner.max_jerk); + #if HAS_LINEAR_E_JERK + EEPROM_READ(dummyf); + #endif + #else + for (uint8_t q = 4; q--;) EEPROM_READ(dummyf); + #endif + + EEPROM_READ(TERN(CLASSIC_JERK, dummyf, planner.junction_deviation_mm)); + } + + // + // Home Offset (M206 / M665) + // + { + _FIELD_TEST(home_offset); + + #if HAS_SCARA_OFFSET + EEPROM_READ(scara_home_offset); + #else + #if !HAS_HOME_OFFSET + xyz_pos_t home_offset; + #endif + EEPROM_READ(home_offset); + #endif + } + + // + // Hotend Offsets, if any + // + { + #if HAS_HOTEND_OFFSET + // Skip hotend 0 which must be 0 + LOOP_S_L_N(e, 1, HOTENDS) + EEPROM_READ(hotend_offset[e]); + #endif + } + + // + // Filament Runout Sensor + // + { + int8_t runout_sensor_enabled; + _FIELD_TEST(runout_sensor_enabled); + EEPROM_READ(runout_sensor_enabled); + #if HAS_FILAMENT_SENSOR + runout.enabled = runout_sensor_enabled < 0 ? FIL_RUNOUT_ENABLED_DEFAULT : runout_sensor_enabled; + #endif + + TERN_(HAS_FILAMENT_SENSOR, if (runout.enabled) runout.reset()); + + float runout_distance_mm; + EEPROM_READ(runout_distance_mm); + #if HAS_FILAMENT_RUNOUT_DISTANCE + if (!validating) runout.set_runout_distance(runout_distance_mm); + #endif + } + + // + // Global Leveling + // + EEPROM_READ(TERN(ENABLE_LEVELING_FADE_HEIGHT, new_z_fade_height, dummyf)); + + // + // Mesh (Manual) Bed Leveling + // + { + uint8_t mesh_num_x, mesh_num_y; + EEPROM_READ(dummyf); + EEPROM_READ_ALWAYS(mesh_num_x); + EEPROM_READ_ALWAYS(mesh_num_y); + + #if ENABLED(MESH_BED_LEVELING) + if (!validating) mbl.z_offset = dummyf; + if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) { + // EEPROM data fits the current mesh + EEPROM_READ(mbl.z_values); + } + else { + // EEPROM data is stale + if (!validating) mbl.reset(); + for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummyf); + } + #else + // MBL is disabled - skip the stored data + for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummyf); + #endif // MESH_BED_LEVELING + } + + // + // Probe Z Offset + // + { + _FIELD_TEST(probe_offset); + #if HAS_BED_PROBE + const xyz_pos_t &zpo = probe.offset; + #else + xyz_pos_t zpo; + #endif + EEPROM_READ(zpo); + } + + // + // Planar Bed Leveling matrix + // + { + #if ABL_PLANAR + EEPROM_READ(planner.bed_level_matrix); + #else + for (uint8_t q = 9; q--;) EEPROM_READ(dummyf); + #endif + } + + // + // Bilinear Auto Bed Leveling + // + { + uint8_t grid_max_x, grid_max_y; + EEPROM_READ_ALWAYS(grid_max_x); // 1 byte + EEPROM_READ_ALWAYS(grid_max_y); // 1 byte + #if ENABLED(AUTO_BED_LEVELING_BILINEAR) + if (grid_max_x == GRID_MAX_POINTS_X && grid_max_y == GRID_MAX_POINTS_Y) { + if (!validating) set_bed_leveling_enabled(false); + EEPROM_READ(bilinear_grid_spacing); // 2 ints + EEPROM_READ(bilinear_start); // 2 ints + EEPROM_READ(z_values); // 9 to 256 floats + } + else // EEPROM data is stale + #endif // AUTO_BED_LEVELING_BILINEAR + { + // Skip past disabled (or stale) Bilinear Grid data + xy_pos_t bgs, bs; + EEPROM_READ(bgs); + EEPROM_READ(bs); + for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummyf); + } + } + + // + // Unified Bed Leveling active state + // + { + _FIELD_TEST(planner_leveling_active); + #if ENABLED(AUTO_BED_LEVELING_UBL) + const bool &planner_leveling_active = planner.leveling_active; + const int8_t &ubl_storage_slot = ubl.storage_slot; + #else + bool planner_leveling_active; + int8_t ubl_storage_slot; + #endif + EEPROM_READ(planner_leveling_active); + EEPROM_READ(ubl_storage_slot); + } + + // + // SERVO_ANGLES + // + { + _FIELD_TEST(servo_angles); + #if ENABLED(EDITABLE_SERVO_ANGLES) + uint16_t (&servo_angles_arr)[EEPROM_NUM_SERVOS][2] = servo_angles; + #else + uint16_t servo_angles_arr[EEPROM_NUM_SERVOS][2]; + #endif + EEPROM_READ(servo_angles_arr); + } + + // + // Thermal first layer compensation values + // + #if ENABLED(PROBE_TEMP_COMPENSATION) + EEPROM_READ(temp_comp.z_offsets_probe); + EEPROM_READ(temp_comp.z_offsets_bed); + #if ENABLED(USE_TEMP_EXT_COMPENSATION) + EEPROM_READ(temp_comp.z_offsets_ext); + #endif + temp_comp.reset_index(); + #else + // No placeholder data for this feature + #endif + + // + // BLTOUCH + // + { + _FIELD_TEST(bltouch_last_written_mode); + #if ENABLED(BLTOUCH) + const bool &bltouch_last_written_mode = bltouch.last_written_mode; + #else + bool bltouch_last_written_mode; + #endif + EEPROM_READ(bltouch_last_written_mode); + } + + // + // DELTA Geometry or Dual Endstops offsets + // + { + #if ENABLED(DELTA) + + _FIELD_TEST(delta_height); + + EEPROM_READ(delta_height); // 1 float + EEPROM_READ(delta_endstop_adj); // 3 floats + EEPROM_READ(delta_radius); // 1 float + EEPROM_READ(delta_diagonal_rod); // 1 float + EEPROM_READ(delta_segments_per_second); // 1 float + EEPROM_READ(delta_tower_angle_trim); // 3 floats + EEPROM_READ(delta_diagonal_rod_trim); // 3 floats + + #elif HAS_EXTRA_ENDSTOPS + + _FIELD_TEST(x2_endstop_adj); + + EEPROM_READ(TERN(X_DUAL_ENDSTOPS, endstops.x2_endstop_adj, dummyf)); // 1 float + EEPROM_READ(TERN(Y_DUAL_ENDSTOPS, endstops.y2_endstop_adj, dummyf)); // 1 float + EEPROM_READ(TERN(Z_MULTI_ENDSTOPS, endstops.z2_endstop_adj, dummyf)); // 1 float + + #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 3 + EEPROM_READ(endstops.z3_endstop_adj); // 1 float + #else + EEPROM_READ(dummyf); + #endif + #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 4 + EEPROM_READ(endstops.z4_endstop_adj); // 1 float + #else + EEPROM_READ(dummyf); + #endif + + #endif + } + + #if ENABLED(Z_STEPPER_AUTO_ALIGN) + EEPROM_READ(z_stepper_align.xy); + #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS) + EEPROM_READ(z_stepper_align.stepper_xy); + #endif + #endif + + // + // LCD Preheat settings + // + #if PREHEAT_COUNT + _FIELD_TEST(ui_material_preset); + EEPROM_READ(ui.material_preset); + #endif + + // + // Hotend PID + // + { + HOTEND_LOOP() { + PIDCF_t pidcf; + EEPROM_READ(pidcf); + #if ENABLED(PIDTEMP) + if (!validating && !isnan(pidcf.Kp)) { + // Scale PID values since EEPROM values are unscaled + PID_PARAM(Kp, e) = pidcf.Kp; + PID_PARAM(Ki, e) = scalePID_i(pidcf.Ki); + PID_PARAM(Kd, e) = scalePID_d(pidcf.Kd); + TERN_(PID_EXTRUSION_SCALING, PID_PARAM(Kc, e) = pidcf.Kc); + TERN_(PID_FAN_SCALING, PID_PARAM(Kf, e) = pidcf.Kf); + } + #endif + } + } + + // + // PID Extrusion Scaling + // + { + _FIELD_TEST(lpq_len); + #if ENABLED(PID_EXTRUSION_SCALING) + const int16_t &lpq_len = thermalManager.lpq_len; + #else + int16_t lpq_len; + #endif + EEPROM_READ(lpq_len); + } + + // + // Heated Bed PID + // + { + PID_t pid; + EEPROM_READ(pid); + #if ENABLED(PIDTEMPBED) + if (!validating && !isnan(pid.Kp)) { + // Scale PID values since EEPROM values are unscaled + thermalManager.temp_bed.pid.Kp = pid.Kp; + thermalManager.temp_bed.pid.Ki = scalePID_i(pid.Ki); + thermalManager.temp_bed.pid.Kd = scalePID_d(pid.Kd); + } + #endif + } + + // + // User-defined Thermistors + // + #if HAS_USER_THERMISTORS + { + _FIELD_TEST(user_thermistor); + EEPROM_READ(thermalManager.user_thermistor); + } + #endif + + // + // Power monitor + // + { + #if HAS_POWER_MONITOR + uint8_t &power_monitor_flags = power_monitor.flags; + #else + uint8_t power_monitor_flags; + #endif + _FIELD_TEST(power_monitor_flags); + EEPROM_READ(power_monitor_flags); + } + + // + // LCD Contrast + // + { + _FIELD_TEST(lcd_contrast); + int16_t lcd_contrast; + EEPROM_READ(lcd_contrast); + if (!validating) { + TERN_(HAS_LCD_CONTRAST, ui.set_contrast(lcd_contrast)); + } + } + + // + // Controller Fan + // + { + _FIELD_TEST(controllerFan_settings); + #if ENABLED(CONTROLLER_FAN_EDITABLE) + const controllerFan_settings_t &cfs = controllerFan.settings; + #else + controllerFan_settings_t cfs = { 0 }; + #endif + EEPROM_READ(cfs); + } + + // + // Power-Loss Recovery + // + { + _FIELD_TEST(recovery_enabled); + #if ENABLED(POWER_LOSS_RECOVERY) + const bool &recovery_enabled = recovery.enabled; + #else + bool recovery_enabled; + #endif + EEPROM_READ(recovery_enabled); + } + + // + // Firmware Retraction + // + { + _FIELD_TEST(fwretract_settings); + + #if ENABLED(FWRETRACT) + EEPROM_READ(fwretract.settings); + #else + fwretract_settings_t fwretract_settings; + EEPROM_READ(fwretract_settings); + #endif + #if BOTH(FWRETRACT, FWRETRACT_AUTORETRACT) + EEPROM_READ(fwretract.autoretract_enabled); + #else + bool autoretract_enabled; + EEPROM_READ(autoretract_enabled); + #endif + } + + // + // Volumetric & Filament Size + // + { + struct { + bool volumetric_enabled; + float filament_size[EXTRUDERS]; + float volumetric_extruder_limit[EXTRUDERS]; + } storage; + + _FIELD_TEST(parser_volumetric_enabled); + EEPROM_READ(storage); + + #if DISABLED(NO_VOLUMETRICS) + if (!validating) { + parser.volumetric_enabled = storage.volumetric_enabled; + COPY(planner.filament_size, storage.filament_size); + #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT) + COPY(planner.volumetric_extruder_limit, storage.volumetric_extruder_limit); + #endif + } + #endif + } + + // + // TMC Stepper Settings + // + + if (!validating) reset_stepper_drivers(); + + // TMC Stepper Current + { + _FIELD_TEST(tmc_stepper_current); + + tmc_stepper_current_t currents; + EEPROM_READ(currents); + + #if HAS_TRINAMIC_CONFIG + + #define SET_CURR(Q) stepper##Q.rms_current(currents.Q ? currents.Q : Q##_CURRENT) + if (!validating) { + #if AXIS_IS_TMC(X) + SET_CURR(X); + #endif + #if AXIS_IS_TMC(Y) + SET_CURR(Y); + #endif + #if AXIS_IS_TMC(Z) + SET_CURR(Z); + #endif + #if AXIS_IS_TMC(X2) + SET_CURR(X2); + #endif + #if AXIS_IS_TMC(Y2) + SET_CURR(Y2); + #endif + #if AXIS_IS_TMC(Z2) + SET_CURR(Z2); + #endif + #if AXIS_IS_TMC(Z3) + SET_CURR(Z3); + #endif + #if AXIS_IS_TMC(Z4) + SET_CURR(Z4); + #endif + #if AXIS_IS_TMC(E0) + SET_CURR(E0); + #endif + #if AXIS_IS_TMC(E1) + SET_CURR(E1); + #endif + #if AXIS_IS_TMC(E2) + SET_CURR(E2); + #endif + #if AXIS_IS_TMC(E3) + SET_CURR(E3); + #endif + #if AXIS_IS_TMC(E4) + SET_CURR(E4); + #endif + #if AXIS_IS_TMC(E5) + SET_CURR(E5); + #endif + #if AXIS_IS_TMC(E6) + SET_CURR(E6); + #endif + #if AXIS_IS_TMC(E7) + SET_CURR(E7); + #endif + } + #endif + } + + // TMC Hybrid Threshold + { + tmc_hybrid_threshold_t tmc_hybrid_threshold; + _FIELD_TEST(tmc_hybrid_threshold); + EEPROM_READ(tmc_hybrid_threshold); + + #if ENABLED(HYBRID_THRESHOLD) + if (!validating) { + #if AXIS_HAS_STEALTHCHOP(X) + stepperX.set_pwm_thrs(tmc_hybrid_threshold.X); + #endif + #if AXIS_HAS_STEALTHCHOP(Y) + stepperY.set_pwm_thrs(tmc_hybrid_threshold.Y); + #endif + #if AXIS_HAS_STEALTHCHOP(Z) + stepperZ.set_pwm_thrs(tmc_hybrid_threshold.Z); + #endif + #if AXIS_HAS_STEALTHCHOP(X2) + stepperX2.set_pwm_thrs(tmc_hybrid_threshold.X2); + #endif + #if AXIS_HAS_STEALTHCHOP(Y2) + stepperY2.set_pwm_thrs(tmc_hybrid_threshold.Y2); + #endif + #if AXIS_HAS_STEALTHCHOP(Z2) + stepperZ2.set_pwm_thrs(tmc_hybrid_threshold.Z2); + #endif + #if AXIS_HAS_STEALTHCHOP(Z3) + stepperZ3.set_pwm_thrs(tmc_hybrid_threshold.Z3); + #endif + #if AXIS_HAS_STEALTHCHOP(Z4) + stepperZ4.set_pwm_thrs(tmc_hybrid_threshold.Z4); + #endif + #if AXIS_HAS_STEALTHCHOP(E0) + stepperE0.set_pwm_thrs(tmc_hybrid_threshold.E0); + #endif + #if AXIS_HAS_STEALTHCHOP(E1) + stepperE1.set_pwm_thrs(tmc_hybrid_threshold.E1); + #endif + #if AXIS_HAS_STEALTHCHOP(E2) + stepperE2.set_pwm_thrs(tmc_hybrid_threshold.E2); + #endif + #if AXIS_HAS_STEALTHCHOP(E3) + stepperE3.set_pwm_thrs(tmc_hybrid_threshold.E3); + #endif + #if AXIS_HAS_STEALTHCHOP(E4) + stepperE4.set_pwm_thrs(tmc_hybrid_threshold.E4); + #endif + #if AXIS_HAS_STEALTHCHOP(E5) + stepperE5.set_pwm_thrs(tmc_hybrid_threshold.E5); + #endif + #if AXIS_HAS_STEALTHCHOP(E6) + stepperE6.set_pwm_thrs(tmc_hybrid_threshold.E6); + #endif + #if AXIS_HAS_STEALTHCHOP(E7) + stepperE7.set_pwm_thrs(tmc_hybrid_threshold.E7); + #endif + } + #endif + } + + // + // TMC StallGuard threshold. + // + { + tmc_sgt_t tmc_sgt; + _FIELD_TEST(tmc_sgt); + EEPROM_READ(tmc_sgt); + #if USE_SENSORLESS + if (!validating) { + TERN_(X_SENSORLESS, stepperX.homing_threshold(tmc_sgt.X)); + TERN_(X2_SENSORLESS, stepperX2.homing_threshold(tmc_sgt.X2)); + TERN_(Y_SENSORLESS, stepperY.homing_threshold(tmc_sgt.Y)); + TERN_(Y2_SENSORLESS, stepperY2.homing_threshold(tmc_sgt.Y2)); + TERN_(Z_SENSORLESS, stepperZ.homing_threshold(tmc_sgt.Z)); + TERN_(Z2_SENSORLESS, stepperZ2.homing_threshold(tmc_sgt.Z2)); + TERN_(Z3_SENSORLESS, stepperZ3.homing_threshold(tmc_sgt.Z3)); + TERN_(Z4_SENSORLESS, stepperZ4.homing_threshold(tmc_sgt.Z4)); + } + #endif + } + + // TMC stepping mode + { + _FIELD_TEST(tmc_stealth_enabled); + + tmc_stealth_enabled_t tmc_stealth_enabled; + EEPROM_READ(tmc_stealth_enabled); + + #if HAS_TRINAMIC_CONFIG + + #define SET_STEPPING_MODE(ST) stepper##ST.stored.stealthChop_enabled = tmc_stealth_enabled.ST; stepper##ST.refresh_stepping_mode(); + if (!validating) { + #if AXIS_HAS_STEALTHCHOP(X) + SET_STEPPING_MODE(X); + #endif + #if AXIS_HAS_STEALTHCHOP(Y) + SET_STEPPING_MODE(Y); + #endif + #if AXIS_HAS_STEALTHCHOP(Z) + SET_STEPPING_MODE(Z); + #endif + #if AXIS_HAS_STEALTHCHOP(X2) + SET_STEPPING_MODE(X2); + #endif + #if AXIS_HAS_STEALTHCHOP(Y2) + SET_STEPPING_MODE(Y2); + #endif + #if AXIS_HAS_STEALTHCHOP(Z2) + SET_STEPPING_MODE(Z2); + #endif + #if AXIS_HAS_STEALTHCHOP(Z3) + SET_STEPPING_MODE(Z3); + #endif + #if AXIS_HAS_STEALTHCHOP(Z4) + SET_STEPPING_MODE(Z4); + #endif + #if AXIS_HAS_STEALTHCHOP(E0) + SET_STEPPING_MODE(E0); + #endif + #if AXIS_HAS_STEALTHCHOP(E1) + SET_STEPPING_MODE(E1); + #endif + #if AXIS_HAS_STEALTHCHOP(E2) + SET_STEPPING_MODE(E2); + #endif + #if AXIS_HAS_STEALTHCHOP(E3) + SET_STEPPING_MODE(E3); + #endif + #if AXIS_HAS_STEALTHCHOP(E4) + SET_STEPPING_MODE(E4); + #endif + #if AXIS_HAS_STEALTHCHOP(E5) + SET_STEPPING_MODE(E5); + #endif + #if AXIS_HAS_STEALTHCHOP(E6) + SET_STEPPING_MODE(E6); + #endif + #if AXIS_HAS_STEALTHCHOP(E7) + SET_STEPPING_MODE(E7); + #endif + } + #endif + } + + // + // Linear Advance + // + { + float extruder_advance_K[_MAX(EXTRUDERS, 1)]; + _FIELD_TEST(planner_extruder_advance_K); + EEPROM_READ(extruder_advance_K); + #if ENABLED(LIN_ADVANCE) + if (!validating) + COPY(planner.extruder_advance_K, extruder_advance_K); + #endif + } + + // + // Motor Current PWM + // + { + _FIELD_TEST(motor_current_setting); + uint32_t motor_current_setting[MOTOR_CURRENT_COUNT] + #if HAS_MOTOR_CURRENT_SPI + = DIGIPOT_MOTOR_CURRENT + #endif + ; + DEBUG_ECHOLNPGM("DIGIPOTS Loading"); + EEPROM_READ(motor_current_setting); + DEBUG_ECHOLNPGM("DIGIPOTS Loaded"); + #if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM + if (!validating) + COPY(stepper.motor_current_setting, motor_current_setting); + #endif + } + + // + // CNC Coordinate System + // + { + _FIELD_TEST(coordinate_system); + #if ENABLED(CNC_COORDINATE_SYSTEMS) + if (!validating) (void)gcode.select_coordinate_system(-1); // Go back to machine space + EEPROM_READ(gcode.coordinate_system); + #else + xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS]; + EEPROM_READ(coordinate_system); + #endif + } + + // + // Skew correction factors + // + { + skew_factor_t skew_factor; + _FIELD_TEST(planner_skew_factor); + EEPROM_READ(skew_factor); + #if ENABLED(SKEW_CORRECTION_GCODE) + if (!validating) { + planner.skew_factor.xy = skew_factor.xy; + #if ENABLED(SKEW_CORRECTION_FOR_Z) + planner.skew_factor.xz = skew_factor.xz; + planner.skew_factor.yz = skew_factor.yz; + #endif + } + #endif + } + + // + // Advanced Pause filament load & unload lengths + // + #if EXTRUDERS + { + #if DISABLED(ADVANCED_PAUSE_FEATURE) + fil_change_settings_t fc_settings[EXTRUDERS]; + #endif + _FIELD_TEST(fc_settings); + EEPROM_READ(fc_settings); + } + #endif + + // + // Tool-change settings + // + #if HAS_MULTI_EXTRUDER + _FIELD_TEST(toolchange_settings); + EEPROM_READ(toolchange_settings); + #endif + + // + // Backlash Compensation + // + { + #if ENABLED(BACKLASH_GCODE) + const