aboutsummaryrefslogtreecommitdiff
path: root/Marlin/src/gcode/bedlevel/abl/G29.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'Marlin/src/gcode/bedlevel/abl/G29.cpp')
-rw-r--r--Marlin/src/gcode/bedlevel/abl/G29.cpp901
1 files changed, 901 insertions, 0 deletions
diff --git a/Marlin/src/gcode/bedlevel/abl/G29.cpp b/Marlin/src/gcode/bedlevel/abl/G29.cpp
new file mode 100644
index 0000000..2e80f09
--- /dev/null
+++ b/Marlin/src/gcode/bedlevel/abl/G29.cpp
@@ -0,0 +1,901 @@
+/**
+ * Marlin 3D Printer Firmware
+ * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
+ *
+ * Based on Sprinter and grbl.
+ * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <https://www.gnu.org/licenses/>.
+ *
+ */
+
+/**
+ * G29.cpp - Auto Bed Leveling
+ */
+
+#include "../../../inc/MarlinConfig.h"
+
+#if HAS_ABL_NOT_UBL
+
+#include "../../gcode.h"
+#include "../../../feature/bedlevel/bedlevel.h"
+#include "../../../module/motion.h"
+#include "../../../module/planner.h"
+#include "../../../module/stepper.h"
+#include "../../../module/probe.h"
+#include "../../queue.h"
+
+#if ENABLED(PROBE_TEMP_COMPENSATION)
+ #include "../../../feature/probe_temp_comp.h"
+ #include "../../../module/temperature.h"
+#endif
+
+#if HAS_DISPLAY
+ #include "../../../lcd/marlinui.h"
+#endif
+
+#if ENABLED(AUTO_BED_LEVELING_LINEAR)
+ #include "../../../libs/least_squares_fit.h"
+#endif
+
+#if ABL_PLANAR
+ #include "../../../libs/vector_3.h"
+#endif
+
+#define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE)
+#include "../../../core/debug_out.h"
+
+#if ENABLED(EXTENSIBLE_UI)
+ #include "../../../lcd/extui/ui_api.h"
+#endif
+
+#if ENABLED(DWIN_CREALITY_LCD)
+ #include "../../../lcd/dwin/e3v2/dwin.h"
+#endif
+
+#if HAS_MULTI_HOTEND
+ #include "../../../module/tool_change.h"
+#endif
+
+#if ABL_GRID
+ #if ENABLED(PROBE_Y_FIRST)
+ #define PR_OUTER_VAR meshCount.x
+ #define PR_OUTER_END abl_grid_points.x
+ #define PR_INNER_VAR meshCount.y
+ #define PR_INNER_END abl_grid_points.y
+ #else
+ #define PR_OUTER_VAR meshCount.y
+ #define PR_OUTER_END abl_grid_points.y
+ #define PR_INNER_VAR meshCount.x
+ #define PR_INNER_END abl_grid_points.x
+ #endif
+#endif
+
+#define G29_RETURN(b) return TERN_(G29_RETRY_AND_RECOVER, b)
+
+/**
+ * G29: Detailed Z probe, probes the bed at 3 or more points.
+ * Will fail if the printer has not been homed with G28.
+ *
+ * Enhanced G29 Auto Bed Leveling Probe Routine
+ *
+ * O Auto-level only if needed
+ *
+ * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
+ * or alter the bed level data. Useful to check the topology
+ * after a first run of G29.
+ *
+ * J Jettison current bed leveling data
+ *
+ * V Set the verbose level (0-4). Example: "G29 V3"
+ *
+ * Parameters With LINEAR leveling only:
+ *
+ * P Set the size of the grid that will be probed (P x P points).
+ * Example: "G29 P4"
+ *
+ * X Set the X size of the grid that will be probed (X x Y points).
+ * Example: "G29 X7 Y5"
+ *
+ * Y Set the Y size of the grid that will be probed (X x Y points).
+ *
+ * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
+ * This is useful for manual bed leveling and finding flaws in the bed (to
+ * assist with part placement).
+ * Not supported by non-linear delta printer bed leveling.
+ *
+ * Parameters With LINEAR and BILINEAR leveling only:
+ *
+ * S Set the XY travel speed between probe points (in units/min)
+ *
+ * H Set bounds to a centered square H x H units in size
+ *
+ * -or-
+ *
+ * F Set the Front limit of the probing grid
+ * B Set the Back limit of the probing grid
+ * L Set the Left limit of the probing grid
+ * R Set the Right limit of the probing grid
+ *
+ * Parameters with DEBUG_LEVELING_FEATURE only:
+ *
+ * C Make a totally fake grid with no actual probing.
