diff options
Diffstat (limited to 'Marlin/src/module/motion.cpp')
-rw-r--r-- | Marlin/src/module/motion.cpp | 1896 |
1 files changed, 1896 insertions, 0 deletions
diff --git a/Marlin/src/module/motion.cpp b/Marlin/src/module/motion.cpp new file mode 100644 index 0000000..f7fc66b --- /dev/null +++ b/Marlin/src/module/motion.cpp @@ -0,0 +1,1896 @@ +/** + * Marlin 3D Printer Firmware + * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] + * + * Based on Sprinter and grbl. + * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <https://www.gnu.org/licenses/>. + * + */ + +/** + * motion.cpp + */ + +#include "motion.h" +#include "endstops.h" +#include "stepper.h" +#include "planner.h" +#include "temperature.h" + +#include "../gcode/gcode.h" + +#include "../inc/MarlinConfig.h" + +#if IS_SCARA + #include "../libs/buzzer.h" + #include "../lcd/marlinui.h" +#endif + +#if HAS_BED_PROBE + #include "probe.h" +#endif + +#if HAS_LEVELING + #include "../feature/bedlevel/bedlevel.h" +#endif + +#if ENABLED(BLTOUCH) + #include "../feature/bltouch.h" +#endif + +#if HAS_DISPLAY + #include "../lcd/marlinui.h" +#endif + +#if HAS_FILAMENT_SENSOR + #include "../feature/runout.h" +#endif + +#if ENABLED(SENSORLESS_HOMING) + #include "../feature/tmc_util.h" +#endif + +#if ENABLED(FWRETRACT) + #include "../feature/fwretract.h" +#endif + +#if ENABLED(BABYSTEP_DISPLAY_TOTAL) + #include "../feature/babystep.h" +#endif + +#define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE) +#include "../core/debug_out.h" + +/** + * axis_homed + * Flags that each linear axis was homed. + * XYZ on cartesian, ABC on delta, ABZ on SCARA. + * + * axis_trusted + * Flags that the position is trusted in each linear axis. Set when homed. + * Cleared whenever a stepper powers off, potentially losing its position. + */ +uint8_t axis_homed, axis_trusted; // = 0 + +// Relative Mode. Enable with G91, disable with G90. +bool relative_mode; // = false; + +/** + * Cartesian Current Position + * Used to track the native machine position as moves are queued. + * Used by 'line_to_current_position' to do a move after changing it. + * Used by 'sync_plan_position' to update 'planner.position'. + */ +xyze_pos_t current_position = { X_HOME_POS, Y_HOME_POS, Z_HOME_POS }; + +/** + * Cartesian Destination + * The destination for a move, filled in by G-code movement commands, + * and expected by functions like 'prepare_line_to_destination'. + * G-codes can set destination using 'get_destination_from_command' + */ +xyze_pos_t destination; // {0} + +// G60/G61 Position Save and Return +#if SAVED_POSITIONS + uint8_t saved_slots[(SAVED_POSITIONS + 7) >> 3]; + xyz_pos_t stored_position[SAVED_POSITIONS]; +#endif + +// The active extruder (tool). Set with T<extruder> command. +#if HAS_MULTI_EXTRUDER + uint8_t active_extruder = 0; // = 0 +#endif + +#if ENABLED(LCD_SHOW_E_TOTAL) + float e_move_accumulator; // = 0 +#endif + +// Extruder offsets +#if HAS_HOTEND_OFFSET + xyz_pos_t hotend_offset[HOTENDS]; // Initialized by settings.load() + void reset_hotend_offsets() { + constexpr float tmp[XYZ][HOTENDS] = { HOTEND_OFFSET_X, HOTEND_OFFSET_Y, HOTEND_OFFSET_Z }; + static_assert( + !tmp[X_AXIS][0] && !tmp[Y_AXIS][0] && !tmp[Z_AXIS][0], + "Offsets for the first hotend must be 0.0." + ); + // Transpose from [XYZ][HOTENDS] to [HOTENDS][XYZ] + HOTEND_LOOP() LOOP_XYZ(a) hotend_offset[e][a] = tmp[a][e]; + #if ENABLED(DUAL_X_CARRIAGE) + hotend_offset[1].x = _MAX(X2_HOME_POS, X2_MAX_POS); + #endif + } +#endif + +// The feedrate for the current move, often used as the default if +// no other feedrate is specified. Overridden for special moves. +// Set by the last G0 through G5 command's "F" parameter. +// Functions that override this for custom moves *must always* restore it! +feedRate_t feedrate_mm_s = MMM_TO_MMS(1500); +int16_t feedrate_percentage = 100; + +// Cartesian conversion result goes here: +xyz_pos_t