aboutsummaryrefslogtreecommitdiff
path: root/Marlin/src/module/stepper/trinamic.cpp
diff options
context:
space:
mode:
authorGeorgiy Bondarenko <69736697+nehilo@users.noreply.github.com>2021-03-04 20:54:23 +0300
committerGeorgiy Bondarenko <69736697+nehilo@users.noreply.github.com>2021-03-04 20:54:23 +0300
commite8701195e66f2d27ffe17fb514eae8173795aaf7 (patch)
tree9f519c4abf6556b9ae7190a6210d87ead1dfadde /Marlin/src/module/stepper/trinamic.cpp
downloadkp3s-lgvl-e8701195e66f2d27ffe17fb514eae8173795aaf7.tar.xz
kp3s-lgvl-e8701195e66f2d27ffe17fb514eae8173795aaf7.zip
Initial commit
Diffstat (limited to 'Marlin/src/module/stepper/trinamic.cpp')
-rw-r--r--Marlin/src/module/stepper/trinamic.cpp877
1 files changed, 877 insertions, 0 deletions
diff --git a/Marlin/src/module/stepper/trinamic.cpp b/Marlin/src/module/stepper/trinamic.cpp
new file mode 100644
index 0000000..c33581d
--- /dev/null
+++ b/Marlin/src/module/stepper/trinamic.cpp
@@ -0,0 +1,877 @@
+/**
+ * Marlin 3D Printer Firmware
+ * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
+ *
+ * Based on Sprinter and grbl.
+ * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <https://www.gnu.org/licenses/>.
+ *
+ */
+
+/**
+ * stepper/trinamic.cpp
+ * Stepper driver indirection for Trinamic
+ */
+
+#include "../../inc/MarlinConfig.h"
+
+#if HAS_TRINAMIC_CONFIG
+
+#include "trinamic.h"
+#include "../stepper.h"
+
+#include <HardwareSerial.h>
+#include <SPI.h>
+
+enum StealthIndex : uint8_t { STEALTH_AXIS_XY, STEALTH_AXIS_Z, STEALTH_AXIS_E };
+#define TMC_INIT(ST, STEALTH_INDEX) tmc_init(stepper##ST, ST##_CURRENT, ST##_MICROSTEPS, ST##_HYBRID_THRESHOLD, stealthchop_by_axis[STEALTH_INDEX], chopper_timing_##ST, ST##_INTERPOLATE)
+
+// IC = TMC model number
+// ST = Stepper object letter
+// L = Label characters
+// AI = Axis Enum Index
+// SWHW = SW/SH UART selection
+#if ENABLED(TMC_USE_SW_SPI)
+ #define __TMC_SPI_DEFINE(IC, ST, L, AI) TMCMarlin<IC##Stepper, L, AI> stepper##ST(ST##_CS_PIN, float(ST##_RSENSE), TMC_SW_MOSI, TMC_SW_MISO, TMC_SW_SCK, ST##_CHAIN_POS)
+#else
+ #define __TMC_SPI_DEFINE(IC, ST, L, AI) TMCMarlin<IC##Stepper, L, AI> stepper##ST(ST##_CS_PIN, float(ST##_RSENSE), ST##_CHAIN_POS)
+#endif
+
+#if ENABLED(TMC_SERIAL_MULTIPLEXER)
+ #define TMC_UART_HW_DEFINE(IC, ST, L, AI) TMCMarlin<IC##Stepper, L, AI> stepper##ST(&ST##_HARDWARE_SERIAL, float(ST##_RSENSE), ST##_SLAVE_ADDRESS, SERIAL_MUL_PIN1, SERIAL_MUL_PIN2)
+#else
+ #define TMC_UART_HW_DEFINE(IC, ST, L, AI) TMCMarlin<IC##Stepper, L, AI> stepper##ST(&ST##_HARDWARE_SERIAL, float(ST##_RSENSE), ST##_SLAVE_ADDRESS)
+#endif
+#define TMC_UART_SW_DEFINE(IC, ST, L, AI) TMCMarlin<IC##Stepper, L, AI> stepper##ST(ST##_SERIAL_RX_PIN, ST##_SERIAL_TX_PIN, float(ST##_RSENSE), ST##_SLAVE_ADDRESS)
+
+#define _TMC_SPI_DEFINE(IC, ST, AI) __TMC_SPI_DEFINE(IC, ST, TMC_##ST##_LABEL, AI)
+#define TMC_SPI_DEFINE(ST, AI) _TMC_SPI_DEFINE(ST##_DRIVER_TYPE, ST, AI##_AXIS)
+
+#define _TMC_UART_DEFINE(SWHW, IC, ST, AI) TMC_UART_##SWHW##_DEFINE(IC, ST, TMC_##ST##_LABEL, AI)
+#define TMC_UART_DEFINE(SWHW, ST, AI) _TMC_UART_DEFINE(SWHW, ST##_DRIVER_TYPE, ST, AI##_AXIS)
+
+#if DISTINCT_E > 1
+ #define TMC_SPI_DEFINE_E(AI) TMC_SPI_DEFINE(E##AI, E##AI)
+ #define TMC_UART_DEFINE_E(SWHW, AI) TMC_UART_DEFINE(SWHW, E##AI, E##AI)
+#else
+ #define TMC_SPI_DEFINE_E(AI) TMC_SPI_DEFINE(E##AI, E)