+ * For use in testing when no probing is possible.
+ *
+ * Parameters with BILINEAR leveling only:
+ *
+ * Z Supply an additional Z probe offset
+ *
+ * Extra parameters with PROBE_MANUALLY:
+ *
+ * To do manual probing simply repeat G29 until the procedure is complete.
+ * The first G29 accepts parameters. 'G29 Q' for status, 'G29 A' to abort.
+ *
+ * Q Query leveling and G29 state
+ *
+ * A Abort current leveling procedure
+ *
+ * Extra parameters with BILINEAR only:
+ *
+ * W Write a mesh point. (If G29 is idle.)
+ * I X index for mesh point
+ * J Y index for mesh point
+ * X X for mesh point, overrides I
+ * Y Y for mesh point, overrides J
+ * Z Z for mesh point. Otherwise, raw current Z.
+ *
+ * Without PROBE_MANUALLY:
+ *
+ * E By default G29 will engage the Z probe, test the bed, then disengage.
+ * Include "E" to engage/disengage the Z probe for each sample.
+ * There's no extra effect if you have a fixed Z probe.
+ */
+G29_TYPE GcodeSuite::G29() {
+
+ reset_stepper_timeout();
+
+ const bool seenQ = EITHER(DEBUG_LEVELING_FEATURE, PROBE_MANUALLY) && parser.seen('Q');
+
+ // G29 Q is also available if debugging
+ #if ENABLED(DEBUG_LEVELING_FEATURE)
+ const uint8_t old_debug_flags = marlin_debug_flags;
+ if (seenQ) marlin_debug_flags |= MARLIN_DEBUG_LEVELING;
+ DEBUG_SECTION(log_G29, "G29", DEBUGGING(LEVELING));
+ if (DEBUGGING(LEVELING)) log_machine_info();
+ marlin_debug_flags = old_debug_flags;
+ if (DISABLED(PROBE_MANUALLY) && seenQ) G29_RETURN(false);
+ #endif
+
+ const bool seenA = TERN0(PROBE_MANUALLY, parser.seen('A')),
+ no_action = seenA || seenQ,
+ faux = ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(PROBE_MANUALLY) ? parser.boolval('C') : no_action;
+
+ if (!no_action && planner.leveling_active && parser.boolval('O')) { // Auto-level only if needed
+ if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("> Auto-level not needed, skip");
+ G29_RETURN(false);
+ }
+
+ // Send 'N' to force homing before G29 (internal only)
+ if (parser.seen('N'))
+ process_subcommands_now_P(TERN(G28_L0_ENSURES_LEVELING_OFF, PSTR("G28L0"), G28_STR));
+
+ // Don't allow auto-leveling without homing first
+ if (homing_needed_error()) G29_RETURN(false);
+
+ // Define local vars 'static' for manual probing, 'auto' otherwise
+ #define ABL_VAR TERN_(PROBE_MANUALLY, static)
+
+ ABL_VAR int verbose_level;
+ ABL_VAR xy_pos_t probePos;
+ ABL_VAR float measured_z;
+ ABL_VAR bool dryrun, abl_should_enable;
+
+ #if EITHER(PROBE_MANUALLY, AUTO_BED_LEVELING_LINEAR)
+ ABL_VAR int abl_probe_index;
+ #endif
+
+ #if ABL_GRID
+
+ #if ENABLED(PROBE_MANUALLY)
+ ABL_VAR xy_int8_t meshCount;
+ #endif
+
+ ABL_VAR xy_pos_t probe_position_lf, probe_position_rb;
+ ABL_VAR xy_float_t gridSpacing = { 0, 0 };
+
+ #if ENABLED(AUTO_BED_LEVELING_LINEAR)
+ ABL_VAR bool do_topography_map;
+ ABL_VAR xy_uint8_t abl_grid_points;
+ #else // Bilinear
+ constexpr xy_uint8_t abl_grid_points = { GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y };
+ #endif
+
+ #if ENABLED(AUTO_BED_LEVELING_LINEAR)
+ ABL_VAR int abl_points;
+ #else
+ int constexpr abl_points = GRID_MAX_POINTS;
+ #endif
+
+ #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
+
+ ABL_VAR float zoffset;
+
+ #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
+
+ ABL_VAR int indexIntoAB[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
+
+ ABL_VAR float eqnAMatrix[(GRID_MAX_POINTS) * 3], // "A" matrix of the linear system of equations
+ eqnBVector[GRID_MAX_POINTS], // "B" vector of Z points
+ mean;
+ #endif
+
+ #elif ENABLED(AUTO_BED_LEVELING_3POINT)
+
+ #if ENABLED(PROBE_MANUALLY)
+ int constexpr abl_points = 3; // used to show total points
+ #endif
+
+ vector_3 points[3];
+ probe.get_three_points(points);
+
+ #endif // AUTO_BED_LEVELING_3POINT
+
+ #if ENABLED(AUTO_BED_LEVELING_LINEAR)
+ struct linear_fit_data lsf_results;
+ #endif
+
+ /**
+ * On the initial G29 fetch command parameters.
