aboutsummaryrefslogtreecommitdiff
path: root/Marlin/src/gcode/bedlevel/G26.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'Marlin/src/gcode/bedlevel/G26.cpp')
-rw-r--r--Marlin/src/gcode/bedlevel/G26.cpp872
1 files changed, 872 insertions, 0 deletions
diff --git a/Marlin/src/gcode/bedlevel/G26.cpp b/Marlin/src/gcode/bedlevel/G26.cpp
new file mode 100644
index 0000000..5a79aaa
--- /dev/null
+++ b/Marlin/src/gcode/bedlevel/G26.cpp
@@ -0,0 +1,872 @@
+/**
+ * Marlin 3D Printer Firmware
+ * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
+ *
+ * Based on Sprinter and grbl.
+ * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <https://www.gnu.org/licenses/>.
+ *
+ */
+
+/**
+ * G26 Mesh Validation Tool
+ *
+ * G26 is a Mesh Validation Tool intended to provide support for the Marlin Unified Bed Leveling System.
+ * In order to fully utilize and benefit from the Marlin Unified Bed Leveling System an accurate Mesh must
+ * be defined. G29 is designed to allow the user to quickly validate the correctness of her Mesh. It will
+ * first heat the bed and nozzle. It will then print lines and circles along the Mesh Cell boundaries and
+ * the intersections of those lines (respectively).
+ *
+ * This action allows the user to immediately see where the Mesh is properly defined and where it needs to
+ * be edited. The command will generate the Mesh lines closest to the nozzle's starting position. Alternatively
+ * the user can specify the X and Y position of interest with command parameters. This allows the user to
+ * focus on a particular area of the Mesh where attention is needed.
+ *
+ * B # Bed Set the Bed Temperature. If not specified, a default of 60 C. will be assumed.
+ *
+ * C Current When searching for Mesh Intersection points to draw, use the current nozzle location
+ * as the base for any distance comparison.
+ *
+ * D Disable Disable the Unified Bed Leveling System. In the normal case the user is invoking this
+ * command to see how well a Mesh as been adjusted to match a print surface. In order to do
+ * this the Unified Bed Leveling System is turned on by the G26 command. The D parameter
+ * alters the command's normal behavior and disables the Unified Bed Leveling System even if
+ * it is on.
+ *
+ * H # Hotend Set the Nozzle Temperature. If not specified, a default of 205 C. will be assumed.
+ *
+ * I # Preset Heat the Nozzle and Bed based on a Material Preset (if material presets are defined).
+ *
+ * F # Filament Used to specify the diameter of the filament being used. If not specified
+ * 1.75mm filament is assumed. If you are not getting acceptable results by using the
+ * 'correct' numbers, you can scale this number up or down a little bit to change the amount
+ * of filament that is being extruded during the printing of the various lines on the bed.
+ *
+ * K Keep-On Keep the heaters turned on at the end of the command.
+ *
+ * L # Layer Layer height. (Height of nozzle above bed) If not specified .20mm will be used.
+ *
+ * O # Ooooze How much your nozzle will Ooooze filament while getting in position to print. This
+ * is over kill, but using this parameter will let you get the very first 'circle' perfect
+ * so you have a trophy to peel off of the bed and hang up to show how perfectly you have your
+ * Mesh calibrated. If not specified, a filament length of .3mm is assumed.
+ *
+ * P # Prime Prime the nozzle with specified length of filament. If this parameter is not
+ * given, no prime action will take place. If the parameter specifies an amount, that much
+ * will be purged before continuing. If no amount is specified the command will start
+ * purging filament until the user provides an LCD Click and then it will continue with
+ * printing the Mesh. You can carefully remove the spent filament with a needle nose
+ * pliers while holding the LCD Click wheel in a depressed state. If you do not have
+ * an LCD, you must specify a value if you use P.
+ *
+ * Q # Multiplier Retraction Multiplier. Normally not needed. Retraction defaults to 1.0mm and
+ * un-retraction is at 1.2mm These numbers will be scaled by the specified amount
+ *
+ * R # Repeat Prints the number of patterns given as a parameter, starting at the current location.
+ * If a parameter isn't given, every point will be printed unless G26 is interrupted.
+ * This works the same way that the UBL G29 P4 R parameter works.
+ *
+ * NOTE: If you do not have an LCD, you -must- specify R. This is to ensure that you are
+ * aware that there's some risk associated with printing without the ability to abort in
+ * cases where mesh point Z value may be inaccurate. As above, if you do not include a
+ * parameter, every point will be printed.
+ *
+ * S # Nozzle Used to control the size of nozzle diameter. If not specified, a .4mm nozzle is assumed.