+ #define TMC_UART_DEFINE_E(SWHW, AI) TMC_UART_DEFINE(SWHW, E##AI, E)
+#endif
+
+// Stepper objects of TMC2130/TMC2160/TMC2660/TMC5130/TMC5160 steppers used
+#if AXIS_HAS_SPI(X)
+ TMC_SPI_DEFINE(X, X);
+#endif
+#if AXIS_HAS_SPI(X2)
+ TMC_SPI_DEFINE(X2, X);
+#endif
+#if AXIS_HAS_SPI(Y)
+ TMC_SPI_DEFINE(Y, Y);
+#endif
+#if AXIS_HAS_SPI(Y2)
+ TMC_SPI_DEFINE(Y2, Y);
+#endif
+#if AXIS_HAS_SPI(Z)
+ TMC_SPI_DEFINE(Z, Z);
+#endif
+#if AXIS_HAS_SPI(Z2)
+ TMC_SPI_DEFINE(Z2, Z);
+#endif
+#if AXIS_HAS_SPI(Z3)
+ TMC_SPI_DEFINE(Z3, Z);
+#endif
+#if AXIS_HAS_SPI(Z4)
+ TMC_SPI_DEFINE(Z4, Z);
+#endif
+#if AXIS_HAS_SPI(E0)
+ TMC_SPI_DEFINE_E(0);
+#endif
+#if AXIS_HAS_SPI(E1)
+ TMC_SPI_DEFINE_E(1);
+#endif
+#if AXIS_HAS_SPI(E2)
+ TMC_SPI_DEFINE_E(2);
+#endif
+#if AXIS_HAS_SPI(E3)
+ TMC_SPI_DEFINE_E(3);
+#endif
+#if AXIS_HAS_SPI(E4)
+ TMC_SPI_DEFINE_E(4);
+#endif
+#if AXIS_HAS_SPI(E5)
+ TMC_SPI_DEFINE_E(5);
+#endif
+#if AXIS_HAS_SPI(E6)
+ TMC_SPI_DEFINE_E(6);
+#endif
+#if AXIS_HAS_SPI(E7)
+ TMC_SPI_DEFINE_E(7);
+#endif
+
+#ifndef TMC_BAUD_RATE
+ // Reduce baud rate for boards not already overriding TMC_BAUD_RATE for software serial.
+ // Testing has shown that 115200 is not 100% reliable on AVR platforms, occasionally
+ // failing to read status properly. 32-bit platforms typically define an even lower
+ // TMC_BAUD_RATE, due to differences in how SoftwareSerial libraries work on different
+ // platforms.
+ #define TMC_BAUD_RATE TERN(HAS_TMC_SW_SERIAL, 57600, 115200)
+#endif
+
+#if HAS_DRIVER(TMC2130)
+ template<char AXIS_LETTER, char DRIVER_ID, AxisEnum AXIS_ID>
+ void tmc_init(TMCMarlin<TMC2130Stepper, AXIS_LETTER, DRIVER_ID, AXIS_ID> &st, const uint16_t mA, const uint16_t microsteps, const uint32_t hyb_thrs, const bool stealth, const chopper_timing_t &chop_init, const bool interpolate) {
+ st.begin();
+
+ CHOPCONF_t chopconf{0};
+ chopconf.tbl = 0b01;
+ chopconf.toff = chop_init.toff;
+ chopconf.intpol = interpolate;
+ chopconf.hend = chop_init.hend + 3;
+ chopconf.hstrt = chop_init.hstrt - 1;
+ TERN_(SQUARE_WAVE_STEPPING, chopconf.dedge = true);
+ st.CHOPCONF(chopconf.sr);
+
+ st.rms_current(mA, HOLD_MULTIPLIER);
+ st.microsteps(microsteps);
+ st.iholddelay(10);
+ st.TPOWERDOWN(128); // ~2s until driver lowers to hold current
+
+ st.en_pwm_mode(stealth);
+ st.stored.stealthChop_enabled = stealth;
+
+ PWMCONF_t pwmconf{0};
+ pwmconf.pwm_freq = 0b01; // f_pwm = 2/683 f_clk
+ pwmconf.pwm_autoscale = true;
+ pwmconf.pwm_grad = 5;
+ pwmconf.pwm_ampl = 180;
+ st.PWMCONF(pwmconf.sr);
+
+ TERN(HYBRID_THRESHOLD, st.set_pwm_thrs(hyb_thrs), UNUSED(hyb_thrs));
+
+ st.GSTAT(); // Clear GSTAT
+ }
+#endif // TMC2130
+
+#if HAS_DRIVER(TMC2160)
+ template<char AXIS_LETTER, char DRIVER_ID, AxisEnum AXIS_ID>
+ void tmc_init(TMCMarlin<TMC2160Stepper, AXIS_LETTER, DRIVER_ID, AXIS_ID> &st, const uint16_t mA, const uint16_t microsteps, const uint32_t hyb_thrs, const bool stealth, const chopper_timing_t &chop_init, const bool interpolate) {
+ st.begin();
+
+ CHOPCONF_t chopconf{0};
+ chopconf.tbl = 0b01;
+ chopconf.toff = chop_init.toff;
+ chopconf.intpol = interpolate;
+ chopconf.hend = chop_init.hend + 3;
+ chopconf.hstrt = chop_init.hstrt - 1;
+ TERN_(SQUARE_WAVE_STEPPING, chopconf.dedge = true);
+ st.CHOPCONF(chopconf.sr);
+
+ st.rms_current(mA, HOLD_MULTIPLIER);
+ st.microsteps(microsteps);
+ st.iholddelay(10);
