aboutsummaryrefslogtreecommitdiff
path: root/Marlin/src/feature/encoder_i2c.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'Marlin/src/feature/encoder_i2c.cpp')
-rw-r--r--Marlin/src/feature/encoder_i2c.cpp1139
1 files changed, 1139 insertions, 0 deletions
diff --git a/Marlin/src/feature/encoder_i2c.cpp b/Marlin/src/feature/encoder_i2c.cpp
new file mode 100644
index 0000000..fa3cf15
--- /dev/null
+++ b/Marlin/src/feature/encoder_i2c.cpp
@@ -0,0 +1,1139 @@
+/**
+ * Marlin 3D Printer Firmware
+ * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
+ *
+ * Based on Sprinter and grbl.
+ * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <https://www.gnu.org/licenses/>.
+ *
+ */
+
+//todo: add support for multiple encoders on a single axis
+//todo: add z axis auto-leveling
+//todo: consolidate some of the related M codes?
+//todo: add endstop-replacement mode?
+//todo: try faster I2C speed; tweak TWI_FREQ (400000L, or faster?); or just TWBR = ((CPU_FREQ / 400000L) - 16) / 2;
+//todo: consider Marlin-optimized Wire library; i.e. MarlinWire, like MarlinSerial
+
+
+#include "../inc/MarlinConfig.h"
+
+#if ENABLED(I2C_POSITION_ENCODERS)
+
+#include "encoder_i2c.h"
+
+#include "../module/stepper.h"
+#include "../gcode/parser.h"
+
+#include "../feature/babystep.h"
+
+#include <Wire.h>
+
+I2CPositionEncodersMgr I2CPEM;
+
+void I2CPositionEncoder::init(const uint8_t address, const AxisEnum axis) {
+ encoderAxis = axis;
+ i2cAddress = address;
+
+ initialized++;
+
+ SERIAL_ECHOLNPAIR("Setting up encoder on ", axis_codes[encoderAxis], " axis, addr = ", address);
+
+ position = get_position();
+}
+
+void I2CPositionEncoder::update() {
+ if (!initialized || !homed || !active) return; //check encoder is set up and active
+
+ position = get_position();
+
+ //we don't want to stop things just because the encoder missed a message,
+ //so we only care about responses that indicate bad magnetic strength
+
+ if (!passes_test(false)) { //check encoder data is good
+ lastErrorTime = millis();
+ /*
+ if (trusted) { //commented out as part of the note below
+ trusted = false;
+ SERIAL_ECHOLMPAIR("Fault detected on ", axis_codes[encoderAxis], " axis encoder. Disengaging error correction until module is trusted again.");
+ }
+ */
+ return;
+ }
+
+ if (!trusted) {
+ /**
+ * This is commented out because it introduces error and can cause bad print quality.
+ *
+ * This code is intended to manage situations where the encoder has reported bad magnetic strength.
+ * This indicates that the magnetic strip was too far away from the sensor to reliably track position.
+ * When this happens, this code resets the offset based on where the printer thinks it is. This has been
+ * shown to introduce errors in actual position which result in drifting prints and poor print quality.
+ * Perhaps a better method would be to disable correction on the axis with a problem, report it to the
+ * user via the status leds on the encoder module and prompt the user to re-home the axis at which point
+ * the encoder would be re-enabled.
+ */
+
+ #if 0
+ // If the magnetic strength has been good for a certain time, start trusting the module again
+
+ if (millis() - lastErrorTime > I2CPE_TIME_TRUSTED) {
+ trusted = true;
+
+ SERIAL_ECHOLNPAIR("Untrusted encoder module on ", axis_codes[encoderAxis], " axis has been fault-free for set duration, reinstating error correction.");
+
+ //the encoder likely lost its place when the error occured, so we'll reset and use the printer's
+ //idea of where it the axis is to re-initialize
+ const float pos = planner.get_axis_position_mm(encoderAxis);
+ int32_t positionInTicks = pos * get_ticks_unit();
+
+ //shift position from previous to current position
+ zeroOffset -= (positionInTicks - get_position());
+
+ #ifdef I2CPE_DEBUG
+ SERIAL_ECHOLNPAIR("Current position is ", pos);
+ SERIAL_ECHOLNPAIR("Position in encoder ticks is ", positionInTicks);
+ SERIAL_ECHOLNPAIR("New zero-offset of ", zeroOffset);
+ SERIAL_ECHOPAIR("New position reads as ", get_position());
+ SERIAL_CHAR('(');
+ SERIAL_DECIMAL(mm_from_count(get_position()));
+ SERIAL_ECHOLNPGM(")");
+ #endif
+ }
+ #endif
+ return;
+ }
+
+ lastPosition = position;
+ const millis_t positionTime = millis();
+
+ //only do error correction if setup and enabled
+ if (ec && ecMethod != I2CPE_ECM_NONE) {
+
+ #ifdef I2CPE_EC_THRESH_PROPORTIONAL
+ const millis_t deltaTime = positionTime - lastPositionTime;
+ const uint32_t distance = ABS(position - lastPosition),
+ speed = distance / deltaTime;
+ const float threshold = constrain((speed / 50), 1, 50) * ecThreshold;
+ #else
+ const float threshold = get_error_correct_threshold();
+ #endif
+
+ //check error
+ #if ENABLED(I2CPE_ERR_ROLLING_AVERAGE)
+ float sum = 0, diffSum = 0;
+
+ errIdx = (errIdx >= I2CPE_ERR_ARRAY_SIZE - 1) ? 0 : errIdx + 1;