+ *
+ * U # Random Randomize the order that the circles are drawn on the bed. The search for the closest
+ * un-drawn circle is still done. But the distance to the location for each circle has a
+ * random number of the specified size added to it. Specifying S50 will give an interesting
+ * deviation from the normal behavior on a 10 x 10 Mesh.
+ *
+ * X # X Coord. Specify the starting location of the drawing activity.
+ *
+ * Y # Y Coord. Specify the starting location of the drawing activity.
+ */
+
+#include "../../inc/MarlinConfig.h"
+
+#if ENABLED(G26_MESH_VALIDATION)
+
+#define G26_OK false
+#define G26_ERR true
+
+#include "../../gcode/gcode.h"
+#include "../../feature/bedlevel/bedlevel.h"
+
+#include "../../MarlinCore.h"
+#include "../../module/planner.h"
+#include "../../module/stepper.h"
+#include "../../module/motion.h"
+#include "../../module/tool_change.h"
+#include "../../module/temperature.h"
+#include "../../lcd/marlinui.h"
+
+#define EXTRUSION_MULTIPLIER 1.0
+#define PRIME_LENGTH 10.0
+#define OOZE_AMOUNT 0.3
+
+#define INTERSECTION_CIRCLE_RADIUS 5
+#define CROSSHAIRS_SIZE 3
+
+#ifndef G26_RETRACT_MULTIPLIER
+ #define G26_RETRACT_MULTIPLIER 1.0 // x 1mm
+#endif
+
+#ifndef G26_XY_FEEDRATE
+ #define G26_XY_FEEDRATE (PLANNER_XY_FEEDRATE() / 3.0)
+#endif
+
+#ifndef G26_XY_FEEDRATE_TRAVEL
+ #define G26_XY_FEEDRATE_TRAVEL (PLANNER_XY_FEEDRATE() / 1.5)
+#endif
+
+#if CROSSHAIRS_SIZE >= INTERSECTION_CIRCLE_RADIUS
+ #error "CROSSHAIRS_SIZE must be less than INTERSECTION_CIRCLE_RADIUS."
+#endif
+
+#define G26_OK false
+#define G26_ERR true
+
+#if ENABLED(ARC_SUPPORT)
+ void plan_arc(const xyze_pos_t&, const ab_float_t&, const bool, const uint8_t);
+#endif
+
+constexpr float g26_e_axis_feedrate = 0.025;
+
+static MeshFlags circle_flags, horizontal_mesh_line_flags, vertical_mesh_line_flags;
+float g26_random_deviation = 0.0;
+
+static bool g26_retracted = false; // Track the retracted state of the nozzle so mismatched
+ // retracts/recovers won't result in a bad state.
+
+float g26_extrusion_multiplier,
+ g26_retraction_multiplier,
+ g26_layer_height,
+ g26_prime_length;
+
+xy_pos_t g26_xy_pos; // = { 0, 0 }
+
+int16_t g26_bed_temp,
+ g26_hotend_temp;
+
+int8_t g26_prime_flag;
+
+#if HAS_LCD_MENU
+
+ /**
+ * If the LCD is clicked, cancel, wait for release, return true
+ */
+ bool user_canceled() {
+ if (!ui.button_pressed()) return false; // Return if the button isn't pressed
+ ui.set_status_P(GET_TEXT(MSG_G26_CANCELED), 99);
+ TERN_(HAS_LCD_MENU, ui.quick_feedback());
+ ui.wait_for_release();
+ return true;
+ }
+
+#endif
+
+mesh_index_pair find_closest_circle_to_print(const xy_pos_t &pos) {
+ float closest = 99999.99;
+ mesh_index_pair out_point;
+
+ out_point.pos = -1;
+
+ GRID_LOOP(i, j) {
+ if (!circle_flags.marked(i, j)) {
+ // We found a circle that needs to be printed
+ const xy_pos_t m = { _GET_MESH_X(i), _GET_MESH_Y(j) };
+
+ // Get the distance to this intersection
+ float f = (pos - m).magnitude();
+
+ // It is possible that we are being called with the values
+ // to let us find the closest circle to the start position.
+ // But if this is not the case, add a small weighting to the
+ // distance calculation to help it choose a better place to continue.
+ f += (g26_xy_pos - m).magnitude() / 15.0f;
+
+ // Add the specified amount of Random Noise to our search
+ if (g26_random_deviation > 1.0) f += random(0.0, g26_random_deviation);
+
+ if (f < closest) {
+ closest = f; // Found a closer un-printed location
+ out_point.pos.set(i, j); // Save its data
+ out_point.distance = closest;
+ }
+ }
+ }
+ circle_flags.mark(out_point); // Mark this location as done.
