aboutsummaryrefslogtreecommitdiff
path: root/Marlin/src/HAL/DUE/eeprom_flash.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'Marlin/src/HAL/DUE/eeprom_flash.cpp')
-rw-r--r--Marlin/src/HAL/DUE/eeprom_flash.cpp1011
1 files changed, 1011 insertions, 0 deletions
diff --git a/Marlin/src/HAL/DUE/eeprom_flash.cpp b/Marlin/src/HAL/DUE/eeprom_flash.cpp
new file mode 100644
index 0000000..209a516
--- /dev/null
+++ b/Marlin/src/HAL/DUE/eeprom_flash.cpp
@@ -0,0 +1,1011 @@
+/**
+ * Marlin 3D Printer Firmware
+ *
+ * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
+ * Copyright (c) 2016 Bob Cousins bobcousins42@googlemail.com
+ * Copyright (c) 2015-2016 Nico Tonnhofer wurstnase.reprap@gmail.com
+ * Copyright (c) 2016 Victor Perez victor_pv@hotmail.com
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <https://www.gnu.org/licenses/>.
+ *
+ */
+#ifdef ARDUINO_ARCH_SAM
+
+#include "../../inc/MarlinConfig.h"
+
+#if ENABLED(FLASH_EEPROM_EMULATION)
+
+/* EEPROM emulation over flash with reduced wear
+ *
+ * We will use 2 contiguous groups of pages as main and alternate.
+ * We want an structure that allows to read as fast as possible,
+ * without the need of scanning the whole FLASH memory.
+ *
+ * FLASH bits default erased state is 1, and can be set to 0
+ * on a per bit basis. To reset them to 1, a full page erase
+ * is needed.
+ *
+ * Values are stored as differences that should be applied to a
+ * completely erased EEPROM (filled with 0xFFs). We just encode
+ * the starting address of the values to change, the length of
+ * the block of new values, and the values themselves. All diffs
+ * are accumulated into a RAM buffer, compacted into the least
+ * amount of non overlapping diffs possible and sorted by starting
+ * address before being saved into the next available page of FLASH
+ * of the current group.
+ * Once the current group is completely full, we compact it and save
+ * it into the other group, then erase the current group and switch
+ * to that new group and set it as current.
+ *
+ * The FLASH endurance is about 1/10 ... 1/100 of an EEPROM
+ * endurance, but EEPROM endurance is specified per byte, not
+ * per page. We can't emulate EE endurance with FLASH for all
+ * bytes, but we can emulate endurance for a given percent of
+ * bytes.
+ */
+
+//#define EE_EMU_DEBUG
+
+#define EEPROMSize 4096
+#define PagesPerGroup 128
+#define GroupCount 2
+#define PageSize 256U
+
+ /* Flash storage */
+typedef struct FLASH_SECTOR {
+ uint8_t page[PageSize];
+} FLASH_SECTOR_T;
+
+#define PAGE_FILL \
+ 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \
+ 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \
+ 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \
+ 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \
+ 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \
+ 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \
+ 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \
+ 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \
+ 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \
+ 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \
+ 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \
+ 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \
+ 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \
+ 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \
+ 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \
+ 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF
+
+#define FLASH_INIT_FILL \
+ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
+ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
+ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
+ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
+ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
+ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
+ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
+ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
+ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
+ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
+ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
+ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
+ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
+ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
+ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
+ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
+ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
+ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
+ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
+ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
+ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
+ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
+ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
+ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
+ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
+ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
+ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
+ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
+ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
+ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
+ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
+ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL
+
+/* This is the FLASH area used to emulate a 2Kbyte EEPROM -- We need this buffer aligned
+ to a 256 byte boundary. */
+static const uint8_t flashStorage[PagesPerGroup * GroupCount * PageSize] __attribute__ ((aligned (PageSize))) = { FLASH_INIT_FILL };
+
+/* Get the address of an specific page */
+static const FLASH_SECTOR_T* getFlashStorage(int page) {
+ return (const FLASH_SECTOR_T*)&flashStorage[page*PageSize];
+}
+
+static uint8_t buffer[256] = {0}, // The RAM buffer to accumulate writes
+ curPage = 0, // Current FLASH page inside the group
+ curGroup = 0xFF; // Current FLASH group
+
+#define DEBUG_OUT ENABLED(EE_EMU_DEBUG)
+#include "../../core/debug_out.h"
+
+static void ee_Dump(const int page, const void* data) {
+
+ #ifdef EE_EMU_DEBUG
+
+ const uint8_t* c = (const uint8_t*) data;
+ char buffer[80];
+
+ sprintf_P(buffer, PSTR("Page: %d (0x%04x)\n"), page, page);
+ DEBUG_ECHO(buffer);
+
+ char* p = &buffer[0];
+ for (int i = 0; i< PageSize; ++i) {
+ if ((i & 0xF) == 0) p += sprintf_P(p, PSTR("%04x] "), i);
+
+ p += sprintf_P(p, PSTR(" %02x"), c[i]);
+ if ((i & 0xF) == 0xF) {
+ *p++ = '\n';
+ *p = 0;
+ DEBUG_ECHO(buffer);
+ p = &buffer[0];
+ }
+ }
+
+ #else
+ UNUSED(page);
+ UNUSED(data);
+ #endif
+}
+
+/* Flash Writing Protection Key */
+#define FWP_KEY 0x5Au
+
+#if SAM4S_SERIES
+ #define EEFC_FCR_FCMD(value) \
+ ((EEFC_FCR_FCMD_Msk & ((value) << EEFC_FCR_FCMD_Pos)))
+ #define EEFC_ERROR_FLAGS (EEFC_FSR_FLOCKE | EEFC_FSR_FCMDE | EEFC_FSR_FLERR)
+#else
+ #define EEFC_ERROR_FLAGS (EEFC_FSR_FLOCKE | EEFC_FSR_FCMDE)
+#endif
+
+/**
+ * Writes the contents of the specified page (no previous erase)
+ * @param page (page #)
+ * @param data (pointer to the data buffer)
+ */
+__attribute__ ((long_call, section (".ramfunc")))
+static bool ee_PageWrite(uint16_t page, const void* data) {
+
+ uint16_t i;
+ uint32_t addrflash = uint32_t(getFlashStorage(page));
+
+ // Read the flash contents
+ uint32_t pageContents[PageSize>>2];
+ memcpy(pageContents, (void*)addrflash, PageSize);
+
+ // We ONLY want to toggle bits that have changed, and that have changed to 0.
+ // SAM3X8E tends to destroy contiguous bits if reprogrammed without erasing, so
+ // we try by all means to avoid this. That is why it says: "The Partial
+ // Programming mode works only with 128-bit (or higher) boundaries. It cannot
+ // be used with boundaries lower than 128 bits (8, 16 or 32-bit for example)."
+ // All bits that did not change, set them to 1.
+ for (i = 0; i <PageSize >> 2; i++)
+ pageContents[i] = (((uint32_t*)data)[i]) | (~(pageContents[i] ^ ((uint32_t*)data)[i]));
+
+ DEBUG_ECHO_START();
+ DEBUG_ECHOLNPAIR("EEPROM PageWrite ", page);
+ DEBUG_ECHOLNPAIR(" in FLASH address ", (uint32_t)addrflash);
+ DEBUG_ECHOLNPAIR(" base address ", (uint32_t)getFlashStorage(0));
+ DEBUG_FLUSH();
+
+ // Get the page relative to the start of the EFC controller, and the EFC controller to use
+ Efc *efc;
+ uint16_t fpage;
+ if (addrflash >= IFLASH1_ADDR) {
+ efc = EFC1;
+ fpage = (addrflash - IFLASH1_ADDR) / IFLASH1_PAGE_SIZE;
+ }
+ else {
+ efc = EFC0;
+ fpage = (addrflash - IFLASH0_ADDR) / IFLASH0_PAGE_SIZE;
+ }
+
+ // Get the page that must be unlocked, then locked
+ uint16_t lpage = fpage & (~((IFLASH0_LOCK_REGION_SIZE / IFLASH0_PAGE_SIZE) - 1));
+
+ // Disable all interrupts
+ __disable_irq();
+
+ // Get the FLASH wait states
+ uint32_t orgWS = (efc->EEFC_FMR & EEFC_FMR_FWS_Msk) >> EEFC_FMR_FWS_Pos;
+
+ // Set wait states to 6 (SAM errata)
+ efc->EEFC_FMR = (efc->EEFC_FMR & (~EEFC_FMR_FWS_Msk)) | EEFC_FMR_FWS(6);
+
+ // Unlock the flash page
+ uint32_t status;
+ efc->EEFC_FCR = EEFC_FCR_FKEY(FWP_KEY) | EEFC_FCR_FARG(lpage) | EEFC_FCR_FCMD(EFC_FCMD_CLB);
+ while (((status = efc->EEFC_FSR) & EEFC_FSR_FRDY) != EEFC_FSR_FRDY) {
+ // force compiler to not optimize this -- NOPs don't work!
+ __asm__ __volatile__("");
+ };
+
+ if ((status & EEFC_ERROR_FLAGS) != 0) {
+
+ // Restore original wait states
+ efc->EEFC_FMR = (efc->EEFC_FMR & (~EEFC_FMR_FWS_Msk)) | EEFC_FMR_FWS(orgWS);
+
+ // Reenable interrupts
+ __enable_irq();
+
+ DEBUG_ECHO_START();
+ DEBUG_ECHOLNPAIR("EEPROM Unlock failure for page ", page);
+ return false;
+ }
+
+ // Write page and lock: Writing 8-bit and 16-bit data is not allowed and may lead to unpredictable data corruption.