+ err[errIdx] = get_axis_error_steps(false);
+
+ LOOP_L_N(i, I2CPE_ERR_ARRAY_SIZE) {
+ sum += err[i];
+ if (i) diffSum += ABS(err[i-1] - err[i]);
+ }
+
+ const int32_t error = int32_t(sum / (I2CPE_ERR_ARRAY_SIZE + 1)); //calculate average for error
+
+ #else
+ const int32_t error = get_axis_error_steps(false);
+ #endif
+
+ //SERIAL_ECHOLNPAIR("Axis error steps: ", error);
+
+ #ifdef I2CPE_ERR_THRESH_ABORT
+ if (ABS(error) > I2CPE_ERR_THRESH_ABORT * planner.settings.axis_steps_per_mm[encoderAxis]) {
+ //kill(PSTR("Significant Error"));
+ SERIAL_ECHOLNPAIR("Axis error over threshold, aborting!", error);
+ safe_delay(5000);
+ }
+ #endif
+
+ #if ENABLED(I2CPE_ERR_ROLLING_AVERAGE)
+ if (errIdx == 0) {
+ // In order to correct for "error" but avoid correcting for noise and non-skips
+ // it must be > threshold and have a difference average of < 10 and be < 2000 steps
+ if (ABS(error) > threshold * planner.settings.axis_steps_per_mm[encoderAxis]
+ && diffSum < 10 * (I2CPE_ERR_ARRAY_SIZE - 1)
+ && ABS(error) < 2000
+ ) { // Check for persistent error (skip)
+ errPrst[errPrstIdx++] = error; // Error must persist for I2CPE_ERR_PRST_ARRAY_SIZE error cycles. This also serves to improve the average accuracy
+ if (errPrstIdx >= I2CPE_ERR_PRST_ARRAY_SIZE) {
+ float sumP = 0;
+ LOOP_L_N(i, I2CPE_ERR_PRST_ARRAY_SIZE) sumP += errPrst[i];
+ const int32_t errorP = int32_t(sumP * RECIPROCAL(I2CPE_ERR_PRST_ARRAY_SIZE));
+ SERIAL_ECHO(axis_codes[encoderAxis]);
+ SERIAL_ECHOLNPAIR(" : CORRECT ERR ", errorP * planner.steps_to_mm[encoderAxis], "mm");
+ babystep.add_steps(encoderAxis, -LROUND(errorP));
+ errPrstIdx = 0;
+ }
+ }
+ else
+ errPrstIdx = 0;
+ }
+ #else
+ if (ABS(error) > threshold * planner.settings.axis_steps_per_mm[encoderAxis]) {
+ //SERIAL_ECHOLN(error);
+ //SERIAL_ECHOLN(position);
+ babystep.add_steps(encoderAxis, -LROUND(error / 2));
+ }
+ #endif
+
+ if (ABS(error) > I2CPE_ERR_CNT_THRESH * planner.settings.axis_steps_per_mm[encoderAxis]) {
+ const millis_t ms = millis();
+ if (ELAPSED(ms, nextErrorCountTime)) {
+ SERIAL_ECHO(axis_codes[encoderAxis]);
+ SERIAL_ECHOLNPAIR(" : LARGE ERR ", int(error), "; diffSum=", diffSum);
+ errorCount++;
+ nextErrorCountTime = ms + I2CPE_ERR_CNT_DEBOUNCE_MS;
+ }
+ }
+ }
+
+ lastPositionTime = positionTime;
+}
+
+void I2CPositionEncoder::set_homed() {
+ if (active) {
+ reset(); // Reset module's offset to zero (so current position is homed / zero)
+ delay(10);
+
+ zeroOffset = get_raw_count();
+ homed++;
+ trusted++;
+
+ #ifdef I2CPE_DEBUG
+ SERIAL_ECHO(axis_codes[encoderAxis]);
+ SERIAL_ECHOLNPAIR(" axis encoder homed, offset of ", zeroOffset, " ticks.");
+ #endif
+ }
+}
+
+void I2CPositionEncoder::set_unhomed() {
+ zeroOffset = 0;
+ homed = trusted = false;
+
+ #ifdef I2CPE_DEBUG
+ SERIAL_ECHO(axis_codes[encoderAxis]);
+ SERIAL_ECHOLNPGM(" axis encoder unhomed.");
+ #endif
+}
+
+bool I2CPositionEncoder::passes_test(const bool report) {
+ if (report) {
+ if (H != I2CPE_MAG_SIG_GOOD) SERIAL_ECHOPGM("Warning. ");
+ SERIAL_ECHO(axis_codes[encoderAxis]);
+ serial_ternary(H == I2CPE_MAG_SIG_BAD, PSTR(" axis "), PSTR("magnetic strip "), PSTR("encoder "));
+ switch (H) {
+ case I2CPE_MAG_SIG_GOOD:
+ case I2CPE_MAG_SIG_MID:
+ SERIAL_ECHO_TERNARY(H == I2CPE_MAG_SIG_GOOD, "passes test; field strength ", "good", "fair", ".\n");
+ break;
+ default:
+ SERIAL_ECHOLNPGM("not detected!");
+ }
+ }
+ return (H == I2CPE_MAG_SIG_GOOD || H == I2CPE_MAG_SIG_MID);
+}
+
+float I2CPositionEncoder::get_axis_error_mm(const bool report) {
+ const float target = planner.get_axis_position_mm(encoderAxis),
+ actual = mm_from_count(position),
+ diff = actual - target,
+ error = ABS(diff) > 10000 ? 0 : diff; // Huge error is a bad reading
+
+ if (report) {
+ SERIAL_ECHO(axis_codes[encoderAxis]);
+ SERIAL_ECHOLNPAIR(" axis target=", target, "mm; actual=", actual, "mm; err=", error, "mm");
+ }
+
+ return error;
+}
+
+int32_t I2CPositionEncoder::get_axis_error_steps(const bool report) {
+ if (!active) {
+ if (report) {
+ SERIAL_ECHO(axis_codes[encoderAxis]);
+ SERIAL_ECHOLNPGM(" axis encoder not active!");
+ }
+ return 0;
+ }
+
+ float stepperTicksPerUnit;
+ int32_t encoderTicks = position, encoderCountInStepperTicksScaled;
+ //int32_t stepperTicks = stepper.position(encoderAxis);
+
+ // With a rotary encoder we're concerned with ticks/rev; whereas with a linear we're concerned with ticks/mm
+ stepperTicksPerUnit = (type == I2CPE_ENC_TYPE_ROTARY) ? stepperTicks : planner.settings.axis_steps_per_mm[encoderAxis];
+
+ //convert both 'ticks' into same units / base
+ encoderCountInStepperTicksScaled = LROUND((stepperTicksPerUnit * encoderTicks) / encoderTicksPerUnit);
+
+ const int32_t target = stepper.position(encoderAxis);
+ int32_t error = encoderCountInStepperTicksScaled - target;
+
+ //suppress discontinuities (might be caused by bad I2C readings...?)