+ st.TPOWERDOWN(128); // ~2s until driver lowers to hold current
+
+ st.en_pwm_mode(stealth);
+ st.stored.stealthChop_enabled = stealth;
+
+ TMC2160_n::PWMCONF_t pwmconf{0};
+ pwmconf.pwm_lim = 12;
+ pwmconf.pwm_reg = 8;
+ pwmconf.pwm_autograd = true;
+ pwmconf.pwm_autoscale = true;
+ pwmconf.pwm_freq = 0b01;
+ pwmconf.pwm_grad = 14;
+ pwmconf.pwm_ofs = 36;
+ st.PWMCONF(pwmconf.sr);
+
+ TERN(HYBRID_THRESHOLD, st.set_pwm_thrs(hyb_thrs), UNUSED(hyb_thrs));
+
+ st.GSTAT(); // Clear GSTAT
+ }
+#endif // TMC2160
+
+//
+// TMC2208/2209 Driver objects and inits
+//
+#if HAS_TMC220x
+ #if AXIS_HAS_UART(X)
+ #ifdef X_HARDWARE_SERIAL
+ TMC_UART_DEFINE(HW, X, X);
+ #define X_HAS_HW_SERIAL 1
+ #else
+ TMC_UART_DEFINE(SW, X, X);
+ #define X_HAS_SW_SERIAL 1
+ #endif
+ #endif
+ #if AXIS_HAS_UART(X2)
+ #ifdef X2_HARDWARE_SERIAL
+ TMC_UART_DEFINE(HW, X2, X);
+ #define X2_HAS_HW_SERIAL 1
+ #else
+ TMC_UART_DEFINE(SW, X2, X);
+ #define X2_HAS_SW_SERIAL 1
+ #endif
+ #endif
+ #if AXIS_HAS_UART(Y)
+ #ifdef Y_HARDWARE_SERIAL
+ TMC_UART_DEFINE(HW, Y, Y);
+ #define Y_HAS_HW_SERIAL 1
+ #else
+ TMC_UART_DEFINE(SW, Y, Y);
+ #define Y_HAS_SW_SERIAL 1
+ #endif
+ #endif
+ #if AXIS_HAS_UART(Y2)
+ #ifdef Y2_HARDWARE_SERIAL
+ TMC_UART_DEFINE(HW, Y2, Y);
+ #define Y2_HAS_HW_SERIAL 1
+ #else
+ TMC_UART_DEFINE(SW, Y2, Y);
+ #define Y2_HAS_SW_SERIAL 1
+ #endif
+ #endif
+ #if AXIS_HAS_UART(Z)
+ #ifdef Z_HARDWARE_SERIAL
+ TMC_UART_DEFINE(HW, Z, Z);
+ #define Z_HAS_HW_SERIAL 1
+ #else
+ TMC_UART_DEFINE(SW, Z, Z);
+ #define Z_HAS_SW_SERIAL 1
+ #endif
+ #endif
+ #if AXIS_HAS_UART(Z2)
+ #ifdef Z2_HARDWARE_SERIAL
+ TMC_UART_DEFINE(HW, Z2, Z);
+ #define Z2_HAS_HW_SERIAL 1
+ #else
+ TMC_UART_DEFINE(SW, Z2, Z);
+ #define Z2_HAS_SW_SERIAL 1
+ #endif
+ #endif
+ #if AXIS_HAS_UART(Z3)
+ #ifdef Z3_HARDWARE_SERIAL
+ TMC_UART_DEFINE(HW, Z3, Z);
+ #define Z3_HAS_HW_SERIAL 1
+ #else
+ TMC_UART_DEFINE(SW, Z3, Z);
+ #define Z3_HAS_SW_SERIAL 1
+ #endif
+ #endif
+ #if AXIS_HAS_UART(Z4)
+ #ifdef Z4_HARDWARE_SERIAL
+ TMC_UART_DEFINE(HW, Z4, Z);
+ #define Z4_HAS_HW_SERIAL 1
+ #else
+ TMC_UART_DEFINE(SW, Z4, Z);
+ #define Z4_HAS_SW_SERIAL 1
+ #endif
+ #endif
+ #if AXIS_HAS_UART(E0)
+ #ifdef E0_HARDWARE_SERIAL
+ TMC_UART_DEFINE_E(HW, 0);
+ #define E0_HAS_HW_SERIAL 1
+ #else
+ TMC_UART_DEFINE_E(SW, 0);
+ #define E0_HAS_SW_SERIAL 1
+ #endif
+ #endif
+ #if AXIS_HAS_UART(E1)
+ #ifdef E1_HARDWARE_SERIAL
+ TMC_UART_DEFINE_E(HW, 1);
+ #define E1_HAS_HW_SERIAL 1
+ #else
+ TMC_UART_DEFINE_E(SW, 1);
+ #define E1_HAS_SW_SERIAL 1
+ #endif
+ #endif
+ #if AXIS_HAS_UART(E2)
+ #ifdef E2_HARDWARE_SERIAL
+ TMC_UART_DEFINE_E(HW, 2);
+ #define E2_HAS_HW_SERIAL 1
+ #else
+ TMC_UART_DEFINE_E(SW, 2);
+ #define E2_HAS_SW_SERIAL 1
+ #endif
+ #endif
+ #if AXIS_HAS_UART(E3)
+ #ifdef E3_HARDWARE_SERIAL
+ TMC_UART_DEFINE_E(HW, 3);
+ #define E3_HAS_HW_SERIAL 1
+ #else
+ TMC_UART_DEFINE_E(SW, 3);
+ #define E3_HAS_SW_SERIAL 1
+ #endif
+ #endif
+ #if AXIS_HAS_UART(E4)
+ #ifdef E4_HARDWARE_SERIAL
+ TMC_UART_DEFINE_E(HW, 4);
+ #define E4_HAS_HW_SERIAL 1
+ #else
+ TMC_UART_DEFINE_E(SW, 4);
+ #define E4_HAS_SW_SERIAL 1
+ #endif
+ #endif
+ #if AXIS_HAS_UART(E5)
+ #ifdef E5_HARDWARE_SERIAL
+ TMC_UART_DEFINE_E(HW, 5);
+ #define E5_HAS_HW_SERIAL 1
+ #else
+ TMC_UART_DEFINE_E(SW, 5);
+ #define E5_HAS_SW_SERIAL 1
+ #endif
+ #endif
+ #if AXIS_HAS_UART(E6)
+ #ifdef E6_HARDWARE_SERIAL
+ TMC_UART_DEFINE_E(HW, 6);