+ const uint32_t * aligned_src = (const uint32_t *) &pageContents[0]; /*data;*/
+ uint32_t * p_aligned_dest = (uint32_t *) addrflash;
+ for (i = 0; i < (IFLASH0_PAGE_SIZE / sizeof(uint32_t)); ++i) {
+ *p_aligned_dest++ = *aligned_src++;
+ }
+ efc->EEFC_FCR = EEFC_FCR_FKEY(FWP_KEY) | EEFC_FCR_FARG(fpage) | EEFC_FCR_FCMD(EFC_FCMD_WPL);
+ while (((status = efc->EEFC_FSR) & EEFC_FSR_FRDY) != EEFC_FSR_FRDY) {
+ // force compiler to not optimize this -- NOPs don't work!
+ __asm__ __volatile__("");
+ };
+
+ if ((status & EEFC_ERROR_FLAGS) != 0) {
+
+ // Restore original wait states
+ efc->EEFC_FMR = (efc->EEFC_FMR & (~EEFC_FMR_FWS_Msk)) | EEFC_FMR_FWS(orgWS);
+
+ // Reenable interrupts
+ __enable_irq();
+
+ DEBUG_ECHO_START();
+ DEBUG_ECHOLNPAIR("EEPROM Write failure for page ", page);
+
+ return false;
+ }
+
+ // Restore original wait states
+ efc->EEFC_FMR = (efc->EEFC_FMR & (~EEFC_FMR_FWS_Msk)) | EEFC_FMR_FWS(orgWS);
+
+ // Reenable interrupts
+ __enable_irq();
+
+ // Compare contents
+ if (memcmp(getFlashStorage(page),data,PageSize)) {
+
+ #ifdef EE_EMU_DEBUG
+ DEBUG_ECHO_START();
+ DEBUG_ECHOLNPAIR("EEPROM Verify Write failure for page ", page);
+
+ ee_Dump( page, (uint32_t *)addrflash);
+ ee_Dump(-page, data);
+
+ // Calculate count of changed bits
+ uint32_t* p1 = (uint32_t*)addrflash;
+ uint32_t* p2 = (uint32_t*)data;
+ int count = 0;
+ for (i =0; i<PageSize >> 2; i++) {
+ if (p1[i] != p2[i]) {
+ uint32_t delta = p1[i] ^ p2[i];
+ while (delta) {
+ if ((delta&1) != 0)
+ count++;
+ delta >>= 1;
+ }
+ }
+ }
+ DEBUG_ECHOLNPAIR("--> Differing bits: ", count);
+ #endif
+
+ return false;
+ }
+
+ return true;
+}
+
+/**
+ * Erases the contents of the specified page
+ * @param page (page #)
+ */
+__attribute__ ((long_call, section (".ramfunc")))
+static bool ee_PageErase(uint16_t page) {
+
+ uint16_t i;
+ uint32_t addrflash = uint32_t(getFlashStorage(page));
+
+ DEBUG_ECHO_START();
+ DEBUG_ECHOLNPAIR("EEPROM PageErase ", page);
+ DEBUG_ECHOLNPAIR(" in FLASH address ", (uint32_t)addrflash);
+ DEBUG_ECHOLNPAIR(" base address ", (uint32_t)getFlashStorage(0));
+ DEBUG_FLUSH();
+
+ // Get the page relative to the start of the EFC controller, and the EFC controller to use
+ Efc *efc;
+ uint16_t fpage;
+ if (addrflash >= IFLASH1_ADDR) {
+ efc = EFC1;
+ fpage = (addrflash - IFLASH1_ADDR) / IFLASH1_PAGE_SIZE;
+ }
+ else {
+ efc = EFC0;
+ fpage = (addrflash - IFLASH0_ADDR) / IFLASH0_PAGE_SIZE;
+ }
+
+ // Get the page that must be unlocked, then locked
+ uint16_t lpage = fpage & (~((IFLASH0_LOCK_REGION_SIZE / IFLASH0_PAGE_SIZE) - 1));
+
+ // Disable all interrupts
+ __disable_irq();
+
+ // Get the FLASH wait states
+ uint32_t orgWS = (efc->EEFC_FMR & EEFC_FMR_FWS_Msk) >> EEFC_FMR_FWS_Pos;
+
+ // Set wait states to 6 (SAM errata)
+ efc->EEFC_FMR = (efc->EEFC_FMR & (~EEFC_FMR_FWS_Msk)) | EEFC_FMR_FWS(6);
+
+ // Unlock the flash page
+ uint32_t status;
+ efc->EEFC_FCR = EEFC_FCR_FKEY(FWP_KEY) | EEFC_FCR_FARG(lpage) | EEFC_FCR_FCMD(EFC_FCMD_CLB);
+ while (((status = efc->EEFC_FSR) & EEFC_FSR_FRDY) != EEFC_FSR_FRDY) {
+ // force compiler to not optimize this -- NOPs don't work!