+ return out_point;
+}
+
+void move_to(const float &rx, const float &ry, const float &z, const float &e_delta) {
+ static float last_z = -999.99;
+
+ const xy_pos_t dest = { rx, ry };
+
+ const bool has_xy_component = dest != current_position; // Check if X or Y is involved in the movement.
+ const bool has_e_component = e_delta != 0.0;
+
+ destination = current_position;
+
+ if (z != last_z) {
+ last_z = destination.z = z;
+ const feedRate_t fr_mm_s = planner.settings.max_feedrate_mm_s[Z_AXIS] * 0.5f; // Use half of the Z_AXIS max feed rate
+ prepare_internal_move_to_destination(fr_mm_s);
+ }
+
+ // If X or Y in combination with E is involved do a 'normal' move.
+ // If X or Y with no E is involved do a 'fast' move
+ // Otherwise retract/recover/hop.
+ destination = dest;
+ destination.e += e_delta;
+ const feedRate_t fr_mm_s = has_xy_component
+ ? (has_e_component ? feedRate_t(G26_XY_FEEDRATE) : feedRate_t(G26_XY_FEEDRATE_TRAVEL))
+ : planner.settings.max_feedrate_mm_s[E_AXIS] * 0.666f;
+ prepare_internal_move_to_destination(fr_mm_s);
+}
+
+FORCE_INLINE void move_to(const xyz_pos_t &where, const float &de) { move_to(where.x, where.y, where.z, de); }
+
+void retract_filament(const xyz_pos_t &where) {
+ if (!g26_retracted) { // Only retract if we are not already retracted!
+ g26_retracted = true;
+ move_to(where, -1.0f * g26_retraction_multiplier);
+ }
+}
+
+// TODO: Parameterize the Z lift with a define
+void retract_lift_move(const xyz_pos_t &s) {
+ retract_filament(destination);
+ move_to(current_position.x, current_position.y, current_position.z + 0.5f, 0.0); // Z lift to minimize scraping
+ move_to(s.x, s.y, s.z + 0.5f, 0.0); // Get to the starting point with no extrusion while lifted
+}
+
+void recover_filament(const xyz_pos_t &where) {
+ if (g26_retracted) { // Only un-retract if we are retracted.
+ move_to(where, 1.2f * g26_retraction_multiplier);
+ g26_retracted = false;
+ }
+}
+
+/**
+ * print_line_from_here_to_there() takes two cartesian coordinates and draws a line from one
+ * to the other. But there are really three sets of coordinates involved. The first coordinate
+ * is the present location of the nozzle. We don't necessarily want to print from this location.
+ * We first need to move the nozzle to the start of line segment where we want to print. Once
+ * there, we can use the two coordinates supplied to draw the line.
+ *
+ * Note: Although we assume the first set of coordinates is the start of the line and the second
+ * set of coordinates is the end of the line, it does not always work out that way. This function
+ * optimizes the movement to minimize the travel distance before it can start printing. This saves
+ * a lot of time and eliminates a lot of nonsensical movement of the nozzle. However, it does
+ * cause a lot of very little short retracement of th nozzle when it draws the very first line
+ * segment of a 'circle'. The time this requires is very short and is easily saved by the other
+ * cases where the optimization comes into play.
+ */
+void print_line_from_here_to_there(const xyz_pos_t &s, const xyz_pos_t &e) {
+
+ // Distances to the start / end of the line
+ xy_float_t svec = current_position - s, evec = current_position - e;
+
+ const float dist_start = HYPOT2(svec.x, svec.y),
+ dist_end = HYPOT2(evec.x, evec.y),
+ line_length = HYPOT(e.x - s.x, e.y - s.y);
+
+ // If the end point of the line is closer to the nozzle, flip the direction,
+ // moving from the end to the start. On very small lines the optimization isn't worth it.
+ if (dist_end < dist_start && (INTERSECTION_CIRCLE_RADIUS) < ABS(line_length))
+ return print_line_from_here_to_there(e, s);
+
+ // Decide whether to retract & lift
+ if (dist_start > 2.0) retract_lift_move(s);
+
+ move_to(s, 0.0); // Get to the starting point with no extrusion / un-Z lift
+
+ const float e_pos_delta = line_length * g26_e_axis_feedrate * g26_extrusion_multiplier;
+
+ recover_filament(destination);
+ move_to(e, e_pos_delta); // Get to the ending point with an appropriate amount of extrusion
+}
+
+inline bool look_for_lines_to_connect() {
+ xyz_pos_t s, e;
+ s.z = e.z = g26_layer_height;
+
+ GRID_LOOP(i, j) {
+
+ if (TERN0(HAS_LCD_MENU, user_canceled())) return true;
+
+ if (i < (GRID_MAX_POINTS_X)) { // Can't connect to anything farther to the right than GRID_MAX_POINTS_X.