xyz_float_t &backlash_distance_mm = backlash.distance_mm; + const uint8_t &backlash_correction = backlash.correction; + #else + float backlash_distance_mm[XYZ]; + uint8_t backlash_correction; + #endif + #if ENABLED(BACKLASH_GCODE) && defined(BACKLASH_SMOOTHING_MM) + const float &backlash_smoothing_mm = backlash.smoothing_mm; + #else + float backlash_smoothing_mm; + #endif + _FIELD_TEST(backlash_distance_mm); + EEPROM_READ(backlash_distance_mm); + EEPROM_READ(backlash_correction); + EEPROM_READ(backlash_smoothing_mm); + } + + // + // Extensible UI User Data + // + #if ENABLED(EXTENSIBLE_UI) + // This is a significant hardware change; don't reserve EEPROM space when not present + { + const char extui_data[ExtUI::eeprom_data_size] = { 0 }; + _FIELD_TEST(extui_data); + EEPROM_READ(extui_data); + if (!validating) ExtUI::onLoadSettings(extui_data); + } + #endif + + // + // Case Light Brightness + // + #if CASELIGHT_USES_BRIGHTNESS + _FIELD_TEST(caselight_brightness); + EEPROM_READ(caselight.brightness); + #endif + + // + // Password feature + // + #if ENABLED(PASSWORD_FEATURE) + _FIELD_TEST(password_is_set); + EEPROM_READ(password.is_set); + EEPROM_READ(password.value); + #endif + + // + // TOUCH_SCREEN_CALIBRATION + // + #if ENABLED(TOUCH_SCREEN_CALIBRATION) + _FIELD_TEST(touch_calibration_data); + EEPROM_READ(touch_calibration.calibration); + #endif + + // + // Ethernet network info + // + #if HAS_ETHERNET + _FIELD_TEST(ethernet_hardware_enabled); + uint32_t ethernet_ip, ethernet_dns, ethernet_gateway, ethernet_subnet; + EEPROM_READ(ethernet.hardware_enabled); + EEPROM_READ(ethernet_ip); ethernet.ip = ethernet_ip; + EEPROM_READ(ethernet_dns); ethernet.myDns = ethernet_dns; + EEPROM_READ(ethernet_gateway); ethernet.gateway = ethernet_gateway; + EEPROM_READ(ethernet_subnet); ethernet.subnet = ethernet_subnet; + #endif + + // + // Buzzer enable/disable + // + #if ENABLED(SOUND_MENU_ITEM) + _FIELD_TEST(buzzer_enabled); + EEPROM_READ(ui.buzzer_enabled); + #endif + + // + // Selected LCD language + // + #if HAS_MULTI_LANGUAGE + { + uint8_t ui_language; + EEPROM_READ(ui_language); + if (ui_language >= NUM_LANGUAGES) ui_language = 0; + ui.set_language(ui_language); + } + #endif + + // + // Validate Final Size and CRC + // + eeprom_error = size_error(eeprom_index - (EEPROM_OFFSET)); + if (eeprom_error) { + DEBUG_ECHO_START(); + DEBUG_ECHOLNPAIR("Index: ", int(eeprom_index - (EEPROM_OFFSET)), " Size: ", datasize()); + IF_DISABLED(EEPROM_AUTO_INIT, ui.eeprom_alert_index()); + } + else if (working_crc != stored_crc) { + eeprom_error = true; + DEBUG_ERROR_START(); + DEBUG_ECHOLNPAIR("EEPROM CRC mismatch - (stored) ", stored_crc, " != ", working_crc, " (calculated)!"); + IF_DISABLED(EEPROM_AUTO_INIT, ui.eeprom_alert_crc()); + } + else if (!validating) { + DEBUG_ECHO_START(); + DEBUG_ECHO(version); + DEBUG_ECHOLNPAIR(" stored settings retrieved (", eeprom_index - (EEPROM_OFFSET), " bytes; crc ", (uint32_t)working_crc, ")"); + } + + if (!validating && !eeprom_error) postprocess(); + + #if ENABLED(AUTO_BED_LEVELING_UBL) + if (!validating) { + ubl.report_state(); + + if (!ubl.sanity_check()) { + SERIAL_EOL(); + #if BOTH(EEPROM_CHITCHAT, DEBUG_LEVELING_FEATURE) + ubl.echo_name(); + DEBUG_ECHOLNPGM(" initialized.\n"); + #endif + } + else { + eeprom_error = true; + #if BOTH(EEPROM_CHITCHAT, DEBUG_LEVELING_FEATURE) + DEBUG_ECHOPGM("?Can't enable "); + ubl.echo_name(); + DEBUG_ECHOLNPGM("."); + #endif + ubl.reset(); + } + + if (ubl.storage_slot >= 0) { + load_mesh(ubl.storage_slot); + DEBUG_ECHOLNPAIR("Mesh ", ubl.storage_slot, " loaded from storage."); + } + else { + ubl.reset(); + DEBUG_ECHOLNPGM("UBL reset"); + } + } + #endif + } + + #if ENABLED(EEPROM_CHITCHAT) && DISABLED(DISABLE_M503) + // Report the EEPROM settings + if (!validating && TERN1(EEPROM_BOOT_SILENT, IsRunning())) report(); + #endif + + EEPROM_FINISH(); + + return !eeprom_error; + } + + #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE + extern bool restoreEEPROM(); + #endif + + bool MarlinSettings::validate() { + validating = true; + #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE + bool success = _load(); + if (!success && restoreEEPROM()) { + SERIAL_ECHOLNPGM("Recovered backup EEPROM settings from SPI Flash"); + success = _load(); + } + #else + const bool success = _load(); + #endif + validating = false; + return success; + } + + bool MarlinSettings::load() { + if (validate()) { + const bool success = _load(); + TERN_(EXTENSIBLE_UI, ExtUI::onConfigurationStoreRead(success)); + return success; + } + reset(); + #if ENABLED(EEPROM_AUTO_INIT) + (void)save(); + SERIAL_ECHO_MSG("EEPROM Initialized"); + #endif + return false; + } + + #if ENABLED(AUTO_BED_LEVELING_UBL) + + inline void ubl_invalid_slot(const int s) { + #if BOTH(EEPROM_CHITCHAT, DEBUG_OUT) + DEBUG_ECHOLNPGM("?Invalid slot."); + DEBUG_ECHO(s); + DEBUG_ECHOLNPGM(" mesh slots available."); + #else + UNUSED(s); + #endif + } + + const uint16_t MarlinSettings::meshes_end = persistentStore.capacity() - 129; // 128 (+1 because of the change to capacity rather than last valid address) + // is a placeholder for the size of the MAT; the MAT will always + // live at the very end of the eeprom + + uint16_t MarlinSettings::meshes_start_index() { + return (datasize() + EEPROM_OFFSET + 32) & 0xFFF8; // Pad the end of configuration data so it can float up + // or down a little bit without disrupting the mesh data + } + + #define MESH_STORE_SIZE sizeof(TERN(OPTIMIZED_MESH_STORAGE, mesh_store_t, ubl.z_values)) + + uint16_t MarlinSettings::calc_num_meshes() { + return (meshes_end - meshes_start_index()) / MESH_STORE_SIZE; + } + + int MarlinSettings::mesh_slot_offset(const int8_t slot) { + return meshes_end - (slot + 1) * MESH_STORE_SIZE; + } + + void MarlinSettings::store_mesh(const int8_t slot) { + + #if ENABLED(AUTO_BED_LEVELING_UBL) + const int16_t a = calc_num_meshes(); + if (!WITHIN(slot, 0, a - 1)) { + ubl_invalid_slot(a); + DEBUG_ECHOLNPAIR("E2END=", persistentStore.capacity() - 1, " meshes_end=", meshes_end, " slot=", slot); + DEBUG_EOL(); + return; + } + + int pos = mesh_slot_offset(slot); + uint16_t crc = 0; + + #if ENABLED(OPTIMIZED_MESH_STORAGE) + int16_t z_mesh_store[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; + ubl.set_store_from_mesh(ubl.z_values, z_mesh_store); + uint8_t * const src = (uint8_t*)&z_mesh_store; + #else + uint8_t * const src = (uint8_t*)&ubl.z_values; + #endif + + // Write crc to MAT along with other data, or just tack on to the beginning or end + persistentStore.access_start(); + const bool status = persistentStore.write_data(pos, src, MESH_STORE_SIZE, &crc); + persistentStore.access_finish(); + + if (status) SERIAL_ECHOLNPGM("?Unable to save mesh data."); + else DEBUG_ECHOLNPAIR("Mesh saved in slot ", slot); + + #else + + // Other mesh types + + #endif + } + + void MarlinSettings::load_mesh(const int8_t slot, void * const into/*=nullptr*/) { + + #if ENABLED(AUTO_BED_LEVELING_UBL) + + const int16_t a = settings.calc_num_meshes(); + + if (!WITHIN(slot, 0, a - 1)) { + ubl_invalid_slot(a); + return; + } + + int pos = mesh_slot_offset(slot); + uint16_t crc = 0; + #if ENABLED(OPTIMIZED_MESH_STORAGE) + int16_t z_mesh_store[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; + uint8_t * const dest = (uint8_t*)&z_mesh_store; + #else + uint8_t * const dest = into ? (uint8_t*)into : (uint8_t*)&ubl.z_values; + #endif + + persistentStore.access_start(); + const uint16_t status = persistentStore.read_data(pos, dest, MESH_STORE_SIZE, &crc); + persistentStore.access_finish(); + + #if ENABLED(OPTIMIZED_MESH_STORAGE) + if (into) { + float z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; + ubl.set_mesh_from_store(z_mesh_store, z_values); + memcpy(into, z_values, sizeof(z_values)); + } + else + ubl.set_mesh_from_store(z_mesh_store, ubl.z_values); + #endif + + if (status) SERIAL_ECHOLNPGM("?Unable to load mesh data."); + else DEBUG_ECHOLNPAIR("Mesh loaded from slot ", slot); + + EEPROM_FINISH(); + + #else + + // Other mesh types + + #endif + } + + //void MarlinSettings::delete_mesh() { return; } + //void MarlinSettings::defrag_meshes() { return; } + + #endif // AUTO_BED_LEVELING_UBL + +#else // !EEPROM_SETTINGS + + bool MarlinSettings::save() { + DEBUG_ERROR_MSG("EEPROM disabled"); + return false; + } + +#endif // !EEPROM_SETTINGS + +/** + * M502 - Reset Configuration + */ +void MarlinSettings::reset() { + LOOP_XYZE_N(i) { + planner.settings.max_acceleration_mm_per_s2[i] = pgm_read_dword(&_DMA[ALIM(i, _DMA)]); + planner.settings.axis_steps_per_mm[i] = pgm_read_float(&_DASU[ALIM(i, _DASU)]); + planner.settings.max_feedrate_mm_s[i] = pgm_read_float(&_DMF[ALIM(i, _DMF)]); + } + + planner.settings.min_segment_time_us = DEFAULT_MINSEGMENTTIME; + planner.settings.acceleration = DEFAULT_ACCELERATION; + planner.settings.retract_acceleration = DEFAULT_RETRACT_ACCELERATION; + planner.settings.