+ #define E6_HAS_HW_SERIAL 1
+ #else
+ TMC_UART_DEFINE_E(SW, 6);
+ #define E6_HAS_SW_SERIAL 1
+ #endif
+ #endif
+ #if AXIS_HAS_UART(E7)
+ #ifdef E7_HARDWARE_SERIAL
+ TMC_UART_DEFINE_E(HW, 7);
+ #define E7_HAS_HW_SERIAL 1
+ #else
+ TMC_UART_DEFINE_E(SW, 7);
+ #define E7_HAS_SW_SERIAL 1
+ #endif
+ #endif
+
+ enum TMCAxis : uint8_t { X, Y, Z, X2, Y2, Z2, Z3, Z4, E0, E1, E2, E3, E4, E5, E6, E7, TOTAL };
+
+ void tmc_serial_begin() {
+ #if HAS_TMC_HW_SERIAL
+ struct {
+ const void *ptr[TMCAxis::TOTAL];
+ bool began(const TMCAxis a, const void * const p) {
+ LOOP_L_N(i, a) if (p == ptr[i]) return true;
+ ptr[a] = p; return false;
+ };
+ } sp_helper;
+
+ #define HW_SERIAL_BEGIN(A) do{ if (!sp_helper.began(TMCAxis::A, &A##_HARDWARE_SERIAL)) \
+ A##_HARDWARE_SERIAL.begin(TMC_BAUD_RATE); }while(0)
+ #endif
+
+ #if AXIS_HAS_UART(X)
+ #ifdef X_HARDWARE_SERIAL
+ HW_SERIAL_BEGIN(X);
+ #else
+ stepperX.beginSerial(TMC_BAUD_RATE);
+ #endif
+ #endif
+ #if AXIS_HAS_UART(X2)
+ #ifdef X2_HARDWARE_SERIAL
+ HW_SERIAL_BEGIN(X2);
+ #else
+ stepperX2.beginSerial(TMC_BAUD_RATE);
+ #endif
+ #endif
+ #if AXIS_HAS_UART(Y)
+ #ifdef Y_HARDWARE_SERIAL
+ HW_SERIAL_BEGIN(Y);
+ #else
+ stepperY.beginSerial(TMC_BAUD_RATE);
+ #endif
+ #endif
+ #if AXIS_HAS_UART(Y2)
+ #ifdef Y2_HARDWARE_SERIAL
+ HW_SERIAL_BEGIN(Y2);
+ #else
+ stepperY2.beginSerial(TMC_BAUD_RATE);
+ #endif
+ #endif
+ #if AXIS_HAS_UART(Z)
+ #ifdef Z_HARDWARE_SERIAL
+ HW_SERIAL_BEGIN(Z);
+ #else
+ stepperZ.beginSerial(TMC_BAUD_RATE);
+ #endif
+ #endif
+ #if AXIS_HAS_UART(Z2)
+ #ifdef Z2_HARDWARE_SERIAL
+ HW_SERIAL_BEGIN(Z2);
+ #else
+ stepperZ2.beginSerial(TMC_BAUD_RATE);
+ #endif
+ #endif
+ #if AXIS_HAS_UART(Z3)
+ #ifdef Z3_HARDWARE_SERIAL
+ HW_SERIAL_BEGIN(Z3);
+ #else
+ stepperZ3.beginSerial(TMC_BAUD_RATE);
+ #endif
+ #endif
+ #if AXIS_HAS_UART(Z4)
+ #ifdef Z4_HARDWARE_SERIAL
+ HW_SERIAL_BEGIN(Z4);
+ #else
+ stepperZ4.beginSerial(TMC_BAUD_RATE);
+ #endif
+ #endif
+ #if AXIS_HAS_UART(E0)
+ #ifdef E0_HARDWARE_SERIAL
+ HW_SERIAL_BEGIN(E0);
+ #else
+ stepperE0.beginSerial(TMC_BAUD_RATE);
+ #endif
+ #endif
+ #if AXIS_HAS_UART(E1)
+ #ifdef E1_HARDWARE_SERIAL
+ HW_SERIAL_BEGIN(E1);
+ #else
+ stepperE1.beginSerial(TMC_BAUD_RATE);
+ #endif
+ #endif
+ #if AXIS_HAS_UART(E2)
+ #ifdef E2_HARDWARE_SERIAL
+ HW_SERIAL_BEGIN(E2);
+ #else
+ stepperE2.beginSerial(TMC_BAUD_RATE);
+ #endif
+ #endif
+ #if AXIS_HAS_UART(E3)
+ #ifdef E3_HARDWARE_SERIAL
+ HW_SERIAL_BEGIN(E3);
+ #else
+ stepperE3.beginSerial(TMC_BAUD_RATE);
+ #endif
+ #endif
+ #if AXIS_HAS_UART(E4)
+ #ifdef E4_HARDWARE_SERIAL
+ HW_SERIAL_BEGIN(E4);
+ #else
+ stepperE4.beginSerial(TMC_BAUD_RATE);
+ #endif
+ #endif
+ #if AXIS_HAS_UART(E5)
+ #ifdef E5_HARDWARE_SERIAL
+ HW_SERIAL_BEGIN(E5);
+ #else
+ stepperE5.beginSerial(TMC_BAUD_RATE);
+ #endif
+ #endif
+ #if AXIS_HAS_UART(E6)
+ #ifdef E6_HARDWARE_SERIAL
+ HW_SERIAL_BEGIN(E6);
+ #else
+ stepperE6.beginSerial(TMC_BAUD_RATE);
+ #endif
+ #endif
+ #if AXIS_HAS_UART(E7)
+ #ifdef E7_HARDWARE_SERIAL
+ HW_SERIAL_BEGIN(E7);
+ #else
+ stepperE7.beginSerial(TMC_BAUD_RATE);
+ #endif
+ #endif
+ }
+#endif
+
+#if HAS_DRIVER(TMC2208)
+ template<char AXIS_LETTER, char DRIVER_ID, AxisEnum AXIS_ID>
+ void tmc_init(TMCMarlin<TMC2208Stepper, AXIS_LETTER, DRIVER_ID, AXIS_ID> &st, const uint16_t mA, const uint16_t microsteps, const uint32_t hyb_thrs, const bool stealth, const chopper_timing_t &chop_init, const bool interpolate) {
