aboutsummaryrefslogtreecommitdiff
path: root/Marlin/src/feature/encoder_i2c.h
diff options
context:
space:
mode:
Diffstat (limited to 'Marlin/src/feature/encoder_i2c.h')
-rw-r--r--Marlin/src/feature/encoder_i2c.h320
1 files changed, 320 insertions, 0 deletions
diff --git a/Marlin/src/feature/encoder_i2c.h b/Marlin/src/feature/encoder_i2c.h
new file mode 100644
index 0000000..511e560
--- /dev/null
+++ b/Marlin/src/feature/encoder_i2c.h
@@ -0,0 +1,320 @@
+/**
+ * Marlin 3D Printer Firmware
+ * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
+ *
+ * Based on Sprinter and grbl.
+ * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <https://www.gnu.org/licenses/>.
+ *
+ */
+#pragma once
+
+#include "../inc/MarlinConfig.h"
+
+#include "../module/planner.h"
+
+#include <Wire.h>
+
+//=========== Advanced / Less-Common Encoder Configuration Settings ==========
+
+#define I2CPE_EC_THRESH_PROPORTIONAL // if enabled adjusts the error correction threshold
+ // proportional to the current speed of the axis allows
+ // for very small error margin at low speeds without
+ // stuttering due to reading latency at high speeds
+
+#define I2CPE_DEBUG // enable encoder-related debug serial echos
+
+#define I2CPE_REBOOT_TIME 5000 // time we wait for an encoder module to reboot
+ // after changing address.
+
+#define I2CPE_MAG_SIG_GOOD 0
+#define I2CPE_MAG_SIG_MID 1
+#define I2CPE_MAG_SIG_BAD 2
+#define I2CPE_MAG_SIG_NF 255
+
+#define I2CPE_REQ_REPORT 0
+#define I2CPE_RESET_COUNT 1
+#define I2CPE_SET_ADDR 2
+#define I2CPE_SET_REPORT_MODE 3
+#define I2CPE_CLEAR_EEPROM 4
+
+#define I2CPE_LED_PAR_MODE 10
+#define I2CPE_LED_PAR_BRT 11
+#define I2CPE_LED_PAR_RATE 14
+
+#define I2CPE_REPORT_DISTANCE 0
+#define I2CPE_REPORT_STRENGTH 1
+#define I2CPE_REPORT_VERSION 2
+
+// Default I2C addresses
+#define I2CPE_PRESET_ADDR_X 30
+#define I2CPE_PRESET_ADDR_Y 31
+#define I2CPE_PRESET_ADDR_Z 32
+#define I2CPE_PRESET_ADDR_E 33
+
+#define I2CPE_DEF_AXIS X_AXIS
+#define I2CPE_DEF_ADDR I2CPE_PRESET_ADDR_X
+
+// Error event counter; tracks how many times there is an error exceeding a certain threshold
+#define I2CPE_ERR_CNT_THRESH 3.00
+#define I2CPE_ERR_CNT_DEBOUNCE_MS 2000
+
+#if ENABLED(I2CPE_ERR_ROLLING_AVERAGE)
+ #define I2CPE_ERR_ARRAY_SIZE 32
+ #define I2CPE_ERR_PRST_ARRAY_SIZE 10
+#endif
+
+// Error Correction Methods
+#define I2CPE_ECM_NONE 0
+#define I2CPE_ECM_MICROSTEP 1
+#define I2CPE_ECM_PLANNER 2
+#define I2CPE_ECM_STALLDETECT 3
+
+// Encoder types
+#define I2CPE_ENC_TYPE_ROTARY 0
+#define I2CPE_ENC_TYPE_LINEAR 1
+
+// Parser
+#define I2CPE_PARSE_ERR 1
+#define I2CPE_PARSE_OK 0
+
+#define LOOP_PE(VAR) LOOP_L_N(VAR, I2CPE_ENCODER_CNT)
+#define CHECK_IDX() do{ if (!WITHIN(idx, 0, I2CPE_ENCODER_CNT - 1)) return; }while(0)
+
+typedef union {
+ volatile int32_t val = 0;
+ uint8_t bval[4];
+} i2cLong;
+
+class I2CPositionEncoder {
+ private:
+ AxisEnum encoderAxis = I2CPE_DEF_AXIS;
+
+ uint8_t i2cAddress = I2CPE_DEF_ADDR,
+ ecMethod = I2CPE_DEF_EC_METHOD,
+ type = I2CPE_DEF_TYPE,
+ H = I2CPE_MAG_SIG_NF; // Magnetic field strength
+
+ int encoderTicksPerUnit = I2CPE_DEF_ENC_TICKS_UNIT,