+ */
+ if (!g29_in_progress) {
+
+ TERN_(HAS_MULTI_HOTEND, if (active_extruder) tool_change(0));
+
+ #if EITHER(PROBE_MANUALLY, AUTO_BED_LEVELING_LINEAR)
+ abl_probe_index = -1;
+ #endif
+
+ abl_should_enable = planner.leveling_active;
+
+ #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
+
+ const bool seen_w = parser.seen('W');
+ if (seen_w) {
+ if (!leveling_is_valid()) {
+ SERIAL_ERROR_MSG("No bilinear grid");
+ G29_RETURN(false);
+ }
+
+ const float rz = parser.seenval('Z') ? RAW_Z_POSITION(parser.value_linear_units()) : current_position.z;
+ if (!WITHIN(rz, -10, 10)) {
+ SERIAL_ERROR_MSG("Bad Z value");
+ G29_RETURN(false);
+ }
+
+ const float rx = RAW_X_POSITION(parser.linearval('X', NAN)),
+ ry = RAW_Y_POSITION(parser.linearval('Y', NAN));
+ int8_t i = parser.byteval('I', -1), j = parser.byteval('J', -1);
+
+ if (!isnan(rx) && !isnan(ry)) {
+ // Get nearest i / j from rx / ry
+ i = (rx - bilinear_start.x + 0.5 * gridSpacing.x) / gridSpacing.x;
+ j = (ry - bilinear_start.y + 0.5 * gridSpacing.y) / gridSpacing.y;
+ LIMIT(i, 0, GRID_MAX_POINTS_X - 1);
+ LIMIT(j, 0, GRID_MAX_POINTS_Y - 1);
+ }
+ if (WITHIN(i, 0, GRID_MAX_POINTS_X - 1) && WITHIN(j, 0, GRID_MAX_POINTS_Y)) {
+ set_bed_leveling_enabled(false);
+ z_values[i][j] = rz;
+ TERN_(ABL_BILINEAR_SUBDIVISION, bed_level_virt_interpolate());
+ TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(i, j, rz));
+ set_bed_leveling_enabled(abl_should_enable);
+ if (abl_should_enable) report_current_position();
+ }
+ G29_RETURN(false);
+ } // parser.seen('W')
+
+ #else
+
+ constexpr bool seen_w = false;
+
+ #endif
+
+ // Jettison bed leveling data
+ if (!seen_w && parser.seen('J')) {
+ reset_bed_level();
+ G29_RETURN(false);
+ }
+
+ verbose_level = parser.intval('V');
+ if (!WITHIN(verbose_level, 0, 4)) {
+ SERIAL_ECHOLNPGM("?(V)erbose level implausible (0-4).");
+ G29_RETURN(false);
+ }
+
+ dryrun = parser.boolval('D') || TERN0(PROBE_MANUALLY, no_action);
+
+ #if ENABLED(AUTO_BED_LEVELING_LINEAR)
+
+ incremental_LSF_reset(&lsf_results);
+
+ do_topography_map = verbose_level > 2 || parser.boolval('T');
+
+ // X and Y specify points in each direction, overriding the default
+ // These values may be saved with the completed mesh
+ abl_grid_points.set(
+ parser.byteval('X', GRID_MAX_POINTS_X),
+ parser.byteval('Y', GRID_MAX_POINTS_Y)
+ );
+ if (parser.seenval('P')) abl_grid_points.x = abl_grid_points.y = parser.value_int();
+
+ if (!WITHIN(abl_grid_points.x, 2, GRID_MAX_POINTS_X)) {
+ SERIAL_ECHOLNPGM("?Probe points (X) implausible (2-" STRINGIFY(GRID_MAX_POINTS_X) ").");
+ G29_RETURN(false);
+ }
+ if (!WITHIN(abl_grid_points.y, 2, GRID_MAX_POINTS_Y)) {
+ SERIAL_ECHOLNPGM("?Probe points (Y) implausible (2-" STRINGIFY(GRID_MAX_POINTS_Y) ").");
+ G29_RETURN(false);
+ }
+
+ abl_points = abl_grid_points.x * abl_grid_points.y;
+ mean = 0;
+
+ #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
+
+ zoffset = parser.linearval('Z');
+
+ #endif