+ const bool suppressOutput = (ABS(error - errorPrev) > 100);
+
+ errorPrev = error;
+
+ if (report) {
+ SERIAL_ECHO(axis_codes[encoderAxis]);
+ SERIAL_ECHOLNPAIR(" axis target=", target, "; actual=", encoderCountInStepperTicksScaled, "; err=", error);
+ }
+
+ if (suppressOutput) {
+ if (report) SERIAL_ECHOLNPGM("!Discontinuity. Suppressing error.");
+ error = 0;
+ }
+
+ return error;
+}
+
+int32_t I2CPositionEncoder::get_raw_count() {
+ uint8_t index = 0;
+ i2cLong encoderCount;
+
+ encoderCount.val = 0x00;
+
+ if (Wire.requestFrom(I2C_ADDRESS(i2cAddress), uint8_t(3)) != 3) {
+ //houston, we have a problem...
+ H = I2CPE_MAG_SIG_NF;
+ return 0;
+ }
+
+ while (Wire.available())
+ encoderCount.bval[index++] = (uint8_t)Wire.read();
+
+ //extract the magnetic strength
+ H = (B00000011 & (encoderCount.bval[2] >> 6));
+
+ //extract sign bit; sign = (encoderCount.bval[2] & B00100000);
+ //set all upper bits to the sign value to overwrite H
+ encoderCount.val = (encoderCount.bval[2] & B00100000) ? (encoderCount.val | 0xFFC00000) : (encoderCount.val & 0x003FFFFF);
+
+ if (invert) encoderCount.val *= -1;
+
+ return encoderCount.val;
+}
+
+bool I2CPositionEncoder::test_axis() {
+ //only works on XYZ cartesian machines for the time being
+ if (!(encoderAxis == X_AXIS || encoderAxis == Y_AXIS || encoderAxis == Z_AXIS)) return false;
+
+ const float startPosition = soft_endstop.min[encoderAxis] + 10,
+ endPosition = soft_endstop.max[encoderAxis] - 10;
+ const feedRate_t fr_mm_s = FLOOR(homing_feedrate(encoderAxis));
+
+ ec = false;
+
+ xyze_pos_t startCoord, endCoord;
+ LOOP_XYZ(a) {
+ startCoord[a] = planner.get_axis_position_mm((AxisEnum)a);
+ endCoord[a] = planner.get_axis_position_mm((AxisEnum)a);
+ }
+ startCoord[encoderAxis] = startPosition;
+ endCoord[encoderAxis] = endPosition;
+
+ planner.synchronize();
+ startCoord.e = planner.get_axis_position_mm(E_AXIS);
+ planner.buffer_line(startCoord, fr_mm_s, 0);
+ planner.synchronize();
+
+ // if the module isn't currently trusted, wait until it is (or until it should be if things are working)
+ if (!trusted) {
+ int32_t startWaitingTime = millis();
+ while (!trusted && millis() - startWaitingTime < I2CPE_TIME_TRUSTED)
+ safe_delay(500);
+ }
+
+ if (trusted) { // if trusted, commence test
+ endCoord.e = planner.get_axis_position_mm(E_AXIS);
+ planner.buffer_line(endCoord, fr_mm_s, 0);
+ planner.synchronize();
+ }
+
+ return trusted;
+}
+
+void I2CPositionEncoder::calibrate_steps_mm(const uint8_t iter) {
+ if (type != I2CPE_ENC_TYPE_LINEAR) {
+ SERIAL_ECHOLNPGM("Steps/mm calibration requires linear encoder.");
+ return;
+ }
+
+ if (!(encoderAxis == X_AXIS || encoderAxis == Y_AXIS || encoderAxis == Z_AXIS)) {
+ SERIAL_ECHOLNPGM("Steps/mm calibration not supported for this axis.");
+ return;
+ }
+
+ float old_steps_mm, new_steps_mm,
+ startDistance, endDistance,
+ travelDistance, travelledDistance, total = 0;
+
+ int32_t startCount, stopCount;
+
+ const feedRate_t fr_mm_s = homing_feedrate(encoderAxis);
+
+ bool oldec = ec;
+ ec = false;
+
+ startDistance = 20;
+ endDistance = soft_endstop.max[encoderAxis] - 20;
+ travelDistance = endDistance - startDistance;
+
+ xyze_pos_t startCoord, endCoord;
+ LOOP_XYZ(a) {
+ startCoord[a] = planner.get_axis_position_mm((AxisEnum)a);
+ endCoord[a] = planner.get_axis_position_mm((AxisEnum)a);
+ }
+ startCoord[encoderAxis] = startDistance;
+ endCoord[encoderAxis] = endDistance;
+
+ planner.synchronize();
+
+ LOOP_L_N(i, iter) {
+ startCoord.e = planner.get_axis_position_mm(E_AXIS);
+ planner.buffer_line(startCoord, fr_mm_s, 0);
+ planner.synchronize();
+
+ delay(250);
+ startCount = get_position();
+
+ //do_blocking_move_to(endCoord);
+
+ endCoord.e = planner.get_axis_position_mm(E_AXIS);
+ planner.buffer_line(endCoord, fr_mm_s, 0);
+ planner.synchronize();
+
+ //Read encoder distance
+ delay(250);
+ stopCount = get_position();
+
+ travelledDistance = mm_from_count(ABS(stopCount - startCount));
