aboutsummaryrefslogtreecommitdiff
path: root/Marlin/src/module/motion.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'Marlin/src/module/motion.cpp')
-rw-r--r--Marlin/src/module/motion.cpp1896
1 files changed, 1896 insertions, 0 deletions
diff --git a/Marlin/src/module/motion.cpp b/Marlin/src/module/motion.cpp
new file mode 100644
index 0000000..f7fc66b
--- /dev/null
+++ b/Marlin/src/module/motion.cpp
@@ -0,0 +1,1896 @@
+/**
+ * Marlin 3D Printer Firmware
+ * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
+ *
+ * Based on Sprinter and grbl.
+ * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <https://www.gnu.org/licenses/>.
+ *
+ */
+
+/**
+ * motion.cpp
+ */
+
+#include "motion.h"
+#include "endstops.h"
+#include "stepper.h"
+#include "planner.h"
+#include "temperature.h"
+
+#include "../gcode/gcode.h"
+
+#include "../inc/MarlinConfig.h"
+
+#if IS_SCARA
+ #include "../libs/buzzer.h"
+ #include "../lcd/marlinui.h"
+#endif
+
+#if HAS_BED_PROBE
+ #include "probe.h"
+#endif
+
+#if HAS_LEVELING
+ #include "../feature/bedlevel/bedlevel.h"
+#endif
+
+#if ENABLED(BLTOUCH)
+ #include "../feature/bltouch.h"
+#endif
+
+#if HAS_DISPLAY
+ #include "../lcd/marlinui.h"
+#endif
+
+#if HAS_FILAMENT_SENSOR
+ #include "../feature/runout.h"
+#endif
+
+#if ENABLED(SENSORLESS_HOMING)
+ #include "../feature/tmc_util.h"
+#endif
+
+#if ENABLED(FWRETRACT)
+ #include "../feature/fwretract.h"
+#endif
+
+#if ENABLED(BABYSTEP_DISPLAY_TOTAL)
+ #include "../feature/babystep.h"
+#endif
+
+#define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE)
+#include "../core/debug_out.h"
+
+/**
+ * axis_homed
+ * Flags that each linear axis was homed.
+ * XYZ on cartesian, ABC on delta, ABZ on SCARA.
+ *
+ * axis_trusted
+ * Flags that the position is trusted in each linear axis. Set when homed.
+ * Cleared whenever a stepper powers off, potentially losing its position.
+ */
+uint8_t axis_homed, axis_trusted; // = 0
+
+// Relative Mode. Enable with G91, disable with G90.
+bool relative_mode; // = false;
+
+/**
+ * Cartesian Current Position
+ * Used to track the native machine position as moves are queued.
+ * Used by 'line_to_current_position' to do a move after changing it.
+ * Used by 'sync_plan_position' to update 'planner.position'.
+ */
+xyze_pos_t current_position = { X_HOME_POS, Y_HOME_POS, Z_HOME_POS };
+
+/**
+ * Cartesian Destination
+ * The destination for a move, filled in by G-code movement commands,
+ * and expected by functions like 'prepare_line_to_destination'.
+ * G-codes can set destination using 'get_destination_from_command'
+ */
+xyze_pos_t destination; // {0}
+
+// G60/G61 Position Save and Return
+#if SAVED_POSITIONS
+ uint8_t saved_slots[(SAVED_POSITIONS + 7) >> 3];
+ xyz_pos_t stored_position[SAVED_POSITIONS];
+#endif
+
+// The active extruder (tool). Set with T<extruder> command.
+#if HAS_MULTI_EXTRUDER
+ uint8_t active_extruder = 0; // = 0
+#endif
+
+#if ENABLED(LCD_SHOW_E_TOTAL)
+ float e_move_accumulator; // = 0
+#endif
+
+// Extruder offsets
+#if HAS_HOTEND_OFFSET
+ xyz_pos_t hotend_offset[HOTENDS]; // Initialized by settings.load()
+ void reset_hotend_offsets() {
+ constexpr float tmp[XYZ][HOTENDS] = { HOTEND_OFFSET_X, HOTEND_OFFSET_Y, HOTEND_OFFSET_Z };
+ static_assert(
+ !tmp[X_AXIS][0] && !tmp[Y_AXIS][0] && !tmp[Z_AXIS][0],
+ "Offsets for the first hotend must be 0.0."
+ );
+ // Transpose from [XYZ][HOTENDS] to [HOTENDS][XYZ]
+ HOTEND_LOOP() LOOP_XYZ(a) hotend_offset[e][a] = tmp[a][e];
+ #if ENABLED(DUAL_X_CARRIAGE)
+ hotend_offset[1].x = _MAX(X2_HOME_POS, X2_MAX_POS);
+ #endif
+ }
+#endif
+
+// The feedrate for the current move, often used as the default if
+// no other feedrate is specified. Overridden for special moves.
+// Set by the last G0 through G5 command's "F" parameter.
+// Functions that override this for custom moves *must always* restore it!
+feedRate_t feedrate_mm_s = MMM_TO_MMS(1500);
+int16_t feedrate_percentage = 100;
+
+// Cartesian conversion result goes here:
+xyz_pos_t cartes;
+
+#if IS_KINEMATIC
+
+ abc_pos_t delta;
+
+ #if HAS_SCARA_OFFSET
+ abc_pos_t scara_home_offset;
+ #endif
+
+ #if HAS_SOFTWARE_ENDSTOPS
+ float delta_max_radius, delta_max_radius_2;
+ #elif IS_SCARA
+ constexpr float delta_max_radius = SCARA_PRINTABLE_RADIUS,
+ delta_max_radius_2 = sq(SCARA_PRINTABLE_RADIUS);
+ #else // DELTA
+ constexpr float delta_max_radius = DELTA_PRINTABLE_RADIUS,
+ delta_max_radius_2 = sq(DELTA_PRINTABLE_RADIUS);
+ #endif
+
+#endif
+
+/**
+ * The workspace can be offset by some commands, or
+ * these offsets may be omitted to save on computation.
+ */
+#if HAS_POSITION_SHIFT
+ // The distance that XYZ has been offset by G92. Reset by G28.
+ xyz_pos_t position_shift{0};
+#endif
+#if HAS_HOME_OFFSET
+ // This offset is added to the configured home position.
+ // Set by M206, M428, or menu item. Saved to EEPROM.
+ xyz_pos_t home_offset{0};
+#endif
+#if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
+ // The above two are combined to save on computes
+ xyz_pos_t workspace_offset{0};
+#endif
+
+#if HAS_ABL_NOT_UBL
+ feedRate_t xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
+#endif
+
+/**
+ * Output the current position to serial
+ */
+
+inline void report_more_positions() {
+ stepper.report_positions();
+ TERN_(IS_SCARA, scara_report_positions());
+}
+
+// Report the logical position for a given machine position
+inline void report_logical_position(const xyze_pos_t &rpos) {
+ const xyze_pos_t lpos = rpos.asLogical();
+ SERIAL_ECHOPAIR_P(X_LBL, lpos.x, SP_Y_LBL, lpos.y, SP_Z_LBL, lpos.z, SP_E_LBL, lpos.e);
+}
+
+// Report the real current position according to the steppers.
+// Forward kinematics and un-leveling are applied.
+void report_real_position() {
+ get_cartesian_from_steppers();
+ xyze_pos_t npos = cartes;
+ npos.e = planner.get_axis_position_mm(E_AXIS);
+
+ #if HAS_POSITION_MODIFIERS
+ planner.unapply_modifiers(npos, true);
+ #endif
+
+ report_logical_position(npos);
+ report_more_positions();
+}
+
+// Report the logical current position according to the most recent G-code command
+void report_current_position() {
+ report_logical_position(current_position);
+ report_more_positions();
+}
+
+/**
+ * Report the logical current position according to the most recent G-code command.
+ * The planner.position always corresponds to the last G-code too. This makes M114
+ * suitable for debugging kinematics and leveling while avoiding planner sync that
+ * definitively interrupts the printing flow.
+ */
+void report_current_position_projected() {
+ report_logical_position(current_position);
+ stepper.report_a_position(planner.position);
+}
+
+/**
+ * Run out the planner buffer and re-sync the current
+ * position from the last-updated stepper positions.
+ */
+void quickstop_stepper() {
+ planner.quick_stop();
+ planner.synchronize();
+ set_current_from_steppers_for_axis(ALL_AXES);
+ sync_plan_position();
+}
+
+/**
+ * Set the planner/stepper positions directly from current_position with
+ * no kinematic translation. Used for homing axes and cartesian/core syncing.
+ */
+void sync_plan_position() {
+ if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
+ planner.set_position_mm(current_position);
+}
+
+void sync_plan_position_e() { planner.set_e_position_mm(current_position.e); }
+
+/**
+ * Get the stepper positions in the cartes[] array.
+ * Forward kinematics are applied for DELTA and SCARA.
+ *
+ * The result is in the current coordinate space with
+ * leveling applied. The coordinates need to be run through
+ * unapply_leveling to obtain the "ideal" coordinates
+ * suitable for current_position, etc.
+ */
+void get_cartesian_from_steppers() {
+ #if ENABLED(DELTA)
+ forward_kinematics_DELTA(planner.get_axis_positions_mm());
+ #else
+ #if IS_SCARA
+ forward_kinematics_SCARA(
+ planner.get_axis_position_degrees(A_AXIS),
+ planner.get_axis_position_degrees(B_AXIS)
+ );
+ #else
+ cartes.set(planner.get_axis_position_mm(X_AXIS), planner.get_axis_position_mm(Y_AXIS));
+ #endif
+ cartes.z = planner.get_axis_position_mm(Z_AXIS);
+ #endif
+}
+
+/**
+ * Set the current_position for an axis based on
+ * the stepper positions, removing any leveling that
+ * may have been applied.