+ // Already a half circle at the edge of the bed.
+
+ if (circle_flags.marked(i, j) && circle_flags.marked(i + 1, j)) { // Test whether a leftward line can be done
+ if (!horizontal_mesh_line_flags.marked(i, j)) {
+ // Two circles need a horizontal line to connect them
+ s.x = _GET_MESH_X( i ) + (INTERSECTION_CIRCLE_RADIUS - (CROSSHAIRS_SIZE)); // right edge
+ e.x = _GET_MESH_X(i + 1) - (INTERSECTION_CIRCLE_RADIUS - (CROSSHAIRS_SIZE)); // left edge
+
+ LIMIT(s.x, X_MIN_POS + 1, X_MAX_POS - 1);
+ s.y = e.y = constrain(_GET_MESH_Y(j), Y_MIN_POS + 1, Y_MAX_POS - 1);
+ LIMIT(e.x, X_MIN_POS + 1, X_MAX_POS - 1);
+
+ if (position_is_reachable(s.x, s.y) && position_is_reachable(e.x, e.y))
+ print_line_from_here_to_there(s, e);
+
+ horizontal_mesh_line_flags.mark(i, j); // Mark done, even if skipped
+ }
+ }
+
+ if (j < (GRID_MAX_POINTS_Y)) { // Can't connect to anything further back than GRID_MAX_POINTS_Y.
+ // Already a half circle at the edge of the bed.
+
+ if (circle_flags.marked(i, j) && circle_flags.marked(i, j + 1)) { // Test whether a downward line can be done
+ if (!vertical_mesh_line_flags.marked(i, j)) {
+ // Two circles that need a vertical line to connect them
+ s.y = _GET_MESH_Y( j ) + (INTERSECTION_CIRCLE_RADIUS - (CROSSHAIRS_SIZE)); // top edge
+ e.y = _GET_MESH_Y(j + 1) - (INTERSECTION_CIRCLE_RADIUS - (CROSSHAIRS_SIZE)); // bottom edge
+
+ s.x = e.x = constrain(_GET_MESH_X(i), X_MIN_POS + 1, X_MAX_POS - 1);
+ LIMIT(s.y, Y_MIN_POS + 1, Y_MAX_POS - 1);
+ LIMIT(e.y, Y_MIN_POS + 1, Y_MAX_POS - 1);
+
+ if (position_is_reachable(s.x, s.y) && position_is_reachable(e.x, e.y))
+ print_line_from_here_to_there(s, e);
+
+ vertical_mesh_line_flags.mark(i, j); // Mark done, even if skipped
+ }
+ }
+ }
+ }
+ }
+ return false;
+}
+
+/**
+ * Turn on the bed and nozzle heat and
+ * wait for them to get up to temperature.
+ */
+inline bool turn_on_heaters() {
+
+ SERIAL_ECHOLNPGM("Waiting for heatup.");
+
+ #if HAS_HEATED_BED
+
+ if (g26_bed_temp > 25) {
+ #if HAS_WIRED_LCD
+ ui.set_status_P(GET_TEXT(MSG_G26_HEATING_BED), 99);
+ ui.quick_feedback();
+ TERN_(HAS_LCD_MENU, ui.capture());
+ #endif
+ thermalManager.setTargetBed(g26_bed_temp);
+
+ // Wait for the temperature to stabilize
+ if (!thermalManager.wait_for_bed(true
+ #if G26_CLICK_CAN_CANCEL
+ , true
+ #endif
+ )
+ ) return G26_ERR;
+ }
+
+ #endif // HAS_HEATED_BED
+
+ // Start heating the active nozzle
+ #if HAS_WIRED_LCD
+ ui.set_status_P(GET_TEXT(MSG_G26_HEATING_NOZZLE), 99);
+ ui.quick_feedback();
+ #endif
+ thermalManager.setTargetHotend(g26_hotend_temp, active_extruder);
+
+ // Wait for the temperature to stabilize
+ if (!thermalManager.wait_for_hotend(active_extruder, true
+ #if G26_CLICK_CAN_CANCEL
+ , true
+ #endif
+ )) return G26_ERR;
+
+ #if HAS_WIRED_LCD
+ ui.reset_status();
+ ui.quick_feedback();
+ #endif
+
+ return G26_OK;
+}
+
+/**
+ * Prime the nozzle if needed. Return true on error.
+ */
+inline bool prime_nozzle() {
+
+ const feedRate_t fr_slow_e = planner.settings.max_feedrate_mm_s[E_AXIS] / 15.0f;
+ #if HAS_LCD_MENU && !HAS_TOUCH_BUTTONS // ui.button_pressed issue with touchscreen
+ #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
+ float Total_Prime = 0.0;
+ #endif
+
+ if (g26_prime_flag == -1) { // The user wants to control how much filament gets purged
+ ui.capture();
+ ui.set_status_P(GET_TEXT(MSG_G26_MANUAL_PRIME), 99);
+ ui.chirp();
+
+ destination = current_position;
+
+ recover_filament(destination); // Make sure G26 doesn't think the filament is retracted().