+ TMC2208_n::GCONF_t gconf{0};
+ gconf.pdn_disable = true; // Use UART
+ gconf.mstep_reg_select = true; // Select microsteps with UART
+ gconf.i_scale_analog = false;
+ gconf.en_spreadcycle = !stealth;
+ st.GCONF(gconf.sr);
+ st.stored.stealthChop_enabled = stealth;
+
+ TMC2208_n::CHOPCONF_t chopconf{0};
+ chopconf.tbl = 0b01; // blank_time = 24
+ chopconf.toff = chop_init.toff;
+ chopconf.intpol = interpolate;
+ chopconf.hend = chop_init.hend + 3;
+ chopconf.hstrt = chop_init.hstrt - 1;
+ TERN_(SQUARE_WAVE_STEPPING, chopconf.dedge = true);
+ st.CHOPCONF(chopconf.sr);
+
+ st.rms_current(mA, HOLD_MULTIPLIER);
+ st.microsteps(microsteps);
+ st.iholddelay(10);
+ st.TPOWERDOWN(128); // ~2s until driver lowers to hold current
+
+ TMC2208_n::PWMCONF_t pwmconf{0};
+ pwmconf.pwm_lim = 12;
+ pwmconf.pwm_reg = 8;
+ pwmconf.pwm_autograd = true;
+ pwmconf.pwm_autoscale = true;
+ pwmconf.pwm_freq = 0b01;
+ pwmconf.pwm_grad = 14;
+ pwmconf.pwm_ofs = 36;
+ st.PWMCONF(pwmconf.sr);
+
+ TERN(HYBRID_THRESHOLD, st.set_pwm_thrs(hyb_thrs), UNUSED(hyb_thrs));
+
+ st.GSTAT(0b111); // Clear
+ delay(200);
+ }
+#endif // TMC2208
+
+#if HAS_DRIVER(TMC2209)
+ template<char AXIS_LETTER, char DRIVER_ID, AxisEnum AXIS_ID>
+ void tmc_init(TMCMarlin<TMC2209Stepper, AXIS_LETTER, DRIVER_ID, AXIS_ID> &st, const uint16_t mA, const uint16_t microsteps, const uint32_t hyb_thrs, const bool stealth, const chopper_timing_t &chop_init, const bool interpolate) {
+ TMC2208_n::GCONF_t gconf{0};
+ gconf.pdn_disable = true; // Use UART
+ gconf.mstep_reg_select = true; // Select microsteps with UART
+ gconf.i_scale_analog = false;
+ gconf.en_spreadcycle = !stealth;
+ st.GCONF(gconf.sr);
+ st.stored.stealthChop_enabled = stealth;
+
+ TMC2208_n::CHOPCONF_t chopconf{0};
+ chopconf.tbl = 0b01; // blank_time = 24
+ chopconf.toff = chop_init.toff;
+ chopconf.intpol = interpolate;
+ chopconf.hend = chop_init.hend + 3;
+ chopconf.hstrt = chop_init.hstrt - 1;
+ TERN_(SQUARE_WAVE_STEPPING, chopconf.dedge = true);
+ st.CHOPCONF(chopconf.sr);
+
+ st.rms_current(mA, HOLD_MULTIPLIER);
+ st.microsteps(microsteps);
+ st.iholddelay(10);
+ st.TPOWERDOWN(128); // ~2s until driver lowers to hold current
+
+ TMC2208_n::PWMCONF_t pwmconf{0};
+ pwmconf.pwm_lim = 12;
+ pwmconf.pwm_reg = 8;
+ pwmconf.pwm_autograd = true;
+ pwmconf.pwm_autoscale = true;
+ pwmconf.pwm_freq = 0b01;
+ pwmconf.pwm_grad = 14;
+ pwmconf.pwm_ofs = 36;
+ st.PWMCONF(pwmconf.sr);
+
+ TERN(HYBRID_THRESHOLD, st.set_pwm_thrs(hyb_thrs), UNUSED(hyb_thrs));
+
+ st.GSTAT(0b111); // Clear
+ delay(200);
+ }
+#endif // TMC2209
+
+#if HAS_DRIVER(TMC2660)
+ template<char AXIS_LETTER, char DRIVER_ID, AxisEnum AXIS_ID>
+ void tmc_init(TMCMarlin<TMC2660Stepper, AXIS_LETTER, DRIVER_ID, AXIS_ID> &st, const uint16_t mA, const uint16_t microsteps, const uint32_t, const bool, const chopper_timing_t &chop_init, const bool interpolate) {
+ st.begin();
+
+ TMC2660_n::CHOPCONF_t chopconf{0};
+ chopconf.tbl = 0b01;
+ chopconf.toff = chop_init.toff;
+ chopconf.hend = chop_init.hend + 3;
+ chopconf.hstrt = chop_init.hstrt - 1;
+ st.CHOPCONF(chopconf.sr);
+
+ st.sdoff(0);
+ st.rms_current(mA);
+ st.microsteps(microsteps);
+ TERN_(SQUARE_WAVE_STEPPING, st.dedge(true));
+ st.intpol(interpolate);
+ st.diss2g(true); // Disable short to ground protection. Too many false readings?
