diff options
Diffstat (limited to 'Marlin/src/HAL/DUE/usb/uotghs_device_due.c')
-rw-r--r-- | Marlin/src/HAL/DUE/usb/uotghs_device_due.c | 2074 |
1 files changed, 2074 insertions, 0 deletions
diff --git a/Marlin/src/HAL/DUE/usb/uotghs_device_due.c b/Marlin/src/HAL/DUE/usb/uotghs_device_due.c new file mode 100644 index 0000000..e13232a --- /dev/null +++ b/Marlin/src/HAL/DUE/usb/uotghs_device_due.c @@ -0,0 +1,2074 @@ +/** + * \file + * + * \brief USB Device Driver for UOTGHS. Compliant with common UDD driver. + * + * Copyright (c) 2012-2015 Atmel Corporation. All rights reserved. + * + * \asf_license_start + * + * \page License + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are met: + * + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * + * 3. The name of Atmel may not be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * 4. This software may only be redistributed and used in connection with an + * Atmel microcontroller product. + * + * THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED + * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE + * EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR + * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, + * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN + * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + * POSSIBILITY OF SUCH DAMAGE. + * + * \asf_license_stop + * + */ + +/* + * Support and FAQ: visit <a href="https://www.atmel.com/design-support/">Atmel Support</a> + */ + +#ifdef ARDUINO_ARCH_SAM + +#include "compiler.h" +#include "uotghs_device_due.h" + +#include "conf_usb.h" +#include "sysclk.h" +#include "udd.h" +#include "uotghs_otg.h" +#include <string.h> + +#ifndef UDD_NO_SLEEP_MGR +# include "sleep.h" +# include "sleepmgr.h" +#endif + +#if !(SAM3XA) +# error The current UOTGHS Device Driver supports only SAM3X and SAM3A. +#endif +#ifndef UDD_USB_INT_FUN +# define UDD_USB_INT_FUN UOTGHS_Handler +#endif + +#ifndef UDD_USB_INT_LEVEL +# define UDD_USB_INT_LEVEL 5 // By default USB interrupt have low priority +#endif + +#define UDD_EP_USED(ep) (USB_DEVICE_MAX_EP >= ep) + +#if ( (UDD_EP_USED( 1) && Is_udd_endpoint_dma_supported( 1)) \ + ||(UDD_EP_USED( 2) && Is_udd_endpoint_dma_supported( 2)) \ + ||(UDD_EP_USED( 3) && Is_udd_endpoint_dma_supported( 3)) \ + ||(UDD_EP_USED( 4) && Is_udd_endpoint_dma_supported( 4)) \ + ||(UDD_EP_USED( 5) && Is_udd_endpoint_dma_supported( 5)) \ + ||(UDD_EP_USED( 6) && Is_udd_endpoint_dma_supported( 6)) \ + ||(UDD_EP_USED( 7) && Is_udd_endpoint_dma_supported( 7)) \ + ||(UDD_EP_USED( 8) && Is_udd_endpoint_dma_supported( 8)) \ + ||(UDD_EP_USED( 9) && Is_udd_endpoint_dma_supported( 9)) \ + ||(UDD_EP_USED(10) && Is_udd_endpoint_dma_supported(10)) \ + ||(UDD_EP_USED(11) && Is_udd_endpoint_dma_supported(11)) \ + ||(UDD_EP_USED(12) && Is_udd_endpoint_dma_supported(12)) \ + ||(UDD_EP_USED(13) && Is_udd_endpoint_dma_supported(13)) \ + ||(UDD_EP_USED(14) && Is_udd_endpoint_dma_supported(14)) \ + ||(UDD_EP_USED(15) && Is_udd_endpoint_dma_supported(15)) \ + ) +# define UDD_EP_DMA_SUPPORTED +#endif + +#if ( (UDD_EP_USED( 1) && !Is_udd_endpoint_dma_supported( 1)) \ + ||(UDD_EP_USED( 2) && !Is_udd_endpoint_dma_supported( 2)) \ + ||(UDD_EP_USED( 3) && !Is_udd_endpoint_dma_supported( 3)) \ + ||(UDD_EP_USED( 4) && !Is_udd_endpoint_dma_supported( 4)) \ + ||(UDD_EP_USED( 5) && !Is_udd_endpoint_dma_supported( 5)) \ + ||(UDD_EP_USED( 6) && !Is_udd_endpoint_dma_supported( 6)) \ + ||(UDD_EP_USED( 7) && !Is_udd_endpoint_dma_supported( 7)) \ + ||(UDD_EP_USED( 8) && !Is_udd_endpoint_dma_supported( 8)) \ + ||(UDD_EP_USED( 9) && !Is_udd_endpoint_dma_supported( 9)) \ + ||(UDD_EP_USED(10) && !Is_udd_endpoint_dma_supported(10)) \ + ||(UDD_EP_USED(11) && !Is_udd_endpoint_dma_supported(11)) \ + ||(UDD_EP_USED(12) && !Is_udd_endpoint_dma_supported(12)) \ + ||(UDD_EP_USED(13) && !Is_udd_endpoint_dma_supported(13)) \ + ||(UDD_EP_USED(14) && !Is_udd_endpoint_dma_supported(14)) \ + ||(UDD_EP_USED(15) && !Is_udd_endpoint_dma_supported(15)) \ + ) +# define UDD_EP_FIFO_SUPPORTED +#endif + +// for debug text +//#define dbg_print printf +#define dbg_print(...) + +/** + * \ingroup udd_group + * \defgroup udd_udphs_group USB On-The-Go High-Speed Port for device mode (UOTGHS) + * + * \section UOTGHS_CONF UOTGHS Custom configuration + * The following UOTGHS driver configuration must be included in the conf_usb.h + * file of the application. + * + * UDD_USB_INT_LEVEL<br> + * Option to change the interrupt priority (0 to 15) by default 5 (recommended). + * + * UDD_USB_INT_FUN<br> + * Option to fit interrupt function to what defined in exception table. + * + * UDD_ISOCHRONOUS_NB_BANK(ep)<br> + * Feature to reduce or increase isochronous endpoints buffering (1 to 3). + * Default value 2. + * + * UDD_BULK_NB_BANK(ep)<br> + * Feature to reduce or increase bulk endpoints buffering (1 to 2). + * Default value 2. + * + * UDD_INTERRUPT_NB_BANK(ep)<br> + * Feature to reduce or increase interrupt endpoints buffering (1 to 2). + * Default value 1. + * + * \section Callbacks management + * The USB driver is fully managed by interrupt and does not request periodique + * task. Thereby, the USB events use callbacks to transfer the information. + * The callbacks are declared in static during compilation or in variable during + * code execution. + * + * Static declarations defined in conf_usb.h: + * - UDC_VBUS_EVENT(bool b_present)<br> + * To signal Vbus level change + * - UDC_SUSPEND_EVENT()<br> + * Called when USB bus enter in suspend mode + * - UDC_RESUME_EVENT()<br> + * Called when USB bus is wakeup + * - UDC_SOF_EVENT()<br> + * Called for each received SOF, Note: Each 1ms in HS/FS mode only. + * + * Dynamic callbacks, called "endpoint job" , are registered + * in udd_ep_job_t structure via the following functions: + * - udd_ep_run()<br> + * To call it when a transfer is finish + * - udd_ep_wait_stall_clear()<br> + * To call it when a endpoint halt is disabled + * + * \section Power mode management + * The Sleep modes authorized : + * - in USB IDLE state, the UOTGHS needs of USB clock and authorizes up to sleep mode WFI. + * - in USB SUSPEND state, the UOTGHS no needs USB clock and authorizes up to sleep mode WAIT. + * @{ + */ + +// Check USB Device configuration +#ifndef USB_DEVICE_EP_CTRL_SIZE +# error USB_DEVICE_EP_CTRL_SIZE not defined +#endif +#ifndef USB_DEVICE_MAX_EP +# error USB_DEVICE_MAX_EP not defined +#endif + +// Note: USB_DEVICE_MAX_EP does not include control endpoint +#if USB_DEVICE_MAX_EP > (UDD_MAX_PEP_NB-1) +# error USB_DEVICE_MAX_EP is too high and not supported by this part +#endif + +#define UDD_EP_ISO_NBANK_ERROR(ep) \ + ( (UDD_ISOCHRONOUS_NB_BANK(ep) < 1) \ + || (UDD_ISOCHRONOUS_NB_BANK(ep) > 3) ) +#define UDD_EP_BULK_NBANK_ERROR(ep) \ + ( (UDD_BULK_NB_BANK(ep) < 1) || (UDD_BULK_NB_BANK(ep) > 2) ) +#define UDD_EP_INT_NBANK_ERROR(ep) \ + ( (UDD_INTERRUPT_NB_BANK(ep) < 1) || (UDD_INTERRUPT_NB_BANK(ep) > 2) ) + +#define UDD_EP_ISO_NB_BANK_ERROR(ep) \ + (UDD_EP_USED(ep) && UDD_EP_ISO_NBANK_ERROR(ep)) +#define UDD_EP_BULK_NB_BANK_ERROR(ep) \ + (UDD_EP_USED(ep) && UDD_EP_ISO_NBANK_ERROR(ep)) +#define UDD_EP_INT_NB_BANK_ERROR(ep) \ + (UDD_EP_USED(ep) && UDD_EP_ISO_NBANK_ERROR(ep)) + +#define UDD_EP_NB_BANK_ERROR(ep, type) \ + (ATPASTE3(UDD_EP_, type, _NB_BANK_ERROR(ep))) + +#define UDD_ISO_NB_BANK_ERROR \ + ( UDD_EP_NB_BANK_ERROR( 1, ISO) \ + || UDD_EP_NB_BANK_ERROR( 2, ISO) \ + || UDD_EP_NB_BANK_ERROR( 3, ISO) \ + || UDD_EP_NB_BANK_ERROR( 4, ISO) \ + || UDD_EP_NB_BANK_ERROR( 5, ISO) \ + || UDD_EP_NB_BANK_ERROR( 6, ISO) \ + || UDD_EP_NB_BANK_ERROR( 7, ISO) \ + || UDD_EP_NB_BANK_ERROR( 8, ISO) \ + || UDD_EP_NB_BANK_ERROR( 9, ISO) \ + || UDD_EP_NB_BANK_ERROR(10, ISO) \ + || UDD_EP_NB_BANK_ERROR(11, ISO) \ + || UDD_EP_NB_BANK_ERROR(12, ISO) \ + || UDD_EP_NB_BANK_ERROR(13, ISO) \ + || UDD_EP_NB_BANK_ERROR(14, ISO) \ + || UDD_EP_NB_BANK_ERROR(15, ISO) ) +#define UDD_BULK_NB_BANK_ERROR \ + ( UDD_EP_NB_BANK_ERROR( 1, BULK) \ + || UDD_EP_NB_BANK_ERROR( 2, BULK) \ + || UDD_EP_NB_BANK_ERROR( 3, BULK) \ + || UDD_EP_NB_BANK_ERROR( 4, BULK) \ + || UDD_EP_NB_BANK_ERROR( 5, BULK) \ + || UDD_EP_NB_BANK_ERROR( 6, BULK) \ + || UDD_EP_NB_BANK_ERROR( 7, BULK) \ + || UDD_EP_NB_BANK_ERROR( 8, BULK) \ + || UDD_EP_NB_BANK_ERROR( 9, BULK) \ + || UDD_EP_NB_BANK_ERROR(10, BULK) \ + || UDD_EP_NB_BANK_ERROR(11, BULK) \ + || UDD_EP_NB_BANK_ERROR(12, BULK) \ + || UDD_EP_NB_BANK_ERROR(13, BULK) \ + || UDD_EP_NB_BANK_ERROR(14, BULK) \ + || UDD_EP_NB_BANK_ERROR(15, BULK) ) +#define UDD_INTERRUPT_NB_BANK_ERROR \ + ( UDD_EP_NB_BANK_ERROR( 1, INT) \ + || UDD_EP_NB_BANK_ERROR( 2, INT) \ + || UDD_EP_NB_BANK_ERROR( 3, INT) \ + || UDD_EP_NB_BANK_ERROR( 4, INT) \ + || UDD_EP_NB_BANK_ERROR( 5, INT) \ + || UDD_EP_NB_BANK_ERROR( 6, INT) \ + || UDD_EP_NB_BANK_ERROR( 7, INT) \ + || UDD_EP_NB_BANK_ERROR( 8, INT) \ + || UDD_EP_NB_BANK_ERROR( 9, INT) \ + || UDD_EP_NB_BANK_ERROR(10, INT) \ + || UDD_EP_NB_BANK_ERROR(11, INT) \ + || UDD_EP_NB_BANK_ERROR(12, INT) \ + || UDD_EP_NB_BANK_ERROR(13, INT) \ + || UDD_EP_NB_BANK_ERROR(14, INT) \ + || UDD_EP_NB_BANK_ERROR(15, INT) ) + +#ifndef UDD_ISOCHRONOUS_NB_BANK +# define UDD_ISOCHRONOUS_NB_BANK(ep) 2 +#else +# if UDD_ISO_NB_BANK_ERROR +# error UDD_ISOCHRONOUS_NB_BANK(ep) must be define within 1 to 3. +# endif +#endif + +#ifndef UDD_BULK_NB_BANK +# define UDD_BULK_NB_BANK(ep) 2 +#else +# if UDD_BULK_NB_BANK_ERROR +# error UDD_BULK_NB_BANK must be define with 1 or 2. +# endif +#endif + +#ifndef UDD_INTERRUPT_NB_BANK +# define UDD_INTERRUPT_NB_BANK(ep) 1 +#else +# if UDD_INTERRUPT_NB_BANK_ERROR +# error UDD_INTERRUPT_NB_BANK must be define with 1 or 2. +# endif +#endif + + +/** + * \name Power management routine. + */ +//@{ + +#ifndef UDD_NO_SLEEP_MGR + +//! Definition of sleep levels +#define UOTGHS_SLEEP_MODE_USB_SUSPEND SLEEPMGR_WAIT_FAST +#define UOTGHS_SLEEP_MODE_USB_IDLE SLEEPMGR_SLEEP_WFI + +//! State of USB line +static bool udd_b_idle; +//! State of sleep manager +static bool udd_b_sleep_initialized = false; + + +/*! \brief Authorize or not the CPU powerdown mode + * + * \param b_enable true to authorize idle mode + */ +static void udd_sleep_mode(bool b_idle) +{ + if (!b_idle && udd_b_idle) { + dbg_print("_S "); + sleepmgr_unlock_mode(UOTGHS_SLEEP_MODE_USB_IDLE); + } + if (b_idle && !udd_b_idle) { + dbg_print("_W "); + sleepmgr_lock_mode(UOTGHS_SLEEP_MODE_USB_IDLE); + } + udd_b_idle = b_idle; +} +#else + +static void udd_sleep_mode(bool b_idle) +{ + b_idle = b_idle; +} + +#endif // UDD_NO_SLEEP_MGR + +//@} + + +/** + * \name Control endpoint low level management routine. + * + * This function performs control endpoint mangement. + * It handle the SETUP/DATA/HANDSHAKE phases of a control transaction. + */ +//@{ + +//! Global variable to give and record information about setup request management +COMPILER_WORD_ALIGNED udd_ctrl_request_t udd_g_ctrlreq; + +//! Bit definitions about endpoint control state machine for udd_ep_control_state +typedef enum { + UDD_EPCTRL_SETUP = 0, //!< Wait a SETUP packet + UDD_EPCTRL_DATA_OUT = 1, //!< Wait a OUT data packet + UDD_EPCTRL_DATA_IN = 2, //!< Wait a IN data packet + UDD_EPCTRL_HANDSHAKE_WAIT_IN_ZLP = 3, //!< Wait a IN ZLP packet + UDD_EPCTRL_HANDSHAKE_WAIT_OUT_ZLP = 4, //!< Wait a OUT ZLP packet + UDD_EPCTRL_STALL_REQ = 5, //!< STALL enabled on IN & OUT packet +} udd_ctrl_ep_state_t; + +//! State of the endpoint control management +static udd_ctrl_ep_state_t udd_ep_control_state; + +//! Total number of data received/sent during data packet phase with previous payload buffers +static uint16_t udd_ctrl_prev_payload_buf_cnt; + +//! Number of data received/sent to/from udd_g_ctrlreq.payload buffer +static uint16_t udd_ctrl_payload_buf_cnt; + +/** + * \brief Reset control endpoint + * + * Called after a USB line reset or when UDD is enabled + */ +static void udd_reset_ep_ctrl(void); + +/** + * \brief Reset control endpoint management + * + * Called after a USB line reset or at the end of SETUP request (after ZLP) + */ +static void udd_ctrl_init(void); + +//! \brief Managed reception of SETUP packet on control endpoint +static void udd_ctrl_setup_received(void); + +//! \brief Managed reception of IN packet on control endpoint +static void udd_ctrl_in_sent(void); + +//! \brief Managed reception of OUT packet on control endpoint +static void udd_ctrl_out_received(void); + +//! \brief Managed underflow event of IN packet on control endpoint +static void udd_ctrl_underflow(void); + +//! \brief Managed overflow event of OUT packet on control endpoint +static void udd_ctrl_overflow(void); + +//! \brief Managed stall event of IN/OUT packet on control endpoint +static void udd_ctrl_stall_data(void); + +//! \brief Send a ZLP IN on control endpoint +static void udd_ctrl_send_zlp_in(void); + +//! \brief Send a ZLP OUT on control endpoint +static void udd_ctrl_send_zlp_out(void); + +//! \brief Call callback associated to setup request +static void udd_ctrl_endofrequest(void); + + +/** + * \brief Main interrupt routine for control endpoint + * + * This switchs control endpoint events to correct sub function. + * + * \return \c 1 if an event about control endpoint is occured, otherwise \c 0. + */ +static bool udd_ctrl_interrupt(void); + +//@} + + +/** + * \name Management of bulk/interrupt/isochronous endpoints + * + * The UDD manages the data transfer on endpoints: + * - Start data tranfer on endpoint with USB Device DMA + * - Send a ZLP packet if requested + * - Call callback registered to signal end of transfer + * The transfer abort and stall feature are supported. + */ +//@{ +#if (0!=USB_DEVICE_MAX_EP) + +//! Structure definition about job registered on an endpoint +typedef struct { + union { + //! Callback to call at the end of transfer + udd_callback_trans_t call_trans; + + //! Callback to call when the endpoint halt is cleared + udd_callback_halt_cleared_t call_nohalt; + }; + //! Buffer located in internal RAM to send or fill during job + uint8_t *buf; + //! Size of buffer to send or fill + iram_size_t buf_size; + //!< Size of data transfered + iram_size_t buf_cnt; + //!