+
+ #if ABL_GRID
+
+ xy_probe_feedrate_mm_s = MMM_TO_MMS(parser.linearval('S', XY_PROBE_SPEED));
+
+ const float x_min = probe.min_x(), x_max = probe.max_x(),
+ y_min = probe.min_y(), y_max = probe.max_y();
+
+ if (parser.seen('H')) {
+ const int16_t size = (int16_t)parser.value_linear_units();
+ probe_position_lf.set(_MAX((X_CENTER) - size / 2, x_min), _MAX((Y_CENTER) - size / 2, y_min));
+ probe_position_rb.set(_MIN(probe_position_lf.x + size, x_max), _MIN(probe_position_lf.y + size, y_max));
+ }
+ else {
+ probe_position_lf.set(parser.linearval('L', x_min), parser.linearval('F', y_min));
+ probe_position_rb.set(parser.linearval('R', x_max), parser.linearval('B', y_max));
+ }
+
+ if (!probe.good_bounds(probe_position_lf, probe_position_rb)) {
+ if (DEBUGGING(LEVELING)) {
+ DEBUG_ECHOLNPAIR("G29 L", probe_position_lf.x, " R", probe_position_rb.x,
+ " F", probe_position_lf.y, " B", probe_position_rb.y);
+ }
+ SERIAL_ECHOLNPGM("? (L,R,F,B) out of bounds.");
+ G29_RETURN(false);
+ }
+
+ // Probe at the points of a lattice grid
+ gridSpacing.set((probe_position_rb.x - probe_position_lf.x) / (abl_grid_points.x - 1),
+ (probe_position_rb.y - probe_position_lf.y) / (abl_grid_points.y - 1));
+
+ #endif // ABL_GRID
+
+ if (verbose_level > 0) {
+ SERIAL_ECHOPGM("G29 Auto Bed Leveling");
+ if (dryrun) SERIAL_ECHOPGM(" (DRYRUN)");
+ SERIAL_EOL();
+ }
+
+ planner.synchronize();
+
+ #if ENABLED(AUTO_BED_LEVELING_3POINT)
+ if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("> 3-point Leveling");
+ points[0].z = points[1].z = points[2].z = 0; // Probe at 3 arbitrary points
+ #endif
+
+ #if BOTH(AUTO_BED_LEVELING_BILINEAR, EXTENSIBLE_UI)
+ ExtUI::onMeshLevelingStart();
+ #endif
+
+ if (!faux) {
+ remember_feedrate_scaling_off();
+
+ #if ENABLED(PREHEAT_BEFORE_LEVELING)
+ if (!dryrun) probe.preheat_for_probing(LEVELING_NOZZLE_TEMP, LEVELING_BED_TEMP);
+ #endif
+ }
+
+ // Disable auto bed leveling during G29.
+ // Be formal so G29 can be done successively without G28.
+ if (!no_action) set_bed_leveling_enabled(false);
+
+ // Deploy certain probes before starting probing
+ #if HAS_BED_PROBE
+ if (ENABLED(BLTOUCH))
+ do_z_clearance(Z_CLEARANCE_DEPLOY_PROBE);
+ else if (probe.deploy()) {
+ set_bed_leveling_enabled(abl_should_enable);
+ G29_RETURN(false);
+ }
+ #endif
+
+ #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
+ if (TERN1(PROBE_MANUALLY, !no_action)
+ && (gridSpacing != bilinear_grid_spacing || probe_position_lf != bilinear_start)
+ ) {
+ // Reset grid to 0.0 or "not probed". (Also disables ABL)
+ reset_bed_level();
+
+ // Initialize a grid with the given dimensions
+ bilinear_grid_spacing = gridSpacing;
+ bilinear_start = probe_position_lf;
+
+ // Can't re-enable (on error) until the new grid is written
+ abl_should_enable = false;
+ }
+ #endif // AUTO_BED_LEVELING_BILINEAR
+
+ } // !g29_in_progress
+
+ #if ENABLED(PROBE_MANUALLY)
+
+ // For manual probing, get the next index to probe now.