+
+ while (!ui.button_pressed()) {
+ ui.chirp();
+ destination.e += 0.25;
+ #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
+ Total_Prime += 0.25;
+ if (Total_Prime >= EXTRUDE_MAXLENGTH) {
+ ui.release();
+ return G26_ERR;
+ }
+ #endif
+ prepare_internal_move_to_destination(fr_slow_e);
+ destination = current_position;
+ planner.synchronize(); // Without this synchronize, the purge is more consistent,
+ // but because the planner has a buffer, we won't be able
+ // to stop as quickly. So we put up with the less smooth
+ // action to give the user a more responsive 'Stop'.
+ }
+
+ ui.wait_for_release();
+
+ ui.set_status_P(GET_TEXT(MSG_G26_PRIME_DONE), 99);
+ ui.quick_feedback();
+ ui.release();
+ }
+ else
+ #endif
+ {
+ #if HAS_WIRED_LCD
+ ui.set_status_P(GET_TEXT(MSG_G26_FIXED_LENGTH), 99);
+ ui.quick_feedback();
+ #endif
+ destination = current_position;
+ destination.e += g26_prime_length;
+ prepare_internal_move_to_destination(fr_slow_e);
+ destination.e -= g26_prime_length;
+ retract_filament(destination);
+ }
+
+ return G26_OK;
+}
+
+/**
+ * G26: Mesh Validation Pattern generation.
+ *
+ * Used to interactively edit the mesh by placing the
+ * nozzle in a problem area and doing a G29 P4 R command.
+ *
+ * Parameters:
+ *
+ * B Bed Temperature
+ * C Continue from the Closest mesh point
+ * D Disable leveling before starting
+ * F Filament diameter
+ * H Hotend Temperature
+ * K Keep heaters on when completed
+ * L Layer Height
+ * O Ooze extrusion length
+ * P Prime length
+ * Q Retraction multiplier
+ * R Repetitions (number of grid points)
+ * S Nozzle Size (diameter) in mm
+ * T Tool index to change to, if included
+ * U Random deviation (50 if no value given)
+ * X X position
+ * Y Y position
+ */
+void GcodeSuite::G26() {
+ SERIAL_ECHOLNPGM("G26 starting...");
+
+ // Don't allow Mesh Validation without homing first,
+ // or if the parameter parsing did not go OK, abort
+ if (homing_needed_error()) return;
+
+ // Change the tool first, if specified
+ if (parser.seenval('T')) tool_change(parser.value_int());
+
+ g26_extrusion_multiplier = EXTRUSION_MULTIPLIER;
+ g26_retraction_multiplier = G26_RETRACT_MULTIPLIER;
+ g26_layer_height = MESH_TEST_LAYER_HEIGHT;
+ g26_prime_length = PRIME_LENGTH;
+ g26_bed_temp = MESH_TEST_BED_TEMP;
+ g26_hotend_temp = MESH_TEST_HOTEND_TEMP;
+ g26_prime_flag = 0;
+
+ float g26_nozzle = MESH_TEST_NOZZLE_SIZE,
+ g26_filament_diameter = DEFAULT_NOMINAL_FILAMENT_DIA,
+ g26_ooze_amount = parser.linearval('O', OOZE_AMOUNT);
+
+ bool g26_continue_with_closest = parser.boolval('C'),
+ g26_keep_heaters_on = parser.boolval('K');
+
+ // Accept 'I' if temperature presets are defined
+ #if PREHEAT_COUNT
+ const uint8_t preset_index = parser.seenval('I') ? _MIN(parser.value_byte(), PREHEAT_COUNT - 1) + 1 : 0;
+ #endif
+
+ #if HAS_HEATED_BED
+
+ // Get a temperature from 'I' or 'B'
+ int16_t bedtemp = 0;
+
+ // Use the 'I' index if temperature presets are defined
+ #if PREHEAT_COUNT
+ if (preset_index) bedtemp = ui.material_preset[preset_index - 1].bed_temp;
+ #endif
+
+ // Look for 'B' Bed Temperature
+ if (parser.seenval('B')) bedtemp = parser.value_celsius();
+
+ if (bedtemp) {
+ if (!WITHIN(bedtemp, 40, BED_MAX_TARGET)) {
+ SERIAL_ECHOLNPAIR("?Specified bed temperature not plausible (40-", int(BED_MAX_TARGET), "C).");
+ return;
+ }
+ g26_bed_temp = bedtemp;
+ }
+
+ #endif // HAS_HEATED_BED
+
+ if (parser.seenval('L')) {