+ __asm__ __volatile__("");
+ };
+ if ((status & EEFC_ERROR_FLAGS) != 0) {
+
+ // Restore original wait states
+ efc->EEFC_FMR = (efc->EEFC_FMR & (~EEFC_FMR_FWS_Msk)) | EEFC_FMR_FWS(orgWS);
+
+ // Reenable interrupts
+ __enable_irq();
+
+ DEBUG_ECHO_START();
+ DEBUG_ECHOLNPAIR("EEPROM Unlock failure for page ",page);
+
+ return false;
+ }
+
+ // Erase Write page and lock: Writing 8-bit and 16-bit data is not allowed and may lead to unpredictable data corruption.
+ uint32_t * p_aligned_dest = (uint32_t *) addrflash;
+ for (i = 0; i < (IFLASH0_PAGE_SIZE / sizeof(uint32_t)); ++i) {
+ *p_aligned_dest++ = 0xFFFFFFFF;
+ }
+ efc->EEFC_FCR = EEFC_FCR_FKEY(FWP_KEY) | EEFC_FCR_FARG(fpage) | EEFC_FCR_FCMD(EFC_FCMD_EWPL);
+ while (((status = efc->EEFC_FSR) & EEFC_FSR_FRDY) != EEFC_FSR_FRDY) {
+ // force compiler to not optimize this -- NOPs don't work!
+ __asm__ __volatile__("");
+ };
+ if ((status & EEFC_ERROR_FLAGS) != 0) {
+
+ // Restore original wait states
+ efc->EEFC_FMR = (efc->EEFC_FMR & (~EEFC_FMR_FWS_Msk)) | EEFC_FMR_FWS(orgWS);
+
+ // Reenable interrupts
+ __enable_irq();
+
+ DEBUG_ECHO_START();
+ DEBUG_ECHOLNPAIR("EEPROM Erase failure for page ",page);
+
+ return false;
+ }
+
+ // Restore original wait states
+ efc->EEFC_FMR = (efc->EEFC_FMR & (~EEFC_FMR_FWS_Msk)) | EEFC_FMR_FWS(orgWS);
+
+ // Reenable interrupts
+ __enable_irq();
+
+ // Check erase
+ uint32_t * aligned_src = (uint32_t *) addrflash;
+ for (i = 0; i < PageSize >> 2; i++) {
+ if (*aligned_src++ != 0xFFFFFFFF) {
+ DEBUG_ECHO_START();
+ DEBUG_ECHOLNPAIR("EEPROM Verify Erase failure for page ",page);
+ ee_Dump(page, (uint32_t *)addrflash);
+ return false;
+ }
+ }
+
+ return true;
+}
+
+static uint8_t ee_Read(uint32_t address, bool excludeRAMBuffer=false) {
+
+ uint32_t baddr;
+ uint32_t blen;
+
+ // If we were requested an address outside of the emulated range, fail now
+ if (address >= EEPROMSize)
+ return false;
+
+ // Check that the value is not contained in the RAM buffer
+ if (!excludeRAMBuffer) {
+ uint16_t i = 0;
+ while (i <= (PageSize - 4)) { /* (PageSize - 4) because otherwise, there is not enough room for data and headers */
+
+ // Get the address of the block
+ baddr = buffer[i] | (buffer[i + 1] << 8);
+
+ // Get the length of the block
+ blen = buffer[i + 2];
+
+ // If we reach the end of the list, break loop
+ if (blen == 0xFF)
+ break;
+
+ // Check if data is contained in this block
+ if (address >= baddr &&
+ address < (baddr + blen)) {
+
+ // Yes, it is contained. Return it!
+ return buffer[i + 3 + address - baddr];
+ }
+
+ // As blocks are always sorted, if the starting address of this block is higher
+ // than the address we are looking for, break loop now - We wont find the value
+ // associated to the address
+ if (baddr > address)
+ break;
+
+ // Jump to the next block
+ i += 3 + blen;
+ }
+ }
+
+ // It is NOT on the RAM buffer. It could be stored in FLASH. We are
+ // ensured on a given FLASH page, address contents are never repeated
+ // but on different pages, there is no such warranty, so we must go
+ // backwards from the last written FLASH page to the first one.