+ *
+ * To prevent small shifts in axis position always call
+ * sync_plan_position after updating axes with this.
+ *
+ * To keep hosts in sync, always call report_current_position
+ * after updating the current_position.
+ */
+void set_current_from_steppers_for_axis(const AxisEnum axis) {
+ get_cartesian_from_steppers();
+ xyze_pos_t pos = cartes;
+ pos.e = planner.get_axis_position_mm(E_AXIS);
+
+ #if HAS_POSITION_MODIFIERS
+ planner.unapply_modifiers(pos, true);
+ #endif
+
+ if (axis == ALL_AXES)
+ current_position = pos;
+ else
+ current_position[axis] = pos[axis];
+}
+
+/**
+ * Move the planner to the current position from wherever it last moved
+ * (or from wherever it has been told it is located).
+ */
+void line_to_current_position(const feedRate_t &fr_mm_s/*=feedrate_mm_s*/) {
+ planner.buffer_line(current_position, fr_mm_s, active_extruder);
+}
+
+#if EXTRUDERS
+ void unscaled_e_move(const float &length, const feedRate_t &fr_mm_s) {
+ TERN_(HAS_FILAMENT_SENSOR, runout.reset());
+ current_position.e += length / planner.e_factor[active_extruder];
+ line_to_current_position(fr_mm_s);
+ planner.synchronize();
+ }
+#endif
+
+#if IS_KINEMATIC
+
+ /**
+ * Buffer a fast move without interpolation. Set current_position to destination
+ */
+ void prepare_fast_move_to_destination(const feedRate_t &scaled_fr_mm_s/*=MMS_SCALED(feedrate_mm_s)*/) {
+ if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_fast_move_to_destination", destination);
+
+ #if UBL_SEGMENTED
+ // UBL segmented line will do Z-only moves in single segment
+ ubl.line_to_destination_segmented(scaled_fr_mm_s);
+ #else
+ if (current_position == destination) return;
+
+ planner.buffer_line(destination, scaled_fr_mm_s, active_extruder);
+ #endif
+
+ current_position = destination;
+ }
+
+#endif // IS_KINEMATIC
+
+/**
+ * Do a fast or normal move to 'destination' with an optional FR.
+ * - Move at normal speed regardless of feedrate percentage.
+ * - Extrude the specified length regardless of flow percentage.
+ */
+void _internal_move_to_destination(const feedRate_t &fr_mm_s/*=0.0f*/
+ #if IS_KINEMATIC
+ , const bool is_fast/*=false*/
+ #endif
+) {
+ const feedRate_t old_feedrate = feedrate_mm_s;
+ if (fr_mm_s) feedrate_mm_s = fr_mm_s;
+
+ const uint16_t old_pct = feedrate_percentage;
+ feedrate_percentage = 100;
+
+ #if EXTRUDERS
+ const float old_fac = planner.e_factor[active_extruder];
+ planner.e_factor[active_extruder] = 1.0f;
+ #endif
+
+ #if IS_KINEMATIC
+ if (is_fast)
+ prepare_fast_move_to_destination();
+ else
+ #endif
+ prepare_line_to_destination();
+
+ feedrate_mm_s = old_feedrate;
+ feedrate_percentage = old_pct;
+ #if EXTRUDERS
+ planner.e_factor[active_extruder] = old_fac;
+ #endif
+}
+
+/**
+ * Plan a move to (X, Y, Z) and set the current_position
+ */
+void do_blocking_move_to(const float rx, const float ry, const float rz, const feedRate_t &fr_mm_s/*=0.0*/) {
+ DEBUG_SECTION(log_move, "do_blocking_move_to", DEBUGGING(LEVELING));
+ if (DEBUGGING(LEVELING)) DEBUG_XYZ("> ", rx, ry, rz);
+
+ const feedRate_t z_feedrate = fr_mm_s ?: homing_feedrate(Z_AXIS),
+ xy_feedrate = fr_mm_s ?: feedRate_t(XY_PROBE_FEEDRATE_MM_S);
+
+ #if ENABLED(DELTA)
+
+ if (!position_is_reachable(rx, ry)) return;
+
+ REMEMBER(fr, feedrate_mm_s, xy_feedrate);
+
+ destination = current_position; // sync destination at the start
+
+ if (DEBUGGING(LEVELING)) DEBUG_POS("destination = current_position", destination);
+
+ // when in the danger zone
+ if (current_position.z > delta_clip_start_height) {
+ if (rz > delta_clip_start_height) { // staying in the danger zone
+ destination.set(rx, ry, rz); // move directly (uninterpolated)
+ prepare_internal_fast_move_to_destination(); // set current_position from destination
+ if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
+ return;
+ }
+ destination.z = delta_clip_start_height;
+ prepare_internal_fast_move_to_destination(); // set current_position from destination
+ if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
+ }
+
+ if (rz > current_position.z) { // raising?
+ destination.z = rz;
+ prepare_internal_fast_move_to_destination(z_feedrate); // set current_position from destination
+ if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
+ }
+
+ destination.set(rx, ry);
+ prepare_internal_move_to_destination(); // set current_position from destination
+ if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
+
+ if (rz < current_position.z) { // lowering?
+ destination.z = rz;
+ prepare_internal_fast_move_to_destination(z_feedrate); // set current_position from destination
+ if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
+ }
+
+ #elif IS_SCARA
+
+ if (!position_is_reachable(rx, ry)) return;
+
+ destination = current_position;
+
+ // If Z needs to raise, do it before moving XY
+ if (destination.z < rz) {
+ destination.z = rz;
+ prepare_internal_fast_move_to_destination(z_feedrate);
+ }
+
+ destination.set(rx, ry);
+ prepare_internal_fast_move_to_destination(xy_feedrate);
+
+ // If Z needs to lower, do it after moving XY
+ if (destination.z > rz) {
+ destination.z = rz;
+ prepare_internal_fast_move_to_destination(z_feedrate);
+ }
+
+ #else
+
+ // If Z needs to raise, do it before moving XY
+ if (current_position.z < rz) {
+ current_position.z = rz;
+ line_to_current_position(z_feedrate);
+ }
+
+ current_position.set(rx, ry);
+ line_to_current_position(xy_feedrate);
+
+ // If Z needs to lower, do it after moving XY
+ if (current_position.z > rz) {
+ current_position.z = rz;
+ line_to_current_position(z_feedrate);
+ }
+
+ #endif
+
+ planner.synchronize();
+}
+
+void do_blocking_move_to(const xy_pos_t &raw, const feedRate_t &fr_mm_s/*=0.0f*/) {
+ do_blocking_move_to(raw.x, raw.y, current_position.z, fr_mm_s);
+}
+void do_blocking_move_to(const xyz_pos_t &raw, const feedRate_t &fr_mm_s/*=0.0f*/) {
+ do_blocking_move_to(raw.x, raw.y, raw.z, fr_mm_s);
+}
+void do_blocking_move_to(const xyze_pos_t &raw, const feedRate_t &fr_mm_s/*=0.0f*/) {
+ do_blocking_move_to(raw.x, raw.y, raw.z, fr_mm_s);
+}
+
+void do_blocking_move_to_x(const float &rx, const feedRate_t &fr_mm_s/*=0.0*/) {
+ do_blocking_move_to(rx, current_position.y, current_position.z, fr_mm_s);
+}
+void do_blocking_move_to_y(const float &ry, const feedRate_t &fr_mm_s/*=0.0*/) {
+ do_blocking_move_to(current_position.x, ry, current_position.z, fr_mm_s);
+}
+void do_blocking_move_to_z(const float &rz, const feedRate_t &fr_mm_s/*=0.0*/) {
+ do_blocking_move_to_xy_z(current_position, rz, fr_mm_s);
+}
+
+void do_blocking_move_to_xy(const float &rx, const float &ry, const feedRate_t &fr_mm_s/*=0.0*/) {
+ do_blocking_move_to(rx, ry, current_position.z, fr_mm_s);
+}
+void do_blocking_move_to_xy(const xy_pos_t &raw, const feedRate_t &fr_mm_s/*=0.0f*/) {
+ do_blocking_move_to_xy(raw.x, raw.y, fr_mm_s);
+}
+
+void do_blocking_move_to_xy_z(const xy_pos_t &raw, const float &z, const feedRate_t &fr_mm_s/*=0.0f*/) {
+ do_blocking_move_to(raw.x, raw.y, z, fr_mm_s);
+}
+
+void do_z_clearance(const float &zclear, const bool z_trusted/*=true*/, const bool raise_on_untrusted/*=true*/, const bool lower_allowed/*=false*/) {
+ const bool rel = raise_on_untrusted && !z_trusted;
+ float zdest = zclear + (rel ? current_position.z : 0.0f);
+ if (!lower_allowed) NOLESS(zdest, current_position.z);
+ do_blocking_move_to_z(_MIN(zdest, Z_MAX_POS), TERN(HAS_BED_PROBE, z_probe_fast_mm_s, homing_feedrate(Z_AXIS)));
+}
+
+//
+// Prepare to do endstop or probe moves with custom feedrates.