+
+ SERIAL_ECHOLNPAIR("Attempted travel: ", travelDistance, "mm");
+ SERIAL_ECHOLNPAIR(" Actual travel: ", travelledDistance, "mm");
+
+ //Calculate new axis steps per unit
+ old_steps_mm = planner.settings.axis_steps_per_mm[encoderAxis];
+ new_steps_mm = (old_steps_mm * travelDistance) / travelledDistance;
+
+ SERIAL_ECHOLNPAIR("Old steps/mm: ", old_steps_mm);
+ SERIAL_ECHOLNPAIR("New steps/mm: ", new_steps_mm);
+
+ //Save new value
+ planner.settings.axis_steps_per_mm[encoderAxis] = new_steps_mm;
+
+ if (iter > 1) {
+ total += new_steps_mm;
+
+ // swap start and end points so next loop runs from current position
+ const float tempCoord = startCoord[encoderAxis];
+ startCoord[encoderAxis] = endCoord[encoderAxis];
+ endCoord[encoderAxis] = tempCoord;
+ }
+ }
+
+ if (iter > 1) {
+ total /= (float)iter;
+ SERIAL_ECHOLNPAIR("Average steps/mm: ", total);
+ }
+
+ ec = oldec;
+
+ SERIAL_ECHOLNPGM("Calculated steps/mm set. Use M500 to save to EEPROM.");
+}
+
+void I2CPositionEncoder::reset() {
+ Wire.beginTransmission(I2C_ADDRESS(i2cAddress));
+ Wire.write(I2CPE_RESET_COUNT);
+ Wire.endTransmission();
+
+ TERN_(I2CPE_ERR_ROLLING_AVERAGE, ZERO(err));
+}
+
+
+bool I2CPositionEncodersMgr::I2CPE_anyaxis;
+uint8_t I2CPositionEncodersMgr::I2CPE_addr,
+ I2CPositionEncodersMgr::I2CPE_idx;
+I2CPositionEncoder I2CPositionEncodersMgr::encoders[I2CPE_ENCODER_CNT];
+
+void I2CPositionEncodersMgr::init() {
+ Wire.begin();
+
+ #if I2CPE_ENCODER_CNT > 0
+ uint8_t i = 0;
+
+ encoders[i].init(I2CPE_ENC_1_ADDR, I2CPE_ENC_1_AXIS);
+
+ #ifdef I2CPE_ENC_1_TYPE
+ encoders[i].set_type(I2CPE_ENC_1_TYPE);
+ #endif
+ #ifdef I2CPE_ENC_1_TICKS_UNIT
+ encoders[i].set_ticks_unit(I2CPE_ENC_1_TICKS_UNIT);
+ #endif
+ #ifdef I2CPE_ENC_1_TICKS_REV
+ encoders[i].set_stepper_ticks(I2CPE_ENC_1_TICKS_REV);
+ #endif
+ #ifdef I2CPE_ENC_1_INVERT
+ encoders[i].set_inverted(I2CPE_ENC_1_INVERT);
+ #endif
+ #ifdef I2CPE_ENC_1_EC_METHOD
+ encoders[i].set_ec_method(I2CPE_ENC_1_EC_METHOD);
+ #endif
+ #ifdef I2CPE_ENC_1_EC_THRESH
+ encoders[i].set_ec_threshold(I2CPE_ENC_1_EC_THRESH);
+ #endif
+
+ encoders[i].set_active(encoders[i].passes_test(true));
+
+ #if I2CPE_ENC_1_AXIS == E_AXIS
+ encoders[i].set_homed();
+ #endif
+ #endif
+
+ #if I2CPE_ENCODER_CNT > 1
+ i++;
+
+ encoders[i].init(I2CPE_ENC_2_ADDR, I2CPE_ENC_2_AXIS);
+
+ #ifdef I2CPE_ENC_2_TYPE
+ encoders[i].set_type(I2CPE_ENC_2_TYPE);
+ #endif
+ #ifdef I2CPE_ENC_2_TICKS_UNIT
+ encoders[i].set_ticks_unit(I2CPE_ENC_2_TICKS_UNIT);
+ #endif
+ #ifdef I2CPE_ENC_2_TICKS_REV
+ encoders[i].set_stepper_ticks(I2CPE_ENC_2_TICKS_REV);
+ #endif
+ #ifdef I2CPE_ENC_2_INVERT
+ encoders[i].set_inverted(I2CPE_ENC_2_INVERT);
+ #endif
+ #ifdef I2CPE_ENC_2_EC_METHOD
+ encoders[i].set_ec_method(I2CPE_ENC_2_EC_METHOD);
+ #endif
+ #ifdef I2CPE_ENC_2_EC_THRESH
+ encoders[i].set_ec_threshold(I2CPE_ENC_2_EC_THRESH);
+ #endif
+
+ encoders[i].set_active(encoders[i].passes_test(true));
+
+ #if I2CPE_ENC_2_AXIS == E_AXIS
+ encoders[i].set_homed();
+ #endif
+ #endif
+
+ #if I2CPE_ENCODER_CNT > 2
+ i++;
+
+ encoders[i].init(I2CPE_ENC_3_ADDR, I2CPE_ENC_3_AXIS);
+
+ #ifdef I2CPE_ENC_3_TYPE
+ encoders[i].set_type(I2CPE_ENC_3_TYPE);
+ #endif
+ #ifdef I2CPE_ENC_3_TICKS_UNIT
+ encoders[i].set_ticks_unit(I2CPE_ENC_3_TICKS_UNIT);
+ #endif
+ #ifdef I2CPE_ENC_3_TICKS_REV
+ encoders[i].set_stepper_ticks(I2CPE_ENC_3_TICKS_REV);
+ #endif
+ #ifdef I2CPE_ENC_3_INVERT
+ encoders[i].set_inverted(I2CPE_ENC_3_INVERT);
+ #endif
+ #ifdef I2CPE_ENC_3_EC_METHOD
+ encoders[i].set_ec_method(I2CPE_ENC_3_EC_METHOD);
+ #endif
+ #ifdef I2CPE_ENC_3_EC_THRESH
+ encoders[i].set_ec_threshold(I2CPE_ENC_3_EC_THRESH);
+ #endif
+
+ encoders[i].set_active(encoders[i].passes_test(true));
+
+ #if I2CPE_ENC_3_AXIS == E_AXIS
+ encoders[i].set_homed();
+ #endif
+ #endif
+
+ #if I2CPE_ENCODER_CNT > 3
+ i++;
+
+ encoders[i].init(I2CPE_ENC_4_ADDR, I2CPE_ENC_4_AXIS);
+