+ for (int page = curPage - 1; page >= 0; --page) {
+
+ // Get a pointer to the flash page
+ uint8_t* pflash = (uint8_t*)getFlashStorage(page + curGroup * PagesPerGroup);
+
+ uint16_t i = 0;
+ while (i <= (PageSize - 4)) { /* (PageSize - 4) because otherwise, there is not enough room for data and headers */
+
+ // Get the address of the block
+ baddr = pflash[i] | (pflash[i + 1] << 8);
+
+ // Get the length of the block
+ blen = pflash[i + 2];
+
+ // If we reach the end of the list, break loop
+ if (blen == 0xFF)
+ break;
+
+ // Check if data is contained in this block
+ if (address >= baddr && address < (baddr + blen))
+ return pflash[i + 3 + address - baddr]; // Yes, it is contained. Return it!
+
+ // As blocks are always sorted, if the starting address of this block is higher
+ // than the address we are looking for, break loop now - We wont find the value
+ // associated to the address
+ if (baddr > address) break;
+
+ // Jump to the next block
+ i += 3 + blen;
+ }
+ }
+
+ // If reached here, value is not stored, so return its default value
+ return 0xFF;
+}
+
+static uint32_t ee_GetAddrRange(uint32_t address, bool excludeRAMBuffer=false) {
+ uint32_t baddr,
+ blen,
+ nextAddr = 0xFFFF,
+ nextRange = 0;
+
+ // Check that the value is not contained in the RAM buffer
+ if (!excludeRAMBuffer) {
+ uint16_t i = 0;
+ while (i <= (PageSize - 4)) { /* (PageSize - 4) because otherwise, there is not enough room for data and headers */
+
+ // Get the address of the block
+ baddr = buffer[i] | (buffer[i + 1] << 8);
+
+ // Get the length of the block
+ blen = buffer[i + 2];
+
+ // If we reach the end of the list, break loop
+ if (blen == 0xFF) break;
+
+ // Check if address and address + 1 is contained in this block
+ if (address >= baddr && address < (baddr + blen))
+ return address | ((blen - address + baddr) << 16); // Yes, it is contained. Return it!
+
+ // Otherwise, check if we can use it as a limit
+ if (baddr > address && baddr < nextAddr) {
+ nextAddr = baddr;
+ nextRange = blen;
+ }
+
+ // As blocks are always sorted, if the starting address of this block is higher
+ // than the address we are looking for, break loop now - We wont find the value
+ // associated to the address
+ if (baddr > address) break;
+
+ // Jump to the next block
+ i += 3 + blen;
+ }
+ }
+
+ // It is NOT on the RAM buffer. It could be stored in FLASH. We are
+ // ensured on a given FLASH page, address contents are never repeated
+ // but on different pages, there is no such warranty, so we must go
+ // backwards from the last written FLASH page to the first one.
+ for (int page = curPage - 1; page >= 0; --page) {
+
+ // Get a pointer to the flash page
+ uint8_t* pflash = (uint8_t*)getFlashStorage(page + curGroup * PagesPerGroup);
+
+ uint16_t i = 0;
+ while (i <= (PageSize - 4)) { /* (PageSize - 4) because otherwise, there is not enough room for data and headers */
+
+ // Get the address of the block
+ baddr = pflash[i] | (pflash[i + 1] << 8);
+
+ // Get the length of the block
+ blen = pflash[i + 2];
+
+ // If we reach the end of the list, break loop
+ if (blen == 0xFF) break;
+
+ // Check if data is contained in this block
+ if (address >= baddr && address < (baddr + blen))
+ return address | ((blen - address + baddr) << 16); // Yes, it is contained. Return it!
+
+ // Otherwise, check if we can use it as a limit
+ if (baddr > address && baddr < nextAddr) {
+ nextAddr = baddr;
+ nextRange = blen;
+ }
+
+ // As blocks are always sorted, if the starting address of this block is higher
+ // than the address we are looking for, break loop now - We wont find the value
+ // associated to the address
+ if (baddr > address) break;
+
+ // Jump to the next block
+ i += 3 + blen;
+ }
+ }
+
+ // If reached here, we will return the next valid address
+ return nextAddr | (nextRange << 16);
+}
+
+static bool ee_IsPageClean(int page) {
+ uint32_t* pflash = (uint32_t*) getFlashStorage(page);
+ for (uint16_t i = 0; i < (PageSize >> 2); ++i)
+ if (*pflash++ != 0xFFFFFFFF) return false;
+ return true;
+}
+
+static bool ee_Flush(uint32_t overrideAddress = 0xFFFFFFFF, uint8_t overrideData=0xFF) {
+
+ // Check if RAM buffer has something to be written
+ bool isEmpty = true;
+ uint32_t* p = (uint32_t*) &buffer[0];
+ for (uint16_t j = 0; j < (PageSize >> 2); j++) {
+ if (*p++ != 0xFFFFFFFF) {
+ isEmpty = false;
+ break;
+ }
+ }
+
+ // If something has to be written, do so!