cartes; + +#if IS_KINEMATIC + + abc_pos_t delta; + + #if HAS_SCARA_OFFSET + abc_pos_t scara_home_offset; + #endif + + #if HAS_SOFTWARE_ENDSTOPS + float delta_max_radius, delta_max_radius_2; + #elif IS_SCARA + constexpr float delta_max_radius = SCARA_PRINTABLE_RADIUS, + delta_max_radius_2 = sq(SCARA_PRINTABLE_RADIUS); + #else // DELTA + constexpr float delta_max_radius = DELTA_PRINTABLE_RADIUS, + delta_max_radius_2 = sq(DELTA_PRINTABLE_RADIUS); + #endif + +#endif + +/** + * The workspace can be offset by some commands, or + * these offsets may be omitted to save on computation. + */ +#if HAS_POSITION_SHIFT + // The distance that XYZ has been offset by G92. Reset by G28. + xyz_pos_t position_shift{0}; +#endif +#if HAS_HOME_OFFSET + // This offset is added to the configured home position. + // Set by M206, M428, or menu item. Saved to EEPROM. + xyz_pos_t home_offset{0}; +#endif +#if HAS_HOME_OFFSET && HAS_POSITION_SHIFT + // The above two are combined to save on computes + xyz_pos_t workspace_offset{0}; +#endif + +#if HAS_ABL_NOT_UBL + feedRate_t xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED); +#endif + +/** + * Output the current position to serial + */ + +inline void report_more_positions() { + stepper.report_positions(); + TERN_(IS_SCARA, scara_report_positions()); +} + +// Report the logical position for a given machine position +inline void report_logical_position(const xyze_pos_t &rpos) { + const xyze_pos_t lpos = rpos.asLogical(); + SERIAL_ECHOPAIR_P(X_LBL, lpos.x, SP_Y_LBL, lpos.y, SP_Z_LBL, lpos.z, SP_E_LBL, lpos.e); +} + +// Report the real current position according to the steppers. +// Forward kinematics and un-leveling are applied. +void report_real_position() { + get_cartesian_from_steppers(); + xyze_pos_t npos = cartes; + npos.e = planner.get_axis_position_mm(E_AXIS); + + #if HAS_POSITION_MODIFIERS + planner.unapply_modifiers(npos, true); + #endif + + report_logical_position(npos); + report_more_positions(); +} + +// Report the logical current position according to the most recent G-code command +void report_current_position() { + report_logical_position(current_position); + report_more_positions(); +} + +/** + * Report the logical current position according to the most recent G-code command. + * The planner.position always corresponds to the last G-code too. This makes M114 + * suitable for debugging kinematics and leveling while avoiding planner sync that + * definitively interrupts the printing flow. + */ +void report_current_position_projected() { + report_logical_position(current_position); + stepper.report_a_position(planner.position); +} + +/** + * Run out the planner buffer and re-sync the current + * position from the last-updated stepper positions. + */ +void quickstop_stepper() { + planner.quick_stop(); + planner.synchronize(); + set_current_from_steppers_for_axis(ALL_AXES); + sync_plan_position(); +} + +/** + * Set the planner/stepper positions directly from current_position with + * no kinematic translation. Used for homing axes and cartesian/core syncing. + */ +void sync_plan_position() { + if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position); + planner.set_position_mm(current_position); +} + +void sync_plan_position_e() { planner.set_e_position_mm(current_position.e); } + +/** + * Get the stepper positions in the cartes[] array. + * Forward kinematics are applied for DELTA and SCARA. + * + * The result is in the current coordinate space with + * leveling applied. The coordinates need to be run through + * unapply_leveling to obtain the "ideal" coordinates + * suitable for current_position, etc. + */ +void get_cartesian_from_steppers() { + #if ENABLED(DELTA) + forward_kinematics_DELTA(planner.get_axis_positions_mm()); + #else + #if IS_SCARA + forward_kinematics_SCARA( + planner.get_axis_position_degrees(A_AXIS), + planner.get_axis_position_degrees(B_AXIS) + ); + #else + cartes.set(planner.get_axis_position_mm(X_AXIS), planner.get_axis_position_mm(Y_AXIS)); + #endif + cartes.z = planner.get_axis_position_mm(Z_AXIS); + #endif +} + +/** + * Set the current_position for an axis based on + * the stepper positions, removing any leveling that + * may have been applied. + * + * To prevent small shifts in axis position always call + * sync_plan_position after updating axes with this. + * + * To keep hosts in sync, always call report_current_position + * after updating the current_position. + */ +void set_current_from_steppers_for_axis(const AxisEnum axis) { + get_cartesian_from_steppers(); + xyze_pos_t pos = cartes; + pos.e = planner.get_axis_position_mm(E_AXIS); + + #if HAS_POSITION_MODIFIERS + planner.unapply_modifiers(pos, true); + #endif + + if (axis == ALL_AXES) + current_position = pos; + else + current_position[axis] = pos[axis]; +} + +/** + * Move the planner to the current position from wherever it last moved + * (or from wherever it has been told it is located). + */ +void line_to_current_position(const feedRate_t &fr_mm_s/*=feedrate_mm_s*/) { + planner.buffer_line(current_position, fr_mm_s, active_extruder); +} + +#if EXTRUDERS + void unscaled_e_move(const float &length, const feedRate_t &fr_mm_s) { + TERN_(HAS_FILAMENT_SENSOR, runout.reset()); + current_position.e += length / planner.e_factor[active_extruder]; + line_to_current_position(fr_mm_s); + planner.synchronize(); + } +#endif + +#if IS_KINEMATIC + + /** + * Buffer a fast move without interpolation. Set current_position to destination + */ + void prepare_fast_move_to_destination(const feedRate_t &scaled_fr_mm_s/*=MMS_SCALED(feedrate_mm_s)*/) { + if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_fast_move_to_destination", destination); + + #if UBL_SEGMENTED + // UBL segmented line will do Z-only moves in single segment + ubl.line_to_destination_segmented(scaled_fr_mm_s); + #else + if (current_position == destination) return; + + planner.buffer_line(destination, scaled_fr_mm_s, active_extruder); + #endif + + current_position = destination; + } + +#endif // IS_KINEMATIC + +/** + * Do a fast or normal move to 'destination' with an optional FR. + * - Move at normal speed regardless of feedrate percentage. + * - Extrude the specified length regardless of flow percentage. + */ +void _internal_move_to_destination(const feedRate_t &fr_mm_s/*=0.0f*/ + #if IS_KINEMATIC + , const bool is_fast/*=false*/ + #endif +) { + const feedRate_t old_feedrate = feedrate_mm_s; + if (fr_mm_s) feedrate_mm_s = fr_mm_s; + + const uint16_t old_pct = feedrate_percentage; + feedrate_percentage = 100; + + #if EXTRUDERS + const float old_fac = planner.e_factor[active_extruder]; + planner.e_factor[active_extruder] = 1.0f; + #endif + + #if IS_KINEMATIC + if (is_fast) + prepare_fast_move_to_destination(); + else + #endif + prepare_line_to_destination(); + + feedrate_mm_s = old_feedrate; + feedrate_percentage = old_pct; + #if EXTRUDERS + planner.e_factor[active_extruder] = old_fac; + #endif +} + +/** + * Plan a move to (X, Y, Z) and set the current_position + */ +void do_blocking_move_to(const float rx, const float ry, const float rz, const feedRate_t &fr_mm_s/*=0.0*/) { + DEBUG_SECTION(log_move, "do_blocking_move_to", DEBUGGING(LEVELING)); + if (DEBUGGING(LEVELING)) DEBUG_XYZ("> ", rx, ry, rz); + + const feedRate_t z_feedrate = fr_mm_s ?: homing_feedrate(Z_AXIS), + xy_feedrate = fr_mm_s ?: feedRate_t(XY_PROBE_FEEDRATE_MM_S); + + #if ENABLED(DELTA) + + if (!position_is_reachable(rx, ry)) return; + + REMEMBER(fr, feedrate_mm_s, xy_feedrate); + + destination = current_position; // sync destination at the start + + if (DEBUGGING(LEVELING)) DEBUG_POS("destination = current_position", destination); + + // when in the danger zone + if (current_position.z > delta_clip_start_height) { + if (rz > delta_clip_start_height) { // staying in the danger zone + destination.set(rx, ry, rz); // move directly (uninterpolated) + prepare_internal_fast_move_to_destination(); // set current_position from destination + if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position); + return; + } + destination.z = delta_clip_start_height; + prepare_internal_fast_move_to_destination(); // set current_position from destination + if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position); + } + + if (rz > current_position.z) { // raising? + destination.z = rz; + prepare_internal_fast_move_to_destination(z_feedrate); // set current_position from destination + if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position); + } + + destination.set(rx, ry); + prepare_internal_move_to_destination(); // set current_position from destination + if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position); + + if (rz < current_position.z) { // lowering? + destination.z = rz; + prepare_internal_fast_move_to_destination(z_feedrate); // set current_position from destination + if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position); + } + + #elif IS_SCARA + + if (!position_is_reachable(rx, ry)) return; + + destination = current_position; + + // If Z needs to raise, do it before moving XY + if (destination.z < rz) { + destination.z = rz; + prepare_internal_fast_move_to_destination(z_feedrate); + } + + destination.set(rx, ry); + prepare_internal_fast_move_to_destination(xy_feedrate); + + // If Z needs to lower, do it after moving XY + if (destination.z > rz) { + destination.z = rz; + prepare_internal_fast_move_to_destination(z_feedrate); + } + + #else + + // If Z needs to raise, do it before moving XY + if (current_position.z < rz) { + current_position.z = rz; + line_to_current_position(z_feedrate); + } + + current_position.set(rx, ry); + line_to_current_position(xy_feedrate); + + // If Z needs to lower, do it after moving XY + if (current_position.z > rz) { + current_position.z = rz; + line_to_current_position(z_feedrate); + } + + #endif + + planner.synchronize(); +} + +void do_blocking_move_to(const xy_pos_t &raw, const feedRate_t &fr_mm_s/*=0.0f*/) { + do_blocking_move_to(raw.x, raw.y, current_position.z, fr_mm_s); +} +void do_blocking_move_to(const xyz_pos_t &raw, const feedRate_t &fr_mm_s/*=0.0f*/) { + do_blocking_move_to(raw.x, raw.y, raw.z, fr_mm_s); +} +void do_blocking_move_to(const xyze_pos_t &raw, const feedRate_t &fr_mm_s/*=0.0f*/) { + do_blocking_move_to(raw.x, raw.y, raw.z, fr_mm_s); +} + +void do_blocking_move_to_x(const float &rx, const feedRate_t &fr_mm_s/*=0.0*/) { + do_blocking_move_to(rx, current_position.y, current_position.z, fr_mm_s); +} +void do_blocking_move_to_y(const float &ry, const feedRate_t &fr_mm_s/*=0.0*/) { + do_blocking_move_to(current_position.x, ry, current_position.z, fr_mm_s); +} +void do_blocking_move_to_z(const float &rz, const feedRate_t &fr_mm_s/*=0.0*/) { + do_blocking_move_to_xy_z(current_position, rz, fr_mm_s); +} + +void do_blocking_move_to_xy(const float &rx, const float &ry, const feedRate_t &fr_mm_s/*=0.0*/) { + do_blocking_move_to(rx, ry, current_position.z, fr_mm_s); +} +void do_blocking_move_to_xy(const xy_pos_t &raw, const feedRate_t &fr_mm_s/*=0.0f*/) { + do_blocking_move_to_xy(raw.x, raw.y, fr_mm_s); +} + +void do_blocking_move_to_xy_z(const xy_pos_t &raw, const float &z, const feedRate_t &fr_mm_s/*=0.0f*/) { + do_blocking_move_to(raw.x, raw.y, z, fr_mm_s); +} + +void do_z_clearance(const float &zclear, const bool z_trusted/*=true*/, const bool raise_on_untrusted/*=true*/, const bool lower_allowed/*=false*/) { + const bool rel = raise_on_untrusted && !z_trusted; + float zdest = zclear + (rel ? current_position.z : 0.0f); + if (!lower_allowed) NOLESS(zdest, current_position.z); + do_blocking_move_to_z(_MIN(zdest, Z_MAX_POS), TERN(HAS_BED_PROBE, z_probe_fast_mm_s, homing_feedrate(Z_AXIS))); +} + +// +// Prepare to do endstop or probe moves with