+ g26_layer_height = parser.value_linear_units();
+ if (!WITHIN(g26_layer_height, 0.0, 2.0)) {
+ SERIAL_ECHOLNPGM("?Specified layer height not plausible.");
+ return;
+ }
+ }
+
+ if (parser.seen('Q')) {
+ if (parser.has_value()) {
+ g26_retraction_multiplier = parser.value_float();
+ if (!WITHIN(g26_retraction_multiplier, 0.05, 15.0)) {
+ SERIAL_ECHOLNPGM("?Specified Retraction Multiplier not plausible.");
+ return;
+ }
+ }
+ else {
+ SERIAL_ECHOLNPGM("?Retraction Multiplier must be specified.");
+ return;
+ }
+ }
+
+ if (parser.seenval('S')) {
+ g26_nozzle = parser.value_float();
+ if (!WITHIN(g26_nozzle, 0.1, 2.0)) {
+ SERIAL_ECHOLNPGM("?Specified nozzle size not plausible.");
+ return;
+ }
+ }
+
+ if (parser.seen('P')) {
+ if (!parser.has_value()) {
+ #if HAS_LCD_MENU
+ g26_prime_flag = -1;
+ #else
+ SERIAL_ECHOLNPGM("?Prime length must be specified when not using an LCD.");
+ return;
+ #endif
+ }
+ else {
+ g26_prime_flag++;
+ g26_prime_length = parser.value_linear_units();
+ if (!WITHIN(g26_prime_length, 0.0, 25.0)) {
+ SERIAL_ECHOLNPGM("?Specified prime length not plausible.");
+ return;
+ }
+ }
+ }
+
+ if (parser.seenval('F')) {
+ g26_filament_diameter = parser.value_linear_units();
+ if (!WITHIN(g26_filament_diameter, 1.0, 4.0)) {
+ SERIAL_ECHOLNPGM("?Specified filament size not plausible.");
+ return;
+ }
+ }
+ g26_extrusion_multiplier *= sq(1.75) / sq(g26_filament_diameter); // If we aren't using 1.75mm filament, we need to
+ // scale up or down the length needed to get the
+ // same volume of filament
+
+ g26_extrusion_multiplier *= g26_filament_diameter * sq(g26_nozzle) / sq(0.3); // Scale up by nozzle size
+
+ // Get a temperature from 'I' or 'H'
+ int16_t noztemp = 0;
+
+ // Accept 'I' if temperature presets are defined
+ #if PREHEAT_COUNT
+ if (preset_index) noztemp = ui.material_preset[preset_index - 1].hotend_temp;
+ #endif
+
+ // Look for 'H' Hotend Temperature
+ if (parser.seenval('H')) noztemp = parser.value_celsius();
+
+ // If any preset or temperature was specified
+ if (noztemp) {
+ if (!WITHIN(noztemp, 165, (HEATER_0_MAXTEMP) - (HOTEND_OVERSHOOT))) {
+ SERIAL_ECHOLNPGM("?Specified nozzle temperature not plausible.");
+ return;
+ }
+ g26_hotend_temp = noztemp;
+ }
+
+ // 'U' to Randomize and optionally set circle deviation
+ if (parser.seen('U')) {
+ randomSeed(millis());
+ // This setting will persist for the next G26
+ g26_random_deviation = parser.has_value() ? parser.value_float() : 50.0;
+ }
+
+ // Get repeat from 'R', otherwise do one full circuit
+ int16_t g26_repeats;
+ #if HAS_LCD_MENU
+ g26_repeats = parser.intval('R', GRID_MAX_POINTS + 1);
+ #else
+ if (!parser.seen('R')) {
+ SERIAL_ECHOLNPGM("?(R)epeat must be specified when not using an LCD.");
+ return;
+ }
+ else
+ g26_repeats = parser.has_value() ? parser.value_int() : GRID_MAX_POINTS + 1;
+ #endif
+ if (g26_repeats < 1) {
+ SERIAL_ECHOLNPGM("?(R)epeat value not plausible; must be at least 1.");
+ return;
+ }
+
+ // Set a position with 'X' and/or 'Y'. Default: current_position
+ g26_xy_pos.set(parser.seenval('X') ? RAW_X_POSITION(parser.value_linear_units()) : current_position.x,
+ parser.seenval('Y') ? RAW_Y_POSITION(parser.value_linear_units()) : current_position.y);
+ if (!position_is_reachable(g26_xy_pos)) {
+ SERIAL_ECHOLNPGM("?Specified X,Y coordinate out of bounds.");
+ return;
+ }
+
+ /**
+ * Wait until all parameters are verified before altering the state!