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION; + planner.settings.min_feedrate_mm_s = feedRate_t(DEFAULT_MINIMUMFEEDRATE); + planner.settings.min_travel_feedrate_mm_s = feedRate_t(DEFAULT_MINTRAVELFEEDRATE); + + #if HAS_CLASSIC_JERK + #ifndef DEFAULT_XJERK + #define DEFAULT_XJERK 0 + #endif + #ifndef DEFAULT_YJERK + #define DEFAULT_YJERK 0 + #endif + #ifndef DEFAULT_ZJERK + #define DEFAULT_ZJERK 0 + #endif + planner.max_jerk.set(DEFAULT_XJERK, DEFAULT_YJERK, DEFAULT_ZJERK); + TERN_(HAS_CLASSIC_E_JERK, planner.max_jerk.e = DEFAULT_EJERK;); + #endif + + #if HAS_JUNCTION_DEVIATION + planner.junction_deviation_mm = float(JUNCTION_DEVIATION_MM); + #endif + + #if HAS_SCARA_OFFSET + scara_home_offset.reset(); + #elif HAS_HOME_OFFSET + home_offset.reset(); + #endif + + TERN_(HAS_HOTEND_OFFSET, reset_hotend_offsets()); + + // + // Filament Runout Sensor + // + + #if HAS_FILAMENT_SENSOR + runout.enabled = FIL_RUNOUT_ENABLED_DEFAULT; + runout.reset(); + TERN_(HAS_FILAMENT_RUNOUT_DISTANCE, runout.set_runout_distance(FILAMENT_RUNOUT_DISTANCE_MM)); + #endif + + // + // Tool-change Settings + // + + #if HAS_MULTI_EXTRUDER + #if ENABLED(TOOLCHANGE_FILAMENT_SWAP) + toolchange_settings.swap_length = TOOLCHANGE_FS_LENGTH; + toolchange_settings.extra_resume = TOOLCHANGE_FS_EXTRA_RESUME_LENGTH; + toolchange_settings.retract_speed = TOOLCHANGE_FS_RETRACT_SPEED; + toolchange_settings.unretract_speed = TOOLCHANGE_FS_UNRETRACT_SPEED; + toolchange_settings.extra_prime = TOOLCHANGE_FS_EXTRA_PRIME; + toolchange_settings.prime_speed = TOOLCHANGE_FS_PRIME_SPEED; + toolchange_settings.fan_speed = TOOLCHANGE_FS_FAN_SPEED; + toolchange_settings.fan_time = TOOLCHANGE_FS_FAN_TIME; + #endif + + #if ENABLED(TOOLCHANGE_FS_PRIME_FIRST_USED) + enable_first_prime = false; + #endif + + #if ENABLED(TOOLCHANGE_PARK) + constexpr xyz_pos_t tpxy = TOOLCHANGE_PARK_XY; + toolchange_settings.enable_park = true; + toolchange_settings.change_point = tpxy; + #endif + + toolchange_settings.z_raise = TOOLCHANGE_ZRAISE; + + #if ENABLED(TOOLCHANGE_MIGRATION_FEATURE) + migration = migration_defaults; + #endif + + #endif + + #if ENABLED(BACKLASH_GCODE) + backlash.correction = (BACKLASH_CORRECTION) * 255; + constexpr xyz_float_t tmp = BACKLASH_DISTANCE_MM; + backlash.distance_mm = tmp; + #ifdef BACKLASH_SMOOTHING_MM + backlash.smoothing_mm = BACKLASH_SMOOTHING_MM; + #endif + #endif + + TERN_(EXTENSIBLE_UI, ExtUI::onFactoryReset()); + + // + // Case Light Brightness + // + TERN_(CASELIGHT_USES_BRIGHTNESS, caselight.brightness = CASE_LIGHT_DEFAULT_BRIGHTNESS); + + // + // TOUCH_SCREEN_CALIBRATION + // + TERN_(TOUCH_SCREEN_CALIBRATION, touch_calibration.calibration_reset()); + + // + // Buzzer enable/disable + // + TERN_(SOUND_MENU_ITEM, ui.buzzer_enabled = true); + + // + // Magnetic Parking Extruder + // + TERN_(MAGNETIC_PARKING_EXTRUDER, mpe_settings_init()); + + // + // Global Leveling + // + TERN_(ENABLE_LEVELING_FADE_HEIGHT, new_z_fade_height = (DEFAULT_LEVELING_FADE_HEIGHT)); + TERN_(HAS_LEVELING, reset_bed_level()); + + #if HAS_BED_PROBE + constexpr float dpo[] = NOZZLE_TO_PROBE_OFFSET; + static_assert(COUNT(dpo) == 3, "NOZZLE_TO_PROBE_OFFSET must contain offsets for X, Y, and Z."); + #if HAS_PROBE_XY_OFFSET + LOOP_XYZ(a) probe.offset[a] = dpo[a]; + #else + probe.offset.set(0, 0, dpo[Z_AXIS]); + #endif + #endif + + // + // Z Stepper Auto-alignment points + // + TERN_(Z_STEPPER_AUTO_ALIGN, z_stepper_align.reset_to_default()); + + // + // Servo Angles + // + TERN_(EDITABLE_SERVO_ANGLES, COPY(servo_angles, base_servo_angles)); // When not editable only one copy of servo angles exists + + // + // BLTOUCH + // + //#if ENABLED(BLTOUCH) + // bltouch.last_written_mode; + //#endif + + // + // Endstop Adjustments + // + + #if ENABLED(DELTA) + const abc_float_t adj = DELTA_ENDSTOP_ADJ, dta = DELTA_TOWER_ANGLE_TRIM, ddr = DELTA_DIAGONAL_ROD_TRIM_TOWER; + delta_height = DELTA_HEIGHT; + delta_endstop_adj = adj; + delta_radius = DELTA_RADIUS; + delta_diagonal_rod = DELTA_DIAGONAL_ROD; + delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND; + delta_tower_angle_trim = dta; + delta_diagonal_rod_trim = ddr; + #endif + + #if ENABLED(X_DUAL_ENDSTOPS) + #ifndef X2_ENDSTOP_ADJUSTMENT + #define X2_ENDSTOP_ADJUSTMENT 0 + #endif + endstops.x2_endstop_adj = X2_ENDSTOP_ADJUSTMENT; + #endif + + #if ENABLED(Y_DUAL_ENDSTOPS) + #ifndef Y2_ENDSTOP_ADJUSTMENT + #define Y2_ENDSTOP_ADJUSTMENT 0 + #endif + endstops.y2_endstop_adj = Y2_ENDSTOP_ADJUSTMENT; + #endif + + #if ENABLED(Z_MULTI_ENDSTOPS) + #ifndef Z2_ENDSTOP_ADJUSTMENT + #define Z2_ENDSTOP_ADJUSTMENT 0 + #endif + endstops.z2_endstop_adj = Z2_ENDSTOP_ADJUSTMENT; + #if NUM_Z_STEPPER_DRIVERS >= 3 + #ifndef Z3_ENDSTOP_ADJUSTMENT + #define Z3_ENDSTOP_ADJUSTMENT 0 + #endif + endstops.z3_endstop_adj = Z3_ENDSTOP_ADJUSTMENT; + #endif + #if NUM_Z_STEPPER_DRIVERS >= 4 + #ifndef Z4_ENDSTOP_ADJUSTMENT + #define Z4_ENDSTOP_ADJUSTMENT 0 + #endif + endstops.z4_endstop_adj = Z4_ENDSTOP_ADJUSTMENT; + #endif + #endif + + // + // Preheat parameters + // + #if PREHEAT_COUNT + #if HAS_HOTEND + constexpr uint16_t hpre[] = ARRAY_N(PREHEAT_COUNT, PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND, PREHEAT_3_TEMP_HOTEND, PREHEAT_4_TEMP_HOTEND, PREHEAT_5_TEMP_HOTEND); + #endif + #if HAS_HEATED_BED + constexpr uint16_t bpre[] = ARRAY_N(PREHEAT_COUNT, PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED, PREHEAT_3_TEMP_BED, PREHEAT_4_TEMP_BED, PREHEAT_5_TEMP_BED); + #endif + #if HAS_FAN + constexpr uint8_t fpre[] = ARRAY_N(PREHEAT_COUNT, PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED, PREHEAT_3_FAN_SPEED, PREHEAT_4_FAN_SPEED, PREHEAT_5_FAN_SPEED); + #endif + LOOP_L_N(i, PREHEAT_COUNT) { + #if HAS_HOTEND + ui.material_preset[i].hotend_temp = hpre[i]; + #endif + #if HAS_HEATED_BED + ui.material_preset[i].bed_temp = bpre[i]; + #endif + #if HAS_FAN + ui.material_preset[i].fan_speed = fpre[i]; + #endif + } + #endif + + // + // Hotend PID + // + + #if ENABLED(PIDTEMP) + #if ENABLED(PID_PARAMS_PER_HOTEND) + constexpr float defKp[] = + #ifdef DEFAULT_Kp_LIST + DEFAULT_Kp_LIST + #else + ARRAY_BY_HOTENDS1(DEFAULT_Kp) + #endif + , defKi[] = + #ifdef DEFAULT_Ki_LIST + DEFAULT_Ki_LIST + #else + ARRAY_BY_HOTENDS1(DEFAULT_Ki) + #endif + , defKd[] = + #ifdef DEFAULT_Kd_LIST + DEFAULT_Kd_LIST + #else + ARRAY_BY_HOTENDS1(DEFAULT_Kd) + #endif + ; + static_assert(WITHIN(COUNT(defKp), 1, HOTENDS), "DEFAULT_Kp_LIST must have between 1 and HOTENDS items."); + static_assert(WITHIN(COUNT(defKi), 1, HOTENDS), "DEFAULT_Ki_LIST must have between 1 and HOTENDS items."); + static_assert(WITHIN(COUNT(defKd), 1, HOTENDS), "DEFAULT_Kd_LIST must have between 1 and HOTENDS items."); + #if ENABLED(PID_EXTRUSION_SCALING) + constexpr float defKc[] = + #ifdef DEFAULT_Kc_LIST + DEFAULT_Kc_LIST + #else + ARRAY_BY_HOTENDS1(DEFAULT_Kc) + #endif + ; + static_assert(WITHIN(COUNT(defKc), 1, HOTENDS), "DEFAULT_Kc_LIST must have between 1 and HOTENDS items."); + #endif + #if ENABLED(PID_FAN_SCALING) + constexpr float defKf[] = + #ifdef DEFAULT_Kf_LIST + DEFAULT_Kf_LIST + #else + ARRAY_BY_HOTENDS1(DEFAULT_Kf) + #endif + ; + static_assert(WITHIN(COUNT(defKf), 1, HOTENDS), "DEFAULT_Kf_LIST must have between 1 and HOTENDS items."); + #endif + #define PID_DEFAULT(N,E) def##N[E] + #else + #define PID_DEFAULT(N,E) DEFAULT_##N + #endif + HOTEND_LOOP() { + PID_PARAM(Kp, e) = float(PID_DEFAULT(Kp, ALIM(e, defKp))); + PID_PARAM(Ki, e) = scalePID_i(PID_DEFAULT(Ki, ALIM(e, defKi))); + PID_PARAM(Kd, e) = scalePID_d(PID_DEFAULT(Kd, ALIM(e, defKd))); + TERN_(PID_EXTRUSION_SCALING, PID_PARAM(Kc, e) = float(PID_DEFAULT(Kc, ALIM(e, defKc)))); + TERN_(PID_FAN_SCALING, PID_PARAM(Kf, e) = float(PID_DEFAULT(Kf, ALIM(e, defKf)))); + } + #endif + + // + // PID Extrusion Scaling + // + TERN_(PID_EXTRUSION_SCALING, thermalManager.lpq_len = 20); // Default last-position-queue size + + // + // Heated Bed PID + // + + #if ENABLED(PIDTEMPBED) + thermalManager.temp_bed.pid.Kp = DEFAULT_bedKp; + thermalManager.temp_bed.pid.Ki = scalePID_i(DEFAULT_bedKi); + thermalManager.temp_bed.pid.Kd = scalePID_d(DEFAULT_bedKd); + #endif + + // + // User-Defined Thermistors + // + TERN_(HAS_USER_THERMISTORS, thermalManager.reset_user_thermistors()); + + // + // Power Monitor + // + TERN_(POWER_MONITOR, power_monitor.reset()); + + // + // LCD Contrast + // + TERN_(HAS_LCD_CONTRAST, ui.set_contrast(DEFAULT_LCD_CONTRAST)); + + // + // Controller Fan + // + TERN_(USE_CONTROLLER_FAN, controllerFan.reset()); + + // + // Power-Loss Recovery + // + TERN_(POWER_LOSS_RECOVERY, recovery.enable(ENABLED(PLR_ENABLED_DEFAULT))); + + // + // Firmware Retraction + // + TERN_(FWRETRACT, fwretract.reset()); + + // + // Volumetric & Filament Size + // + + #if DISABLED(NO_VOLUMETRICS) + parser.volumetric_enabled = ENABLED(VOLUMETRIC_DEFAULT_ON); + LOOP_L_N(q, COUNT(planner.filament_size)) + planner.filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA; + #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT) + LOOP_L_N(q, COUNT(planner.volumetric_extruder_limit)) + planner.volumetric_extruder_limit[q] = DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT; + #endif + #endif + + endstops.enable_globally(ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)); + + reset_stepper_drivers(); + + // + // Linear Advance + // + + #if ENABLED(LIN_ADVANCE) + LOOP_L_N(i, EXTRUDERS) { + planner.extruder_advance_K[i] = LIN_ADVANCE_K; + TERN_(EXTRA_LIN_ADVANCE_K, other_extruder_advance_K[i] = LIN_ADVANCE_K); + } + #endif + + // + // Motor Current PWM + // + + #if HAS_MOTOR_CURRENT_PWM + constexpr uint32_t tmp_motor_current_setting[MOTOR_CURRENT_COUNT] = PWM_MOTOR_CURRENT; + LOOP_L_N(q, MOTOR_CURRENT_COUNT) + stepper.set_digipot_current(q, (stepper.motor_current_setting[q] = tmp_motor_current_setting[q])); + #endif + + // + // DIGIPOTS + // + #if HAS_MOTOR_CURRENT_SPI + static constexpr uint32_t tmp_motor_current_setting[] = DIGIPOT_MOTOR_CURRENT; + DEBUG_ECHOLNPGM("Writing Digipot"); + LOOP_L_N(q, COUNT(tmp_motor_current_setting)) + stepper.set_digipot_current(q, tmp_motor_current_setting[q]); + DEBUG_ECHOLNPGM("Digipot Written"); + #endif + + // + // CNC Coordinate System + // + TERN_(CNC_COORDINATE_SYSTEMS, (void)gcode.select_coordinate_system(-1)); // Go back to machine space + + // + // Skew Correction + // + #if ENABLED(SKEW_CORRECTION_GCODE) + planner.skew_factor.xy = XY_SKEW_FACTOR; + #if ENABLED(SKEW_CORRECTION_FOR_Z) + planner.skew_factor.xz = XZ_SKEW_FACTOR; + planner.skew_factor.yz = YZ_SKEW_FACTOR; + #endif + #endif + + // + // Advanced Pause filament load & unload lengths + // + #if ENABLED(ADVANCED_PAUSE_FEATURE) + LOOP_L_N(e, EXTRUDERS) { + fc_settings[e].unload_length = FILAMENT_CHANGE_UNLOAD_LENGTH; + fc_settings[e].load_length = FILAMENT_CHANGE_FAST_LOAD_LENGTH; + } + #endif + + #if ENABLED(PASSWORD_FEATURE) + #ifdef PASSWORD_DEFAULT_VALUE + password.is_set = true; + password.value = PASSWORD_DEFAULT_VALUE; + #else + password.is_set = false; + #endif + #endif + + postprocess(); + + DEBUG_ECHO_START(); + DEBUG_ECHOLNPGM("Hardcoded Default Settings Loaded"); + + TERN_(EXTENSIBLE_UI, ExtUI::onFactoryReset()); +} + +#if DISABLED(DISABLE_M503) + + static void config_heading(const bool repl, PGM_P const pstr, const bool eol=true) { + if (!repl) { + SERIAL_ECHO_START(); + SERIAL_ECHOPGM("; "); + serialprintPGM(pstr); + if (eol) SERIAL_EOL(); + } + } + + #define CONFIG_ECHO_START() do{ if (!forReplay) SERIAL_ECHO_START(); }while(0) + #define CONFIG_ECHO_MSG(STR) do{ CONFIG_ECHO_START(); SERIAL_ECHOLNPGM(STR); }while(0) + #define CONFIG_ECHO_HEADING(STR) config_heading(forReplay, PSTR(STR)) + + #if HAS_TRINAMIC_CONFIG + inline void say_M906(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M906"); } + #if HAS_STEALTHCHOP + void say_M569(const bool forReplay, const char * const etc=nullptr, const bool newLine = false) { + CONFIG_ECHO_START(); + SERIAL_ECHOPGM(" M569 S1"); + if (etc) { + SERIAL_CHAR(' '); + serialprintPGM(etc); + } + if (newLine) SERIAL_EOL(); + } + #endif + #if ENABLED(HYBRID_THRESHOLD) + inline void say_M913(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M913"); } + #endif + #if USE_SENSORLESS + inline void say_M914() { SERIAL_ECHOPGM(" M914"); } + #endif + #endif + + #if ENABLED(ADVANCED_PAUSE_FEATURE) + inline void say_M603(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M603 "); } + #endif + + inline void say_units(const bool colon) { + serialprintPGM( + #if ENABLED(INCH_MODE_SUPPORT) + parser.linear_unit_factor != 1.0 ? PSTR(" (in)") : + #endif + PSTR(" (mm)") + ); + if (colon) SERIAL_ECHOLNPGM(":"); + } + + void report_M92(const bool echo=true, const int8_t e=-1); + + /** + * M503 - Report current settings in RAM + * + * Unless specifically disabled, M503 is available even without EEPROM + */ + void MarlinSettings::report(const bool forReplay) { + /** + * Announce current units, in case inches are being displayed + */ + CONFIG_ECHO_START(); + #if ENABLED(INCH_MODE_SUPPORT) + SERIAL_ECHOPGM(" G2"); + SERIAL_CHAR(parser.linear_unit_factor == 1.0 ? '1' : '0'); + SERIAL_ECHOPGM(" ;"); + say_units(false); + #else + SERIAL_ECHOPGM(" G21 ; Units in mm"); + say_units(false); + #endif + SERIAL_EOL(); + + #if HAS_LCD_MENU + + // Temperature units - for Ultipanel temperature options + + CONFIG_ECHO_START(); + #if ENABLED(TEMPERATURE_UNITS_SUPPORT) + SERIAL_ECHOPGM(" M149 "); + SERIAL_CHAR(parser.temp_units_code()); + SERIAL_ECHOPGM(" ; Units in "); + serialprintPGM(parser.temp_units_name()); + #else + SERIAL_ECHOLNPGM(" M149 C ; Units in Celsius"); + #endif + + #endif + + SERIAL_EOL(); + + #if EXTRUDERS && DISABLED(NO_VOLUMETRICS) + + /** + * Volumetric extrusion M200 + */ + if (!forReplay) { + config_heading(forReplay, PSTR("Filament settings:"), false); + if (parser.volumetric_enabled) + SERIAL_EOL(); + else + SERIAL_ECHOLNPGM(" Disabled"); + } + + #if EXTRUDERS == 1 + CONFIG_ECHO_START(); + SERIAL_ECHOLNPAIR(" M200 S", int(parser.volumetric_enabled) + , " D", LINEAR_UNIT(planner.filament_size[0]) + #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT) + , " L", LINEAR_UNIT(planner.volumetric_extruder_limit[0]) + #endif + ); + #else + LOOP_L_N(i, EXTRUDERS) { + CONFIG_ECHO_START(); + SERIAL_ECHOLNPAIR(" M200 T", int(i) + , " D", LINEAR_UNIT(planner.filament_size[i]) + #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT) + , " L", LINEAR_UNIT(planner.volumetric_extruder_limit[i]) + #endif + ); + } + CONFIG_ECHO_START(); + SERIAL_ECHOLNPAIR(" M200 S", int(parser.volumetric_enabled)); + #endif + #endif // EXTRUDERS && !NO_VOLUMETRICS + + CONFIG_ECHO_HEADING("Steps per unit:"); + report_M92(!forReplay); + + CONFIG_ECHO_HEADING("Maximum