+ #ifdef I2CPE_ENC_4_TYPE
+ encoders[i].set_type(I2CPE_ENC_4_TYPE);
+ #endif
+ #ifdef I2CPE_ENC_4_TICKS_UNIT
+ encoders[i].set_ticks_unit(I2CPE_ENC_4_TICKS_UNIT);
+ #endif
+ #ifdef I2CPE_ENC_4_TICKS_REV
+ encoders[i].set_stepper_ticks(I2CPE_ENC_4_TICKS_REV);
+ #endif
+ #ifdef I2CPE_ENC_4_INVERT
+ encoders[i].set_inverted(I2CPE_ENC_4_INVERT);
+ #endif
+ #ifdef I2CPE_ENC_4_EC_METHOD
+ encoders[i].set_ec_method(I2CPE_ENC_4_EC_METHOD);
+ #endif
+ #ifdef I2CPE_ENC_4_EC_THRESH
+ encoders[i].set_ec_threshold(I2CPE_ENC_4_EC_THRESH);
+ #endif
+
+ encoders[i].set_active(encoders[i].passes_test(true));
+
+ #if I2CPE_ENC_4_AXIS == E_AXIS
+ encoders[i].set_homed();
+ #endif
+ #endif
+
+ #if I2CPE_ENCODER_CNT > 4
+ i++;
+
+ encoders[i].init(I2CPE_ENC_5_ADDR, I2CPE_ENC_5_AXIS);
+
+ #ifdef I2CPE_ENC_5_TYPE
+ encoders[i].set_type(I2CPE_ENC_5_TYPE);
+ #endif
+ #ifdef I2CPE_ENC_5_TICKS_UNIT
+ encoders[i].set_ticks_unit(I2CPE_ENC_5_TICKS_UNIT);
+ #endif
+ #ifdef I2CPE_ENC_5_TICKS_REV
+ encoders[i].set_stepper_ticks(I2CPE_ENC_5_TICKS_REV);
+ #endif
+ #ifdef I2CPE_ENC_5_INVERT
+ encoders[i].set_inverted(I2CPE_ENC_5_INVERT);
+ #endif
+ #ifdef I2CPE_ENC_5_EC_METHOD
+ encoders[i].set_ec_method(I2CPE_ENC_5_EC_METHOD);
+ #endif
+ #ifdef I2CPE_ENC_5_EC_THRESH
+ encoders[i].set_ec_threshold(I2CPE_ENC_5_EC_THRESH);
+ #endif
+
+ encoders[i].set_active(encoders[i].passes_test(true));
+
+ #if I2CPE_ENC_5_AXIS == E_AXIS
+ encoders[i].set_homed();
+ #endif
+ #endif
+
+ #if I2CPE_ENCODER_CNT > 5
+ i++;
+
+ encoders[i].init(I2CPE_ENC_6_ADDR, I2CPE_ENC_6_AXIS);
+
+ #ifdef I2CPE_ENC_6_TYPE
+ encoders[i].set_type(I2CPE_ENC_6_TYPE);
+ #endif
+ #ifdef I2CPE_ENC_6_TICKS_UNIT
+ encoders[i].set_ticks_unit(I2CPE_ENC_6_TICKS_UNIT);
+ #endif
+ #ifdef I2CPE_ENC_6_TICKS_REV
+ encoders[i].set_stepper_ticks(I2CPE_ENC_6_TICKS_REV);
+ #endif
+ #ifdef I2CPE_ENC_6_INVERT
+ encoders[i].set_inverted(I2CPE_ENC_6_INVERT);
+ #endif
+ #ifdef I2CPE_ENC_6_EC_METHOD
+ encoders[i].set_ec_method(I2CPE_ENC_6_EC_METHOD);
+ #endif
+ #ifdef I2CPE_ENC_6_EC_THRESH
+ encoders[i].set_ec_threshold(I2CPE_ENC_6_EC_THRESH);
+ #endif
+
+ encoders[i].set_active(encoders[i].passes_test(true));
+
+ #if I2CPE_ENC_6_AXIS == E_AXIS
+ encoders[i].set_homed();
+ #endif
+ #endif
+}
+
+void I2CPositionEncodersMgr::report_position(const int8_t idx, const bool units, const bool noOffset) {
+ CHECK_IDX();
+
+ if (units)
+ SERIAL_ECHOLN(noOffset ? encoders[idx].mm_from_count(encoders[idx].get_raw_count()) : encoders[idx].get_position_mm());
+ else {
+ if (noOffset) {
+ const int32_t raw_count = encoders[idx].get_raw_count();
+ SERIAL_ECHO(axis_codes[encoders[idx].get_axis()]);
+ SERIAL_CHAR(' ');
+
+ for (uint8_t j = 31; j > 0; j--)
+ SERIAL_ECHO((bool)(0x00000001 & (raw_count >> j)));
+
+ SERIAL_ECHO((bool)(0x00000001 & raw_count));
+ SERIAL_CHAR(' ');
+ SERIAL_ECHOLN(raw_count);
+ }
+ else
+ SERIAL_ECHOLN(encoders[idx].get_position());
+ }
+}
+
+void I2CPositionEncodersMgr::change_module_address(const uint8_t oldaddr, const uint8_t newaddr) {
+ // First check 'new' address is not in use
+ Wire.beginTransmission(I2C_ADDRESS(newaddr));
+ if (!Wire.endTransmission()) {
+ SERIAL_ECHOLNPAIR("?There is already a device with that address on the I2C bus! (", newaddr, ")");
+ return;
+ }
+
+ // Now check that we can find the module on the oldaddr address
+ Wire.beginTransmission(I2C_ADDRESS(oldaddr));
+ if (Wire.endTransmission()) {
+ SERIAL_ECHOLNPAIR("?No module detected at this address! (", oldaddr, ")");
+ return;
+ }
+
+ SERIAL_ECHOLNPAIR("Module found at ", oldaddr, ", changing address to ", newaddr);
+
+ // Change the modules address
+ Wire.beginTransmission(I2C_ADDRESS(oldaddr));
+ Wire.write(I2CPE_SET_ADDR);
+ Wire.write(newaddr);
+ Wire.endTransmission();
+
+ SERIAL_ECHOLNPGM("Address changed, resetting and waiting for confirmation..");
+
+ // Wait for the module to reset (can probably be improved by polling address with a timeout).