+// - Save / restore current feedrate and multiplier
+//
+static float saved_feedrate_mm_s;
+static int16_t saved_feedrate_percentage;
+void remember_feedrate_and_scaling() {
+ saved_feedrate_mm_s = feedrate_mm_s;
+ saved_feedrate_percentage = feedrate_percentage;
+}
+void remember_feedrate_scaling_off() {
+ remember_feedrate_and_scaling();
+ feedrate_percentage = 100;
+}
+void restore_feedrate_and_scaling() {
+ feedrate_mm_s = saved_feedrate_mm_s;
+ feedrate_percentage = saved_feedrate_percentage;
+}
+
+#if HAS_SOFTWARE_ENDSTOPS
+
+ // Software Endstops are based on the configured limits.
+ soft_endstops_t soft_endstop = {
+ true, false,
+ { X_MIN_POS, Y_MIN_POS, Z_MIN_POS },
+ { X_MAX_POS, Y_MAX_POS, Z_MAX_POS }
+ };
+
+ /**
+ * Software endstops can be used to monitor the open end of
+ * an axis that has a hardware endstop on the other end. Or
+ * they can prevent axes from moving past endstops and grinding.
+ *
+ * To keep doing their job as the coordinate system changes,
+ * the software endstop positions must be refreshed to remain
+ * at the same positions relative to the machine.
+ */
+ void update_software_endstops(const AxisEnum axis
+ #if HAS_HOTEND_OFFSET
+ , const uint8_t old_tool_index/*=0*/
+ , const uint8_t new_tool_index/*=0*/
+ #endif
+ ) {
+
+ #if ENABLED(DUAL_X_CARRIAGE)
+
+ if (axis == X_AXIS) {
+
+ // In Dual X mode hotend_offset[X] is T1's home position
+ const float dual_max_x = _MAX(hotend_offset[1].x, X2_MAX_POS);
+
+ if (new_tool_index != 0) {
+ // T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger)
+ soft_endstop.min.x = X2_MIN_POS;
+ soft_endstop.max.x = dual_max_x;
+ }
+ else if (idex_is_duplicating()) {
+ // In Duplication Mode, T0 can move as far left as X1_MIN_POS
+ // but not so far to the right that T1 would move past the end
+ soft_endstop.min.x = X1_MIN_POS;
+ soft_endstop.max.x = _MIN(X1_MAX_POS, dual_max_x - duplicate_extruder_x_offset);
+ }
+ else {
+ // In other modes, T0 can move from X1_MIN_POS to X1_MAX_POS
+ soft_endstop.min.x = X1_MIN_POS;
+ soft_endstop.max.x = X1_MAX_POS;
+ }
+
+ }
+
+ #elif ENABLED(DELTA)
+
+ soft_endstop.min[axis] = base_min_pos(axis);
+ soft_endstop.max[axis] = (axis == Z_AXIS) ? delta_height - TERN0(HAS_BED_PROBE, probe.offset.z) : base_max_pos(axis);
+
+ switch (axis) {
+ case X_AXIS:
+ case Y_AXIS:
+ // Get a minimum radius for clamping
+ delta_max_radius = _MIN(ABS(_MAX(soft_endstop.min.x, soft_endstop.min.y)), soft_endstop.max.x, soft_endstop.max.y);
+ delta_max_radius_2 = sq(delta_max_radius);
+ break;
+ case Z_AXIS:
+ delta_clip_start_height = soft_endstop.max[axis] - delta_safe_distance_from_top();
+ default: break;
+ }
+
+ #elif HAS_HOTEND_OFFSET
+
+ // Software endstops are relative to the tool 0 workspace, so
+ // the movement limits must be shifted by the tool offset to
+ // retain the same physical limit when other tools are selected.
+
+ if (new_tool_index == old_tool_index || axis == Z_AXIS) { // The Z axis is "special" and shouldn't be modified
+ const float offs = (axis == Z_AXIS) ? 0 : hotend_offset[active_extruder][axis];
+ soft_endstop.min[axis] = base_min_pos(axis) + offs;
+ soft_endstop.max[axis] = base_max_pos(axis) + offs;
+ }
+ else {
+ const float diff = hotend_offset[new_tool_index][axis] - hotend_offset[old_tool_index][axis];
+ soft_endstop.min[axis] += diff;
+ soft_endstop.max[axis] += diff;
+ }
+
+ #else
+
+ soft_endstop.min[axis] = base_min_pos(axis);
+ soft_endstop.max[axis] = base_max_pos(axis);
+
+ #endif
+
+ if (DEBUGGING(LEVELING))
+ SERIAL_ECHOLNPAIR("Axis ", XYZ_CHAR(axis), " min:", soft_endstop.min[axis], " max:", soft_endstop.max[axis]);
+ }
+
+ /**
+ * Constrain the given coordinates to the software endstops.
+ *
+ * For DELTA/SCARA the XY constraint is based on the smallest
+ * radius within the set software endstops.
+ */
+ void apply_motion_limits(xyz_pos_t &target) {
+
+ if (!soft_endstop._enabled) return;
+
+ #if IS_KINEMATIC
+
+ if (TERN0(DELTA, !all_axes_homed())) return;
+
+ #if BOTH(HAS_HOTEND_OFFSET, DELTA)
+ // The effector center position will be the target minus the hotend offset.
+ const xy_pos_t offs = hotend_offset[active_extruder];
+ #else
+ // SCARA needs to consider the angle of the arm through the entire move, so for now use no tool offset.
+ constexpr xy_pos_t offs{0};
+ #endif
+
+ if (TERN1(IS_SCARA, axis_was_homed(X_AXIS) && axis_was_homed(Y_AXIS))) {
+ const float dist_2 = HYPOT2(target.x - offs.x, target.y - offs.y);
+ if (dist_2 > delta_max_radius_2)
+ target *= float(delta_max_radius / SQRT(dist_2)); // 200 / 300 = 0.66
+ }
+
+ #else
+
+ if (axis_was_homed(X_AXIS)) {
+ #if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MIN_SOFTWARE_ENDSTOP_X)
+ NOLESS(target.x, soft_endstop.min.x);
+ #endif
+ #if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MAX_SOFTWARE_ENDSTOP_X)
+ NOMORE(target.x, soft_endstop.max.x);
+ #endif
+ }
+
+ if (axis_was_homed(Y_AXIS)) {
+ #if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MIN_SOFTWARE_ENDSTOP_Y)
+ NOLESS(target.y, soft_endstop.min.y);
+ #endif
+ #if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MAX_SOFTWARE_ENDSTOP_Y)
+ NOMORE(target.y, soft_endstop.max.y);
+ #endif
+ }
+
+ #endif
+
+ if (axis_was_homed(Z_AXIS)) {
+ #if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MIN_SOFTWARE_ENDSTOP_Z)
+ NOLESS(target.z, soft_endstop.min.z);
+ #endif
+ #if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MAX_SOFTWARE_ENDSTOP_Z)
+ NOMORE(target.z, soft_endstop.max.z);
+ #endif
+ }
+ }
+
+#else // !HAS_SOFTWARE_ENDSTOPS
+
+ soft_endstops_t soft_endstop;
+
+#endif // !HAS_SOFTWARE_ENDSTOPS
+
+#if !UBL_SEGMENTED
+
+FORCE_INLINE void segment_idle(millis_t &next_idle_ms) {
+ const millis_t ms = millis();
+ if (ELAPSED(ms, next_idle_ms)) {
+ next_idle_ms = ms + 200UL;
+ return idle();
+ }
+ thermalManager.manage_heater(); // Returns immediately on most calls
+}
+
+#if IS_KINEMATIC
+
+ #if IS_SCARA
+ /**
+ * Before raising this value, use M665 S[seg_per_sec] to decrease
+ * the number of segments-per-second. Default is 200. Some deltas
+ * do better with 160 or lower. It would be good to know how many
+ * segments-per-second are actually possible for SCARA on AVR.
+ *
+ * Longer segments result in less kinematic overhead
+ * but may produce jagged lines. Try 0.5mm, 1.0mm, and 2.0mm
+ * and compare the difference.
+ */
+ #define SCARA_MIN_SEGMENT_LENGTH 0.5f
+ #endif
+
+ /**
+ * Prepare a linear move in a DELTA or SCARA setup.
+ *
+ * Called from prepare_line_to_destination as the
+ * default Delta/SCARA segmenter.
+ *
+ * This calls planner.buffer_line several times, adding
+ * small incremental moves for DELTA or SCARA.
+ *
+ * For Unified Bed Leveling (Delta or Segmented Cartesian)
+ * the ubl.line_to_destination_segmented method replaces this.
+ *
+ * For Auto Bed Leveling (Bilinear) with SEGMENT_LEVELED_MOVES
+ * this is replaced by segmented_line_to_destination below.
+ */
+ inline bool line_to_destination_kinematic() {
+
+ // Get the top feedrate of the move in the XY plane
+ const float scaled_fr_mm_s = MMS_SCALED(feedrate_mm_s);
+
+ const xyze_float_t diff = destination - current_position;
+
+ // If the move is only in Z/E don't split up the move
+ if (!diff.x && !diff.y) {
+ planner.buffer_line(destination, scaled_fr_mm_s, active_extruder);
+ return false; // caller will update current_position
+ }
+
+ // Fail if attempting move outside printable radius
+ if (!position_is_reachable(destination)) return true;
+
+ // Get the linear distance in XYZ
+ float cartesian_mm = diff.magnitude();
+
+ // If the move is very short, check the E move distance
+ if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = ABS(diff.e);
+
+ // No E move either? Game over.