+ if (!isEmpty) {
+
+ // Write the current ram buffer into FLASH
+ ee_PageWrite(curPage + curGroup * PagesPerGroup, buffer);
+
+ // Clear the RAM buffer
+ memset(buffer, 0xFF, sizeof(buffer));
+
+ // Increment the page to use the next time
+ ++curPage;
+ }
+
+ // Did we reach the maximum count of available pages per group for storage ?
+ if (curPage < PagesPerGroup) {
+
+ // Do we have an override address ?
+ if (overrideAddress < EEPROMSize) {
+
+ // Yes, just store the value into the RAM buffer
+ buffer[0] = overrideAddress & 0xFF;
+ buffer[0 + 1] = (overrideAddress >> 8) & 0xFF;
+ buffer[0 + 2] = 1;
+ buffer[0 + 3] = overrideData;
+ }
+
+ // Done!
+ return true;
+ }
+
+ // We have no space left on the current group - We must compact the values
+ uint16_t i = 0;
+
+ // Compute the next group to use
+ int curwPage = 0, curwGroup = curGroup + 1;
+ if (curwGroup >= GroupCount) curwGroup = 0;
+
+ uint32_t rdAddr = 0;
+ do {
+
+ // Get the next valid range
+ uint32_t addrRange = ee_GetAddrRange(rdAddr, true);
+
+ // Make sure not to skip the override address, if specified
+ int rdRange;
+ if (overrideAddress < EEPROMSize &&
+ rdAddr <= overrideAddress &&
+ (addrRange & 0xFFFF) > overrideAddress) {
+
+ rdAddr = overrideAddress;
+ rdRange = 1;
+ }
+ else {
+ rdAddr = addrRange & 0xFFFF;
+ rdRange = addrRange >> 16;
+ }
+
+ // If no range, break loop
+ if (rdRange == 0)
+ break;
+
+ do {
+
+ // Get the value
+ uint8_t rdValue = overrideAddress == rdAddr ? overrideData : ee_Read(rdAddr, true);
+
+ // Do not bother storing default values
+ if (rdValue != 0xFF) {
+
+ // If we have room, add it to the buffer
+ if (buffer[i + 2] == 0xFF) {
+
+ // Uninitialized buffer, just add it!
+ buffer[i] = rdAddr & 0xFF;
+ buffer[i + 1] = (rdAddr >> 8) & 0xFF;
+ buffer[i + 2] = 1;
+ buffer[i + 3] = rdValue;
+
+ }
+ else {
+ // Buffer already has contents. Check if we can extend it
+
+ // Get the address of the block
+ uint32_t baddr = buffer[i] | (buffer[i + 1] << 8);
+
+ // Get the length of the block
+ uint32_t blen = buffer[i + 2];
+
+ // Can we expand it ?
+ if (rdAddr == (baddr + blen) &&
+ i < (PageSize - 4) && /* This block has a chance to contain data AND */
+ buffer[i + 2] < (PageSize - i - 3)) {/* There is room for this block to be expanded */
+
+ // Yes, do it
+ ++buffer[i + 2];
+
+ // And store the value
+ buffer[i + 3 + rdAddr - baddr] = rdValue;
+
+ }
+ else {
+
+ // No, we can't expand it - Skip the existing block
+ i += 3 + blen;
+
+ // Can we create a new slot ?
+ if (i > (PageSize - 4)) {
+
+ // Not enough space - Write the current buffer to FLASH
+ ee_PageWrite(curwPage + curwGroup * PagesPerGroup, buffer);
+
+ // Advance write page (as we are compacting, should never overflow!)
+ ++curwPage;
+
+ // Clear RAM buffer
+ memset(buffer, 0xFF, sizeof(buffer));
+
+ // Start fresh */
+ i = 0;
+ }
+
+ // Enough space, add the new block
+ buffer[i] = rdAddr & 0xFF;
+ buffer[i + 1] = (rdAddr >> 8) & 0xFF;
+ buffer[i + 2] = 1;
+ buffer[i + 3] = rdValue;
+ }
+ }
+ }
+
+ // Go to the next address
+ ++rdAddr;
+
+ // Repeat for bytes of this range
+ } while (--rdRange);
+
+ // Repeat until we run out of ranges
+ } while (rdAddr < EEPROMSize);
+
+ // We must erase the previous group, in preparation for the next swap
+ for (int page = 0; page < curPage; page++) {
+ ee_PageErase(page + curGroup * PagesPerGroup);
+ }
+
+ // Finally, Now the active group is the created new group
+ curGroup = curwGroup;
+ curPage = curwPage;
+
+ // Done!