+ // On the first probe this will be incremented to 0.
+ if (!no_action) {
+ ++abl_probe_index;
+ g29_in_progress = true;
+ }
+
+ // Abort current G29 procedure, go back to idle state
+ if (seenA && g29_in_progress) {
+ SERIAL_ECHOLNPGM("Manual G29 aborted");
+ SET_SOFT_ENDSTOP_LOOSE(false);
+ set_bed_leveling_enabled(abl_should_enable);
+ g29_in_progress = false;
+ TERN_(LCD_BED_LEVELING, ui.wait_for_move = false);
+ }
+
+ // Query G29 status
+ if (verbose_level || seenQ) {
+ SERIAL_ECHOPGM("Manual G29 ");
+ if (g29_in_progress) {
+ SERIAL_ECHOPAIR("point ", _MIN(abl_probe_index + 1, abl_points));
+ SERIAL_ECHOLNPAIR(" of ", abl_points);
+ }
+ else
+ SERIAL_ECHOLNPGM("idle");
+ }
+
+ if (no_action) G29_RETURN(false);
+
+ if (abl_probe_index == 0) {
+ // For the initial G29 S2 save software endstop state
+ SET_SOFT_ENDSTOP_LOOSE(true);
+ // Move close to the bed before the first point
+ do_blocking_move_to_z(0);
+ }
+ else {
+
+ #if EITHER(AUTO_BED_LEVELING_LINEAR, AUTO_BED_LEVELING_3POINT)
+ const uint16_t index = abl_probe_index - 1;
+ #endif
+
+ // For G29 after adjusting Z.
+ // Save the previous Z before going to the next point
+ measured_z = current_position.z;
+
+ #if ENABLED(AUTO_BED_LEVELING_LINEAR)
+
+ mean += measured_z;
+ eqnBVector[index] = measured_z;
+ eqnAMatrix[index + 0 * abl_points] = probePos.x;
+ eqnAMatrix[index + 1 * abl_points] = probePos.y;
+ eqnAMatrix[index + 2 * abl_points] = 1;
+
+ incremental_LSF(&lsf_results, probePos, measured_z);
+
+ #elif ENABLED(AUTO_BED_LEVELING_3POINT)
+
+ points[index].z = measured_z;
+
+ #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
+
+ const float newz = measured_z + zoffset;
+ z_values[meshCount.x][meshCount.y] = newz;
+ TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(meshCount, newz));
+
+ if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR_P(PSTR("Save X"), meshCount.x, SP_Y_STR, meshCount.y, SP_Z_STR, measured_z + zoffset);
+
+ #endif
+ }
+
+ //
+ // If there's another point to sample, move there with optional lift.
+ //
+
+ #if ABL_GRID
+
+ // Skip any unreachable points
+ while (abl_probe_index < abl_points) {
+
+ // Set meshCount.x, meshCount.y based on abl_probe_index, with zig-zag
+ PR_OUTER_VAR = abl_probe_index / PR_INNER_END;
+ PR_INNER_VAR = abl_probe_index - (PR_OUTER_VAR * PR_INNER_END);
+
+ // Probe in reverse order for every other row/column
+ const bool zig = (PR_OUTER_VAR & 1); // != ((PR_OUTER_END) & 1);
+ if (zig) PR_INNER_VAR = (PR_INNER_END - 1) - PR_INNER_VAR;
+
+ probePos = probe_position_lf + gridSpacing * meshCount.asFloat();
+
+ TERN_(AUTO_BED_LEVELING_LINEAR, indexIntoAB[meshCount.x][meshCount.y] = abl_probe_index);
+
+ // Keep looping till a reachable point is found
+ if (position_is_reachable(probePos)) break;
+ ++abl_probe_index;
+ }
+
+ // Is there a next point to move to?
+ if (abl_probe_index < abl_points) {
+ _manual_goto_xy(probePos); // Can be used here too!