< Size of data loaded (or prepared for DMA) last time + iram_size_t buf_load; + //! A job is registered on this endpoint + uint8_t busy:1; + //! A short packet is requested for this job on endpoint IN + uint8_t b_shortpacket:1; + //! A stall has been requested but not executed + uint8_t stall_requested:1; +} udd_ep_job_t; + + +//! Array to register a job on bulk/interrupt/isochronous endpoint +static udd_ep_job_t udd_ep_job[USB_DEVICE_MAX_EP]; + +//! \brief Reset all job table +static void udd_ep_job_table_reset(void); + +//! \brief Abort all endpoint jobs on going +static void udd_ep_job_table_kill(void); + +#ifdef UDD_EP_FIFO_SUPPORTED + /** + * \brief Fill banks and send them + * + * \param ep endpoint number of job to abort + */ + static void udd_ep_in_sent(udd_ep_id_t ep); + + /** + * \brief Store received banks + * + * \param ep endpoint number of job to abort + */ + static void udd_ep_out_received(udd_ep_id_t ep); +#endif + +/** + * \brief Abort endpoint job on going + * + * \param ep endpoint number of job to abort + */ +static void udd_ep_abort_job(udd_ep_id_t ep); + +/** + * \brief Call the callback associated to the job which is finished + * + * \param ptr_job job to complete + * \param b_abort if true then the job has been aborted + */ +static void udd_ep_finish_job(udd_ep_job_t * ptr_job, bool b_abort, uint8_t ep_num); + +#ifdef UDD_EP_DMA_SUPPORTED + /** + * \brief Start the next transfer if necessary or complet the job associated. + * + * \param ep endpoint number without direction flag + */ + static void udd_ep_trans_done(udd_ep_id_t ep); +#endif + +/** + * \brief Main interrupt routine for bulk/interrupt/isochronous endpoints + * + * This switchs endpoint events to correct sub function. + * + * \return \c 1 if an event about bulk/interrupt/isochronous endpoints has occured, otherwise \c 0. + */ +static bool udd_ep_interrupt(void); + +#endif // (0!=USB_DEVICE_MAX_EP) +//@} + + +// ------------------------ +//--- INTERNAL ROUTINES TO MANAGED GLOBAL EVENTS + +/** + * \internal + * \brief Function called by UOTGHS interrupt to manage USB Device interrupts + * + * USB Device interrupt events are splited in three parts: + * - USB line events (SOF, reset, suspend, resume, wakeup) + * - control endpoint events (setup reception, end of data transfer, underflow, overflow, stall) + * - bulk/interrupt/isochronous endpoints events (end of data transfer) + * + * Note: + * Here, the global interrupt mask is not clear when an USB interrupt is enabled + * because this one can not be occured during the USB ISR (=during INTX is masked). + * See Technical reference $3.8.3 Masking interrupt requests in peripheral modules. + */ +#ifdef UHD_ENABLE +void udd_interrupt(void); +void udd_interrupt(void) +#else +ISR(UDD_USB_INT_FUN) +#endif +{ + /* For fast wakeup clocks restore + * In WAIT mode, clocks are switched to FASTRC. + * After wakeup clocks should be restored, before that ISR should not + * be served. + */ + if (!pmc_is_wakeup_clocks_restored() && !Is_udd_suspend()) { + cpu_irq_disable(); + return; + } + + if (Is_udd_sof()) { + udd_ack_sof(); + if (Is_udd_full_speed_mode()) { + udc_sof_notify(); + } +#ifdef UDC_SOF_EVENT + UDC_SOF_EVENT(); +#endif + goto udd_interrupt_sof_end; + } + + if (Is_udd_msof()) { + udd_ack_msof(); + udc_sof_notify(); + goto udd_interrupt_sof_end; + } + + dbg_print("%c ", udd_is_high_speed() ? 'H' : 'F'); + + if (udd_ctrl_interrupt()) { + goto udd_interrupt_end; // Interrupt acked by control endpoint managed + } + +#if (0 != USB_DEVICE_MAX_EP) + if (udd_ep_interrupt()) { + goto udd_interrupt_end; // Interrupt acked by bulk/interrupt/isochronous endpoint managed + } +#endif + + // USB bus reset detection + if (Is_udd_reset()) { + udd_ack_reset(); + dbg_print("RST "); + // Abort all jobs on-going +#if (USB_DEVICE_MAX_EP != 0) + udd_ep_job_table_kill(); +#endif + // Reset USB Device Stack Core + udc_reset(); + // Reset endpoint control + udd_reset_ep_ctrl(); + // Reset endpoint control management + udd_ctrl_init(); + goto udd_interrupt_end; + } + + if (Is_udd_suspend_interrupt_enabled() && Is_udd_suspend()) { + otg_unfreeze_clock(); + // The suspend interrupt is automatic acked when a wakeup occur + udd_disable_suspend_interrupt(); + udd_enable_wake_up_interrupt(); + otg_freeze_clock(); // Mandatory to exit of sleep mode after a wakeup event + udd_sleep_mode(false); // Enter in SUSPEND mode +#ifdef UDC_SUSPEND_EVENT + UDC_SUSPEND_EVENT(); +#endif + goto udd_interrupt_end; + } + + if (Is_udd_wake_up_interrupt_enabled() && Is_udd_wake_up()) { + // Ack wakeup interrupt and enable suspend interrupt + otg_unfreeze_clock(); + // Check USB clock ready after suspend and eventually sleep USB clock + while (!Is_otg_clock_usable()) { + if (Is_udd_suspend()) { + break; // In case of USB state change in HS + } + }; + // The wakeup interrupt is automatic acked when a suspend occur + udd_disable_wake_up_interrupt(); + udd_enable_suspend_interrupt(); + udd_sleep_mode(true); // Enter in IDLE mode +#ifdef UDC_RESUME_EVENT + UDC_RESUME_EVENT(); +#endif + goto udd_interrupt_end; + } + + if (Is_otg_vbus_transition()) { + dbg_print("VBus "); + // Ack Vbus transition and send status to high level + otg_unfreeze_clock(); + otg_ack_vbus_transition(); + otg_freeze_clock(); +#ifndef USB_DEVICE_ATTACH_AUTO_DISABLE + if (Is_otg_vbus_high()) { + udd_attach(); + } else { + udd_detach(); + } +#endif +#ifdef UDC_VBUS_EVENT + UDC_VBUS_EVENT(Is_otg_vbus_high()); +#endif + goto udd_interrupt_end; + } +udd_interrupt_end: + dbg_print("\n\r"); +udd_interrupt_sof_end: + return; +} + + +bool udd_include_vbus_monitoring(void) +{ + return true; +} + + +void udd_enable(void) +{ + irqflags_t flags; + + flags = cpu_irq_save(); + +#ifdef UHD_ENABLE + // DUAL ROLE INITIALIZATION + if (otg_dual_enable()) { + // The current mode has been started by otg_dual_enable() + cpu_irq_restore(flags); + return; + } +#else + // SINGLE DEVICE MODE INITIALIZATION + pmc_enable_periph_clk(ID_UOTGHS); + sysclk_enable_usb(); + + // Here, only the device mode is possible, then link UOTGHS interrupt to UDD interrupt + NVIC_SetPriority((IRQn_Type) ID_UOTGHS, UDD_USB_INT_LEVEL); + NVIC_EnableIRQ((IRQn_Type) ID_UOTGHS); + + // Always authorize asynchrone USB interrupts to exit of sleep mode + // For SAM USB wake up device except BACKUP mode + pmc_set_fast_startup_input(PMC_FSMR_USBAL); +#endif + +#if (defined USB_ID_GPIO) && (defined UHD_ENABLE) + // Check that the device mode is selected by ID pin + if (!Is_otg_id_device()) { + cpu_irq_restore(flags); + return; // Device is not the current mode + } +#else + // ID pin not used then force device mode + otg_disable_id_pin(); + otg_force_device_mode(); +#endif + // Enable USB hardware + otg_enable_pad(); + otg_enable(); + + // Set the USB speed requested by configuration file +#ifdef USB_DEVICE_LOW_SPEED + udd_low_speed_enable(); +#else + udd_low_speed_disable(); +# ifdef USB_DEVICE_HS_SUPPORT + udd_high_speed_enable(); +# else + udd_high_speed_disable(); +# endif +#endif // USB_DEVICE_LOW_SPEED + + // Check USB clock + otg_unfreeze_clock(); + while (!Is_otg_clock_usable()); + + // Reset internal variables +#if (0!