+ stepperTicks = I2CPE_DEF_TICKS_REV,
+ errorCount = 0,
+ errorPrev = 0;
+
+ float ecThreshold = I2CPE_DEF_EC_THRESH;
+
+ bool homed = false,
+ trusted = false,
+ initialized = false,
+ active = false,
+ invert = false,
+ ec = true;
+
+ int32_t zeroOffset = 0,
+ lastPosition = 0,
+ position;
+
+ millis_t lastPositionTime = 0,
+ nextErrorCountTime = 0,
+ lastErrorTime;
+
+ #if ENABLED(I2CPE_ERR_ROLLING_AVERAGE)
+ uint8_t errIdx = 0, errPrstIdx = 0;
+ int err[I2CPE_ERR_ARRAY_SIZE] = { 0 },
+ errPrst[I2CPE_ERR_PRST_ARRAY_SIZE] = { 0 };
+ #endif
+
+ public:
+ void init(const uint8_t address, const AxisEnum axis);
+ void reset();
+
+ void update();
+
+ void set_homed();
+ void set_unhomed();
+
+ int32_t get_raw_count();
+
+ FORCE_INLINE float mm_from_count(const int32_t count) {
+ switch (type) {
+ default: return -1;
+ case I2CPE_ENC_TYPE_LINEAR:
+ return count / encoderTicksPerUnit;
+ case I2CPE_ENC_TYPE_ROTARY:
+ return (count * stepperTicks) / (encoderTicksPerUnit * planner.settings.axis_steps_per_mm[encoderAxis]);
+ }
+ }
+
+ FORCE_INLINE float get_position_mm() { return mm_from_count(get_position()); }
+ FORCE_INLINE int32_t get_position() { return get_raw_count() - zeroOffset; }
+
+ int32_t get_axis_error_steps(const bool report);
+ float get_axis_error_mm(const bool report);
+
+ void calibrate_steps_mm(const uint8_t iter);
+
+ bool passes_test(const bool report);
+
+ bool test_axis();
+
+ FORCE_INLINE int get_error_count() { return errorCount; }
+ FORCE_INLINE void set_error_count(const int newCount) { errorCount = newCount; }
+
+ FORCE_INLINE uint8_t get_address() { return i2cAddress; }
+ FORCE_INLINE void set_address(const uint8_t addr) { i2cAddress = addr; }
+
+ FORCE_INLINE bool get_active() { return active; }
+ FORCE_INLINE void set_active(const bool a) { active = a; }
+
+ FORCE_INLINE void set_inverted(const bool i) { invert = i; }
+
+ FORCE_INLINE AxisEnum get_axis() { return encoderAxis; }
+
+ FORCE_INLINE bool get_ec_enabled() { return ec; }
+ FORCE_INLINE void set_ec_enabled(const bool enabled) { ec = enabled; }
+
+ FORCE_INLINE uint8_t get_ec_method() { return ecMethod; }
+ FORCE_INLINE void set_ec_method(const byte method) { ecMethod = method; }
+
+ FORCE_INLINE float get_ec_threshold() { return ecThreshold; }
+ FORCE_INLINE void set_ec_threshold(const float newThreshold) { ecThreshold = newThreshold; }
+
+ FORCE_INLINE int get_encoder_ticks_mm() {
+ switch (type) {
+ default: return 0;
+ case I2CPE_ENC_TYPE_LINEAR:
+ return encoderTicksPerUnit;
+ case I2CPE_ENC_TYPE_ROTARY:
+ return (int)((encoderTicksPerUnit / stepperTicks) * planner.settings.axis_steps_per_mm[encoderAxis]);
+ }
+ }
+
+ FORCE_INLINE int get_ticks_unit() { return encoderTicksPerUnit; }
+ FORCE_INLINE void set_ticks_unit(const int ticks) { encoderTicksPerUnit = ticks; }
+
+ FORCE_INLINE uint8_t get_type() { return type; }
+ FORCE_INLINE void set_type(const byte newType) { type = newType; }
+
+ FORCE_INLINE int get_stepper_ticks() { return stepperTicks; }
+ FORCE_INLINE void set_stepper_ticks(const int ticks) { stepperTicks = ticks; }
+};
+
+class I2CPositionEncodersMgr {
+ private:
+ static bool I2CPE_anyaxis;