+ // Disable software endstops to allow manual adjustment
+ // If G29 is not completed, they will not be re-enabled
+ SET_SOFT_ENDSTOP_LOOSE(true);
+ G29_RETURN(false);
+ }
+ else {
+ // Leveling done! Fall through to G29 finishing code below
+ SERIAL_ECHOLNPGM("Grid probing done.");
+ // Re-enable software endstops, if needed
+ SET_SOFT_ENDSTOP_LOOSE(false);
+ }
+
+ #elif ENABLED(AUTO_BED_LEVELING_3POINT)
+
+ // Probe at 3 arbitrary points
+ if (abl_probe_index < abl_points) {
+ probePos = points[abl_probe_index];
+ _manual_goto_xy(probePos);
+ // Disable software endstops to allow manual adjustment
+ // If G29 is not completed, they will not be re-enabled
+ SET_SOFT_ENDSTOP_LOOSE(true);
+ G29_RETURN(false);
+ }
+ else {
+
+ SERIAL_ECHOLNPGM("3-point probing done.");
+
+ // Re-enable software endstops, if needed
+ SET_SOFT_ENDSTOP_LOOSE(false);
+
+ if (!dryrun) {
+ vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
+ if (planeNormal.z < 0) planeNormal *= -1;
+ planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
+
+ // Can't re-enable (on error) until the new grid is written
+ abl_should_enable = false;
+ }
+
+ }
+
+ #endif // AUTO_BED_LEVELING_3POINT
+
+ #else // !PROBE_MANUALLY
+ {
+ const ProbePtRaise raise_after = parser.boolval('E') ? PROBE_PT_STOW : PROBE_PT_RAISE;
+
+ measured_z = 0;
+
+ #if ABL_GRID
+
+ bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
+
+ measured_z = 0;
+
+ xy_int8_t meshCount;
+
+ // Outer loop is X with PROBE_Y_FIRST enabled
+ // Outer loop is Y with PROBE_Y_FIRST disabled
+ for (PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END && !isnan(measured_z); PR_OUTER_VAR++) {
+
+ int8_t inStart, inStop, inInc;
+
+ if (zig) { // Zig away from origin
+ inStart = 0; // Left or front
+ inStop = PR_INNER_END; // Right or back
+ inInc = 1; // Zig right
+ }
+ else { // Zag towards origin
+ inStart = PR_INNER_END - 1; // Right or back
+ inStop = -1; // Left or front
+ inInc = -1; // Zag left
+ }
+
+ zig ^= true; // zag
+
+ // An index to print current state
+ uint8_t pt_index = (PR_OUTER_VAR) * (PR_INNER_END) + 1;
+
+ // Inner loop is Y with PROBE_Y_FIRST enabled
+ // Inner loop is X with PROBE_Y_FIRST disabled
+ for (PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; pt_index++, PR_INNER_VAR += inInc) {
+
+ probePos = probe_position_lf + gridSpacing * meshCount.asFloat();
+
+ TERN_(AUTO_BED_LEVELING_LINEAR, indexIntoAB[meshCount.x][meshCount.y] = ++abl_probe_index); // 0...
+
+ // Avoid probing outside the round or hexagonal area
+ if (TERN0(IS_KINEMATIC, !probe.can_reach(probePos))) continue;
+
+ if (verbose_level) SERIAL_ECHOLNPAIR("Probing mesh point ", int(pt_index), "/", abl_points, ".");
+ TERN_(HAS_DISPLAY, ui.status_printf_P(0, PSTR(S_FMT " %i/%i"), GET_TEXT(MSG_PROBING_MESH), int(pt_index), int(abl_points)));
+
+ measured_z = faux ? 0.001f * random(-100, 101) : probe.probe_at_point(probePos, raise_after, verbose_level);
+
+ if (isnan(measured_z)) {
+ set_bed_leveling_enabled(abl_should_enable);
+ break; // Breaks out of both loops
+ }
+
+ #if ENABLED(PROBE_TEMP_COMPENSATION)
+ temp_comp.compensate_measurement(TSI_BED, thermalManager.degBed(), measured_z);
+ temp_comp.compensate_measurement(TSI_PROBE, thermalManager.degProbe(), measured_z);
+ TERN_(USE_TEMP_EXT_COMPENSATION, temp_comp.compensate_measurement(TSI_EXT, thermalManager.degHotend(), measured_z));
