diff options
Diffstat (limited to 'Marlin/src/libs/least_squares_fit.h')
-rw-r--r-- | Marlin/src/libs/least_squares_fit.h | 89 |
1 files changed, 89 insertions, 0 deletions
diff --git a/Marlin/src/libs/least_squares_fit.h b/Marlin/src/libs/least_squares_fit.h new file mode 100644 index 0000000..44ca8af --- /dev/null +++ b/Marlin/src/libs/least_squares_fit.h @@ -0,0 +1,89 @@ +/** + * Marlin 3D Printer Firmware + * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] + * + * Based on Sprinter and grbl. + * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <https://www.gnu.org/licenses/>. + * + */ +#pragma once + +/** + * Incremental Least Squares Best Fit By Roxy and Ed Williams + * + * This algorithm is high speed and has a very small code footprint. + * Its results are identical to both the Iterative Least-Squares published + * earlier by Roxy and the QR_SOLVE solution. If used in place of QR_SOLVE + * it saves roughly 10K of program memory. And even better... the data + * fed into the algorithm does not need to all be present at the same time. + * A point can be probed and its values fed into the algorithm and then discarded. + */ + +#include "../inc/MarlinConfig.h" +#include <math.h> + +struct linear_fit_data { + float xbar, ybar, zbar, + x2bar, y2bar, z2bar, + xybar, xzbar, yzbar, + max_absx, max_absy, + A, B, D, N; +}; + +inline void incremental_LSF_reset(struct linear_fit_data *lsf) { + memset(lsf, 0, sizeof(linear_fit_data)); +} + +inline void incremental_WLSF(struct linear_fit_data *lsf, const float &x, const float &y, const float &z, const float &w) { + // weight each accumulator by factor w, including the "number" of samples + // (analogous to calling inc_LSF twice with same values to weight it by 2X) + const float wx = w * x, wy = w * y, wz = w * z; + lsf->xbar += wx; + lsf->ybar += wy; + lsf->zbar += wz; + lsf->x2bar += wx * x; + lsf->y2bar += wy * y; + lsf->z2bar += wz * z; + lsf->xybar += wx * y; + lsf->xzbar += wx * z; + lsf->yzbar += wy * z; + lsf->N += w; + lsf->max_absx = _MAX(ABS(wx), lsf->max_absx); + lsf->max_absy = _MAX(ABS(wy), lsf->max_absy); +} +inline void incremental_WLSF(struct linear_fit_data *lsf, const xy_pos_t &pos, const float &z, const float &w) { + incremental_WLSF(lsf, pos.x, pos.y, z, w); +} + +inline void incremental_LSF(struct linear_fit_data *lsf, const float &x, const float &y, const float &z) { + lsf->xbar += x; + lsf->ybar += y; + lsf->zbar += z; + lsf->x2bar += sq(x); + lsf->y2bar += sq(y); + lsf->z2bar += sq(z); + lsf->xybar += x * y; + lsf->xzbar += x * z; + lsf->yzbar += y * z; + lsf->max_absx = _MAX(ABS(x), lsf->max_absx); + lsf->max_absy = _MAX(ABS(y), lsf->max_absy); + lsf->N += 1.0; +} +inline void incremental_LSF(struct linear_fit_data *lsf, const xy_pos_t &pos, const float &z) { + incremental_LSF(lsf, pos.x, pos.y, z); +} + +int finish_incremental_LSF(struct linear_fit_data *); |