+ */
+ set_bed_leveling_enabled(!parser.seen('D'));
+
+ do_z_clearance(Z_CLEARANCE_BETWEEN_PROBES);
+
+ #if DISABLED(NO_VOLUMETRICS)
+ bool volumetric_was_enabled = parser.volumetric_enabled;
+ parser.volumetric_enabled = false;
+ planner.calculate_volumetric_multipliers();
+ #endif
+
+ if (turn_on_heaters() != G26_OK) goto LEAVE;
+
+ current_position.e = 0.0;
+ sync_plan_position_e();
+
+ if (g26_prime_flag && prime_nozzle() != G26_OK) goto LEAVE;
+
+ /**
+ * Bed is preheated
+ *
+ * Nozzle is at temperature
+ *
+ * Filament is primed!
+ *
+ * It's "Show Time" !!!
+ */
+
+ circle_flags.reset();
+ horizontal_mesh_line_flags.reset();
+ vertical_mesh_line_flags.reset();
+
+ // Move nozzle to the specified height for the first layer
+ destination = current_position;
+ destination.z = g26_layer_height;
+ move_to(destination, 0.0);
+ move_to(destination, g26_ooze_amount);
+
+ TERN_(HAS_LCD_MENU, ui.capture());
+
+ #if DISABLED(ARC_SUPPORT)
+
+ /**
+ * Pre-generate radius offset values at 30 degree intervals to reduce CPU load.
+ */
+ #define A_INT 30
+ #define _ANGS (360 / A_INT)
+ #define A_CNT (_ANGS / 2)
+ #define _IND(A) ((A + _ANGS * 8) % _ANGS)
+ #define _COS(A) (trig_table[_IND(A) % A_CNT] * (_IND(A) >= A_CNT ? -1 : 1))
+ #define _SIN(A) (-_COS((A + A_CNT / 2) % _ANGS))
+ #if A_CNT & 1
+ #error "A_CNT must be a positive value. Please change A_INT."
+ #endif
+ float trig_table[A_CNT];
+ LOOP_L_N(i, A_CNT)
+ trig_table[i] = INTERSECTION_CIRCLE_RADIUS * cos(RADIANS(i * A_INT));
+
+ #endif // !ARC_SUPPORT
+
+ mesh_index_pair location;
+ do {
+ // Find the nearest confluence
+ location = find_closest_circle_to_print(g26_continue_with_closest ? xy_pos_t(current_position) : g26_xy_pos);
+
+ if (location.valid()) {
+ const xy_pos_t circle = _GET_MESH_POS(location.pos);
+
+ // If this mesh location is outside the printable radius, skip it.
+ if (!position_is_reachable(circle)) continue;
+
+ // Determine where to start and end the circle,
+ // which is always drawn counter-clockwise.
+ const xy_int8_t st = location;
+ const bool f = st.y == 0,
+ r = st.x >= GRID_MAX_POINTS_X - 1,
+ b = st.y >= GRID_MAX_POINTS_Y - 1;
+
+ #if ENABLED(ARC_SUPPORT)
+
+ #define ARC_LENGTH(quarters) (INTERSECTION_CIRCLE_RADIUS * M_PI * (quarters) / 2)
+ #define INTERSECTION_CIRCLE_DIAM ((INTERSECTION_CIRCLE_RADIUS) * 2)
+
+ xy_float_t e = { circle.x + INTERSECTION_CIRCLE_RADIUS, circle.y };
+ xyz_float_t s = e;
+
+ // Figure out where to start and end the arc - we always print counterclockwise
+ float arc_length = ARC_LENGTH(4);
+ if (st.x == 0) { // left edge
+ if (!f) { s.x = circle.x; s.y -= INTERSECTION_CIRCLE_RADIUS; }
+ if (!b) { e.x = circle.x; e.y += INTERSECTION_CIRCLE_RADIUS; }
+ arc_length = (f || b) ? ARC_LENGTH(1) : ARC_LENGTH(2);
+ }
+ else if (r) { // right edge
+ if (b) s.set(circle.x - (INTERSECTION_CIRCLE_RADIUS), circle.y);
+ else s.set(circle.x, circle.y + INTERSECTION_CIRCLE_RADIUS);
+ if (f) e.set(circle.x - (INTERSECTION_CIRCLE_RADIUS), circle.y);
+ else e.set(circle.x, circle.y - (INTERSECTION_CIRCLE_RADIUS));
+ arc_length = (f || b) ? ARC_LENGTH(1) : ARC_LENGTH(2);
+ }
+ else if (f) {
+ e.x -= INTERSECTION_CIRCLE_DIAM;
+ arc_length = ARC_LENGTH(2);
+ }
+ else if (b) {
+ s.x -= INTERSECTION_CIRCLE_DIAM;
+ arc_length = ARC_LENGTH(2);
+ }
+