+ safe_delay(I2CPE_REBOOT_TIME);
+
+ // Look for the module at the new address.
+ Wire.beginTransmission(I2C_ADDRESS(newaddr));
+ if (Wire.endTransmission()) {
+ SERIAL_ECHOLNPGM("Address change failed! Check encoder module.");
+ return;
+ }
+
+ SERIAL_ECHOLNPGM("Address change successful!");
+
+ // Now, if this module is configured, find which encoder instance it's supposed to correspond to
+ // and enable it (it will likely have failed initialization on power-up, before the address change).
+ const int8_t idx = idx_from_addr(newaddr);
+ if (idx >= 0 && !encoders[idx].get_active()) {
+ SERIAL_ECHO(axis_codes[encoders[idx].get_axis()]);
+ SERIAL_ECHOLNPGM(" axis encoder was not detected on printer startup. Trying again.");
+ encoders[idx].set_active(encoders[idx].passes_test(true));
+ }
+}
+
+void I2CPositionEncodersMgr::report_module_firmware(const uint8_t address) {
+ // First check there is a module
+ Wire.beginTransmission(I2C_ADDRESS(address));
+ if (Wire.endTransmission()) {
+ SERIAL_ECHOLNPAIR("?No module detected at this address! (", address, ")");
+ return;
+ }
+
+ SERIAL_ECHOLNPAIR("Requesting version info from module at address ", address, ":");
+
+ Wire.beginTransmission(I2C_ADDRESS(address));
+ Wire.write(I2CPE_SET_REPORT_MODE);
+ Wire.write(I2CPE_REPORT_VERSION);
+ Wire.endTransmission();
+
+ // Read value
+ if (Wire.requestFrom(I2C_ADDRESS(address), uint8_t(32))) {
+ char c;
+ while (Wire.available() > 0 && (c = (char)Wire.read()) > 0)
+ SERIAL_ECHO(c);
+ SERIAL_EOL();
+ }
+
+ // Set module back to normal (distance) mode
+ Wire.beginTransmission(I2C_ADDRESS(address));
+ Wire.write(I2CPE_SET_REPORT_MODE);
+ Wire.write(I2CPE_REPORT_DISTANCE);
+ Wire.endTransmission();
+}
+
+int8_t I2CPositionEncodersMgr::parse() {
+ I2CPE_addr = 0;
+
+ if (parser.seen('A')) {
+
+ if (!parser.has_value()) {
+ SERIAL_ECHOLNPGM("?A seen, but no address specified! [30-200]");
+ return I2CPE_PARSE_ERR;
+ };
+
+ I2CPE_addr = parser.value_byte();
+ if (!WITHIN(I2CPE_addr, 30, 200)) { // reserve the first 30 and last 55
+ SERIAL_ECHOLNPGM("?Address out of range. [30-200]");
+ return I2CPE_PARSE_ERR;
+ }
+
+ I2CPE_idx = idx_from_addr(I2CPE_addr);
+ if (I2CPE_idx >= I2CPE_ENCODER_CNT) {
+ SERIAL_ECHOLNPGM("?No device with this address!");
+ return I2CPE_PARSE_ERR;
+ }
+ }
+ else if (parser.seenval('I')) {
+
+ if (!parser.has_value()) {
+ SERIAL_ECHOLNPAIR("?I seen, but no index specified! [0-", I2CPE_ENCODER_CNT - 1, "]");
+ return I2CPE_PARSE_ERR;
+ };
+
+ I2CPE_idx = parser.value_byte();
+ if (I2CPE_idx >= I2CPE_ENCODER_CNT) {
+ SERIAL_ECHOLNPAIR("?Index out of range. [0-", I2CPE_ENCODER_CNT - 1, "]");
+ return I2CPE_PARSE_ERR;
+ }
+
+ I2CPE_addr = encoders[I2CPE_idx].get_address();
+ }
+ else
+ I2CPE_idx = 0xFF;
+
+ I2CPE_anyaxis = parser.seen_axis();
+
+ return I2CPE_PARSE_OK;
+};
+
+/**
+ * M860: Report the position(s) of position encoder module(s).
+ *
+ * A<addr> Module I2C address. [30, 200].