+ #endif
+
+ #if ENABLED(AUTO_BED_LEVELING_LINEAR)
+
+ mean += measured_z;
+ eqnBVector[abl_probe_index] = measured_z;
+ eqnAMatrix[abl_probe_index + 0 * abl_points] = probePos.x;
+ eqnAMatrix[abl_probe_index + 1 * abl_points] = probePos.y;
+ eqnAMatrix[abl_probe_index + 2 * abl_points] = 1;
+
+ incremental_LSF(&lsf_results, probePos, measured_z);
+
+ #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
+
+ const float z = measured_z + zoffset;
+ z_values[meshCount.x][meshCount.y] = z;
+ TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(meshCount, z));
+
+ #endif
+
+ abl_should_enable = false;
+ idle_no_sleep();
+
+ } // inner
+ } // outer
+
+ #elif ENABLED(AUTO_BED_LEVELING_3POINT)
+
+ // Probe at 3 arbitrary points
+
+ LOOP_L_N(i, 3) {
+ if (verbose_level) SERIAL_ECHOLNPAIR("Probing point ", int(i + 1), "/3.");
+ TERN_(HAS_DISPLAY, ui.status_printf_P(0, PSTR(S_FMT " %i/3"), GET_TEXT(MSG_PROBING_MESH), int(i + 1)));
+
+ // Retain the last probe position
+ probePos = points[i];
+ measured_z = faux ? 0.001 * random(-100, 101) : probe.probe_at_point(probePos, raise_after, verbose_level);
+ if (isnan(measured_z)) {
+ set_bed_leveling_enabled(abl_should_enable);
+ break;
+ }
+ points[i].z = measured_z;
+ }
+
+ if (!dryrun && !isnan(measured_z)) {
+ vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
+ if (planeNormal.z < 0) planeNormal *= -1;
+ planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
+
+ // Can't re-enable (on error) until the new grid is written
+ abl_should_enable = false;
+ }
+
+ #endif // AUTO_BED_LEVELING_3POINT
+
+ TERN_(HAS_DISPLAY, ui.reset_status());
+
+ // Stow the probe. No raise for FIX_MOUNTED_PROBE.
+ if (probe.stow()) {
+ set_bed_leveling_enabled(abl_should_enable);
+ measured_z = NAN;
+ }
+ }
+ #endif // !PROBE_MANUALLY
+
+ //
+ // G29 Finishing Code
+ //
+ // Unless this is a dry run, auto bed leveling will
+ // definitely be enabled after this point.
+ //
+ // If code above wants to continue leveling, it should
+ // return or loop before this point.
+ //
+
+ if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
+
+ #if ENABLED(PROBE_MANUALLY)
+ g29_in_progress = false;
+ TERN_(LCD_BED_LEVELING, ui.wait_for_move = false);
+ #endif
+
+ // Calculate leveling, print reports, correct the position
+ if (!isnan(measured_z)) {
+ #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
+
+ if (!dryrun) extrapolate_unprobed_bed_level();
+ print_bilinear_leveling_grid();
+
+ refresh_bed_level();
+
+ TERN_(ABL_BILINEAR_SUBDIVISION, print_bilinear_leveling_grid_virt());
+
+ #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
+
+ // For LINEAR leveling calculate matrix, print reports, correct the position
+
+ /**
+ * solve the plane equation ax + by + d = z
+ * A is the matrix with rows [x y 1] for all the probed points
+ * B is the vector of the Z positions
+ * the normal vector to the plane is formed by the coefficients of the
+ * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
+ * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
+ */
+ struct { float a, b, d; } plane_equation_coefficients;
+
+ finish_incremental_LSF(&lsf_results);
+ plane_equation_coefficients.a = -lsf_results.A; // We should be able to eliminate the '-' on these three lines and down below
+ plane_equation_coefficients.b = -lsf_results.B; // but that is not yet tested.