+ TERN_(TMC_DEBUG, st.rdsel(0b01));
+ }
+#endif // TMC2660
+
+#if HAS_DRIVER(TMC5130)
+ template<char AXIS_LETTER, char DRIVER_ID, AxisEnum AXIS_ID>
+ void tmc_init(TMCMarlin<TMC5130Stepper, AXIS_LETTER, DRIVER_ID, AXIS_ID> &st, const uint16_t mA, const uint16_t microsteps, const uint32_t hyb_thrs, const bool stealth, const chopper_timing_t &chop_init, const bool interpolate) {
+ st.begin();
+
+ CHOPCONF_t chopconf{0};
+ chopconf.tbl = 0b01;
+ chopconf.toff = chop_init.toff;
+ chopconf.intpol = interpolate;
+ chopconf.hend = chop_init.hend + 3;
+ chopconf.hstrt = chop_init.hstrt - 1;
+ TERN_(SQUARE_WAVE_STEPPING, chopconf.dedge = true);
+ st.CHOPCONF(chopconf.sr);
+
+ st.rms_current(mA, HOLD_MULTIPLIER);
+ st.microsteps(microsteps);
+ st.iholddelay(10);
+ st.TPOWERDOWN(128); // ~2s until driver lowers to hold current
+
+ st.en_pwm_mode(stealth);
+ st.stored.stealthChop_enabled = stealth;
+
+ PWMCONF_t pwmconf{0};
+ pwmconf.pwm_freq = 0b01; // f_pwm = 2/683 f_clk
+ pwmconf.pwm_autoscale = true;
+ pwmconf.pwm_grad = 5;
+ pwmconf.pwm_ampl = 180;
+ st.PWMCONF(pwmconf.sr);
+
+ TERN(HYBRID_THRESHOLD, st.set_pwm_thrs(hyb_thrs), UNUSED(hyb_thrs));
+
+ st.GSTAT(); // Clear GSTAT
+ }
+#endif // TMC5130
+
+#if HAS_DRIVER(TMC5160)
+ template<char AXIS_LETTER, char DRIVER_ID, AxisEnum AXIS_ID>
+ void tmc_init(TMCMarlin<TMC5160Stepper, AXIS_LETTER, DRIVER_ID, AXIS_ID> &st, const uint16_t mA, const uint16_t microsteps, const uint32_t hyb_thrs, const bool stealth, const chopper_timing_t &chop_init, const bool interpolate) {
+ st.begin();
+
+ CHOPCONF_t chopconf{0};
+ chopconf.tbl = 0b01;
+ chopconf.toff = chop_init.toff;
+ chopconf.intpol = interpolate;
+ chopconf.hend = chop_init.hend + 3;
+ chopconf.hstrt = chop_init.hstrt - 1;
+ TERN_(SQUARE_WAVE_STEPPING, chopconf.dedge = true);
+ st.CHOPCONF(chopconf.sr);
+
+ st.rms_current(mA, HOLD_MULTIPLIER);
+ st.microsteps(microsteps);
+ st.iholddelay(10);
+ st.TPOWERDOWN(128); // ~2s until driver lowers to hold current
+
+ st.en_pwm_mode(stealth);
+ st.stored.stealthChop_enabled = stealth;
+
+ TMC2160_n::PWMCONF_t pwmconf{0};
+ pwmconf.pwm_lim = 12;
+ pwmconf.pwm_reg = 8;
+ pwmconf.pwm_autograd = true;
+ pwmconf.pwm_autoscale = true;
+ pwmconf.pwm_freq = 0b01;
+ pwmconf.pwm_grad = 14;
+ pwmconf.pwm_ofs = 36;
+ st.PWMCONF(pwmconf.sr);
+
+ #if ENABLED(HYBRID_THRESHOLD)
+ st.set_pwm_thrs(hyb_thrs);
+ #else
+ UNUSED(hyb_thrs);
+ #endif
+ st.GSTAT(); // Clear GSTAT
+ }
+#endif // TMC5160
+
+void restore_trinamic_drivers() {
+ #if AXIS_IS_TMC(X)
+ stepperX.push();
+ #endif
+ #if AXIS_IS_TMC(X2)
+ stepperX2.push();
+ #endif
+ #if AXIS_IS_TMC(Y)
+ stepperY.push();
+ #endif
+ #if AXIS_IS_TMC(Y2)
+ stepperY2.push();
+ #endif
+ #if AXIS_IS_TMC(Z)
+ stepperZ.push();
+ #endif
+ #if AXIS_IS_TMC(Z2)
+ stepperZ2.push();
+ #endif
+ #if AXIS_IS_TMC(Z3)
+ stepperZ3.push();
+ #endif
+ #if AXIS_IS_TMC(Z4)
+ stepperZ4.push();
+ #endif
+ #if AXIS_IS_TMC(E0)
+ stepperE0.push();
+ #endif
+ #if AXIS_IS_TMC(E1)
+ stepperE1.push();
+ #endif
+ #if AXIS_IS_TMC(E2)
+ stepperE2.push();
+ #endif
+ #if AXIS_IS_TMC(E3)
+ stepperE3.push();
+ #endif