feedrates (units/s):"); + CONFIG_ECHO_START(); + SERIAL_ECHOLNPAIR_P( + PSTR(" M203 X"), LINEAR_UNIT(planner.settings.max_feedrate_mm_s[X_AXIS]) + , SP_Y_STR, LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Y_AXIS]) + , SP_Z_STR, LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Z_AXIS]) + #if DISABLED(DISTINCT_E_FACTORS) + , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS]) + #endif + ); + #if ENABLED(DISTINCT_E_FACTORS) + LOOP_L_N(i, E_STEPPERS) { + CONFIG_ECHO_START(); + SERIAL_ECHOLNPAIR_P( + PSTR(" M203 T"), (int)i + , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS_N(i)]) + ); + } + #endif + + CONFIG_ECHO_HEADING("Maximum Acceleration (units/s2):"); + CONFIG_ECHO_START(); + SERIAL_ECHOLNPAIR_P( + PSTR(" M201 X"), LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[X_AXIS]) + , SP_Y_STR, LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Y_AXIS]) + , SP_Z_STR, LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Z_AXIS]) + #if DISABLED(DISTINCT_E_FACTORS) + , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS]) + #endif + ); + #if ENABLED(DISTINCT_E_FACTORS) + LOOP_L_N(i, E_STEPPERS) { + CONFIG_ECHO_START(); + SERIAL_ECHOLNPAIR_P( + PSTR(" M201 T"), (int)i + , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS_N(i)]) + ); + } + #endif + + CONFIG_ECHO_HEADING("Acceleration (units/s2): P<print_accel> R<retract_accel> T<travel_accel>"); + CONFIG_ECHO_START(); + SERIAL_ECHOLNPAIR_P( + PSTR(" M204 P"), LINEAR_UNIT(planner.settings.acceleration) + , PSTR(" R"), LINEAR_UNIT(planner.settings.retract_acceleration) + , SP_T_STR, LINEAR_UNIT(planner.settings.travel_acceleration) + ); + + CONFIG_ECHO_HEADING( + "Advanced: B<min_segment_time_us> S<min_feedrate> T<min_travel_feedrate>" + #if HAS_JUNCTION_DEVIATION + " J<junc_dev>" + #endif + #if HAS_CLASSIC_JERK + " X<max_x_jerk> Y<max_y_jerk> Z<max_z_jerk>" + TERN_(HAS_CLASSIC_E_JERK, " E<max_e_jerk>") + #endif + ); + CONFIG_ECHO_START(); + SERIAL_ECHOLNPAIR_P( + PSTR(" M205 B"), LINEAR_UNIT(planner.settings.min_segment_time_us) + , PSTR(" S"), LINEAR_UNIT(planner.settings.min_feedrate_mm_s) + , SP_T_STR, LINEAR_UNIT(planner.settings.min_travel_feedrate_mm_s) + #if HAS_JUNCTION_DEVIATION + , PSTR(" J"), LINEAR_UNIT(planner.junction_deviation_mm) + #endif + #if HAS_CLASSIC_JERK + , SP_X_STR, LINEAR_UNIT(planner.max_jerk.x) + , SP_Y_STR, LINEAR_UNIT(planner.max_jerk.y) + , SP_Z_STR, LINEAR_UNIT(planner.max_jerk.z) + #if HAS_CLASSIC_E_JERK + , SP_E_STR, LINEAR_UNIT(planner.max_jerk.e) + #endif + #endif + ); + + #if HAS_M206_COMMAND + CONFIG_ECHO_HEADING("Home offset:"); + CONFIG_ECHO_START(); + SERIAL_ECHOLNPAIR_P( + #if IS_CARTESIAN + PSTR(" M206 X"), LINEAR_UNIT(home_offset.x) + , SP_Y_STR, LINEAR_UNIT(home_offset.y) + , SP_Z_STR + #else + PSTR(" M206 Z") + #endif + , LINEAR_UNIT(home_offset.z) + ); + #endif + + #if HAS_HOTEND_OFFSET + CONFIG_ECHO_HEADING("Hotend offsets:"); + CONFIG_ECHO_START(); + LOOP_S_L_N(e, 1, HOTENDS) { + SERIAL_ECHOPAIR_P( + PSTR(" M218 T"), (int)e, + SP_X_STR, LINEAR_UNIT(hotend_offset[e].x), + SP_Y_STR, LINEAR_UNIT(hotend_offset[e].y) + ); + SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(hotend_offset[e].z), 3); + } + #endif + + /** + * Bed Leveling + */ + #if HAS_LEVELING + + #if ENABLED(MESH_BED_LEVELING) + + CONFIG_ECHO_HEADING("Mesh Bed Leveling:"); + + #elif ENABLED(AUTO_BED_LEVELING_UBL) + + config_heading(forReplay, NUL_STR, false); + if (!forReplay) { + ubl.echo_name(); + SERIAL_CHAR(':'); + SERIAL_EOL(); + } + + #elif HAS_ABL_OR_UBL + + CONFIG_ECHO_HEADING("Auto Bed Leveling:"); + + #endif + + CONFIG_ECHO_START(); + SERIAL_ECHOLNPAIR_P( + PSTR(" M420 S"), planner.leveling_active ? 1 : 0 + #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) + , SP_Z_STR, LINEAR_UNIT(planner.z_fade_height) + #endif + ); + + #if ENABLED(MESH_BED_LEVELING) + + if (leveling_is_valid()) { + LOOP_L_N(py, GRID_MAX_POINTS_Y) { + LOOP_L_N(px, GRID_MAX_POINTS_X) { + CONFIG_ECHO_START(); + SERIAL_ECHOPAIR_P(PSTR(" G29 S3 I"), (int)px, PSTR(" J"), (int)py); + SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(mbl.z_values[px][py]), 5); + } + } + CONFIG_ECHO_START(); + SERIAL_ECHOLNPAIR_F_P(PSTR(" G29 S4 Z"), LINEAR_UNIT(mbl.z_offset), 5); + } + + #elif ENABLED(AUTO_BED_LEVELING_UBL) + + if (!forReplay) { + SERIAL_EOL(); + ubl.report_state(); + SERIAL_EOL(); + config_heading(false, PSTR("Active Mesh Slot: "), false); + SERIAL_ECHOLN(ubl.storage_slot); + config_heading(false, PSTR("EEPROM can hold "), false); + SERIAL_ECHO(calc_num_meshes()); + SERIAL_ECHOLNPGM(" meshes.\n"); + } + + //ubl.report_current_mesh(); // This is too verbose for large meshes. A better (more terse) + // solution needs to be found. + #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) + + if (leveling_is_valid()) { + LOOP_L_N(py, GRID_MAX_POINTS_Y) { + LOOP_L_N(px, GRID_MAX_POINTS_X) { + CONFIG_ECHO_START(); + SERIAL_ECHOPAIR(" G29 W I", (int)px, " J", (int)py); + SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(z_values[px][py]), 5); + } + } + } + + #endif + + #endif // HAS_LEVELING + + #if ENABLED(EDITABLE_SERVO_ANGLES) + + CONFIG_ECHO_HEADING("Servo Angles:"); + LOOP_L_N(i, NUM_SERVOS) { + switch (i) { + #if ENABLED(SWITCHING_EXTRUDER) + case SWITCHING_EXTRUDER_SERVO_NR: + #if EXTRUDERS > 3 + case SWITCHING_EXTRUDER_E23_SERVO_NR: + #endif + #elif ENABLED(SWITCHING_NOZZLE) + case SWITCHING_NOZZLE_SERVO_NR: + #elif ENABLED(BLTOUCH) || (HAS_Z_SERVO_PROBE && defined(Z_SERVO_ANGLES)) + case Z_PROBE_SERVO_NR: + #endif + CONFIG_ECHO_START(); + SERIAL_ECHOLNPAIR(" M281 P", int(i), " L", servo_angles[i][0], " U", servo_angles[i][1]); + default: break; + } + } + + #endif // EDITABLE_SERVO_ANGLES + + #if HAS_SCARA_OFFSET + + CONFIG_ECHO_HEADING("SCARA settings: S<seg-per-sec> P<theta-psi-offset> T<theta-offset>"); + CONFIG_ECHO_START(); + SERIAL_ECHOLNPAIR_P( + PSTR(" M665 S"), delta_segments_per_second + , SP_P_STR, scara_home_offset.a + , SP_T_STR, scara_home_offset.b + , SP_Z_STR, LINEAR_UNIT(scara_home_offset.z) + ); + + #elif ENABLED(DELTA) + + CONFIG_ECHO_HEADING("Endstop adjustment:"); + CONFIG_ECHO_START(); + SERIAL_ECHOLNPAIR_P( + PSTR(" M666 X"), LINEAR_UNIT(delta_endstop_adj.a) + , SP_Y_STR, LINEAR_UNIT(delta_endstop_adj.b) + , SP_Z_STR, LINEAR_UNIT(delta_endstop_adj.c) + ); + + CONFIG_ECHO_HEADING("Delta settings: L<diagonal rod> R<radius> H<height> S<segments per sec> XYZ<tower angle trim> ABC<rod trim>"); + CONFIG_ECHO_START(); + SERIAL_ECHOLNPAIR_P( + PSTR(" M665 L"), LINEAR_UNIT(delta_diagonal_rod) + , PSTR(" R"), LINEAR_UNIT(delta_radius) + , PSTR(" H"), LINEAR_UNIT(delta_height) + , PSTR(" S"), delta_segments_per_second + , SP_X_STR, LINEAR_UNIT(delta_tower_angle_trim.a) + , SP_Y_STR, LINEAR_UNIT(delta_tower_angle_trim.b) + , SP_Z_STR, LINEAR_UNIT(delta_tower_angle_trim.c) + , PSTR(" A"), LINEAR_UNIT(delta_diagonal_rod_trim.a) + , PSTR(" B"), LINEAR_UNIT(delta_diagonal_rod_trim.b) + , PSTR(" C"), LINEAR_UNIT(delta_diagonal_rod_trim.c) + ); + + #elif HAS_EXTRA_ENDSTOPS + + CONFIG_ECHO_HEADING("Endstop adjustment:"); + CONFIG_ECHO_START(); + SERIAL_ECHOPGM(" M666"); + #if ENABLED(X_DUAL_ENDSTOPS) + SERIAL_ECHOLNPAIR_P(SP_X_STR, LINEAR_UNIT(endstops.x2_endstop_adj)); + #endif + #if ENABLED(Y_DUAL_ENDSTOPS) + SERIAL_ECHOLNPAIR_P(SP_Y_STR, LINEAR_UNIT(endstops.y2_endstop_adj)); + #endif + #if ENABLED(Z_MULTI_ENDSTOPS) + #if NUM_Z_STEPPER_DRIVERS >= 3 + SERIAL_ECHOPAIR(" S2 Z", LINEAR_UNIT(endstops.z3_endstop_adj)); + CONFIG_ECHO_START(); + SERIAL_ECHOPAIR(" M666 S3 Z", LINEAR_UNIT(endstops.z3_endstop_adj)); + #if NUM_Z_STEPPER_DRIVERS >= 4 + CONFIG_ECHO_START(); + SERIAL_ECHOPAIR(" M666 S4 Z", LINEAR_UNIT(endstops.z4_endstop_adj)); + #endif + #else + SERIAL_ECHOLNPAIR_P(SP_Z_STR, LINEAR_UNIT(endstops.z2_endstop_adj)); + #endif + #endif + + #endif // [XYZ]_DUAL_ENDSTOPS + + #if PREHEAT_COUNT + + CONFIG_ECHO_HEADING("Material heatup parameters:"); + LOOP_L_N(i, PREHEAT_COUNT) { + CONFIG_ECHO_START(); + SERIAL_ECHOLNPAIR_P( + PSTR(" M145 S"), (int)i + #if HAS_HOTEND + , PSTR(" H"), TEMP_UNIT(ui.material_preset[i].hotend_temp) + #endif + #if HAS_HEATED_BED + , SP_B_STR, TEMP_UNIT(ui.material_preset[i].bed_temp) + #endif + #if HAS_FAN + , PSTR(" F"), ui.material_preset[i].fan_speed + #endif + ); + } + + #endif + + #if HAS_PID_HEATING + + CONFIG_ECHO_HEADING("PID settings:"); + + #if ENABLED(PIDTEMP) + HOTEND_LOOP() { + CONFIG_ECHO_START(); + SERIAL_ECHOPAIR_P( + #if ENABLED(PID_PARAMS_PER_HOTEND) + PSTR(" M301 E"), e, + SP_P_STR + #else + PSTR(" M301 P") + #endif + , PID_PARAM(Kp, e) + , PSTR(" I"), unscalePID_i(PID_PARAM(Ki, e)) + , PSTR(" D"), unscalePID_d(PID_PARAM(Kd, e)) + ); + #if ENABLED(PID_EXTRUSION_SCALING) + SERIAL_ECHOPAIR_P(SP_C_STR, PID_PARAM(Kc, e)); + if (e == 0) SERIAL_ECHOPAIR(" L", thermalManager.lpq_len); + #endif + #if ENABLED(PID_FAN_SCALING) + SERIAL_ECHOPAIR(" F", PID_PARAM(Kf, e)); + #endif + SERIAL_EOL(); + } + #endif // PIDTEMP + + #if ENABLED(PIDTEMPBED) + CONFIG_ECHO_START(); + SERIAL_ECHOLNPAIR( + " M304 P", thermalManager.temp_bed.pid.Kp + , " I", unscalePID_i(thermalManager.temp_bed.pid.Ki) + , " D", unscalePID_d(thermalManager.temp_bed.pid.Kd) + ); + #endif + + #endif // PIDTEMP || PIDTEMPBED + + #if HAS_USER_THERMISTORS + CONFIG_ECHO_HEADING("User thermistors:"); + LOOP_L_N(i, USER_THERMISTORS) + thermalManager.log_user_thermistor(i, true); + #endif + + #if HAS_LCD_CONTRAST + CONFIG_ECHO_HEADING("LCD Contrast:"); + CONFIG_ECHO_START(); + SERIAL_ECHOLNPAIR(" M250 C", ui.contrast); + #endif + + TERN_(CONTROLLER_FAN_EDITABLE, M710_report(forReplay)); + + #if ENABLED(POWER_LOSS_RECOVERY) + CONFIG_ECHO_HEADING("Power-Loss Recovery:"); + CONFIG_ECHO_START(); + SERIAL_ECHOLNPAIR(" M413 S", int(recovery.enabled)); + #endif + + #if ENABLED(FWRETRACT) + + CONFIG_ECHO_HEADING("Retract: S<length> F<units/m> Z<lift>"); + CONFIG_ECHO_START(); + SERIAL_ECHOLNPAIR_P( + PSTR(" M207 S"), LINEAR_UNIT(fwretract.settings.retract_length) + , PSTR(" W"), LINEAR_UNIT(fwretract.settings.swap_retract_length) + , PSTR(" F"), LINEAR_UNIT(MMS_TO_MMM(fwretract.settings.retract_feedrate_mm_s)) + , SP_Z_STR, LINEAR_UNIT(fwretract.settings.retract_zraise) + ); + + CONFIG_ECHO_HEADING("Recover: S<length> F<units/m>"); + CONFIG_ECHO_START(); + SERIAL_ECHOLNPAIR( + " M208 S", LINEAR_UNIT(fwretract.settings.retract_recover_extra) + , " W", LINEAR_UNIT(fwretract.settings.swap_retract_recover_extra) + , " F", LINEAR_UNIT(MMS_TO_MMM(fwretract.settings.retract_recover_feedrate_mm_s)) + ); + + #if ENABLED(FWRETRACT_AUTORETRACT) + + CONFIG_ECHO_HEADING("Auto-Retract: S=0 to disable, 1 to interpret E-only moves as retract/recover"); + CONFIG_ECHO_START(); + SERIAL_ECHOLNPAIR(" M209 S", fwretract.autoretract_enabled ? 1 : 0); + + #endif // FWRETRACT_AUTORETRACT + + #endif // FWRETRACT + + /** + * Probe Offset + */ + #if HAS_BED_PROBE + config_heading(forReplay, PSTR("Z-Probe Offset"), false); + if (!forReplay) say_units(true); + CONFIG_ECHO_START(); + SERIAL_ECHOLNPAIR_P( + #if HAS_PROBE_XY_OFFSET + PSTR(" M851 X"), LINEAR_UNIT(probe.offset_xy.x), + SP_Y_STR, LINEAR_UNIT(probe.offset_xy.y), + SP_Z_STR + #else + PSTR(" M851 X0 Y0 Z") + #endif + , LINEAR_UNIT(probe.offset.z) + ); + #endif + + /** + * Bed Skew Correction + */ + #if ENABLED(SKEW_CORRECTION_GCODE) + CONFIG_ECHO_HEADING("Skew Factor: "); + CONFIG_ECHO_START(); + #if ENABLED(SKEW_CORRECTION_FOR_Z) + SERIAL_ECHOPAIR_F(" M852 I", LINEAR_UNIT(planner.skew_factor.xy), 6); + SERIAL_ECHOPAIR_F(" J", LINEAR_UNIT(planner.skew_factor.xz), 6); + SERIAL_ECHOLNPAIR_F(" K", LINEAR_UNIT(planner.skew_factor.yz), 6); + #else + SERIAL_ECHOLNPAIR_F(" M852 S", LINEAR_UNIT(planner.skew_factor.xy), 6); + #endif + #endif + + #if HAS_TRINAMIC_CONFIG + + /** + * TMC stepper driver current + */ + CONFIG_ECHO_HEADING("Stepper driver current:"); + + #if AXIS_IS_TMC(X) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Z) + say_M906(forReplay); + #if AXIS_IS_TMC(X) + SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.getMilliamps()); + #endif + #if AXIS_IS_TMC(Y) + SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.getMilliamps()); + #endif + #if AXIS_IS_TMC(Z) + SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.getMilliamps()); + #endif + SERIAL_EOL(); + #endif + + #if AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z2) + say_M906(forReplay); + SERIAL_ECHOPGM(" I1"); + #if AXIS_IS_TMC(X2) + SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.getMilliamps()); + #endif + #if AXIS_IS_TMC(Y2) + SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.getMilliamps()); + #endif + #if AXIS_IS_TMC(Z2) + SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.getMilliamps()); + #endif + SERIAL_EOL(); + #endif + + #if AXIS_IS_TMC(Z3) + say_M906(forReplay); + SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.getMilliamps()); + #endif + + #if AXIS_IS_TMC(Z4) + say_M906(forReplay); + SERIAL_ECHOLNPAIR(" I3 Z", stepperZ4.getMilliamps()); + #endif + + #if AXIS_IS_TMC(E0) + say_M906(forReplay); + SERIAL_ECHOLNPAIR(" T0 E", stepperE0.getMilliamps()); + #endif + #if AXIS_IS_TMC(E1) + say_M906(forReplay); + SERIAL_ECHOLNPAIR(" T1 E", stepperE1.getMilliamps()); + #endif + #if AXIS_IS_TMC(E2) + say_M906(forReplay); + SERIAL_ECHOLNPAIR(" T2 E", stepperE2.getMilliamps()); + #endif + #if AXIS_IS_TMC(E3) + say_M906(forReplay); + SERIAL_ECHOLNPAIR(" T3 E", stepperE3.getMilliamps()); + #endif + #if AXIS_IS_TMC(E4) + say_M906(forReplay); + SERIAL_ECHOLNPAIR(" T4 E", stepperE4.getMilliamps()); + #endif + #if AXIS_IS_TMC(E5) + say_M906(forReplay); + SERIAL_ECHOLNPAIR(" T5 E", stepperE5.getMilliamps()); + #endif + #if AXIS_IS_TMC(E6) + say_M906(forReplay); + SERIAL_ECHOLNPAIR(" T6 E", stepperE6.getMilliamps()); + #endif + #if AXIS_IS_TMC(E7) + say_M906(forReplay); + SERIAL_ECHOLNPAIR(" T7 E", stepperE7.getMilliamps()); + #endif + SERIAL_EOL(); + + /** + * TMC Hybrid Threshold + */ + #if ENABLED(HYBRID_THRESHOLD) + CONFIG_ECHO_HEADING("Hybrid Threshold:"); + #if AXIS_HAS_STEALTHCHOP(X) || AXIS_HAS_STEALTHCHOP(Y) || AXIS_HAS_STEALTHCHOP(Z) + say_M913(forReplay); + #if AXIS_HAS_STEALTHCHOP(X) + SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.get_pwm_thrs()); + #endif + #if AXIS_HAS_STEALTHCHOP(Y) + SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.get_pwm_thrs()); + #endif + #if AXIS_HAS_STEALTHCHOP(Z) + SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.get_pwm_thrs()); + #endif + SERIAL_EOL(); + #endif + + #if AXIS_HAS_STEALTHCHOP(X2) || AXIS_HAS_STEALTHCHOP(Y2) || AXIS_HAS_STEALTHCHOP(Z2) + say_M913(forReplay); + SERIAL_ECHOPGM(" I1"); + #if AXIS_HAS_STEALTHCHOP(X2) + SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.get_pwm_thrs()); + #endif + #if AXIS_HAS_STEALTHCHOP(Y2) + SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.get_pwm_thrs()); + #endif + #if AXIS_HAS_STEALTHCHOP(Z2) + SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.get_pwm_thrs()); + #endif + SERIAL_EOL(); + #endif + + #if AXIS_HAS_STEALTHCHOP(Z3) + say_M913(forReplay); + SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.get_pwm_thrs()); + #endif + + #if AXIS_HAS_STEALTHCHOP(Z4) + say_M913(forReplay); + SERIAL_ECHOLNPAIR(" I3 Z", stepperZ4.get_pwm_thrs()); + #endif + + #if AXIS_HAS_STEALTHCHOP(E0) + say_M913(forReplay); + SERIAL_ECHOLNPAIR(" T0 E", stepperE0.get_pwm_thrs()); + #endif + #if AXIS_HAS_STEALTHCHOP(E1) + say_M913(forReplay); + SERIAL_ECHOLNPAIR(" T1 E", stepperE1.get_pwm_thrs()); + #endif + #if AXIS_HAS_STEALTHCHOP(E2) + say_M913(forReplay); + SERIAL_ECHOLNPAIR(" T2 E", stepperE2.get_pwm_thrs()); + #endif + #if AXIS_HAS_STEALTHCHOP(E3) + say_M913(forReplay); + SERIAL_ECHOLNPAIR(" T3 E", stepperE3.get_pwm_thrs()); + #endif + #if