+ static uint8_t I2CPE_addr, I2CPE_idx;
+
+ public:
+
+ static void init();
+
+ // consider only updating one endoder per call / tick if encoders become too time intensive
+ static void update() { LOOP_PE(i) encoders[i].update(); }
+
+ static void homed(const AxisEnum axis) {
+ LOOP_PE(i)
+ if (encoders[i].get_axis() == axis) encoders[i].set_homed();
+ }
+
+ static void unhomed(const AxisEnum axis) {
+ LOOP_PE(i)
+ if (encoders[i].get_axis() == axis) encoders[i].set_unhomed();
+ }
+
+ static void report_position(const int8_t idx, const bool units, const bool noOffset);
+
+ static void report_status(const int8_t idx) {
+ CHECK_IDX();
+ SERIAL_ECHOLNPAIR("Encoder ", idx, ": ");
+ encoders[idx].get_raw_count();
+ encoders[idx].passes_test(true);
+ }
+
+ static void report_error(const int8_t idx) {
+ CHECK_IDX();
+ encoders[idx].get_axis_error_steps(true);
+ }
+
+ static void test_axis(const int8_t idx) {
+ CHECK_IDX();
+ encoders[idx].test_axis();
+ }
+
+ static void calibrate_steps_mm(const int8_t idx, const int iterations) {
+ CHECK_IDX();
+ encoders[idx].calibrate_steps_mm(iterations);
+ }
+
+ static void change_module_address(const uint8_t oldaddr, const uint8_t newaddr);
+ static void report_module_firmware(const uint8_t address);
+
+ static void report_error_count(const int8_t idx, const AxisEnum axis) {
+ CHECK_IDX();
+ SERIAL_ECHOLNPAIR("Error count on ", axis_codes[axis], " axis is ", encoders[idx].get_error_count());
+ }
+
+ static void reset_error_count(const int8_t idx, const AxisEnum axis) {
+ CHECK_IDX();
+ encoders[idx].set_error_count(0);
+ SERIAL_ECHOLNPAIR("Error count on ", axis_codes[axis], " axis has been reset.");
+ }
+
+ static void enable_ec(const int8_t idx, const bool enabled, const AxisEnum axis) {
+ CHECK_IDX();
+ encoders[idx].set_ec_enabled(enabled);
+ SERIAL_ECHOPAIR("Error correction on ", axis_codes[axis]);
+ SERIAL_ECHO_TERNARY(encoders[idx].get_ec_enabled(), " axis is ", "en", "dis", "abled.\n");
+ }
+
+ static void set_ec_threshold(const int8_t idx, const float newThreshold, const AxisEnum axis) {
+ CHECK_IDX();
+ encoders[idx].set_ec_threshold(newThreshold);
+ SERIAL_ECHOLNPAIR("Error correct threshold for ", axis_codes[axis], " axis set to ", newThreshold, "mm.");
+ }
+
+ static void get_ec_threshold(const int8_t idx, const AxisEnum axis) {
+ CHECK_IDX();
+ const float threshold = encoders[idx].get_ec_threshold();
+ SERIAL_ECHOLNPAIR("Error correct threshold for ", axis_codes[axis], " axis is ", threshold, "mm.");
+ }
+
+ static int8_t idx_from_axis(const AxisEnum axis) {
+ LOOP_PE(i)
+ if (encoders[i].get_axis() == axis) return i;
+ return -1;
+ }
+
+ static int8_t idx_from_addr(const uint8_t addr) {
+ LOOP_PE(i)
+ if (encoders[i].get_address() == addr) return i;
+ return -1;
+ }
+
+ static int8_t parse();
+
+ static void M860();
+ static void M861();
+ static void M862();
+ static void M863();
+ static void M864();
+ static void M865();
+ static void M866();
+ static void M867();
+ static void M868();
+ static void M869();
+
+ static I2CPositionEncoder encoders[I2CPE_ENCODER_CNT];
+};
+
+extern I2CPositionEncodersMgr I2CPEM;