+ if (UNEAR_ZERO(cartesian_mm)) return true;
+
+ // Minimum number of seconds to move the given distance
+ const float seconds = cartesian_mm / scaled_fr_mm_s;
+
+ // The number of segments-per-second times the duration
+ // gives the number of segments
+ uint16_t segments = delta_segments_per_second * seconds;
+
+ // For SCARA enforce a minimum segment size
+ #if IS_SCARA
+ NOMORE(segments, cartesian_mm * RECIPROCAL(SCARA_MIN_SEGMENT_LENGTH));
+ #endif
+
+ // At least one segment is required
+ NOLESS(segments, 1U);
+
+ // The approximate length of each segment
+ const float inv_segments = 1.0f / float(segments),
+ cartesian_segment_mm = cartesian_mm * inv_segments;
+ const xyze_float_t segment_distance = diff * inv_segments;
+
+ #if ENABLED(SCARA_FEEDRATE_SCALING)
+ const float inv_duration = scaled_fr_mm_s / cartesian_segment_mm;
+ #endif
+
+ /*
+ SERIAL_ECHOPAIR("mm=", cartesian_mm);
+ SERIAL_ECHOPAIR(" seconds=", seconds);
+ SERIAL_ECHOPAIR(" segments=", segments);
+ SERIAL_ECHOPAIR(" segment_mm=", cartesian_segment_mm);
+ SERIAL_EOL();
+ //*/
+
+ // Get the current position as starting point
+ xyze_pos_t raw = current_position;
+
+ // Calculate and execute the segments
+ millis_t next_idle_ms = millis() + 200UL;
+ while (--segments) {
+ segment_idle(next_idle_ms);
+ raw += segment_distance;
+ if (!planner.buffer_line(raw, scaled_fr_mm_s, active_extruder, cartesian_segment_mm
+ #if ENABLED(SCARA_FEEDRATE_SCALING)
+ , inv_duration
+ #endif
+ )) break;
+ }
+
+ // Ensure last segment arrives at target location.
+ planner.buffer_line(destination, scaled_fr_mm_s, active_extruder, cartesian_segment_mm
+ #if ENABLED(SCARA_FEEDRATE_SCALING)
+ , inv_duration
+ #endif
+ );
+
+ return false; // caller will update current_position
+ }
+
+#else // !IS_KINEMATIC
+
+ #if ENABLED(SEGMENT_LEVELED_MOVES)
+
+ /**
+ * Prepare a segmented move on a CARTESIAN setup.
+ *
+ * This calls planner.buffer_line several times, adding
+ * small incremental moves. This allows the planner to
+ * apply more detailed bed leveling to the full move.
+ */
+ inline void segmented_line_to_destination(const feedRate_t &fr_mm_s, const float segment_size=LEVELED_SEGMENT_LENGTH) {
+
+ const xyze_float_t diff = destination - current_position;
+
+ // If the move is only in Z/E don't split up the move
+ if (!diff.x && !diff.y) {
+ planner.buffer_line(destination, fr_mm_s, active_extruder);
+ return;
+ }
+
+ // Get the linear distance in XYZ
+ // If the move is very short, check the E move distance
+ // No E move either? Game over.
+ float cartesian_mm = diff.magnitude();
+ if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = ABS(diff.e);
+ if (UNEAR_ZERO(cartesian_mm)) return;
+
+ // The length divided by the segment size
+ // At least one segment is required
+ uint16_t segments = cartesian_mm / segment_size;
+ NOLESS(segments, 1U);
+
+ // The approximate length of each segment
+ const float inv_segments = 1.0f / float(segments),
+ cartesian_segment_mm = cartesian_mm * inv_segments;
+ const xyze_float_t segment_distance = diff * inv_segments;
+
+ #if ENABLED(SCARA_FEEDRATE_SCALING)
+ const float inv_duration = scaled_fr_mm_s / cartesian_segment_mm;
+ #endif
+
+ // SERIAL_ECHOPAIR("mm=", cartesian_mm);
+ // SERIAL_ECHOLNPAIR(" segments=", segments);
+ // SERIAL_ECHOLNPAIR(" segment_mm=", cartesian_segment_mm);
+
+ // Get the raw current position as starting point
+ xyze_pos_t raw = current_position;
+
+ // Calculate and execute the segments
+ millis_t next_idle_ms = millis() + 200UL;
+ while (--segments) {
+ segment_idle(next_idle_ms);
+ raw += segment_distance;
+ if (!planner.buffer_line(raw, fr_mm_s, active_extruder, cartesian_segment_mm
+ #if ENABLED(SCARA_FEEDRATE_SCALING)
+ , inv_duration
+ #endif
+ )) break;
+ }
+
+ // Since segment_distance is only approximate,
+ // the final move must be to the exact destination.
+ planner.buffer_line(destination, fr_mm_s, active_extruder, cartesian_segment_mm
+ #if ENABLED(SCARA_FEEDRATE_SCALING)
+ , inv_duration
+ #endif
+ );
+ }
+
+ #endif // SEGMENT_LEVELED_MOVES
+
+ /**
+ * Prepare a linear move in a Cartesian setup.
+ *
+ * When a mesh-based leveling system is active, moves are segmented
+ * according to the configuration of the leveling system.
+ *
+ * Return true if 'current_position' was set to 'destination'
+ */
+ inline bool line_to_destination_cartesian() {
+ const float scaled_fr_mm_s = MMS_SCALED(feedrate_mm_s);
+ #if HAS_MESH
+ if (planner.leveling_active && planner.leveling_active_at_z(destination.z)) {
+ #if ENABLED(AUTO_BED_LEVELING_UBL)
+ ubl.line_to_destination_cartesian(scaled_fr_mm_s, active_extruder); // UBL's motion routine needs to know about
+ return true; // all moves, including Z-only moves.
+ #elif ENABLED(SEGMENT_LEVELED_MOVES)
+ segmented_line_to_destination(scaled_fr_mm_s);
+ return false; // caller will update current_position
+ #else
+ /**
+ * For MBL and ABL-BILINEAR only segment moves when X or Y are involved.
+ * Otherwise fall through to do a direct single move.
+ */
+ if (xy_pos_t(current_position) != xy_pos_t(destination)) {
+ #if ENABLED(MESH_BED_LEVELING)
+ mbl.line_to_destination(scaled_fr_mm_s);
+ #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
+ bilinear_line_to_destination(scaled_fr_mm_s);
+ #endif
+ return true;
+ }
+ #endif
+ }
+ #endif // HAS_MESH
+
+ planner.buffer_line(destination, scaled_fr_mm_s, active_extruder);
+ return false; // caller will update current_position
+ }
+
+#endif // !IS_KINEMATIC
+#endif // !UBL_SEGMENTED
+
+#if HAS_DUPLICATION_MODE
+ bool extruder_duplication_enabled;
+ #if ENABLED(MULTI_NOZZLE_DUPLICATION)
+ uint8_t duplication_e_mask; // = 0
+ #endif
+#endif
+
+#if ENABLED(DUAL_X_CARRIAGE)
+
+ DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
+ float inactive_extruder_x = X2_MAX_POS, // Used in mode 0 & 1
+ duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // Used in mode 2
+ xyz_pos_t raised_parked_position; // Used in mode 1
+ bool active_extruder_parked = false; // Used in mode 1 & 2
+ millis_t delayed_move_time = 0; // Used in mode 1
+ int16_t duplicate_extruder_temp_offset = 0; // Used in mode 2
+ bool idex_mirrored_mode = false; // Used in mode 3
+
+ float x_home_pos(const uint8_t extruder) {
+ if (extruder == 0)
+ return base_home_pos(X_AXIS);
+ else
+ /**
+ * In dual carriage mode the extruder offset provides an override of the
+ * second X-carriage position when homed - otherwise X2_HOME_POS is used.
+ * This allows soft recalibration of the second extruder home position
+ * without firmware reflash (through the M218 command).
+ */
+ return hotend_offset[1].x > 0 ? hotend_offset[1].x : X2_HOME_POS;
+ }
+
+ void idex_set_mirrored_mode(const bool mirr) {
+ idex_mirrored_mode = mirr;
+ stepper.set_directions();
+ }
+
+ void set_duplication_enabled(const bool dupe, const int8_t tool_index/*=-1*/) {
+ extruder_duplication_enabled = dupe;
+ if (tool_index >= 0) active_extruder = tool_index;
+ stepper.set_directions();
+ }
+
+ void idex_set_parked(const bool park/*=true*/) {
+ delayed_move_time = 0;
+ active_extruder_parked = park;
+ if (park) raised_parked_position = current_position; // Remember current raised toolhead position for use by unpark
+ }
+
+ /**
+ * Prepare a linear move in a dual X axis setup
+ *
+ * Return true if current_position[] was set to destination[]
+ */
+ inline bool dual_x_carriage_unpark() {
+ if (active_extruder_parked) {
+ switch (dual_x_carriage_mode) {
+
+ case DXC_FULL_CONTROL_MODE: break;
+
+ case DXC_AUTO_PARK_MODE: {
+ if (current_position.e == destination.e) {
+ // This is a travel move (with no extrusion)
+ // Skip it, but keep track of the current position
+ // (so it can be used as the start of the next non-travel move)
+ if (delayed_move_time != 0xFFFFFFFFUL) {
+ current_position = destination;
+ NOLESS(raised_parked_position.z, destination.z);
+ delayed_move_time = millis() + 1000UL;
+ return true;
+ }
+ }
+ //
+ // Un-park the active extruder
+ //
+ const feedRate_t fr_zfast = planner.settings.max_feedrate_mm_s[Z_AXIS];
+ #define CURPOS current_position
+ #define RAISED raised_parked_position
+ // 1. Move to the raised parked XYZ. Presumably the tool is already at XY.