AXIS_HAS_STEALTHCHOP(E4) + say_M913(forReplay); + SERIAL_ECHOLNPAIR(" T4 E", stepperE4.get_pwm_thrs()); + #endif + #if AXIS_HAS_STEALTHCHOP(E5) + say_M913(forReplay); + SERIAL_ECHOLNPAIR(" T5 E", stepperE5.get_pwm_thrs()); + #endif + #if AXIS_HAS_STEALTHCHOP(E6) + say_M913(forReplay); + SERIAL_ECHOLNPAIR(" T6 E", stepperE6.get_pwm_thrs()); + #endif + #if AXIS_HAS_STEALTHCHOP(E7) + say_M913(forReplay); + SERIAL_ECHOLNPAIR(" T7 E", stepperE7.get_pwm_thrs()); + #endif + SERIAL_EOL(); + #endif // HYBRID_THRESHOLD + + /** + * TMC Sensorless homing thresholds + */ + #if USE_SENSORLESS + CONFIG_ECHO_HEADING("StallGuard threshold:"); + #if X_SENSORLESS || Y_SENSORLESS || Z_SENSORLESS + CONFIG_ECHO_START(); + say_M914(); + #if X_SENSORLESS + SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.homing_threshold()); + #endif + #if Y_SENSORLESS + SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.homing_threshold()); + #endif + #if Z_SENSORLESS + SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.homing_threshold()); + #endif + SERIAL_EOL(); + #endif + + #if X2_SENSORLESS || Y2_SENSORLESS || Z2_SENSORLESS + CONFIG_ECHO_START(); + say_M914(); + SERIAL_ECHOPGM(" I1"); + #if X2_SENSORLESS + SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.homing_threshold()); + #endif + #if Y2_SENSORLESS + SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.homing_threshold()); + #endif + #if Z2_SENSORLESS + SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.homing_threshold()); + #endif + SERIAL_EOL(); + #endif + + #if Z3_SENSORLESS + CONFIG_ECHO_START(); + say_M914(); + SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.homing_threshold()); + #endif + + #if Z4_SENSORLESS + CONFIG_ECHO_START(); + say_M914(); + SERIAL_ECHOLNPAIR(" I3 Z", stepperZ4.homing_threshold()); + #endif + + #endif // USE_SENSORLESS + + /** + * TMC stepping mode + */ + #if HAS_STEALTHCHOP + CONFIG_ECHO_HEADING("Driver stepping mode:"); + #if AXIS_HAS_STEALTHCHOP(X) + const bool chop_x = stepperX.get_stored_stealthChop(); + #else + constexpr bool chop_x = false; + #endif + #if AXIS_HAS_STEALTHCHOP(Y) + const bool chop_y = stepperY.get_stored_stealthChop(); + #else + constexpr bool chop_y = false; + #endif + #if AXIS_HAS_STEALTHCHOP(Z) + const bool chop_z = stepperZ.get_stored_stealthChop(); + #else + constexpr bool chop_z = false; + #endif + + if (chop_x || chop_y || chop_z) { + say_M569(forReplay); + if (chop_x) SERIAL_ECHOPGM_P(SP_X_STR); + if (chop_y) SERIAL_ECHOPGM_P(SP_Y_STR); + if (chop_z) SERIAL_ECHOPGM_P(SP_Z_STR); + SERIAL_EOL(); + } + + #if AXIS_HAS_STEALTHCHOP(X2) + const bool chop_x2 = stepperX2.get_stored_stealthChop(); + #else + constexpr bool chop_x2 = false; + #endif + #if AXIS_HAS_STEALTHCHOP(Y2) + const bool chop_y2 = stepperY2.get_stored_stealthChop(); + #else + constexpr bool chop_y2 = false; + #endif + #if AXIS_HAS_STEALTHCHOP(Z2) + const bool chop_z2 = stepperZ2.get_stored_stealthChop(); + #else + constexpr bool chop_z2 = false; + #endif + + if (chop_x2 || chop_y2 || chop_z2) { + say_M569(forReplay, PSTR("I1")); + if (chop_x2) SERIAL_ECHOPGM_P(SP_X_STR); + if (chop_y2) SERIAL_ECHOPGM_P(SP_Y_STR); + if (chop_z2) SERIAL_ECHOPGM_P(SP_Z_STR); + SERIAL_EOL(); + } + + #if AXIS_HAS_STEALTHCHOP(Z3) + if (stepperZ3.get_stored_stealthChop()) { say_M569(forReplay, PSTR("I2 Z"), true); } + #endif + + #if AXIS_HAS_STEALTHCHOP(Z4) + if (stepperZ4.get_stored_stealthChop()) { say_M569(forReplay, PSTR("I3 Z"), true); } + #endif + + #if AXIS_HAS_STEALTHCHOP(E0) + if (stepperE0.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T0 E"), true); } + #endif + #if AXIS_HAS_STEALTHCHOP(E1) + if (stepperE1.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T1 E"), true); } + #endif + #if AXIS_HAS_STEALTHCHOP(E2) + if (stepperE2.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T2 E"), true); } + #endif + #if AXIS_HAS_STEALTHCHOP(E3) + if (stepperE3.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T3 E"), true); } + #endif + #if AXIS_HAS_STEALTHCHOP(E4) + if (stepperE4.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T4 E"), true); } + #endif + #if AXIS_HAS_STEALTHCHOP(E5) + if (stepperE5.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T5 E"), true); } + #endif + #if AXIS_HAS_STEALTHCHOP(E6) + if (stepperE6.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T6 E"), true); } + #endif + #if AXIS_HAS_STEALTHCHOP(E7) + if (stepperE7.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T7 E"), true); } + #endif + + #endif // HAS_STEALTHCHOP + + #endif // HAS_TRINAMIC_CONFIG + + /** + * Linear Advance + */ + #if ENABLED(LIN_ADVANCE) + CONFIG_ECHO_HEADING("Linear Advance:"); + #if EXTRUDERS < 2 + CONFIG_ECHO_START(); + SERIAL_ECHOLNPAIR(" M900 K", planner.extruder_advance_K[0]); + #else + LOOP_L_N(i, EXTRUDERS) { + CONFIG_ECHO_START(); + SERIAL_ECHOLNPAIR(" M900 T", int(i), " K", planner.extruder_advance_K[i]); + } + #endif + #endif + + #if EITHER(HAS_MOTOR_CURRENT_SPI, HAS_MOTOR_CURRENT_PWM) + CONFIG_ECHO_HEADING("Stepper motor currents:"); + CONFIG_ECHO_START(); + #if HAS_MOTOR_CURRENT_PWM + SERIAL_ECHOLNPAIR_P( // PWM-based has 3 values: + PSTR(" M907 X"), stepper.motor_current_setting[0] // X and Y + , SP_Z_STR, stepper.motor_current_setting[1] // Z + , SP_E_STR, stepper.motor_current_setting[2] // E + ); + #elif HAS_MOTOR_CURRENT_SPI + SERIAL_ECHOPGM(" M907"); // SPI-based has 5 values: + LOOP_XYZE(q) { // X Y Z E (map to X Y Z E0 by default) + SERIAL_CHAR(' ', axis_codes[q]); + SERIAL_ECHO(stepper.motor_current_setting[q]); + } + SERIAL_CHAR(' ', 'B'); // B (maps to E1 by default) + SERIAL_ECHOLN(stepper.motor_current_setting[4]); + #endif + #elif ENABLED(HAS_MOTOR_CURRENT_I2C) // i2c-based has any number of values + // Values sent over i2c are not stored. + // Indexes map directly to drivers, not axes. + #elif ENABLED(HAS_MOTOR_CURRENT_DAC) // DAC-based has 4 values, for X Y Z E + // Values sent over i2c are not stored. Uses indirect mapping. + #endif + + /** + * Advanced Pause filament load & unload lengths + */ + #if ENABLED(ADVANCED_PAUSE_FEATURE) + CONFIG_ECHO_HEADING("Filament load/unload lengths:"); + #if EXTRUDERS == 1 + say_M603(forReplay); + SERIAL_ECHOLNPAIR("L", LINEAR_UNIT(fc_settings[0].load_length), " U", LINEAR_UNIT(fc_settings[0].unload_length)); + #else + #define _ECHO_603(N) do{ say_M603(forReplay); SERIAL_ECHOLNPAIR("T" STRINGIFY(N) " L", LINEAR_UNIT(fc_settings[N].load_length), " U", LINEAR_UNIT(fc_settings[N].unload_length)); }while(0); + REPEAT(EXTRUDERS, _ECHO_603) + #endif + #endif + + #if HAS_MULTI_EXTRUDER + CONFIG_ECHO_HEADING("Tool-changing:"); + CONFIG_ECHO_START(); + M217_report(true); + #endif + + #if ENABLED(BACKLASH_GCODE) + CONFIG_ECHO_HEADING("Backlash compensation:"); + CONFIG_ECHO_START(); + SERIAL_ECHOLNPAIR_P( + PSTR(" M425 F"), backlash.get_correction() + , SP_X_STR, LINEAR_UNIT(backlash.distance_mm.x) + , SP_Y_STR, LINEAR_UNIT(backlash.distance_mm.y) + , SP_Z_STR, LINEAR_UNIT(backlash.distance_mm.z) + #ifdef BACKLASH_SMOOTHING_MM + , PSTR(" S"), LINEAR_UNIT(backlash.smoothing_mm) + #endif + ); + #endif + + #if HAS_FILAMENT_SENSOR + CONFIG_ECHO_HEADING("Filament runout sensor:"); + CONFIG_ECHO_START(); + SERIAL_ECHOLNPAIR( + " M412 S", int(runout.enabled) + #if HAS_FILAMENT_RUNOUT_DISTANCE + , " D", LINEAR_UNIT(runout.runout_distance()) + #endif + ); + #endif + + #if HAS_ETHERNET + CONFIG_ECHO_HEADING("Ethernet:"); + if (!forReplay) { CONFIG_ECHO_START(); ETH0_report(); } + CONFIG_ECHO_START(); SERIAL_ECHO_SP(2); MAC_report(); + CONFIG_ECHO_START(); SERIAL_ECHO_SP(2); M552_report(); + CONFIG_ECHO_START(); SERIAL_ECHO_SP(2); M553_report(); + CONFIG_ECHO_START(); SERIAL_ECHO_SP(2); M554_report(); + #endif + + #if HAS_MULTI_LANGUAGE + CONFIG_ECHO_HEADING("UI Language:"); + SERIAL_ECHO_MSG(" M414 S", int(ui.language)); + #endif + } + +#endif // !DISABLE_M503 + +#pragma pack(pop) |