+ * I<index> Module index. [0, I2CPE_ENCODER_CNT - 1]
+ * O Include homed zero-offset in returned position.
+ * U Units in mm or raw step count.
+ *
+ * If A or I not specified:
+ * X Report on X axis encoder, if present.
+ * Y Report on Y axis encoder, if present.
+ * Z Report on Z axis encoder, if present.
+ * E Report on E axis encoder, if present.
+ */
+void I2CPositionEncodersMgr::M860() {
+ if (parse()) return;
+
+ const bool hasU = parser.seen('U'), hasO = parser.seen('O');
+
+ if (I2CPE_idx == 0xFF) {
+ LOOP_XYZE(i) {
+ if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
+ const uint8_t idx = idx_from_axis(AxisEnum(i));
+ if ((int8_t)idx >= 0) report_position(idx, hasU, hasO);
+ }
+ }
+ }
+ else
+ report_position(I2CPE_idx, hasU, hasO);
+}
+
+/**
+ * M861: Report the status of position encoder modules.
+ *
+ * A<addr> Module I2C address. [30, 200].
+ * I<index> Module index. [0, I2CPE_ENCODER_CNT - 1]
+ *
+ * If A or I not specified:
+ * X Report on X axis encoder, if present.
+ * Y Report on Y axis encoder, if present.
+ * Z Report on Z axis encoder, if present.
+ * E Report on E axis encoder, if present.
+ */
+void I2CPositionEncodersMgr::M861() {
+ if (parse()) return;
+
+ if (I2CPE_idx == 0xFF) {
+ LOOP_XYZE(i) {
+ if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
+ const uint8_t idx = idx_from_axis(AxisEnum(i));
+ if ((int8_t)idx >= 0) report_status(idx);
+ }
+ }
+ }
+ else
+ report_status(I2CPE_idx);
+}
+
+/**
+ * M862: Perform an axis continuity test for position encoder
+ * modules.
+ *
+ * A<addr> Module I2C address. [30, 200].
+ * I<index> Module index. [0, I2CPE_ENCODER_CNT - 1]
+ *
+ * If A or I not specified:
+ * X Report on X axis encoder, if present.
+ * Y Report on Y axis encoder, if present.
+ * Z Report on Z axis encoder, if present.
+ * E Report on E axis encoder, if present.
+ */
+void I2CPositionEncodersMgr::M862() {
+ if (parse()) return;
+
+ if (I2CPE_idx == 0xFF) {
+ LOOP_XYZE(i) {
+ if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
+ const uint8_t idx = idx_from_axis(AxisEnum(i));
+ if ((int8_t)idx >= 0) test_axis(idx);
+ }
+ }
+ }
+ else
+ test_axis(I2CPE_idx);
+}
+
+/**
+ * M863: Perform steps-per-mm calibration for
+ * position encoder modules.
+ *
+ * A<addr> Module I2C address. [30, 200].
+ * I<index> Module index. [0, I2CPE_ENCODER_CNT - 1]
+ * P Number of rePeats/iterations.
+ *
+ * If A or I not specified:
+ * X Report on X axis encoder, if present.
+ * Y Report on Y axis encoder, if present.
+ * Z Report on Z axis encoder, if present.
+ * E Report on E axis encoder, if present.
+ */
+void I2CPositionEncodersMgr::M863() {
+ if (parse()) return;
+
+ const uint8_t iterations = constrain(parser.byteval('P', 1), 1, 10);
+
+ if (I2CPE_idx == 0xFF) {
+ LOOP_XYZE(i) {
+ if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
+ const uint8_t idx = idx_from_axis(AxisEnum(i));
+ if ((int8_t)idx >= 0) calibrate_steps_mm(idx, iterations);
+ }
+ }
+ }
+ else
+ calibrate_steps_mm(I2CPE_idx, iterations);
+}
+
+/**
+ * M864: Change position encoder module I2C address.
+ *
+ * A<addr> Module current/old I2C address. If not present,
+ * assumes default address (030). [30, 200].
+ * S<addr> Module new I2C address. [30, 200].
+ *
+ * If S is not specified:
+ * X Use I2CPE_PRESET_ADDR_X (030).
+ * Y Use I2CPE_PRESET_ADDR_Y (031).
+ * Z Use I2CPE_PRESET_ADDR_Z (032).
+ * E Use I2CPE_PRESET_ADDR_E (033).
+ */
+void I2CPositionEncodersMgr::M864() {
+ uint8_t newAddress;
+
+ if (parse()) return;
+
+ if (!I2CPE_addr) I2CPE_addr = I2CPE_PRESET_ADDR_X;
+
+ if (parser.seen('S')) {
+ if (!parser.has_value()) {
+ SERIAL_ECHOLNPGM("?S seen, but no address specified! [30-200]");
+ return;
+ };
+
+ newAddress = parser.value_byte();
+ if (!WITHIN(newAddress, 30, 200)) {
+ SERIAL_ECHOLNPGM("?New address out of range. [30-200]");
+ return;
+ }
+ }
+ else if (!I2CPE_anyaxis) {
+ SERIAL_ECHOLNPGM("?You must specify S or [XYZE].");
+ return;
+ }
+ else {
+ if (parser.seen('X')) newAddress = I2CPE_PRESET_ADDR_X;
+ else if (parser.seen('Y')) newAddress = I2CPE_PRESET_ADDR_Y;
+ else if (parser.seen('Z')) newAddress = I2CPE_PRESET_ADDR_Z;
+ else if (parser.seen('E')) newAddress = I2CPE_PRESET_ADDR_E;
+ else return;
+ }
+
+ SERIAL_ECHOLNPAIR("Changing module at address ", I2CPE_addr, " to address ", newAddress);
+
+ change_module_address(I2CPE_addr, newAddress);
+}
+
+/**
+ * M865: Check position encoder module firmware version.