+ if (planner.buffer_line(RAISED.x, RAISED.y, RAISED.z, CURPOS.e, fr_zfast, active_extruder)) {
+ // 2. Move to the current native XY and raised Z. Presumably this is a null move.
+ if (planner.buffer_line(CURPOS.x, CURPOS.y, RAISED.z, CURPOS.e, PLANNER_XY_FEEDRATE(), active_extruder)) {
+ // 3. Lower Z back down
+ line_to_current_position(fr_zfast);
+ }
+ }
+ stepper.set_directions();
+
+ idex_set_parked(false);
+ if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("idex_set_parked(false)");
+ } break;
+
+ case DXC_MIRRORED_MODE:
+ case DXC_DUPLICATION_MODE:
+ if (active_extruder == 0) {
+ xyze_pos_t new_pos = current_position;
+ if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
+ new_pos.x += duplicate_extruder_x_offset;
+ else
+ new_pos.x = inactive_extruder_x;
+ // Move duplicate extruder into correct duplication position.
+ if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("Set planner X", inactive_extruder_x, " ... Line to X", new_pos.x);
+ planner.set_position_mm(inactive_extruder_x, current_position.y, current_position.z, current_position.e);
+ if (!planner.buffer_line(new_pos, planner.settings.max_feedrate_mm_s[X_AXIS], 1)) break;
+
+ planner.synchronize();
+ sync_plan_position();
+
+ set_duplication_enabled(true);
+ idex_set_parked(false);
+ if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("set_duplication_enabled(true)\nidex_set_parked(false)");
+ }
+ else if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("Active extruder not 0");
+ break;
+ }
+ }
+ return false;
+ }
+
+#endif // DUAL_X_CARRIAGE
+
+/**
+ * Prepare a single move and get ready for the next one
+ *
+ * This may result in several calls to planner.buffer_line to
+ * do smaller moves for DELTA, SCARA, mesh moves, etc.
+ *
+ * Make sure current_position.e and destination.e are good
+ * before calling or cold/lengthy extrusion may get missed.
+ *
+ * Before exit, current_position is set to destination.
+ */
+void prepare_line_to_destination() {
+ apply_motion_limits(destination);
+
+ #if EITHER(PREVENT_COLD_EXTRUSION, PREVENT_LENGTHY_EXTRUDE)
+
+ if (!DEBUGGING(DRYRUN) && destination.e != current_position.e) {
+ bool ignore_e = false;
+
+ #if ENABLED(PREVENT_COLD_EXTRUSION)
+ ignore_e = thermalManager.tooColdToExtrude(active_extruder);
+ if (ignore_e) SERIAL_ECHO_MSG(STR_ERR_COLD_EXTRUDE_STOP);
+ #endif
+
+ #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
+ const float e_delta = ABS(destination.e - current_position.e) * planner.e_factor[active_extruder];
+ if (e_delta > (EXTRUDE_MAXLENGTH)) {
+ #if ENABLED(MIXING_EXTRUDER)
+ float collector[MIXING_STEPPERS];
+ mixer.refresh_collector(1.0, mixer.get_current_vtool(), collector);
+ MIXER_STEPPER_LOOP(e) {
+ if (e_delta * collector[e] > (EXTRUDE_MAXLENGTH)) {
+ ignore_e = true;
+ SERIAL_ECHO_MSG(STR_ERR_LONG_EXTRUDE_STOP);
+ break;
+ }
+ }
+ #else
+ ignore_e = true;
+ SERIAL_ECHO_MSG(STR_ERR_LONG_EXTRUDE_STOP);
+ #endif
+ }
+ #endif
+
+ if (ignore_e) {
+ current_position.e = destination.e; // Behave as if the E move really took place
+ planner.set_e_position_mm(destination.e); // Prevent the planner from complaining too
+ }
+ }
+
+ #endif // PREVENT_COLD_EXTRUSION || PREVENT_LENGTHY_EXTRUDE
+
+ if (TERN0(DUAL_X_CARRIAGE, dual_x_carriage_unpark())) return;
+
+ if (
+ #if UBL_SEGMENTED
+ #if IS_KINEMATIC // UBL using Kinematic / Cartesian cases as a workaround for now.
+ ubl.line_to_destination_segmented(MMS_SCALED(feedrate_mm_s))
+ #else
+ line_to_destination_cartesian()
+ #endif
+ #elif IS_KINEMATIC
+ line_to_destination_kinematic()
+ #else
+ line_to_destination_cartesian()
+ #endif
+ ) return;
+
+ current_position = destination;
+}
+
+uint8_t axes_should_home(uint8_t axis_bits/*=0x07*/) {
+ #define SHOULD_HOME(A) TERN(HOME_AFTER_DEACTIVATE, axis_is_trusted, axis_was_homed)(A)
+ // Clear test bits that are trusted
+ if (TEST(axis_bits, X_AXIS) && SHOULD_HOME(X_AXIS)) CBI(axis_bits, X_AXIS);
+ if (TEST(axis_bits, Y_AXIS) && SHOULD_HOME(Y_AXIS)) CBI(axis_bits, Y_AXIS);
+ if (TEST(axis_bits, Z_AXIS) && SHOULD_HOME(Z_AXIS)) CBI(axis_bits, Z_AXIS);
+ return axis_bits;
+}
+
+bool homing_needed_error(uint8_t axis_bits/*=0x07*/) {
+ if ((axis_bits = axes_should_home(axis_bits))) {
+ PGM_P home_first = GET_TEXT(MSG_HOME_FIRST);
+ char msg[strlen_P(home_first)+1];
+ sprintf_P(msg, home_first,
+ TEST(axis_bits, X_AXIS) ? "X" : "",
+ TEST(axis_bits, Y_AXIS) ? "Y" : "",
+ TEST(axis_bits, Z_AXIS) ? "Z" : ""
+ );
+ SERIAL_ECHO_START();
+ SERIAL_ECHOLN(msg);
+ TERN_(HAS_DISPLAY, ui.set_status(msg));
+ return true;
+ }
+ return false;
+}
+
+/**
+ * Homing bump feedrate (mm/s)
+ */
+feedRate_t get_homing_bump_feedrate(const AxisEnum axis) {
+ #if HOMING_Z_WITH_PROBE
+ if (axis == Z_AXIS) return MMM_TO_MMS(Z_PROBE_SPEED_SLOW);
+ #endif
+ static const uint8_t homing_bump_divisor[] PROGMEM = HOMING_BUMP_DIVISOR;
+ uint8_t hbd = pgm_read_byte(&homing_bump_divisor[axis]);
+ if (hbd < 1) {
+ hbd = 10;
+ SERIAL_ECHO_MSG("Warning: Homing Bump Divisor < 1");
+ }
+ return homing_feedrate(axis) / float(hbd);
+}
+
+#if ENABLED(SENSORLESS_HOMING)
+ /**
+ * Set sensorless homing if the axis has it, accounting for Core Kinematics.