=USB_DEVICE_MAX_EP) + udd_ep_job_table_reset(); +#endif + + otg_ack_vbus_transition(); + // Force Vbus interrupt in case of Vbus always with a high level + // This is possible with a short timing between a Host mode stop/start. + if (Is_otg_vbus_high()) { + otg_raise_vbus_transition(); + } + otg_enable_vbus_interrupt(); + otg_freeze_clock(); + +#ifndef UDD_NO_SLEEP_MGR + if (!udd_b_sleep_initialized) { + udd_b_sleep_initialized = true; + // Initialize the sleep mode authorized for the USB suspend mode + udd_b_idle = false; + sleepmgr_lock_mode(UOTGHS_SLEEP_MODE_USB_SUSPEND); + } else { + udd_sleep_mode(false); // Enter idle mode + } +#endif + + cpu_irq_restore(flags); +} + + +void udd_disable(void) +{ + irqflags_t flags; + +#ifdef UHD_ENABLE +# ifdef USB_ID_GPIO + if (Is_otg_id_host()) { + // Freeze clock to switch mode + otg_freeze_clock(); + udd_detach(); + otg_disable(); + return; // Host mode running, ignore UDD disable + } +# else + if (Is_otg_host_mode_forced()) { + return; // Host mode running, ignore UDD disable + } +# endif +#endif + + flags = cpu_irq_save(); + otg_unfreeze_clock(); + udd_detach(); +#ifndef UDD_NO_SLEEP_MGR + if (udd_b_sleep_initialized) { + udd_b_sleep_initialized = false; + sleepmgr_unlock_mode(UOTGHS_SLEEP_MODE_USB_SUSPEND); + } +#endif + +#ifndef UHD_ENABLE + otg_disable(); + otg_disable_pad(); + sysclk_disable_usb(); + pmc_disable_periph_clk(ID_UOTGHS); + // Else the USB clock disable is done by UHC which manage USB dual role +#endif + cpu_irq_restore(flags); +} + + +void udd_attach(void) +{ + irqflags_t flags; + flags = cpu_irq_save(); + + // At startup the USB bus state is unknown, + // therefore the state is considered IDLE to not miss any USB event + udd_sleep_mode(true); + otg_unfreeze_clock(); + + // This section of clock check can be improved with a chek of + // USB clock source via sysclk() + // Check USB clock because the source can be a PLL + while (!Is_otg_clock_usable()); + + // Authorize attach if Vbus is present + udd_attach_device(); + + // Enable USB line events + udd_enable_reset_interrupt(); + udd_enable_suspend_interrupt(); + udd_enable_wake_up_interrupt(); + udd_enable_sof_interrupt(); +#ifdef USB_DEVICE_HS_SUPPORT + udd_enable_msof_interrupt(); +#endif + // Reset following interupts flag + udd_ack_reset(); + udd_ack_sof(); + udd_ack_msof(); + + // The first suspend interrupt must be forced + // The first suspend interrupt is not detected else raise it + udd_raise_suspend(); + + udd_ack_wake_up(); + otg_freeze_clock(); + cpu_irq_restore(flags); +} + + +void udd_detach(void) +{ + otg_unfreeze_clock(); + + // Detach device from the bus + udd_detach_device(); + otg_freeze_clock(); + udd_sleep_mode(false); +} + + +bool udd_is_high_speed(void) +{ +#ifdef USB_DEVICE_HS_SUPPORT + return !Is_udd_full_speed_mode(); +#else + return false; +#endif +} + + +void udd_set_address(uint8_t address) +{ + udd_disable_address(); + udd_configure_address(address); + udd_enable_address(); +} + + +uint8_t udd_getaddress(void) +{ + return udd_get_configured_address(); +} + + +uint16_t udd_get_frame_number(void) +{ + return udd_frame_number(); +} + +uint16_t udd_get_micro_frame_number(void) +{ + return udd_micro_frame_number(); +} + +void udd_send_remotewakeup(void) +{ +#ifndef UDD_NO_SLEEP_MGR + if (!udd_b_idle) +#endif + { + udd_sleep_mode(true); // Enter in IDLE mode + otg_unfreeze_clock(); + udd_initiate_remote_wake_up(); + } +} + + +void udd_set_setup_payload(uint8_t *payload, uint16_t payload_size) +{ + udd_g_ctrlreq.payload = payload; + udd_g_ctrlreq.payload_size = payload_size; +} + + +#if (0 != USB_DEVICE_MAX_EP) +bool udd_ep_alloc(udd_ep_id_t ep, uint8_t bmAttributes, + uint16_t MaxEndpointSize) +{ + bool b_dir_in; + uint16_t ep_allocated; + uint8_t nb_bank, bank, i; + + b_dir_in = ep & USB_EP_DIR_IN; + ep = ep & USB_EP_ADDR_MASK; + + if (ep > USB_DEVICE_MAX_EP) { + return false; + } + if (Is_udd_endpoint_enabled(ep)) { + return false; + } + dbg_print("alloc(%x, %d) ", ep, MaxEndpointSize); + + // Bank choise + switch (bmAttributes & USB_EP_TYPE_MASK) { + case USB_EP_TYPE_ISOCHRONOUS: + nb_bank = UDD_ISOCHRONOUS_NB_BANK(ep); + break; + case USB_EP_TYPE_INTERRUPT: + nb_bank = UDD_INTERRUPT_NB_BANK(ep); + break; + case USB_EP_TYPE_BULK: + nb_bank = UDD_BULK_NB_BANK(ep); + break; + default: + Assert(false); + return false; + } + switch (nb_bank) { + case 1: + bank = UOTGHS_DEVEPTCFG_EPBK_1_BANK >> + UOTGHS_DEVEPTCFG_EPBK_Pos; + break; + case 2: + bank = UOTGHS_DEVEPTCFG_EPBK_2_BANK >> + UOTGHS_DEVEPTCFG_EPBK_Pos; + break; + case 3: + bank = UOTGHS_DEVEPTCFG_EPBK_3_BANK >> + UOTGHS_DEVEPTCFG_EPBK_Pos; + break; + default: + Assert(false); + return false; + } + + // Check if endpoint size is 8,16,32,64,128,256,512 or 1023 + Assert(MaxEndpointSize < 1024); + Assert((MaxEndpointSize == 1023) + || !(MaxEndpointSize & (MaxEndpointSize - 1))); + Assert(MaxEndpointSize >= 8); + + // Set configuration of new endpoint + udd_configure_endpoint(ep, bmAttributes, (b_dir_in ? 1 : 0), + MaxEndpointSize, bank); + ep_allocated = 1 << ep; + + // Unalloc endpoints superior + for (i = USB_DEVICE_MAX_EP; i > ep; i--) { + if (Is_udd_endpoint_enabled(i)) { + ep_allocated |= 1 << i; + udd_disable_endpoint(i); + udd_unallocate_memory(i); + } + } + + // Realloc/Enable endpoints + for (i = ep; i <= USB_DEVICE_MAX_EP; i++) { + if (ep_allocated & (1 << i)) { + udd_ep_job_t *ptr_job = &udd_ep_job[i - 1]; + bool b_restart = ptr_job->busy; + // Restart running job because + // memory window slides up and its data is lost + ptr_job->busy = false; + // Re-allocate memory + udd_allocate_memory(i); + udd_enable_endpoint(i); + if (!Is_udd_endpoint_configured(i)) { + dbg_print("ErrRealloc%d ", i); + if (NULL == ptr_job->call_trans) { + return false; + } + if (Is_udd_endpoint_in(i)) { + i |= USB_EP_DIR_IN; + } + ptr_job->call_trans(UDD_EP_TRANSFER_ABORT, + ptr_job->buf_cnt, i); + return false; + } + udd_enable_endpoint_bank_autoswitch(i); + if (b_restart) { + // Re-run the job remaining part +# ifdef UDD_EP_FIFO_SUPPORTED + if (!Is_udd_endpoint_dma_supported(i) + && !Is_udd_endpoint_in(i)) { + ptr_job->buf_cnt -= ptr_job->buf_load; + } +# else + ptr_job->buf_cnt -= ptr_job->buf_load; +# endif + b_restart = udd_ep_run(Is_udd_endpoint_in(i) ? + (i | USB_EP_DIR_IN) : i, + ptr_job->b_shortpacket, + &ptr_job->buf[ptr_job->buf_cnt], + ptr_job->buf_size + - ptr_job->buf_cnt, + ptr_job->call_trans); + if (!b_restart) { + dbg_print("ErrReRun%d ", i); + return false; + } + } + } + } + return true; +} + + +void udd_ep_free(udd_ep_id_t ep) +{ + uint8_t ep_index = ep & USB_EP_ADDR_MASK; + if (USB_DEVICE_MAX_EP < ep_index) { + return; + } + udd_disable_endpoint(ep_index); + udd_unallocate_memory(ep_index); + udd_ep_abort_job(ep); + udd_ep_job[ep_index - 1].stall_requested = false; +} + + +bool udd_ep_is_halted(udd_ep_id_t ep) +{ + uint8_t ep_index = ep & USB_EP_ADDR_MASK; + return Is_udd_endpoint_stall_requested(ep_index); +} + + +bool udd_ep_set_halt(udd_ep_id_t ep) +{ + uint8_t ep_index = ep & USB_EP_ADDR_MASK; + udd_ep_job_t *ptr_job = &udd_ep_job[ep_index - 1]; + irqflags_t flags; + + if (USB_DEVICE_MAX_EP < ep_index) { + return false; + } + + if (Is_udd_endpoint_stall_requested(ep_index) // Endpoint stalled + || ptr_job->stall_requested) { // Endpoint stall is requested + return true; // Already STALL + } + + if (ptr_job->busy == true) { + return false; // Job on going, stall impossible + } + + flags = cpu_irq_save(); + if ((ep & USB_EP_DIR_IN) && (0 != udd_nb_busy_bank(ep_index))) { + // Delay the stall after the end of IN transfer on USB line + ptr_job->stall_requested = true; +#ifdef UDD_EP_FIFO_SUPPORTED + udd_disable_in_send_interrupt(ep_index); + udd_enable_endpoint_bank_autoswitch(ep_index); +#endif + udd_enable_bank_interrupt(ep_index); + udd_enable_endpoint_interrupt(ep_index); + cpu_irq_restore(flags); + return true; + } + // Stall endpoint immediately + udd_disable_endpoint_bank_autoswitch(ep_index); + udd_ack_stall(ep_index); + udd_enable_stall_handshake(ep_index); + cpu_irq_restore(flags); + return true; +} + + +bool udd_ep_clear_halt(udd_ep_id_t ep) +{ + uint8_t ep_index = ep & USB_EP_ADDR_MASK; + udd_ep_job_t *ptr_job = &udd_ep_job[ep_index - 1]; + bool b_stall_cleared = false; + + if (USB_DEVICE_MAX_EP < ep_index) + return false; + + if (ptr_job->stall_requested) { + // Endpoint stall has been requested but not done + // Remove stall request + ptr_job->stall_requested = false; + udd_disable_bank_interrupt(ep_index); + udd_disable_endpoint_interrupt(ep_index); + b_stall_cleared = true; + } + if (Is_udd_endpoint_stall_requested(ep_index)) { + if (Is_udd_stall(ep_index)) { + udd_ack_stall(ep_index); + // A packet has been stalled + // then reset datatoggle + udd_reset_data_toggle(ep_index); + } + // Disable stall + udd_disable_stall_handshake(ep_index); + udd_enable_endpoint_bank_autoswitch(ep_index); + b_stall_cleared = true; + } + if (b_stall_cleared) { + // If a job is register on clear halt action + // then execute callback + if (ptr_job->busy == true) { + ptr_job->busy = false; + ptr_job->call_nohalt(); + } + } + return true; +} + + +bool udd_ep_run(udd_ep_id_t ep, bool b_shortpacket, + uint8_t * buf, iram_size_t buf_size, + udd_callback_trans_t callback) +{ +#ifdef UDD_EP_FIFO_SUPPORTED + bool b_dir_in = Is_udd_endpoint_in(ep & USB_EP_ADDR_MASK); +#endif + udd_ep_job_t *ptr_job; + irqflags_t flags; + + ep &= USB_EP_ADDR_MASK; + if (USB_DEVICE_MAX_EP < ep) { + return false; + } + + // Get job about endpoint + ptr_job = &udd_ep_job[ep - 1]; + + if ((!Is_udd_endpoint_enabled(ep)) + || Is_udd_endpoint_stall_requested(ep) + || ptr_job->stall_requested) { + return false; // Endpoint is halted + } + + flags = cpu_irq_save(); + if (ptr_job->busy == true) { + cpu_irq_restore(flags); + return false; // Job already on going + } + ptr_job->busy = true; + cpu_irq_restore(flags); + + // No job running. Let's setup a new one. + ptr_job->buf = buf; + ptr_job->buf_size = buf_size; + ptr_job->buf_cnt = 0; + ptr_job->buf_load = 0; + ptr_job->call_trans = callback; + ptr_job->b_shortpacket = b_shortpacket || (buf_size == 0); + +#ifdef UDD_EP_FIFO_SUPPORTED + // No DMA support + if (!Is_udd_endpoint_dma_supported(ep)) { + dbg_print("ex%x.%c%d\n\r", ep, b_dir_in ? 'i':'o', buf_size); + flags = cpu_irq_save(); + udd_enable_endpoint_interrupt(ep); + if (b_dir_in) { + udd_disable_endpoint_bank_autoswitch(ep); + udd_enable_in_send_interrupt(ep); + } else { + udd_disable_endpoint_bank_autoswitch(ep); + udd_enable_out_received_interrupt(ep); + } + cpu_irq_restore(flags); + return true; + } +#endif // UDD_EP_FIFO_SUPPORTED + +#ifdef UDD_EP_DMA_SUPPORTED + // Request first DMA transfer + dbg_print("(exDMA%x) ", ep); + udd_ep_trans_done(ep); + return true; +#endif +} + + +void udd_ep_abort(udd_ep_id_t ep) +{ + uint8_t ep_index = ep & USB_EP_ADDR_MASK; + +#ifdef UDD_EP_FIFO_SUPPORTED + if (!Is_udd_endpoint_dma_supported(ep_index)) { + // Disable interrupts + udd_disable_endpoint_interrupt(ep_index); + udd_disable_out_received_interrupt(ep_index); + udd_disable_in_send_interrupt(ep_index); + } else +#endif + { + // Stop DMA transfer + udd_disable_endpoint_dma_interrupt(ep_index); + udd_endpoint_dma_set_control(ep_index, 0); + } + udd_disable_endpoint_interrupt(ep_index); + // Kill IN banks + if (ep & USB_EP_DIR_IN) { + while(udd_nb_busy_bank(ep_index)) { + udd_kill_last_in_bank(ep_index); + while(Is_udd_kill_last(ep_index)); + } + } + udd_ep_abort_job(ep); +} + + +bool udd_ep_wait_stall_clear(udd_ep_id_t ep, + udd_callback_halt_cleared_t callback) +{ + udd_ep_job_t *ptr_job; + + ep &= USB_EP_ADDR_MASK; + if (USB_DEVICE_MAX_EP < ep) { + return false; + } + + ptr_job = &udd_ep_job[ep - 1]; + + if (!Is_udd_endpoint_enabled(ep)) { + return false; // Endpoint not enabled + } + + // Wait clear halt endpoint + if (ptr_job->busy == true) { + return false; // Job already on going + } + + if (Is_udd_endpoint_stall_requested(ep) + || ptr_job->stall_requested) { + // Endpoint halted then registes the callback + ptr_job->busy = true; + ptr_job->call_nohalt = callback; + } else { + // endpoint not halted then call directly callback + callback(); + } + return true; +} +#endif // (0 != USB_DEVICE_MAX_EP) + + +#ifdef USB_DEVICE_HS_SUPPORT + +void udd_test_mode_j(void) +{ + udd_enable_hs_test_mode(); + udd_enable_hs_test_mode_j(); +} + + +void udd_test_mode_k(void) +{ + udd_enable_hs_test_mode(); + udd_enable_hs_test_mode_k(); +} + + +void udd_test_mode_se0_nak(void) +{ + udd_enable_hs_test_mode(); +} + + +void udd_test_mode_packet(void) +{ + uint8_t i; + uint8_t *ptr_dest; + const uint8_t *ptr_src; + + const uint8_t test_packet[] = { + // 00000000 * 9 + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + // 01010101 * 8 + 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, + // 01110111 * 8 + 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, + // 0, {111111S * 15}, 111111 + 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, + 0xFF, 0xFF, + // S, 111111S, {0111111S * 7} + 0x7F, 0xBF, 0xDF, 0xEF, 0xF7, 0xFB, 0xFD, + // 00111111, {S0111111 * 9}, S0 + 0xFC, 0x7E, 0xBF, 0xDF, 0xEF, 0xF7, 0xFB, 0xFD, 0x7E + }; + + // Reconfigure control endpoint to bulk IN endpoint + udd_disable_endpoint(0); + udd_configure_endpoint(0, USB_EP_TYPE_BULK, 1, + 64, UOTGHS_DEVEPTCFG_EPBK_1_BANK); + udd_allocate_memory(0); + udd_enable_endpoint(0); + + udd_enable_hs_test_mode(); + udd_enable_hs_test_mode_packet(); + + // Send packet on endpoint 0 + ptr_dest = (uint8_t *) & udd_get_endpoint_fifo_access(0, 8); + ptr_src = test_packet; + + for (i = 0; i < sizeof(test_packet); i++) { + *ptr_dest++ = *ptr_src++; + } + udd_ack_fifocon(0); +} +#endif // USB_DEVICE_HS_SUPPORT + + + +// ------------------------ +//--- INTERNAL ROUTINES TO MANAGED THE CONTROL ENDPOINT + +static void udd_reset_ep_ctrl(void) +{ + irqflags_t flags; + + // Reset USB address to 0 + udd_configure_address(0); + udd_enable_address(); + + // Alloc and configure control endpoint + udd_configure_endpoint(0, + USB_EP_TYPE_CONTROL, + 0, + USB_DEVICE_EP_CTRL_SIZE, + UOTGHS_DEVEPTCFG_EPBK_1_BANK); + + udd_allocate_memory(0); + udd_enable_endpoint(0); + flags = cpu_irq_save(); + udd_enable_setup_received_interrupt(0); + udd_enable_out_received_interrupt(0); + udd_enable_endpoint_interrupt(0); + cpu_irq_restore(flags); +} + +static void udd_ctrl_init(void) +{ + irqflags_t flags; + flags = cpu_irq_save(); + + // In case of abort of IN Data Phase: + // No need to abort IN transfer (rise TXINI), + // because it is automatically done by hardware when a Setup packet is received. + // But the interrupt must be disabled to don't generate interrupt TXINI + // after SETUP reception. + udd_disable_in_send_interrupt(0); + cpu_irq_restore(flags); + + // In case of OUT ZLP event is no processed before Setup event occurs + udd_ack_out_received(0); + + udd_g_ctrlreq.callback = NULL; + udd_g_ctrlreq.over_under_run = NULL; + udd_g_ctrlreq.payload_size = 0; + udd_ep_control_state = UDD_EPCTRL_SETUP; +} + + +static void udd_ctrl_setup_received(void) +{ + irqflags_t flags; + uint8_t i; + + if (UDD_EPCTRL_SETUP != udd_ep_control_state) { + // May be a hidden DATA or ZLP phase or protocol abort + udd_ctrl_endofrequest(); + + // Reinitializes control endpoint management + udd_ctrl_init(); + } + // Fill setup request structure + if (8 != udd_byte_count(0)) { + udd_ctrl_stall_data(); + udd_ack_setup_received(0); + return; // Error data number doesn't correspond to SETUP packet + } + uint8_t *ptr = (uint8_t *) & udd_get_endpoint_fifo_access(0,8); + for (i = 0; i < 8; i++) { + ((uint8_t*) &udd_g_ctrlreq.req)[i] = *ptr++; + } + // Manage LSB/MSB to fit with CPU usage + udd_g_ctrlreq.req.wValue = le16_to_cpu(udd_g_ctrlreq.req.wValue); + udd_g_ctrlreq.req.wIndex = le16_to_cpu(udd_g_ctrlreq.req.wIndex); + udd_g_ctrlreq.req.wLength = le16_to_cpu(udd_g_ctrlreq.req.wLength); + + // Decode setup request + if (udc_process_setup() == false) { + // Setup request unknow then stall it + udd_ctrl_stall_data(); + udd_ack_setup_received(0); + return; + } + udd_ack_setup_received(0); + + if (Udd_setup_is_in()) { + // IN data phase requested + udd_ctrl_prev_payload_buf_cnt = 0; + udd_ctrl_payload_buf_cnt = 0; + udd_ep_control_state = UDD_EPCTRL_DATA_IN; + udd_ctrl_in_sent(); // Send first data transfer + } else { + if (0 == udd_g_ctrlreq.req.wLength) { + // No data phase requested + // Send IN ZLP to ACK setup request + udd_ctrl_send_zlp_in(); + return; + } + // OUT data phase requested + udd_ctrl_prev_payload_buf_cnt = 0; + udd_ctrl_payload_buf_cnt = 0; + udd_ep_control_state = UDD_EPCTRL_DATA_OUT; + // To detect a protocol error, enable nak interrupt on data IN phase + udd_ack_nak_in(0); + flags = cpu_irq_save(); + udd_enable_nak_in_interrupt(0); + cpu_irq_restore(flags); + } +} + + +static void udd_ctrl_in_sent(void) +{ + static bool b_shortpacket = false; + uint16_t nb_remain; + uint8_t i; + uint8_t *ptr_dest, *ptr_src; + irqflags_t flags; + + flags = cpu_irq_save(); + udd_disable_in_send_interrupt(0); + cpu_irq_restore(flags); + + if (UDD_EPCTRL_HANDSHAKE_WAIT_IN_ZLP == udd_ep_control_state) { + // ZLP on IN is sent, then valid end of setup request + udd_ctrl_endofrequest(); + // Reinitializes control endpoint management + udd_ctrl_init(); + return; + } + Assert(udd_ep_control_state == UDD_EPCTRL_DATA_IN); + + nb_remain = udd_g_ctrlreq.payload_size - udd_ctrl_payload_buf_cnt; + if (0 == nb_remain) { + // All content of current buffer payload are sent + // Update number of total data sending by previous playlaod buffer + udd_ctrl_prev_payload_buf_cnt += udd_ctrl_payload_buf_cnt; + if ((udd_g_ctrlreq.req.wLength == udd_ctrl_prev_payload_buf_cnt) + || b_shortpacket) { + // All data requested are transfered or a short packet has been sent + // then it is the end of data phase. + // Generate an OUT ZLP for handshake phase. + udd_ctrl_send_zlp_out(); + return; + } + // Need of new buffer because the data phase is not complete + if ((!udd_g_ctrlreq.over_under_run) + || (!udd_g_ctrlreq.over_under_run())) { + // Underrun then send zlp on IN + // Here nb_remain=0 and allows to send a IN ZLP + } else { + // A new payload buffer is given + udd_ctrl_payload_buf_cnt = 0; + nb_remain = udd_g_ctrlreq.payload_size; + } + } + // Continue transfer and send next data + if (nb_remain >= USB_DEVICE_EP_CTRL_SIZE) { + nb_remain = USB_DEVICE_EP_CTRL_SIZE; + b_shortpacket = false; + } else { + b_shortpacket = true; + } + // Fill buffer of endpoint control + ptr_dest = (uint8_t *) & udd_get_endpoint_fifo_access(0, 8); + ptr_src = udd_g_ctrlreq.payload + udd_ctrl_payload_buf_cnt; + // Critical section + // Only in case of DATA IN phase abort without USB Reset signal after. + // The IN data don't must be written in endpoint 0 DPRAM during + // a next setup reception in same endpoint 0 DPRAM. + // Thereby, an OUT ZLP reception must check before IN data write + // and if no OUT ZLP is received the data must be written quickly (800µs) + // before an eventually ZLP OUT and SETUP reception + flags = cpu_irq_save(); + if (Is_udd_out_received(0)) { + // IN DATA phase aborted by OUT ZLP + cpu_irq_restore(flags); + udd_ep_control_state = UDD_EPCTRL_HANDSHAKE_WAIT_OUT_ZLP; + return; // Exit of IN DATA phase + } + // Write quickly the IN data + for (i = 0; i < nb_remain; i++) { + *ptr_dest++ = *ptr_src++; + } + udd_ctrl_payload_buf_cnt += nb_remain; + + // Validate and send the data available in the control endpoint buffer + udd_ack_in_send(0); + udd_enable_in_send_interrupt(0); + // In case of abort of DATA IN phase, no need to enable nak OUT interrupt + // because OUT endpoint is already free and ZLP OUT accepted. + cpu_irq_restore(flags); +} + + +static void udd_ctrl_out_received(void) +{ + irqflags_t flags; + uint8_t i; + uint16_t nb_data; + + if (UDD_EPCTRL_DATA_OUT != udd_ep_control_state) { + if ((UDD_EPCTRL_DATA_IN == udd_ep_control_state) + || (UDD_EPCTRL_HANDSHAKE_WAIT_OUT_ZLP == + udd_ep_control_state)) { + // End of SETUP request: + // - Data IN Phase aborted, + // - or last Data IN Phase hidden by ZLP OUT sending quiclky, + // - or ZLP OUT received normaly. + udd_ctrl_endofrequest(); + } else { + // Protocol error during SETUP request + udd_ctrl_stall_data(); + } + // Reinitializes control endpoint management + udd_ctrl_init(); + return; + } + // Read data received during OUT phase + nb_data = udd_byte_count(0); + if (udd_g_ctrlreq.payload_size < (udd_ctrl_payload_buf_cnt + nb_data)) { + // Payload buffer too small + nb_data = udd_g_ctrlreq.payload_size - udd_ctrl_payload_buf_cnt; + } + uint8_t *ptr_src = (uint8_t *) & udd_get_endpoint_fifo_access(0, 8); + uint8_t *ptr_dest = udd_g_ctrlreq.payload + udd_ctrl_payload_buf_cnt; + for (i = 0; i < nb_data; i++) { + *ptr_dest++ = *ptr_src++; + } + udd_ctrl_payload_buf_cnt += nb_data; + + if ((USB_DEVICE_EP_CTRL_SIZE != nb_data) + || (udd_g_ctrlreq.req.wLength <= + (udd_ctrl_prev_payload_buf_cnt + + udd_ctrl_payload_buf_cnt))) { + // End of reception because it is a short packet + // Before send ZLP, call intermediat calback + // in case of data receiv generate a stall + udd_g_ctrlreq.payload_size = udd_ctrl_payload_buf_cnt; + if (NULL != udd_g_ctrlreq.over_under_run) { + if (!udd_g_ctrlreq.over_under_run()) { + // Stall ZLP + udd_ctrl_stall_data(); + // Ack reception of OUT to replace NAK by a STALL + udd_ack_out_received(0); + return; + } + } + // Send IN ZLP to ACK setup request + udd_ack_out_received(0); + udd_ctrl_send_zlp_in(); + return; + } + + if (udd_g_ctrlreq.payload_size == udd_ctrl_payload_buf_cnt) { + // Overrun then request a new payload buffer + if (!udd_g_ctrlreq.over_under_run) { + // No callback availabled to request a new payload buffer + udd_ctrl_stall_data(); + // Ack reception of OUT to replace NAK by a STALL + udd_ack_out_received(0); + return; + } + if (!udd_g_ctrlreq.over_under_run()) { + // No new payload buffer delivered + udd_ctrl_stall_data(); + // Ack reception of OUT to replace NAK by a STALL + udd_ack_out_received(0); + return; + } + // New payload buffer available + // Update number of total data received + udd_ctrl_prev_payload_buf_cnt += udd_ctrl_payload_buf_cnt; + // Reinit reception on payload buffer + udd_ctrl_payload_buf_cnt = 0; + } + // Free buffer of control endpoint to authorize next reception + udd_ack_out_received(0); + // To detect a protocol error, enable nak interrupt on data IN phase + udd_ack_nak_in(0); + flags = cpu_irq_save(); + udd_enable_nak_in_interrupt(0); + cpu_irq_restore(flags); +} + + +static void udd_ctrl_underflow(void) +{ + if (Is_udd_out_received(0)) + return; // Underflow ignored if OUT data is received + + if (UDD_EPCTRL_DATA_OUT == udd_ep_control_state) { + // Host want to stop OUT transaction + // then stop to wait OUT data phase and wait IN ZLP handshake + udd_ctrl_send_zlp_in(); + } else if (UDD_EPCTRL_HANDSHAKE_WAIT_OUT_ZLP == udd_ep_control_state) { + // A OUT handshake is waiting by device, + // but host want extra IN data then stall extra IN data + udd_enable_stall_handshake(0); + } +} + + +static void udd_ctrl_overflow(void) +{ + if (Is_udd_in_send(0)) + return; // Overflow ignored if IN data is received + + // The case of UDD_EPCTRL_DATA_IN is not managed + // because the OUT endpoint is already free and OUT ZLP accepted + + if (UDD_EPCTRL_HANDSHAKE_WAIT_IN_ZLP == udd_ep_control_state) { + // A IN handshake is waiting by device, + // but host want extra OUT data then stall extra OUT data + udd_enable_stall_handshake(0); + } +} + + +static void udd_ctrl_stall_data(void) +{ + // Stall all packets on IN & OUT control endpoint + udd_ep_control_state = UDD_EPCTRL_STALL_REQ; + udd_enable_stall_handshake(0); +} + + +static void udd_ctrl_send_zlp_in(void) +{ + irqflags_t flags; + + udd_ep_control_state = UDD_EPCTRL_HANDSHAKE_WAIT_IN_ZLP; + + // Validate and send empty IN packet on control endpoint + flags = cpu_irq_save(); + // Send ZLP on IN endpoint + udd_ack_in_send(0); + udd_enable_in_send_interrupt(0); + // To detect a protocol error, enable nak interrupt on data OUT phase + udd_ack_nak_out(0); + udd_enable_nak_out_interrupt(0); + cpu_irq_restore(flags); +} + + +static void udd_ctrl_send_zlp_out(void) +{ + irqflags_t flags; + + udd_ep_control_state = UDD_EPCTRL_HANDSHAKE_WAIT_OUT_ZLP; + // No action is necessary to accept OUT ZLP + // because the buffer of control endpoint is already free + + // To detect a protocol error, enable nak interrupt on data IN phase + flags = cpu_irq_save(); + udd_ack_nak_in(0); + udd_enable_nak_in_interrupt(0); + cpu_irq_restore(flags); +} + + +static void udd_ctrl_endofrequest(void) +{ + // If a callback is registered then call it + if (udd_g_ctrlreq.callback) { + udd_g_ctrlreq.callback(); + } +} + + +static bool udd_ctrl_interrupt(void) +{ + + if (!Is_udd_endpoint_interrupt(0)) { + return false; // No interrupt events on control endpoint + } + + dbg_print("0: "); + + // By default disable overflow and underflow interrupt + udd_disable_nak_in_interrupt(0); + udd_disable_nak_out_interrupt(0); + + // Search event on control endpoint + if (Is_udd_setup_received(0)) { + dbg_print("stup "); + // SETUP packet received + udd_ctrl_setup_received(); + return true; + } + if (Is_udd_in_send(0) && Is_udd_in_send_interrupt_enabled(0)) { + dbg_print("in "); + // IN packet sent + udd_ctrl_in_sent(); + return true; + } + if (Is_udd_out_received(0)) { + dbg_print("out "); + // OUT packet received + udd_ctrl_out_received(); + return true; + } + if (Is_udd_nak_out(0)) { + dbg_print("nako "); + // Overflow on OUT packet + udd_ack_nak_out(0); + udd_ctrl_overflow(); + return true; + } + if (Is_udd_nak_in(0)) { + dbg_print("naki "); + // Underflow on IN packet + udd_ack_nak_in(0); + udd_ctrl_underflow(); + return true; + } + dbg_print("n%x ", UOTGHS_ARRAY(UOTGHS_DEVEPTISR[0], 0)); + return false; +} + + +// ------------------------ +//--- INTERNAL ROUTINES TO MANAGED THE BULK/INTERRUPT/ISOCHRONOUS ENDPOINTS + +#if (0 != USB_DEVICE_MAX_EP) + +static void udd_ep_job_table_reset(void) +{ + uint8_t i; + for (i = 0; i < USB_DEVICE_MAX_EP; i++) { + udd_ep_job[i].busy = false; + udd_ep_job[i].stall_requested = false; + } +} + + +static void udd_ep_job_table_kill(void) +{ + uint8_t i; + + // For each endpoint, kill job + for (i = 0; i < USB_DEVICE_MAX_EP; i++) { + udd_ep_finish_job(&udd_ep_job[i], true, i + 1); + } +} + + +static void udd_ep_abort_job(udd_ep_id_t ep) +{ + ep &= USB_EP_ADDR_MASK; + + // Abort job on endpoint + udd_ep_finish_job(&udd_ep_job[ep - 1], true, ep); +} + + +static void udd_ep_finish_job(udd_ep_job_t * ptr_job, bool b_abort, uint8_t ep_num) +{ + if (ptr_job->busy == false) { + return; // No on-going job + } + dbg_print("(JobE%x:%d) ", (ptr_job-udd_ep_job)+1, b_abort); + ptr_job->busy = false; + if (NULL == ptr_job->call_trans) { + return; // No callback linked to job + } + if (Is_udd_endpoint_in(ep_num)) { + ep_num |= USB_EP_DIR_IN; + } + ptr_job->call_trans((b_abort) ? UDD_EP_TRANSFER_ABORT : + UDD_EP_TRANSFER_OK, ptr_job->buf_size, ep_num); +} + +#ifdef UDD_EP_DMA_SUPPORTED +static void udd_ep_trans_done(udd_ep_id_t ep) +{ + uint32_t udd_dma_ctrl = 0; + udd_ep_job_t *ptr_job; + iram_size_t next_trans; + irqflags_t flags; + + // Get job corresponding at endpoint + ptr_job = &udd_ep_job[ep - 1]; + + if (!ptr_job->busy) { + return; // No job is running, then ignore it (system error) + } + + if (ptr_job->buf_cnt != ptr_job->buf_size) { + // Need to send or receiv other data + next_trans = ptr_job->buf_size - ptr_job->buf_cnt; + + if (UDD_ENDPOINT_MAX_TRANS < next_trans) { + // The USB hardware support a maximum + // transfer size of UDD_ENDPOINT_MAX_TRANS Bytes + next_trans = UDD_ENDPOINT_MAX_TRANS; + + // Set 0 to tranfer the maximum + udd_dma_ctrl = UOTGHS_DEVDMACONTROL_BUFF_LENGTH(0); + } else { + udd_dma_ctrl = UOTGHS_DEVDMACONTROL_BUFF_LENGTH(next_trans); + } + if (Is_udd_endpoint_in(ep)) { + if (0 != (next_trans % udd_get_endpoint_size(ep))) { + // Enable short packet option + // else the DMA transfer is accepted + // and interrupt DMA valid but nothing is sent. + udd_dma_ctrl |= UOTGHS_DEVDMACONTROL_END_B_EN; + // No need to request another ZLP + ptr_job->b_shortpacket = false; + } + } else { + if ((USB_EP_TYPE_ISOCHRONOUS != udd_get_endpoint_type(ep)) + || (next_trans <= (iram_size_t) udd_get_endpoint_size(ep))) { + + // Enable short packet reception + udd_dma_ctrl |= UOTGHS_DEVDMACONTROL_END_TR_IT + | UOTGHS_DEVDMACONTROL_END_TR_EN; + } + } + + // Start USB DMA to fill or read fifo of the selected endpoint + udd_endpoint_dma_set_addr(ep, (uint32_t) & ptr_job->buf[ptr_job->buf_cnt]); + udd_dma_ctrl |= UOTGHS_DEVDMACONTROL_END_BUFFIT | + UOTGHS_DEVDMACONTROL_CHANN_ENB; + + + // Disable IRQs to have a short sequence + // between read of EOT_STA and DMA enable + flags = cpu_irq_save(); + if (!