+ #if AXIS_IS_TMC(E4)
+ stepperE4.push();
+ #endif
+ #if AXIS_IS_TMC(E5)
+ stepperE5.push();
+ #endif
+ #if AXIS_IS_TMC(E6)
+ stepperE6.push();
+ #endif
+ #if AXIS_IS_TMC(E7)
+ stepperE7.push();
+ #endif
+}
+
+void reset_trinamic_drivers() {
+ static constexpr bool stealthchop_by_axis[] = { ENABLED(STEALTHCHOP_XY), ENABLED(STEALTHCHOP_Z), ENABLED(STEALTHCHOP_E) };
+
+ #if AXIS_IS_TMC(X)
+ TMC_INIT(X, STEALTH_AXIS_XY);
+ #endif
+ #if AXIS_IS_TMC(X2)
+ TMC_INIT(X2, STEALTH_AXIS_XY);
+ #endif
+ #if AXIS_IS_TMC(Y)
+ TMC_INIT(Y, STEALTH_AXIS_XY);
+ #endif
+ #if AXIS_IS_TMC(Y2)
+ TMC_INIT(Y2, STEALTH_AXIS_XY);
+ #endif
+ #if AXIS_IS_TMC(Z)
+ TMC_INIT(Z, STEALTH_AXIS_Z);
+ #endif
+ #if AXIS_IS_TMC(Z2)
+ TMC_INIT(Z2, STEALTH_AXIS_Z);
+ #endif
+ #if AXIS_IS_TMC(Z3)
+ TMC_INIT(Z3, STEALTH_AXIS_Z);
+ #endif
+ #if AXIS_IS_TMC(Z4)
+ TMC_INIT(Z4, STEALTH_AXIS_Z);
+ #endif
+ #if AXIS_IS_TMC(E0)
+ TMC_INIT(E0, STEALTH_AXIS_E);
+ #endif
+ #if AXIS_IS_TMC(E1)
+ TMC_INIT(E1, STEALTH_AXIS_E);
+ #endif
+ #if AXIS_IS_TMC(E2)
+ TMC_INIT(E2, STEALTH_AXIS_E);
+ #endif
+ #if AXIS_IS_TMC(E3)
+ TMC_INIT(E3, STEALTH_AXIS_E);
+ #endif
+ #if AXIS_IS_TMC(E4)
+ TMC_INIT(E4, STEALTH_AXIS_E);
+ #endif
+ #if AXIS_IS_TMC(E5)
+ TMC_INIT(E5, STEALTH_AXIS_E);
+ #endif
+ #if AXIS_IS_TMC(E6)
+ TMC_INIT(E6, STEALTH_AXIS_E);
+ #endif
+ #if AXIS_IS_TMC(E7)
+ TMC_INIT(E7, STEALTH_AXIS_E);
+ #endif
+
+ #if USE_SENSORLESS
+ #if X_SENSORLESS
+ stepperX.homing_threshold(X_STALL_SENSITIVITY);
+ #if AXIS_HAS_STALLGUARD(X2)
+ stepperX2.homing_threshold(CAT(TERN(X2_SENSORLESS, X2, X), _STALL_SENSITIVITY));
+ #endif
+ #endif
+ #if Y_SENSORLESS
+ stepperY.homing_threshold(Y_STALL_SENSITIVITY);
+ #if AXIS_HAS_STALLGUARD(Y2)
+ stepperY2.homing_threshold(CAT(TERN(Y2_SENSORLESS, Y2, Y), _STALL_SENSITIVITY));
+ #endif
+ #endif
+ #if Z_SENSORLESS
+ stepperZ.homing_threshold(Z_STALL_SENSITIVITY);
+ #if AXIS_HAS_STALLGUARD(Z2)
+ stepperZ2.homing_threshold(CAT(TERN(Z2_SENSORLESS, Z2, Z), _STALL_SENSITIVITY));
+ #endif
+ #if AXIS_HAS_STALLGUARD(Z3)
+ stepperZ3.homing_threshold(CAT(TERN(Z3_SENSORLESS, Z3, Z), _STALL_SENSITIVITY));
+ #endif
+ #if AXIS_HAS_STALLGUARD(Z4)
+ stepperZ4.homing_threshold(CAT(TERN(Z4_SENSORLESS, Z4, Z), _STALL_SENSITIVITY));
+ #endif
+ #endif
+ #endif
+
+ #ifdef TMC_ADV
+ TMC_ADV()
+ #endif
+
+ stepper.set_directions();
+}
+
+// TMC Slave Address Conflict Detection
+//
+// Conflict detection is performed in the following way. Similar methods are used for
+// hardware and software serial, but the implementations are indepenent.
+//
+// 1. Populate a data structure with UART parameters and addresses for all possible axis.
+// If an axis is not in use, populate it with recognizable placeholder data.
+// 2. For each axis in use, static_assert using a constexpr function, which counts the
+// number of matching/conflicting axis. If the value is not exactly 1, fail.
+
+#if ANY_AXIS_HAS(HW_SERIAL)
+ // Hardware serial names are compared as strings, since actually resolving them cannot occur in a constexpr.
+ // Using a fixed-length character array for the port name allows this to be constexpr compatible.