+ */
+ sensorless_t start_sensorless_homing_per_axis(const AxisEnum axis) {
+ sensorless_t stealth_states { false };
+
+ switch (axis) {
+ default: break;
+ #if X_SENSORLESS
+ case X_AXIS:
+ stealth_states.x = tmc_enable_stallguard(stepperX);
+ #if AXIS_HAS_STALLGUARD(X2)
+ stealth_states.x2 = tmc_enable_stallguard(stepperX2);
+ #endif
+ #if EITHER(CORE_IS_XY, MARKFORGED_XY) && Y_SENSORLESS
+ stealth_states.y = tmc_enable_stallguard(stepperY);
+ #elif CORE_IS_XZ && Z_SENSORLESS
+ stealth_states.z = tmc_enable_stallguard(stepperZ);
+ #endif
+ break;
+ #endif
+ #if Y_SENSORLESS
+ case Y_AXIS:
+ stealth_states.y = tmc_enable_stallguard(stepperY);
+ #if AXIS_HAS_STALLGUARD(Y2)
+ stealth_states.y2 = tmc_enable_stallguard(stepperY2);
+ #endif
+ #if EITHER(CORE_IS_XY, MARKFORGED_XY) && X_SENSORLESS
+ stealth_states.x = tmc_enable_stallguard(stepperX);
+ #elif CORE_IS_YZ && Z_SENSORLESS
+ stealth_states.z = tmc_enable_stallguard(stepperZ);
+ #endif
+ break;
+ #endif
+ #if Z_SENSORLESS
+ case Z_AXIS:
+ stealth_states.z = tmc_enable_stallguard(stepperZ);
+ #if AXIS_HAS_STALLGUARD(Z2)
+ stealth_states.z2 = tmc_enable_stallguard(stepperZ2);
+ #endif
+ #if AXIS_HAS_STALLGUARD(Z3)
+ stealth_states.z3 = tmc_enable_stallguard(stepperZ3);
+ #endif
+ #if AXIS_HAS_STALLGUARD(Z4)
+ stealth_states.z4 = tmc_enable_stallguard(stepperZ4);
+ #endif
+ #if CORE_IS_XZ && X_SENSORLESS
+ stealth_states.x = tmc_enable_stallguard(stepperX);
+ #elif CORE_IS_YZ && Y_SENSORLESS
+ stealth_states.y = tmc_enable_stallguard(stepperY);
+ #endif
+ break;
+ #endif
+ }
+
+ #if ENABLED(SPI_ENDSTOPS)
+ switch (axis) {
+ case X_AXIS: if (ENABLED(X_SPI_SENSORLESS)) endstops.tmc_spi_homing.x = true; break;
+ case Y_AXIS: if (ENABLED(Y_SPI_SENSORLESS)) endstops.tmc_spi_homing.y = true; break;
+ case Z_AXIS: if (ENABLED(Z_SPI_SENSORLESS)) endstops.tmc_spi_homing.z = true; break;
+ default: break;
+ }
+ #endif
+
+ TERN_(IMPROVE_HOMING_RELIABILITY, sg_guard_period = millis() + default_sg_guard_duration);
+
+ return stealth_states;
+ }
+
+ void end_sensorless_homing_per_axis(const AxisEnum axis, sensorless_t enable_stealth) {
+ switch (axis) {
+ default: break;
+ #if X_SENSORLESS
+ case X_AXIS:
+ tmc_disable_stallguard(stepperX, enable_stealth.x);
+ #if AXIS_HAS_STALLGUARD(X2)
+ tmc_disable_stallguard(stepperX2, enable_stealth.x2);
+ #endif
+ #if EITHER(CORE_IS_XY, MARKFORGED_XY) && Y_SENSORLESS
+ tmc_disable_stallguard(stepperY, enable_stealth.y);
+ #elif CORE_IS_XZ && Z_SENSORLESS
+ tmc_disable_stallguard(stepperZ, enable_stealth.z);
+ #endif
+ break;
+ #endif
+ #if Y_SENSORLESS
+ case Y_AXIS:
+ tmc_disable_stallguard(stepperY, enable_stealth.y);
+ #if AXIS_HAS_STALLGUARD(Y2)
+ tmc_disable_stallguard(stepperY2, enable_stealth.y2);
+ #endif
+ #if EITHER(CORE_IS_XY, MARKFORGED_XY) && X_SENSORLESS
+ tmc_disable_stallguard(stepperX, enable_stealth.x);
+ #elif CORE_IS_YZ && Z_SENSORLESS
+ tmc_disable_stallguard(stepperZ, enable_stealth.z);
+ #endif
+ break;
+ #endif
+ #if Z_SENSORLESS
+ case Z_AXIS:
+ tmc_disable_stallguard(stepperZ, enable_stealth.z);
+ #if AXIS_HAS_STALLGUARD(Z2)
+ tmc_disable_stallguard(stepperZ2, enable_stealth.z2);
+ #endif
+ #if AXIS_HAS_STALLGUARD(Z3)
+ tmc_disable_stallguard(stepperZ3, enable_stealth.z3);
+ #endif
+ #if AXIS_HAS_STALLGUARD(Z4)
+ tmc_disable_stallguard(stepperZ4, enable_stealth.z4);
+ #endif
+ #if CORE_IS_XZ && X_SENSORLESS
+ tmc_disable_stallguard(stepperX, enable_stealth.x);
+ #elif CORE_IS_YZ && Y_SENSORLESS
+ tmc_disable_stallguard(stepperY, enable_stealth.y);
+ #endif
+ break;
+ #endif
+ }
+
+ #if ENABLED(SPI_ENDSTOPS)
+ switch (axis) {
+ case X_AXIS: if (ENABLED(X_SPI_SENSORLESS)) endstops.tmc_spi_homing.x = false; break;
+ case Y_AXIS: if (ENABLED(Y_SPI_SENSORLESS)) endstops.tmc_spi_homing.y = false; break;
+ case Z_AXIS: if (ENABLED(Z_SPI_SENSORLESS)) endstops.tmc_spi_homing.z = false; break;
+ default: break;
+ }
+ #endif
+ }
+
+#endif // SENSORLESS_HOMING
+
+/**
+ * Home an individual linear axis
+ */
+void do_homing_move(const AxisEnum axis, const float distance, const feedRate_t fr_mm_s=0.0, const bool final_approach=true) {
+ DEBUG_SECTION(log_move, "do_homing_move", DEBUGGING(LEVELING));
+
+ const feedRate_t home_fr_mm_s = fr_mm_s ?: homing_feedrate(axis);
+
+ if (DEBUGGING(LEVELING)) {
+ DEBUG_ECHOPAIR("...(", axis_codes[axis], ", ", distance, ", ");
+ if (fr_mm_s)
+ DEBUG_ECHO(fr_mm_s);
+ else
+ DEBUG_ECHOPAIR("[", home_fr_mm_s, "]");
+ DEBUG_ECHOLNPGM(")");
+ }
+
+ // Only do some things when moving towards an endstop
+ const int8_t axis_home_dir = TERN0(DUAL_X_CARRIAGE, axis == X_AXIS)
+ ? x_home_dir(active_extruder) : home_dir(axis);
+ const bool is_home_dir = (axis_home_dir > 0) == (distance > 0);
+
+ #if ENABLED(SENSORLESS_HOMING)
+ sensorless_t stealth_states;
+ #endif
+
+ if (is_home_dir) {
+
+ if (TERN0(HOMING_Z_WITH_PROBE, axis == Z_AXIS)) {
+ #if ALL(HAS_HEATED_BED, WAIT_FOR_BED_HEATER)
+ // Wait for bed to heat back up between probing points
+ thermalManager.wait_for_bed_heating();
+ #endif
+
+ TERN_(HAS_QUIET_PROBING, if (final_approach) probe.set_probing_paused(true));
+ }
+
+ // Disable stealthChop if used. Enable diag1 pin on driver.
+ TERN_(SENSORLESS_HOMING, stealth_states = start_sensorless_homing_per_axis(axis));
+ }
+
+ #if IS_SCARA
+ // Tell the planner the axis is at 0
+ current_position[axis] = 0;
+ sync_plan_position();
+ current_position[axis] = distance;
+ line_to_current_position(home_fr_mm_s);
+ #else
+ // Get the ABC or XYZ positions in mm
+ abce_pos_t target = planner.get_axis_positions_mm();
+
+ target[axis] = 0; // Set the single homing axis to 0
+ planner.set_machine_position_mm(target); // Update the machine position
+
+ #if HAS_DIST_MM_ARG
+ const xyze_float_t cart_dist_mm{0};
+ #endif
+
+ // Set delta/cartesian axes directly
+ target[axis] = distance; // The move will be towards the endstop
+ planner.buffer_segment(target
+ #if HAS_DIST_MM_ARG
+ , cart_dist_mm
+ #endif
+ , home_fr_mm_s, active_extruder
+ );
+ #endif
+
+ planner.synchronize();
+
+ if (is_home_dir) {
+
+ #if HOMING_Z_WITH_PROBE && HAS_QUIET_PROBING
+ if (axis == Z_AXIS && final_approach) probe.set_probing_paused(false);
+ #endif
+
+ endstops.validate_homing_move();
+
+ // Re-enable stealthChop if used. Disable diag1 pin on driver.
+ TERN_(SENSORLESS_HOMING, end_sensorless_homing_per_axis(axis, stealth_states));
+ }
+}
+
+/**
+ * Set an axis' current position to its home position (after homing).
+ *
+ * For Core and Cartesian robots this applies one-to-one when an
+ * individual axis has been homed.
+ *
+ * DELTA should wait until all homing is done before setting the XYZ
+ * current_position to home, because homing is a single operation.
+ * In the case where the axis positions are trusted and previously
+ * homed, DELTA could home to X or Y individually by moving either one
+ * to the center. However, homing Z always homes XY and Z.
+ *
+ * SCARA should wait until all XY homing is done before setting the XY
+ * current_position to home, because neither X nor Y is at home until
+ * both are at home. Z can however be homed individually.
+ *
+ * Callers must sync the planner position after calling this!
+ */
+void set_axis_is_at_home(const AxisEnum axis) {
+ if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR(">>> set_axis_is_at_home(", axis_codes[axis], ")");
+
+ set_axis_trusted(axis);
+ set_axis_homed(axis);
+
+ #if ENABLED(DUAL_X_CARRIAGE)
+ if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
+ current_position.x = x_home_pos(active_extruder);
+ return;
+ }
+ #endif
+
+ #if ENABLED(MORGAN_SCARA)
+ scara_set_axis_is_at_home(axis);
+ #elif ENABLED(DELTA)
+ current_position[axis] = (axis == Z_AXIS) ? delta_height - TERN0(HAS_BED_PROBE, probe.offset.z) : base_home_pos(axis);
+ #else
+ current_position[axis] = base_home_pos(axis);
+ #endif
+
+ /**
+ * Z Probe Z Homing? Account for the probe's Z offset.
+ */
+ #if HAS_BED_PROBE && Z_HOME_DIR < 0
+ if (axis == Z_AXIS) {
+ #if HOMING_Z_WITH_PROBE
+
+ current_position.z -= probe.offset.z;
+
+ if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***\n> probe.offset.z = ", probe.offset.z);
+
+ #else
+
+ if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("*** Z HOMED TO ENDSTOP ***");
+
+ #endif
+ }
+ #endif
+
+ TERN_(I2C_POSITION_ENCODERS, I2CPEM.homed(axis));
+
+ TERN_(BABYSTEP_DISPLAY_TOTAL, babystep.reset_total(axis));
+
+ #if HAS_POSITION_SHIFT
+ position_shift[axis] = 0;
+ update_workspace_offset(axis);
+ #endif
+
+ if (DEBUGGING(LEVELING)) {
+ #if HAS_HOME_OFFSET
+ DEBUG_ECHOLNPAIR("> home_offset[", axis_codes[axis], "] = ", home_offset[axis]);
+ #endif
+ DEBUG_POS("", current_position);
+ DEBUG_ECHOLNPAIR("<<< set_axis_is_at_home(", axis_codes[axis], ")");
+ }
+}
+
+/**
+ * Set an axis to be unhomed.