+ plane_equation_coefficients.d = -lsf_results.D;
+
+ mean /= abl_points;
+
+ if (verbose_level) {
+ SERIAL_ECHOPAIR_F("Eqn coefficients: a: ", plane_equation_coefficients.a, 8);
+ SERIAL_ECHOPAIR_F(" b: ", plane_equation_coefficients.b, 8);
+ SERIAL_ECHOPAIR_F(" d: ", plane_equation_coefficients.d, 8);
+ if (verbose_level > 2)
+ SERIAL_ECHOPAIR_F("\nMean of sampled points: ", mean, 8);
+ SERIAL_EOL();
+ }
+
+ // Create the matrix but don't correct the position yet
+ if (!dryrun)
+ planner.bed_level_matrix = matrix_3x3::create_look_at(
+ vector_3(-plane_equation_coefficients.a, -plane_equation_coefficients.b, 1) // We can eliminate the '-' here and up above
+ );
+
+ // Show the Topography map if enabled
+ if (do_topography_map) {
+
+ float min_diff = 999;
+
+ auto print_topo_map = [&](PGM_P const title, const bool get_min) {
+ serialprintPGM(title);
+ for (int8_t yy = abl_grid_points.y - 1; yy >= 0; yy--) {
+ LOOP_L_N(xx, abl_grid_points.x) {
+ const int ind = indexIntoAB[xx][yy];
+ xyz_float_t tmp = { eqnAMatrix[ind + 0 * abl_points],
+ eqnAMatrix[ind + 1 * abl_points], 0 };
+ apply_rotation_xyz(planner.bed_level_matrix, tmp);
+ if (get_min) NOMORE(min_diff, eqnBVector[ind] - tmp.z);
+ const float subval = get_min ? mean : tmp.z + min_diff,
+ diff = eqnBVector[ind] - subval;
+ SERIAL_CHAR(' '); if (diff >= 0.0) SERIAL_CHAR('+'); // Include + for column alignment
+ SERIAL_ECHO_F(diff, 5);
+ } // xx
+ SERIAL_EOL();
+ } // yy
+ SERIAL_EOL();
+ };
+
+ print_topo_map(PSTR("\nBed Height Topography:\n"
+ " +--- BACK --+\n"
+ " | |\n"
+ " L | (+) | R\n"
+ " E | | I\n"
+ " F | (-) N (+) | G\n"
+ " T | | H\n"
+ " | (-) | T\n"
+ " | |\n"
+ " O-- FRONT --+\n"
+ " (0,0)\n"), true);
+ if (verbose_level > 3)
+ print_topo_map(PSTR("\nCorrected Bed Height vs. Bed Topology:\n"), false);
+
+ } //do_topography_map
+
+ #endif // AUTO_BED_LEVELING_LINEAR
+
+ #if ABL_PLANAR
+
+ // For LINEAR and 3POINT leveling correct the current position
+
+ if (verbose_level > 0)
+ planner.bed_level_matrix.debug(PSTR("\n\nBed Level Correction Matrix:"));
+
+ if (!dryrun) {
+ //
+ // Correct the current XYZ position based on the tilted plane.
+ //
+
+ if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
+
+ xyze_pos_t converted = current_position;
+ planner.force_unapply_leveling(converted); // use conversion machinery
+
+ // Use the last measured distance to the bed, if possible
+ if ( NEAR(current_position.x, probePos.x - probe.offset_xy.x)
+ && NEAR(current_position.y, probePos.y - probe.offset_xy.y)
+ ) {
+ const float simple_z = current_position.z - measured_z;
+ if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("Probed Z", simple_z, " Matrix Z", converted.z, " Discrepancy ", simple_z - converted.z);
+ converted.z = simple_z;
+ }
+
+ // The rotated XY and corrected Z are now current_position
+ current_position = converted;
+
+ if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
+ }
+
+ #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
+
+ if (!dryrun) {
+ if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("G29 uncorrected Z:", current_position.z);
+
+ // Unapply the offset because it is going to be immediately applied
+ // and cause compensation movement in Z
+ const float fade_scaling_factor = TERN(ENABLE_LEVELING_FADE_HEIGHT, planner.fade_scaling_factor_for_z(current_position.z), 1);
+ current_position.z -= fade_scaling_factor * bilinear_z_offset(current_position);
+
+ if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR(" corrected Z:", current_position.z);
+ }
+
+ #endif // ABL_PLANAR
+
+ // Auto Bed Leveling is complete! Enable if possible.
+ planner.leveling_active = dryrun ? abl_should_enable : true;
+ } // !isnan(measured_z)
+
+ // Restore state after probing
+ if (!faux) restore_feedrate_and_scaling();
+
+ // Sync the planner from the current_position
+ if (planner.leveling_active) sync_plan_position();
+
+ #if HAS_BED_PROBE
+ probe.move_z_after_probing();
+ #endif
+
+ #ifdef Z_PROBE_END_SCRIPT
+ if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
+ planner.synchronize();
+ process_subcommands_now_P(PSTR(Z_PROBE_END_SCRIPT));
+ #endif
+
+ #if ENABLED(DWIN_CREALITY_LCD)
+ DWIN_CompletedLeveling();
+ #endif
+
+ report_current_position();
+
+ G29_RETURN(isnan(measured_z));
+}
+
+#endif // HAS_ABL_NOT_UBL