+ return true;
+}
+
+static bool ee_Write(uint32_t address, uint8_t data) {
+
+ // If we were requested an address outside of the emulated range, fail now
+ if (address >= EEPROMSize) return false;
+
+ // Lets check if we have a block with that data previously defined. Block
+ // start addresses are always sorted in ascending order
+ uint16_t i = 0;
+ while (i <= (PageSize - 4)) { /* (PageSize - 4) because otherwise, there is not enough room for data and headers */
+
+ // Get the address of the block
+ uint32_t baddr = buffer[i] | (buffer[i + 1] << 8);
+
+ // Get the length of the block
+ uint32_t blen = buffer[i + 2];
+
+ // If we reach the end of the list, break loop
+ if (blen == 0xFF)
+ break;
+
+ // Check if data is contained in this block
+ if (address >= baddr &&
+ address < (baddr + blen)) {
+
+ // Yes, it is contained. Just modify it
+ buffer[i + 3 + address - baddr] = data;
+
+ // Done!
+ return true;
+ }
+
+ // Maybe we could add it to the front or to the back
+ // of this block ?
+ if ((address + 1) == baddr || address == (baddr + blen)) {
+
+ // Potentially, it could be done. But we must ensure there is room
+ // so we can expand the block. Lets find how much free space remains
+ uint32_t iend = i;
+ do {
+ uint32_t ln = buffer[iend + 2];
+ if (ln == 0xFF) break;
+ iend += 3 + ln;
+ } while (iend <= (PageSize - 4)); /* (PageSize - 4) because otherwise, there is not enough room for data and headers */
+
+ // Here, inxt points to the first free address in the buffer. Do we have room ?
+ if (iend < PageSize) {
+ // Yes, at least a byte is free - We can expand the block
+
+ // Do we have to insert at the beginning ?
+ if ((address + 1) == baddr) {
+
+ // Insert at the beginning
+
+ // Make room at the beginning for our byte
+ memmove(&buffer[i + 3 + 1], &buffer[i + 3], iend - i - 3);
+
+ // Adjust the header and store the data
+ buffer[i] = address & 0xFF;
+ buffer[i + 1] = (address >> 8) & 0xFF;
+ buffer[i + 2]++;
+ buffer[i + 3] = data;
+
+ }
+ else {
+
+ // Insert at the end - There is a very interesting thing that could happen here:
+ // Maybe we could coalesce the next block with this block. Let's try to do it!
+ uint16_t inext = i + 3 + blen;
+ if (inext <= (PageSize - 4) &&
+ (buffer[inext] | uint16_t(buffer[inext + 1] << 8)) == (baddr + blen + 1)) {
+ // YES! ... we can coalesce blocks! . Do it!
+
+ // Adjust this block header to include the next one
+ buffer[i + 2] += buffer[inext + 2] + 1;
+
+ // Store data at the right place
+ buffer[i + 3 + blen] = data;
+
+ // Remove the next block header and append its data
+ memmove(&buffer[inext + 1], &buffer[inext + 3], iend - inext - 3);
+
+ // Finally, as we have saved 2 bytes at the end, make sure to clean them
+ buffer[iend - 2] = 0xFF;
+ buffer[iend - 1] = 0xFF;
+
+ }
+ else {
+ // NO ... No coalescing possible yet
+
+ // Make room at the end for our byte
+ memmove(&buffer[i + 3 + blen + 1], &buffer[i + 3 + blen], iend - i - 3 - blen);
+
+ // And add the data to the block
+ buffer[i + 2]++;
+ buffer[i + 3 + blen] = data;
+ }
+ }
+
+ // Done!
+ return true;
+ }
+ }
+
+ // As blocks are always sorted, if the starting address of this block is higher
+ // than the address we are looking for, break loop now - We wont find the value
+ // associated to the address
+ if (baddr > address) break;
+
+ // Jump to the next block
+ i += 3 + blen;
+ }
+
+ // Value is not stored AND we can't expand previous block to contain it. We must create a new block
+
+ // First, lets find how much free space remains
+ uint32_t iend = i;
+ while (iend <= (PageSize - 4)) { /* (PageSize - 4) because otherwise, there is not enough room for data and headers */
+ uint32_t ln = buffer[iend + 2];
+ if (ln == 0xFF) break;
+ iend += 3 + ln;
+ }
+
+ // If there is room for a new block, insert it at the proper place
+ if (iend <= (PageSize - 4)) {
+
+ // We have room to create a new block. Do so --- But add
+ // the block at the proper position, sorted by starting
+ // address, so it will be possible to compact it with other blocks.