+ */
+void set_axis_never_homed(const AxisEnum axis) {
+ if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR(">>> set_axis_never_homed(", axis_codes[axis], ")");
+
+ set_axis_untrusted(axis);
+ set_axis_unhomed(axis);
+
+ if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("<<< set_axis_never_homed(", axis_codes[axis], ")");
+
+ TERN_(I2C_POSITION_ENCODERS, I2CPEM.unhomed(axis));
+}
+
+#ifdef TMC_HOME_PHASE
+ /**
+ * Move the axis back to its home_phase if set and driver is capable (TMC)
+ *
+ * Improves homing repeatability by homing to stepper coil's nearest absolute
+ * phase position. Trinamic drivers use a stepper phase table with 1024 values
+ * spanning 4 full steps with 256 positions each (ergo, 1024 positions).
+ */
+ void backout_to_tmc_homing_phase(const AxisEnum axis) {
+ const xyz_long_t home_phase = TMC_HOME_PHASE;
+
+ // check if home phase is disabled for this axis.
+ if (home_phase[axis] < 0) return;
+
+ int16_t phasePerUStep, // TMC µsteps(phase) per Marlin µsteps
+ phaseCurrent, // The TMC µsteps(phase) count of the current position
+ effectorBackoutDir, // Direction in which the effector mm coordinates move away from endstop.
+ stepperBackoutDir; // Direction in which the TMC µstep count(phase) move away from endstop.
+
+ #define PHASE_PER_MICROSTEP(N) (256 / _MAX(1, N##_MICROSTEPS))
+
+ switch (axis) {
+ #ifdef X_MICROSTEPS
+ case X_AXIS:
+ phasePerUStep = PHASE_PER_MICROSTEP(X);
+ phaseCurrent = stepperX.get_microstep_counter();
+ effectorBackoutDir = -X_HOME_DIR;
+ stepperBackoutDir = INVERT_X_DIR ? effectorBackoutDir : -effectorBackoutDir;
+ break;
+ #endif
+ #ifdef Y_MICROSTEPS
+ case Y_AXIS:
+ phasePerUStep = PHASE_PER_MICROSTEP(Y);
+ phaseCurrent = stepperY.get_microstep_counter();
+ effectorBackoutDir = -Y_HOME_DIR;
+ stepperBackoutDir = INVERT_Y_DIR ? effectorBackoutDir : -effectorBackoutDir;
+ break;
+ #endif
+ #ifdef Z_MICROSTEPS
+ case Z_AXIS:
+ phasePerUStep = PHASE_PER_MICROSTEP(Z);
+ phaseCurrent = stepperZ.get_microstep_counter();
+ effectorBackoutDir = -Z_HOME_DIR;
+ stepperBackoutDir = INVERT_Z_DIR ? effectorBackoutDir : -effectorBackoutDir;
+ break;
+ #endif
+ default: return;
+ }
+
+ // Phase distance to nearest home phase position when moving in the backout direction from endstop(may be negative).
+ int16_t phaseDelta = (home_phase[axis] - phaseCurrent) * stepperBackoutDir;
+
+ // Check if home distance within endstop assumed repeatability noise of .05mm and warn.
+ if (ABS(phaseDelta) * planner.steps_to_mm[axis] / phasePerUStep < 0.05f)
+ SERIAL_ECHOLNPAIR("Selected home phase ", home_phase[axis],
+ " too close to endstop trigger phase ", phaseCurrent,
+ ". Pick a different phase for ", axis_codes[axis]);
+
+ // Skip to next if target position is behind current. So it only moves away from endstop.
+ if (phaseDelta < 0) phaseDelta += 1024;
+
+ // Convert TMC µsteps(phase) to whole Marlin µsteps to effector backout direction to mm
+ const float mmDelta = int16_t(phaseDelta / phasePerUStep) * effectorBackoutDir * planner.steps_to_mm[axis];
+
+ // Optional debug messages
+ if (DEBUGGING(LEVELING)) {
+ DEBUG_ECHOLNPAIR(
+ "Endstop ", axis_codes[axis], " hit at Phase:", phaseCurrent,
+ " Delta:", phaseDelta, " Distance:", mmDelta
+ );
+ }
+
+ if (mmDelta != 0) {
+ // Retrace by the amount computed in mmDelta.
+ do_homing_move(axis, mmDelta, get_homing_bump_feedrate(axis));
+ }
+ }
+#endif
+
+/**
+ * Home an individual "raw axis" to its endstop.
+ * This applies to XYZ on Cartesian and Core robots, and
+ * to the individual ABC steppers on DELTA and SCARA.
+ *
+ * At the end of the procedure the axis is marked as
+ * homed and the current position of that axis is updated.
+ * Kinematic robots should wait till all axes are homed
+ * before updating the current position.
+ */
+
+void homeaxis(const AxisEnum axis) {
+
+ #if IS_SCARA
+ // Only Z homing (with probe) is permitted
+ if (axis != Z_AXIS) { BUZZ(100, 880); return; }
+ #else
+ #define _CAN_HOME(A) (axis == _AXIS(A) && ( \
+ ENABLED(A##_SPI_SENSORLESS) \
+ || (_AXIS(A) == Z_AXIS && ENABLED(HOMING_Z_WITH_PROBE)) \
+ || (A##_MIN_PIN > -1 && A##_HOME_DIR < 0) \
+ || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0) \
+ ))
+ if (!_CAN_HOME(X) && !_CAN_HOME(Y) && !_CAN_HOME(Z)) return;
+ #endif
+
+ if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR(">>> homeaxis(", axis_codes[axis], ")");
+
+ const int axis_home_dir = TERN0(DUAL_X_CARRIAGE, axis == X_AXIS)
+ ? x_home_dir(active_extruder) : home_dir(axis);
+
+ //
+ // Homing Z with a probe? Raise Z (maybe) and deploy the Z probe.
+ //
+ if (TERN0(HOMING_Z_WITH_PROBE, axis == Z_AXIS && probe.deploy()))
+ return;
+
+ // Set flags for X, Y, Z motor locking
+ #if HAS_EXTRA_ENDSTOPS
+ switch (axis) {
+ TERN_(X_DUAL_ENDSTOPS, case X_AXIS:)
+ TERN_(Y_DUAL_ENDSTOPS, case Y_AXIS:)
+ TERN_(Z_MULTI_ENDSTOPS, case Z_AXIS:)
+ stepper.set_separate_multi_axis(true);
+ default: break;
+ }
+ #endif
+
+ //
+ // Deploy BLTouch or tare the probe just before probing
+ //
+ #if HOMING_Z_WITH_PROBE
+ if (axis == Z_AXIS) {
+ if (TERN0(BLTOUCH, bltouch.deploy())) return; // BLTouch was deployed above, but get the alarm state.
+ if (TERN0(PROBE_TARE, probe.tare())) return;
+ }
+ #endif
+
+ //
+ // Back away to prevent an early X/Y sensorless trigger
+ //
+ #if DISABLED(DELTA) && defined(SENSORLESS_BACKOFF_MM)
+ const xy_float_t backoff = SENSORLESS_BACKOFF_MM;
+ if ((TERN0(X_SENSORLESS, axis == X_AXIS) || TERN0(Y_SENSORLESS, axis == Y_AXIS)) && backoff[axis]) {
+ const float backoff_length = -ABS(backoff[axis]) * axis_home_dir;
+ if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("Sensorless backoff: ", backoff_length, "mm");
+ do_homing_move(axis, backoff_length, homing_feedrate(axis));
+ }
+ #endif
+
+ // Determine if a homing bump will be done and the bumps distance
+ // When homing Z with probe respect probe clearance
+ const bool use_probe_bump = TERN0(HOMING_Z_WITH_PROBE, axis == Z_AXIS && home_bump_mm(Z_AXIS));
+ const float bump = axis_home_dir * (
+ use_probe_bump ? _MAX(TERN0(HOMING_Z_WITH_PROBE, Z_CLEARANCE_BETWEEN_PROBES), home_bump_mm(Z_AXIS)) : home_bump_mm(axis)
+ );
+
+ //
+ // Fast move towards endstop until triggered
+ //
+ const float move_length = 1.5f * max_length(TERN(DELTA, Z_AXIS, axis)) * axis_home_dir;
+ if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("Home Fast: ", move_length, "mm");
+ do_homing_move(axis, move_length, 0.0, !use_probe_bump);
+
+ #if BOTH(HOMING_Z_WITH_PROBE, BLTOUCH_SLOW_MODE)
+ if (axis == Z_AXIS) bltouch.stow(); // Intermediate STOW (in LOW SPEED MODE)
+ #endif
+
+ // If a second homing move is configured...