(udd_endpoint_dma_get_status(ep) + & UOTGHS_DEVDMASTATUS_END_TR_ST)) { + dbg_print("dmaS%x ", ep); + udd_endpoint_dma_set_control(ep, udd_dma_ctrl); + ptr_job->buf_cnt += next_trans; + ptr_job->buf_load = next_trans; + udd_enable_endpoint_dma_interrupt(ep); + cpu_irq_restore(flags); + return; + } + cpu_irq_restore(flags); + + // Here a ZLP has been recieved + // and the DMA transfer must be not started. + // It is the end of transfer + ptr_job->buf_size = ptr_job->buf_cnt; + } + if (Is_udd_endpoint_in(ep)) { + if (ptr_job->b_shortpacket) { + dbg_print("zlpS%x ", ep); + // Need to send a ZLP (No possible with USB DMA) + // enable interrupt to wait a free bank to sent ZLP + udd_ack_in_send(ep); + if (Is_udd_write_enabled(ep)) { + // Force interrupt in case of ep already free + udd_raise_in_send(ep); + } + udd_enable_in_send_interrupt(ep); + udd_enable_endpoint_interrupt(ep); + return; + } + } + dbg_print("dmaE "); + // Call callback to signal end of transfer + udd_ep_finish_job(ptr_job, false, ep); +} +#endif + +#ifdef UDD_EP_FIFO_SUPPORTED +static void udd_ep_in_sent(udd_ep_id_t ep) +{ + udd_ep_job_t *ptr_job = &udd_ep_job[ep - 1]; + uint8_t *ptr_src = &ptr_job->buf[ptr_job->buf_cnt]; + uint8_t *ptr_dst = (uint8_t *) & udd_get_endpoint_fifo_access(ep, 8); + uint32_t pkt_size = udd_get_endpoint_size(ep); + uint32_t nb_data = 0, i; + uint32_t nb_remain; + irqflags_t flags; + + // All transfer done, including ZLP, Finish Job + if (ptr_job->buf_cnt >= ptr_job->buf_size && !ptr_job->b_shortpacket) { + flags = cpu_irq_save(); + udd_disable_in_send_interrupt(ep); + udd_disable_endpoint_interrupt(ep); + cpu_irq_restore(flags); + + ptr_job->buf_size = ptr_job->buf_cnt; // buf_size is passed to callback as XFR count + udd_ep_finish_job(ptr_job, false, ep); + return; + } else { + // ACK TXINI + udd_ack_in_send(ep); + // Fill FIFO + ptr_dst = (uint8_t *) & udd_get_endpoint_fifo_access(ep, 8); + ptr_src = &ptr_job->buf[ptr_job->buf_cnt]; + nb_remain = ptr_job->buf_size - ptr_job->buf_cnt; + // Fill a bank even if no data (ZLP) + nb_data = min(nb_remain, pkt_size); + // Modify job information + ptr_job->buf_cnt += nb_data; + ptr_job->buf_load = nb_data; + + // Copy buffer to FIFO + for (i = 0; i < nb_data; i++) { + *ptr_dst++ = *ptr_src++; + } + // Switch to next bank + udd_ack_fifocon(ep); + // ZLP? + if (nb_data < pkt_size) { + ptr_job->b_shortpacket = false; + } + } +} + +static void udd_ep_out_received(udd_ep_id_t ep) +{ + udd_ep_job_t *ptr_job = &udd_ep_job[ep - 1]; + uint32_t nb_data = 0, i; + uint32_t nb_remain = ptr_job->buf_size - ptr_job->buf_cnt; + uint32_t pkt_size = udd_get_endpoint_size(ep); + uint8_t *ptr_src = (uint8_t *) & udd_get_endpoint_fifo_access(ep, 8); + uint8_t *ptr_dst = &ptr_job->buf[ptr_job->buf_cnt]; + bool b_full = false, b_short = false; + + // Clear RX OUT + udd_ack_out_received(ep); + + // Read byte count + nb_data = udd_byte_count(ep); + if (nb_data < pkt_size) { + b_short = true; + } + //dbg_print("o%d ", ep); + //dbg_print("%d ", nb_data); + // Copy data if there is + if (nb_data > 0) { + if (nb_data >= nb_remain) { + nb_data = nb_remain; + b_full = true; + } + // Modify job information + ptr_job->buf_cnt += nb_data; + ptr_job->buf_load = nb_data; + // Copy FIFO to buffer + for (i = 0; i < nb_data; i++) { + *ptr_dst++ = *ptr_src++; + } + } + // Clear FIFO Status + udd_ack_fifocon(ep); + // Finish job on error or short packet + if (b_full || b_short) { + //dbg_print("EoO%d\n\r", ep); + udd_disable_out_received_interrupt(ep); + udd_disable_endpoint_interrupt(ep); + ptr_job->buf_size = ptr_job->buf_cnt; // buf_size is passed to callback as XFR count + udd_ep_finish_job(ptr_job, false, ep); + } +} +#endif // #ifdef UDD_EP_FIFO_SUPPORTED + +static bool udd_ep_interrupt(void) +{ + udd_ep_id_t ep; + udd_ep_job_t *ptr_job; + + // For each endpoint different of control endpoint (0) + for (ep = 1; ep <= USB_DEVICE_MAX_EP; ep++) { + // Get job corresponding at endpoint + ptr_job = &udd_ep_job[ep - 1]; + +#ifdef UDD_EP_DMA_SUPPORTED + // Check DMA event + if (Is_udd_endpoint_dma_interrupt_enabled(ep) + && Is_udd_endpoint_dma_interrupt(ep)) { + uint32_t nb_remaining; + if (udd_endpoint_dma_get_status(ep) + & UOTGHS_DEVDMASTATUS_CHANN_ENB) { + return true; // Ignore EOT_STA interrupt + } + dbg_print("dma%x: ", ep); + udd_disable_endpoint_dma_interrupt(ep); + // Save number of data no transfered + nb_remaining = (udd_endpoint_dma_get_status(ep) & + UOTGHS_DEVDMASTATUS_BUFF_COUNT_Msk) + >> UOTGHS_DEVDMASTATUS_BUFF_COUNT_Pos; + if (nb_remaining) { + // Transfer no complete (short packet or ZLP) then: + // Update number of data transfered + ptr_job->buf_cnt -= nb_remaining; + // Set transfer complete to stop the transfer + ptr_job->buf_size = ptr_job->buf_cnt; + } + udd_ep_trans_done(ep); + return true; + } +#endif +#ifdef UDD_EP_FIFO_SUPPORTED + // Check RXRDY and TXEMPTY event for none DMA endpoints + if (!Is_udd_endpoint_dma_supported(ep) + && Is_udd_endpoint_interrupt_enabled(ep)) { + dbg_print("ep%x: ", ep); + // RXOUT: Full packet received + if (Is_udd_out_received(ep) + && Is_udd_out_received_interrupt_enabled(ep)) { + dbg_print("Out "); + udd_ep_out_received(ep); + return true; + } + // TXIN: packet sent + if (Is_udd_in_send(ep) + && Is_udd_in_send_interrupt_enabled(ep)) { + dbg_print("In "); + udd_ep_in_sent(ep); + return true; + } + // Errors: Abort? + if (Is_udd_overflow(ep) + || Is_udd_underflow(ep) + || Is_udd_crc_error(ep)) { + dbg_print("Err "); + udd_ep_abort(ep); + return true; + } + } +#endif // UDD_EP_FIFO_SUPPORTED + // Check empty bank interrupt event + if (Is_udd_endpoint_interrupt_enabled(ep)) { + dbg_print("bg%x: ", ep); + if (Is_udd_in_send_interrupt_enabled(ep) + && Is_udd_in_send(ep)) { + dbg_print("I "); + udd_disable_in_send_interrupt(ep); + // One bank is free then send a ZLP + udd_ack_in_send(ep); + udd_ack_fifocon(ep); + udd_ep_finish_job(ptr_job, false, ep); + return true; + } + if (Is_udd_bank_interrupt_enabled(ep) + && (0 == udd_nb_busy_bank(ep))) { + dbg_print("EoT "); + // End of background transfer on IN endpoint + udd_disable_bank_interrupt(ep); + udd_disable_endpoint_interrupt(ep); + + Assert(ptr_job->stall_requested); + // A stall has been requested during backgound transfer + ptr_job->stall_requested = false; + udd_disable_endpoint_bank_autoswitch(ep); + udd_enable_stall_handshake(ep); + udd_reset_data_toggle(ep); + return true; + } + } + } + return false; +} +#endif // (0 != USB_DEVICE_MAX_EP) + +//@} + +#endif // ARDUINO_ARCH_SAM |