+ struct SanityHwSerialDetails { const char port[20]; uint32_t address; };
+ #define TMC_HW_DETAIL_ARGS(A) TERN(A##_HAS_HW_SERIAL, STRINGIFY(A##_HARDWARE_SERIAL), ""), TERN0(A##_HAS_HW_SERIAL, A##_SLAVE_ADDRESS)
+ #define TMC_HW_DETAIL(A) {TMC_HW_DETAIL_ARGS(A)}
+ constexpr SanityHwSerialDetails sanity_tmc_hw_details[] = {
+ TMC_HW_DETAIL(X), TMC_HW_DETAIL(X2),
+ TMC_HW_DETAIL(Y), TMC_HW_DETAIL(Y2),
+ TMC_HW_DETAIL(Z), TMC_HW_DETAIL(Z2), TMC_HW_DETAIL(Z3), TMC_HW_DETAIL(Z4),
+ TMC_HW_DETAIL(E0), TMC_HW_DETAIL(E1), TMC_HW_DETAIL(E2), TMC_HW_DETAIL(E3), TMC_HW_DETAIL(E4), TMC_HW_DETAIL(E5), TMC_HW_DETAIL(E6), TMC_HW_DETAIL(E7)
+ };
+
+ // constexpr compatible string comparison
+ constexpr bool str_eq_ce(const char * a, const char * b) {
+ return *a == *b && (*a == '\0' || str_eq_ce(a+1,b+1));
+ }
+
+ constexpr bool sc_hw_done(size_t start, size_t end) { return start == end; }
+ constexpr bool sc_hw_skip(const char* port_name) { return !(*port_name); }
+ constexpr bool sc_hw_match(const char* port_name, uint32_t address, size_t start, size_t end) {
+ return !sc_hw_done(start, end) && !sc_hw_skip(port_name) && (address == sanity_tmc_hw_details[start].address && str_eq_ce(port_name, sanity_tmc_hw_details[start].port));
+ }
+ constexpr int count_tmc_hw_serial_matches(const char* port_name, uint32_t address, size_t start, size_t end) {
+ return sc_hw_done(start, end) ? 0 : ((sc_hw_skip(port_name) ? 0 : (sc_hw_match(port_name, address, start, end) ? 1 : 0)) + count_tmc_hw_serial_matches(port_name, address, start + 1, end));
+ }
+
+ #define TMC_HWSERIAL_CONFLICT_MSG(A) STRINGIFY(A) "_SLAVE_ADDRESS conflicts with another driver using the same " STRINGIFY(A) "_HARDWARE_SERIAL"
+ #define SA_NO_TMC_HW_C(A) static_assert(1 >= count_tmc_hw_serial_matches(TMC_HW_DETAIL_ARGS(A), 0, COUNT(sanity_tmc_hw_details)), TMC_HWSERIAL_CONFLICT_MSG(A));
+ SA_NO_TMC_HW_C(X);SA_NO_TMC_HW_C(X2);
+ SA_NO_TMC_HW_C(Y);SA_NO_TMC_HW_C(Y2);
+ SA_NO_TMC_HW_C(Z);SA_NO_TMC_HW_C(Z2);SA_NO_TMC_HW_C(Z3);SA_NO_TMC_HW_C(Z4);
+ SA_NO_TMC_HW_C(E0);SA_NO_TMC_HW_C(E1);SA_NO_TMC_HW_C(E2);SA_NO_TMC_HW_C(E3);SA_NO_TMC_HW_C(E4);SA_NO_TMC_HW_C(E5);SA_NO_TMC_HW_C(E6);SA_NO_TMC_HW_C(E7);
+#endif
+
+#if ANY_AXIS_HAS(SW_SERIAL)
+ struct SanitySwSerialDetails { int32_t txpin; int32_t rxpin; uint32_t address; };
+ #define TMC_SW_DETAIL_ARGS(A) TERN(A##_HAS_SW_SERIAL, A##_SERIAL_TX_PIN, -1), TERN(A##_HAS_SW_SERIAL, A##_SERIAL_RX_PIN, -1), TERN0(A##_HAS_SW_SERIAL, A##_SLAVE_ADDRESS)
+ #define TMC_SW_DETAIL(A) TMC_SW_DETAIL_ARGS(A)
+ constexpr SanitySwSerialDetails sanity_tmc_sw_details[] = {
+ TMC_SW_DETAIL(X), TMC_SW_DETAIL(X2),
+ TMC_SW_DETAIL(Y), TMC_SW_DETAIL(Y2),
+ TMC_SW_DETAIL(Z), TMC_SW_DETAIL(Z2), TMC_SW_DETAIL(Z3), TMC_SW_DETAIL(Z4),
+ TMC_SW_DETAIL(E0), TMC_SW_DETAIL(E1), TMC_SW_DETAIL(E2), TMC_SW_DETAIL(E3), TMC_SW_DETAIL(E4), TMC_SW_DETAIL(E5), TMC_SW_DETAIL(E6), TMC_SW_DETAIL(E7)
+ };
+
+ constexpr bool sc_sw_done(size_t start, size_t end) { return start == end; }
+ constexpr bool sc_sw_skip(int32_t txpin) { return txpin < 0; }
+ constexpr bool sc_sw_match(int32_t txpin, int32_t rxpin, uint32_t address, size_t start, size_t end) {
+ return !sc_sw_done(start, end) && !sc_sw_skip(txpin) && (txpin == sanity_tmc_sw_details[start].txpin || rxpin == sanity_tmc_sw_details[start].rxpin) && (address == sanity_tmc_sw_details[start].address);
+ }
+ constexpr int count_tmc_sw_serial_matches(int32_t txpin, int32_t rxpin, uint32_t address, size_t start, size_t end) {
+ return sc_sw_done(start, end) ? 0 : ((sc_sw_skip(txpin) ? 0 : (sc_sw_match(txpin, rxpin, address, start, end) ? 1 : 0)) + count_tmc_sw_serial_matches(txpin, rxpin, address, start + 1, end));
+ }
+
+ #define TMC_SWSERIAL_CONFLICT_MSG(A) STRINGIFY(A) "_SLAVE_ADDRESS conflicts with another driver using the same " STRINGIFY(A) "_SERIAL_RX_PIN or " STRINGIFY(A) "_SERIAL_TX_PIN"
+ #define SA_NO_TMC_SW_C(A) static_assert(1 >= count_tmc_sw_serial_matches(TMC_SW_DETAIL_ARGS(A), 0, COUNT(sanity_tmc_sw_details)), TMC_SWSERIAL_CONFLICT_MSG(A));
+ SA_NO_TMC_SW_C(X);SA_NO_TMC_SW_C(X2);
+ SA_NO_TMC_SW_C(Y);SA_NO_TMC_SW_C(Y2);
+ SA_NO_TMC_SW_C(Z);SA_NO_TMC_SW_C(Z2);SA_NO_TMC_SW_C(Z3);SA_NO_TMC_SW_C(Z4);
+ SA_NO_TMC_SW_C(E0);SA_NO_TMC_SW_C(E1);SA_NO_TMC_SW_C(E2);SA_NO_TMC_SW_C(E3);SA_NO_TMC_SW_C(E4);SA_NO_TMC_SW_C(E5);SA_NO_TMC_SW_C(E6);SA_NO_TMC_SW_C(E7);
+#endif
+
+#endif // HAS_TRINAMIC_CONFIG