+ const ab_float_t arc_offset = circle - s;
+ const xy_float_t dist = current_position - s; // Distance from the start of the actual circle
+ const float dist_start = HYPOT2(dist.x, dist.y);
+ const xyze_pos_t endpoint = {
+ e.x, e.y, g26_layer_height,
+ current_position.e + (arc_length * g26_e_axis_feedrate * g26_extrusion_multiplier)
+ };
+
+ if (dist_start > 2.0) {
+ s.z = g26_layer_height + 0.5f;
+ retract_lift_move(s);
+ }
+
+ s.z = g26_layer_height;
+ move_to(s, 0.0); // Get to the starting point with no extrusion / un-Z lift
+
+ recover_filament(destination);
+
+ const feedRate_t old_feedrate = feedrate_mm_s;
+ feedrate_mm_s = PLANNER_XY_FEEDRATE() * 0.1f;
+ plan_arc(endpoint, arc_offset, false, 0); // Draw a counter-clockwise arc
+ feedrate_mm_s = old_feedrate;
+ destination = current_position;
+
+ if (TERN0(HAS_LCD_MENU, user_canceled())) goto LEAVE; // Check if the user wants to stop the Mesh Validation
+
+ #else // !ARC_SUPPORT
+
+ int8_t start_ind = -2, end_ind = 9; // Assume a full circle (from 5:00 to 5:00)
+ if (st.x == 0) { // Left edge? Just right half.
+ start_ind = f ? 0 : -3; // 03:00 to 12:00 for front-left
+ end_ind = b ? 0 : 2; // 06:00 to 03:00 for back-left
+ }
+ else if (r) { // Right edge? Just left half.
+ start_ind = b ? 6 : 3; // 12:00 to 09:00 for front-right
+ end_ind = f ? 5 : 8; // 09:00 to 06:00 for back-right
+ }
+ else if (f) { // Front edge? Just back half.
+ start_ind = 0; // 03:00
+ end_ind = 5; // 09:00
+ }
+ else if (b) { // Back edge? Just front half.
+ start_ind = 6; // 09:00
+ end_ind = 11; // 03:00
+ }
+
+ for (int8_t ind = start_ind; ind <= end_ind; ind++) {
+
+ if (TERN0(HAS_LCD_MENU, user_canceled())) goto LEAVE; // Check if the user wants to stop the Mesh Validation
+
+ xyz_float_t p = { circle.x + _COS(ind ), circle.y + _SIN(ind ), g26_layer_height },
+ q = { circle.x + _COS(ind + 1), circle.y + _SIN(ind + 1), g26_layer_height };
+
+ #if IS_KINEMATIC
+ // Check to make sure this segment is entirely on the bed, skip if not.
+ if (!position_is_reachable(p) || !position_is_reachable(q)) continue;
+ #else
+ LIMIT(p.x, X_MIN_POS + 1, X_MAX_POS - 1); // Prevent hitting the endstops
+ LIMIT(p.y, Y_MIN_POS + 1, Y_MAX_POS - 1);
+ LIMIT(q.x, X_MIN_POS + 1, X_MAX_POS - 1);
+ LIMIT(q.y, Y_MIN_POS + 1, Y_MAX_POS - 1);
+ #endif
+
+ print_line_from_here_to_there(p, q);
+ SERIAL_FLUSH(); // Prevent host M105 buffer overrun.
+ }
+
+ #endif // !ARC_SUPPORT
+
+ if (look_for_lines_to_connect()) goto LEAVE;
+ }
+
+ SERIAL_FLUSH(); // Prevent host M105 buffer overrun.
+
+ } while (--g26_repeats && location.valid());
+
+ LEAVE:
+ ui.set_status_P(GET_TEXT(MSG_G26_LEAVING), -1);
+
+ retract_filament(destination);
+ destination.z = Z_CLEARANCE_BETWEEN_PROBES;
+ move_to(destination, 0); // Raise the nozzle
+
+ destination = g26_xy_pos; // Move back to the starting XY position
+ move_to(destination, 0); // Move back to the starting position
+
+ #if DISABLED(NO_VOLUMETRICS)
+ parser.volumetric_enabled = volumetric_was_enabled;
+ planner.calculate_volumetric_multipliers();
+ #endif
+
+ TERN_(HAS_LCD_MENU, ui.release()); // Give back control of the LCD
+
+ if (!g26_keep_heaters_on) {
+ TERN_(HAS_HEATED_BED, thermalManager.setTargetBed(0));
+ thermalManager.setTargetHotend(active_extruder, 0);
+ }
+}
+
+#endif // G26_MESH_VALIDATION