+ if (bump) {
+ // Move away from the endstop by the axis HOMING_BUMP_MM
+ if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("Move Away: ", -bump, "mm");
+ do_homing_move(axis, -bump, TERN0(HOMING_Z_WITH_PROBE, axis == Z_AXIS) ? MMM_TO_MMS(Z_PROBE_SPEED_FAST) : 0, false);
+
+ #if ENABLED(DETECT_BROKEN_ENDSTOP)
+ // Check for a broken endstop
+ EndstopEnum es;
+ switch (axis) {
+ default:
+ case X_AXIS: es = X_ENDSTOP; break;
+ case Y_AXIS: es = Y_ENDSTOP; break;
+ case Z_AXIS: es = Z_ENDSTOP; break;
+ }
+ if (TEST(endstops.state(), es)) {
+ SERIAL_ECHO_MSG("Bad ", axis_codes[axis], " Endstop?");
+ kill(GET_TEXT(MSG_KILL_HOMING_FAILED));
+ }
+ #endif
+
+ #if BOTH(HOMING_Z_WITH_PROBE, BLTOUCH_SLOW_MODE)
+ if (axis == Z_AXIS && bltouch.deploy()) return; // Intermediate DEPLOY (in LOW SPEED MODE)
+ #endif
+
+ // Slow move towards endstop until triggered
+ const float rebump = bump * 2;
+ if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("Re-bump: ", rebump, "mm");
+ do_homing_move(axis, rebump, get_homing_bump_feedrate(axis), true);
+
+ #if BOTH(HOMING_Z_WITH_PROBE, BLTOUCH)
+ if (axis == Z_AXIS) bltouch.stow(); // The final STOW
+ #endif
+ }
+
+ #if HAS_EXTRA_ENDSTOPS
+ const bool pos_dir = axis_home_dir > 0;
+ #if ENABLED(X_DUAL_ENDSTOPS)
+ if (axis == X_AXIS) {
+ const float adj = ABS(endstops.x2_endstop_adj);
+ if (adj) {
+ if (pos_dir ? (endstops.x2_endstop_adj > 0) : (endstops.x2_endstop_adj < 0)) stepper.set_x_lock(true); else stepper.set_x2_lock(true);
+ do_homing_move(axis, pos_dir ? -adj : adj);
+ stepper.set_x_lock(false);
+ stepper.set_x2_lock(false);
+ }
+ }
+ #endif
+ #if ENABLED(Y_DUAL_ENDSTOPS)
+ if (axis == Y_AXIS) {
+ const float adj = ABS(endstops.y2_endstop_adj);
+ if (adj) {
+ if (pos_dir ? (endstops.y2_endstop_adj > 0) : (endstops.y2_endstop_adj < 0)) stepper.set_y_lock(true); else stepper.set_y2_lock(true);
+ do_homing_move(axis, pos_dir ? -adj : adj);
+ stepper.set_y_lock(false);
+ stepper.set_y2_lock(false);
+ }
+ }
+ #endif
+
+ #if ENABLED(Z_MULTI_ENDSTOPS)
+ if (axis == Z_AXIS) {
+
+ #if NUM_Z_STEPPER_DRIVERS == 2
+
+ const float adj = ABS(endstops.z2_endstop_adj);
+ if (adj) {
+ if (pos_dir ? (endstops.z2_endstop_adj > 0) : (endstops.z2_endstop_adj < 0)) stepper.set_z1_lock(true); else stepper.set_z2_lock(true);
+ do_homing_move(axis, pos_dir ? -adj : adj);
+ stepper.set_z1_lock(false);
+ stepper.set_z2_lock(false);
+ }
+
+ #else
+
+ // Handy arrays of stepper lock function pointers
+
+ typedef void (*adjustFunc_t)(const bool);
+
+ adjustFunc_t lock[] = {
+ stepper.set_z1_lock, stepper.set_z2_lock, stepper.set_z3_lock
+ #if NUM_Z_STEPPER_DRIVERS >= 4
+ , stepper.set_z4_lock
+ #endif
+ };
+ float adj[] = {
+ 0, endstops.z2_endstop_adj, endstops.z3_endstop_adj
+ #if NUM_Z_STEPPER_DRIVERS >= 4
+ , endstops.z4_endstop_adj
+ #endif
+ };
+
+ adjustFunc_t tempLock;
+ float tempAdj;
+
+ // Manual bubble sort by adjust value
+ if (adj[1] < adj[0]) {
+ tempLock = lock[0], tempAdj = adj[0];
+ lock[0] = lock[1], adj[0] = adj[1];
+ lock[1] = tempLock, adj[1] = tempAdj;
+ }
+ if (adj[2] < adj[1]) {
+ tempLock = lock[1], tempAdj = adj[1];
+ lock[1] = lock[2], adj[1] = adj[2];
+ lock[2] = tempLock, adj[2] = tempAdj;
+ }
+ #if NUM_Z_STEPPER_DRIVERS >= 4
+ if (adj[3] < adj[2]) {
+ tempLock = lock[2], tempAdj = adj[2];
+ lock[2] = lock[3], adj[2] = adj[3];
+ lock[3] = tempLock, adj[3] = tempAdj;
+ }
+ if (adj[2] < adj[1]) {
+ tempLock = lock[1], tempAdj = adj[1];
+ lock[1] = lock[2], adj[1] = adj[2];
+ lock[2] = tempLock, adj[2] = tempAdj;
+ }
+ #endif
+ if (adj[1] < adj[0]) {
+ tempLock = lock[0], tempAdj = adj[0];
+ lock[0] = lock[1], adj[0] = adj[1];
+ lock[1] = tempLock, adj[1] = tempAdj;
+ }
+
+ if (pos_dir) {
+ // normalize adj to smallest value and do the first move
+ (*lock[0])(true);
+ do_homing_move(axis, adj[1] - adj[0]);
+ // lock the second stepper for the final correction
+ (*lock[1])(true);
+ do_homing_move(axis, adj[2] - adj[1]);
+ #if NUM_Z_STEPPER_DRIVERS >= 4
+ // lock the third stepper for the final correction
+ (*lock[2])(true);
+ do_homing_move(axis, adj[3] - adj[2]);
+ #endif
+ }
+ else {
+ #if NUM_Z_STEPPER_DRIVERS >= 4
+ (*lock[3])(true);
+ do_homing_move(axis, adj[2] - adj[3]);
+ #endif
+ (*lock[2])(true);
+ do_homing_move(axis, adj[1] - adj[2]);
+ (*lock[1])(true);
+ do_homing_move(axis, adj[0] - adj[1]);
+ }
+
+ stepper.set_z1_lock(false);
+ stepper.set_z2_lock(false);
+ stepper.set_z3_lock(false);
+ #if NUM_Z_STEPPER_DRIVERS >= 4
+ stepper.set_z4_lock(false);
+ #endif
+
+ #endif
+ }
+ #endif
+
+ // Reset flags for X, Y, Z motor locking
+ switch (axis) {
+ default: break;
+ TERN_(X_DUAL_ENDSTOPS, case X_AXIS:)
+ TERN_(Y_DUAL_ENDSTOPS, case Y_AXIS:)
+ TERN_(Z_MULTI_ENDSTOPS, case Z_AXIS:)
+ stepper.set_separate_multi_axis(false);
+ }
+ #endif
+
+ #ifdef TMC_HOME_PHASE
+ // move back to homing phase if configured and capable
+ backout_to_tmc_homing_phase(axis);
+ #endif
+
+ #if IS_SCARA
+
+ set_axis_is_at_home(axis);
+ sync_plan_position();
+
+ #elif ENABLED(DELTA)
+
+ // Delta has already moved all three towers up in G28
+ // so here it re-homes each tower in turn.
+ // Delta homing treats the axes as normal linear axes.
+
+ const float adjDistance = delta_endstop_adj[axis],
+ minDistance = (MIN_STEPS_PER_SEGMENT) * planner.steps_to_mm[axis];
+
+ // Retrace by the amount specified in delta_endstop_adj if more than min steps.
+ if (adjDistance * (Z_HOME_DIR) < 0 && ABS(adjDistance) > minDistance) { // away from endstop, more than min distance
+ if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("adjDistance:", adjDistance);
+ do_homing_move(axis, adjDistance, get_homing_bump_feedrate(axis));
+ }
+
+ #else // CARTESIAN / CORE / MARKFORGED_XY
+
+ set_axis_is_at_home(axis);
+ sync_plan_position();
+
+ destination[axis] = current_position[axis];
+
+ if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
+
+ #endif
+
+ // Put away the Z probe
+ #if HOMING_Z_WITH_PROBE
+ if (axis == Z_AXIS && probe.stow()) return;
+ #endif
+
+ #if DISABLED(DELTA) && defined(HOMING_BACKOFF_POST_MM)
+ const xyz_float_t endstop_backoff = HOMING_BACKOFF_POST_MM;
+ if (endstop_backoff[axis]) {
+ current_position[axis] -= ABS(endstop_backoff[axis]) * axis_home_dir;
+ line_to_current_position(
+ #if HOMING_Z_WITH_PROBE
+ (axis == Z_AXIS) ? z_probe_fast_mm_s :
+ #endif
+ homing_feedrate(axis)
+ );
+
+ #if ENABLED(SENSORLESS_HOMING)
+ planner.synchronize();
+ if (false
+ #if EITHER(IS_CORE, MARKFORGED_XY)
+ || axis != NORMAL_AXIS
+ #endif
+ ) safe_delay(200); // Short delay to allow belts to spring back
+ #endif
+ }
+ #endif
+
+ // Clear retracted status if homing the Z axis
+ #if ENABLED(FWRETRACT)
+ if (axis == Z_AXIS) fwretract.current_hop = 0.0;
+ #endif
+
+ if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("<<< homeaxis(", axis_codes[axis], ")");
+
+} // homeaxis()
+
+#if HAS_WORKSPACE_OFFSET
+ void update_workspace_offset(const AxisEnum axis) {
+ workspace_offset[axis] = home_offset[axis] + position_shift[axis];
+ if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("Axis ", XYZ_CHAR(axis), " home_offset = ", home_offset[axis], " position_shift = ", position_shift[axis]);
+ }
+#endif
+
+#if HAS_M206_COMMAND
+ /**
+ * Change the home offset for an axis.
+ * Also refreshes the workspace offset.
+ */
+ void set_home_offset(const AxisEnum axis, const float v) {
+ home_offset[axis] = v;
+ update_workspace_offset(axis);
+ }
+#endif // HAS_M206_COMMAND