+ *
+ * A<addr> Module I2C address. [30, 200].
+ * I<index> Module index. [0, I2CPE_ENCODER_CNT - 1].
+ *
+ * If A or I not specified:
+ * X Check X axis encoder, if present.
+ * Y Check Y axis encoder, if present.
+ * Z Check Z axis encoder, if present.
+ * E Check E axis encoder, if present.
+ */
+void I2CPositionEncodersMgr::M865() {
+ if (parse()) return;
+
+ if (!I2CPE_addr) {
+ LOOP_XYZE(i) {
+ if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
+ const uint8_t idx = idx_from_axis(AxisEnum(i));
+ if ((int8_t)idx >= 0) report_module_firmware(encoders[idx].get_address());
+ }
+ }
+ }
+ else
+ report_module_firmware(I2CPE_addr);
+}
+
+/**
+ * M866: Report or reset position encoder module error
+ * count.
+ *
+ * A<addr> Module I2C address. [30, 200].
+ * I<index> Module index. [0, I2CPE_ENCODER_CNT - 1].
+ * R Reset error counter.
+ *
+ * If A or I not specified:
+ * X Act on X axis encoder, if present.
+ * Y Act on Y axis encoder, if present.
+ * Z Act on Z axis encoder, if present.
+ * E Act on E axis encoder, if present.
+ */
+void I2CPositionEncodersMgr::M866() {
+ if (parse()) return;
+
+ const bool hasR = parser.seen('R');
+
+ if (I2CPE_idx == 0xFF) {
+ LOOP_XYZE(i) {
+ if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
+ const uint8_t idx = idx_from_axis(AxisEnum(i));
+ if ((int8_t)idx >= 0) {
+ if (hasR)
+ reset_error_count(idx, AxisEnum(i));
+ else
+ report_error_count(idx, AxisEnum(i));
+ }
+ }
+ }
+ }
+ else if (hasR)
+ reset_error_count(I2CPE_idx, encoders[I2CPE_idx].get_axis());
+ else
+ report_error_count(I2CPE_idx, encoders[I2CPE_idx].get_axis());
+}
+
+/**
+ * M867: Enable/disable or toggle error correction for position encoder modules.
+ *
+ * A<addr> Module I2C address. [30, 200].
+ * I<index> Module index. [0, I2CPE_ENCODER_CNT - 1].
+ * S<1|0> Enable/disable error correction. 1 enables, 0 disables. If not
+ * supplied, toggle.
+ *
+ * If A or I not specified:
+ * X Act on X axis encoder, if present.
+ * Y Act on Y axis encoder, if present.
+ * Z Act on Z axis encoder, if present.
+ * E Act on E axis encoder, if present.
+ */
+void I2CPositionEncodersMgr::M867() {
+ if (parse()) return;
+
+ const int8_t onoff = parser.seenval('S') ? parser.value_int() : -1;
+
+ if (I2CPE_idx == 0xFF) {
+ LOOP_XYZE(i) {
+ if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
+ const uint8_t idx = idx_from_axis(AxisEnum(i));
+ if ((int8_t)idx >= 0) {
+ const bool ena = onoff == -1 ? !encoders[I2CPE_idx].get_ec_enabled() : !!onoff;
+ enable_ec(idx, ena, AxisEnum(i));
+ }
+ }
+ }
+ }
+ else {
+ const bool ena = onoff == -1 ? !encoders[I2CPE_idx].get_ec_enabled() : !!onoff;
+ enable_ec(I2CPE_idx, ena, encoders[I2CPE_idx].get_axis());
+ }
+}
+
+/**
+ * M868: Report or set position encoder module error correction
+ * threshold.
+ *
+ * A<addr> Module I2C address. [30, 200].
+ * I<index> Module index. [0, I2CPE_ENCODER_CNT - 1].
+ * T New error correction threshold.
+ *
+ * If A not specified:
+ * X Act on X axis encoder, if present.
+ * Y Act on Y axis encoder, if present.
+ * Z Act on Z axis encoder, if present.
+ * E Act on E axis encoder, if present.
+ */
+void I2CPositionEncodersMgr::M868() {
+ if (parse()) return;
+
+ const float newThreshold = parser.seenval('T') ? parser.value_float() : -9999;
+
+ if (I2CPE_idx == 0xFF) {
+ LOOP_XYZE(i) {
+ if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
+ const uint8_t idx = idx_from_axis(AxisEnum(i));
+ if ((int8_t)idx >= 0) {
+ if (newThreshold != -9999)
+ set_ec_threshold(idx, newThreshold, encoders[idx].get_axis());
+ else
+ get_ec_threshold(idx, encoders[idx].get_axis());
+ }
+ }
+ }
+ }
+ else if (newThreshold != -9999)
+ set_ec_threshold(I2CPE_idx, newThreshold, encoders[I2CPE_idx].get_axis());
+ else
+ get_ec_threshold(I2CPE_idx, encoders[I2CPE_idx].get_axis());
+}
+
+/**
+ * M869: Report position encoder module error.
+ *
+ * A<addr> Module I2C address. [30, 200].
+ * I<index> Module index. [0, I2CPE_ENCODER_CNT - 1].
+ *
+ * If A not specified:
+ * X Act on X axis encoder, if present.
+ * Y Act on Y axis encoder, if present.
+ * Z Act on Z axis encoder, if present.
+ * E Act on E axis encoder, if present.
+ */
+void I2CPositionEncodersMgr::M869() {
+ if (parse()) return;
+
+ if (I2CPE_idx == 0xFF) {
+ LOOP_XYZE(i) {
+ if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
+ const uint8_t idx = idx_from_axis(AxisEnum(i));
+ if ((int8_t)idx >= 0) report_error(idx);
+ }
+ }
+ }
+ else
+ report_error(I2CPE_idx);
+}
+
+#endif // I2C_POSITION_ENCODERS