+
+ // Make space
+ memmove(&buffer[i + 4], &buffer[i], iend - i);
+
+ // And add the block
+ buffer[i] = address & 0xFF;
+ buffer[i + 1] = (address >> 8) & 0xFF;
+ buffer[i + 2] = 1;
+ buffer[i + 3] = data;
+
+ // Done!
+ return true;
+ }
+
+ // Not enough room to store this information on this FLASH page - Perform a
+ // flush and override the address with the specified contents
+ return ee_Flush(address, data);
+}
+
+static void ee_Init() {
+
+ // Just init once!
+ if (curGroup != 0xFF) return;
+
+ // Clean up the SRAM buffer
+ memset(buffer, 0xFF, sizeof(buffer));
+
+ // Now, we must find out the group where settings are stored
+ for (curGroup = 0; curGroup < GroupCount; curGroup++)
+ if (!ee_IsPageClean(curGroup * PagesPerGroup)) break;
+
+ // If all groups seem to be used, default to first group
+ if (curGroup >= GroupCount) curGroup = 0;
+
+ DEBUG_ECHO_START();
+ DEBUG_ECHOLNPAIR("EEPROM Current Group: ",curGroup);
+ DEBUG_FLUSH();
+
+ // Now, validate that all the other group pages are empty
+ for (int grp = 0; grp < GroupCount; grp++) {
+ if (grp == curGroup) continue;
+
+ for (int page = 0; page < PagesPerGroup; page++) {
+ if (!ee_IsPageClean(grp * PagesPerGroup + page)) {
+ DEBUG_ECHO_START();
+ DEBUG_ECHOLNPAIR("EEPROM Page ", page, " not clean on group ", grp);
+ DEBUG_FLUSH();
+ ee_PageErase(grp * PagesPerGroup + page);
+ }
+ }
+ }
+
+ // Finally, for the active group, determine the first unused page
+ // and also validate that all the other ones are clean
+ for (curPage = 0; curPage < PagesPerGroup; curPage++) {
+ if (ee_IsPageClean(curGroup * PagesPerGroup + curPage)) {
+ ee_Dump(curGroup * PagesPerGroup + curPage, getFlashStorage(curGroup * PagesPerGroup + curPage));
+ break;
+ }
+ }
+
+ DEBUG_ECHO_START();
+ DEBUG_ECHOLNPAIR("EEPROM Active page: ", curPage);
+ DEBUG_FLUSH();
+
+ // Make sure the pages following the first clean one are also clean
+ for (int page = curPage + 1; page < PagesPerGroup; page++) {
+ if (!ee_IsPageClean(curGroup * PagesPerGroup + page)) {
+ DEBUG_ECHO_START();
+ DEBUG_ECHOLNPAIR("EEPROM Page ", page, " not clean on active group ", curGroup);
+ DEBUG_FLUSH();
+ ee_Dump(curGroup * PagesPerGroup + page, getFlashStorage(curGroup * PagesPerGroup + page));
+ ee_PageErase(curGroup * PagesPerGroup + page);
+ }
+ }
+}
+
+/* PersistentStore -----------------------------------------------------------*/
+
+#include "../shared/eeprom_api.h"
+
+#ifndef MARLIN_EEPROM_SIZE
+ #define MARLIN_EEPROM_SIZE 0x1000 // 4KB
+#endif
+size_t PersistentStore::capacity() { return MARLIN_EEPROM_SIZE; }
+bool PersistentStore::access_start() { ee_Init(); return true; }
+bool PersistentStore::access_finish() { ee_Flush(); return true; }
+
+bool PersistentStore::write_data(int &pos, const uint8_t *value, size_t size, uint16_t *crc) {
+ while (size--) {
+ uint8_t * const p = (uint8_t * const)pos;
+ uint8_t v = *value;
+ // EEPROM has only ~100,000 write cycles,
+ // so only write bytes that have changed!
+ if (v != ee_Read(uint32_t(p))) {
+ ee_Write(uint32_t(p), v);
+ delay(2);
+ if (ee_Read(uint32_t(p)) != v) {
+ SERIAL_ECHO_MSG(STR_ERR_EEPROM_WRITE);
+ return true;
+ }
+ }
+ crc16(crc, &v, 1);
+ pos++;
+ value++;
+ }
+ return false;
+}
+
+bool PersistentStore::read_data(int &pos, uint8_t *value, size_t size, uint16_t *crc, const bool writing/*=true*/) {
+ do {
+ uint8_t c = ee_Read(uint32_t(pos));
+ if (writing) *value = c;
+ crc16(crc, &c, 1);
+ pos++;
+ value++;
+ } while (--size);
+ return false;
+}
+
+#endif // FLASH_EEPROM_EMULATION
+#endif // ARDUINO_ARCH_SAM