custom feedrates. +// - Save / restore current feedrate and multiplier +// +static float saved_feedrate_mm_s; +static int16_t saved_feedrate_percentage; +void remember_feedrate_and_scaling() { + saved_feedrate_mm_s = feedrate_mm_s; + saved_feedrate_percentage = feedrate_percentage; +} +void remember_feedrate_scaling_off() { + remember_feedrate_and_scaling(); + feedrate_percentage = 100; +} +void restore_feedrate_and_scaling() { + feedrate_mm_s = saved_feedrate_mm_s; + feedrate_percentage = saved_feedrate_percentage; +} + +#if HAS_SOFTWARE_ENDSTOPS + + // Software Endstops are based on the configured limits. + soft_endstops_t soft_endstop = { + true, false, + { X_MIN_POS, Y_MIN_POS, Z_MIN_POS }, + { X_MAX_POS, Y_MAX_POS, Z_MAX_POS } + }; + + /** + * Software endstops can be used to monitor the open end of + * an axis that has a hardware endstop on the other end. Or + * they can prevent axes from moving past endstops and grinding. + * + * To keep doing their job as the coordinate system changes, + * the software endstop positions must be refreshed to remain + * at the same positions relative to the machine. + */ + void update_software_endstops(const AxisEnum axis + #if HAS_HOTEND_OFFSET + , const uint8_t old_tool_index/*=0*/ + , const uint8_t new_tool_index/*=0*/ + #endif + ) { + + #if ENABLED(DUAL_X_CARRIAGE) + + if (axis == X_AXIS) { + + // In Dual X mode hotend_offset[X] is T1's home position + const float dual_max_x = _MAX(hotend_offset[1].x, X2_MAX_POS); + + if (new_tool_index != 0) { + // T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger) + soft_endstop.min.x = X2_MIN_POS; + soft_endstop.max.x = dual_max_x; + } + else if (idex_is_duplicating()) { + // In Duplication Mode, T0 can move as far left as X1_MIN_POS + // but not so far to the right that T1 would move past the end + soft_endstop.min.x = X1_MIN_POS; + soft_endstop.max.x = _MIN(X1_MAX_POS, dual_max_x - duplicate_extruder_x_offset); + } + else { + // In other modes, T0 can move from X1_MIN_POS to X1_MAX_POS + soft_endstop.min.x = X1_MIN_POS; + soft_endstop.max.x = X1_MAX_POS; + } + + } + + #elif ENABLED(DELTA) + + soft_endstop.min[axis] = base_min_pos(axis); + soft_endstop.max[axis] = (axis == Z_AXIS) ? delta_height - TERN0(HAS_BED_PROBE, probe.offset.z) : base_max_pos(axis); + + switch (axis) { + case X_AXIS: + case Y_AXIS: + // Get a minimum radius for clamping + delta_max_radius = _MIN(ABS(_MAX(soft_endstop.min.x, soft_endstop.min.y)), soft_endstop.max.x, soft_endstop.max.y); + delta_max_radius_2 = sq(delta_max_radius); + break; + case Z_AXIS: + delta_clip_start_height = soft_endstop.max[axis] - delta_safe_distance_from_top(); + default: break; + } + + #elif HAS_HOTEND_OFFSET + + // Software endstops are relative to the tool 0 workspace, so + // the movement limits must be shifted by the tool offset to + // retain the same physical limit when other tools are selected. + + if (new_tool_index == old_tool_index || axis == Z_AXIS) { // The Z axis is "special" and shouldn't be modified + const float offs = (axis == Z_AXIS) ? 0 : hotend_offset[active_extruder][axis]; + soft_endstop.min[axis] = base_min_pos(axis) + offs; + soft_endstop.max[axis] = base_max_pos(axis) + offs; + } + else { + const float diff = hotend_offset[new_tool_index][axis] - hotend_offset[old_tool_index][axis]; + soft_endstop.min[axis] += diff; + soft_endstop.max[axis] += diff; + } + + #else + + soft_endstop.min[axis] = base_min_pos(axis); + soft_endstop.max[axis] = base_max_pos(axis); + + #endif + + if (DEBUGGING(LEVELING)) + SERIAL_ECHOLNPAIR("Axis ", XYZ_CHAR(axis), " min:", soft_endstop.min[axis], " max:", soft_endstop.max[axis]); + } + + /** + * Constrain the given coordinates to the software endstops. + * + * For DELTA/SCARA the XY constraint is based on the smallest + * radius within the set software endstops. + */ + void apply_motion_limits(xyz_pos_t &target) { + + if (!soft_endstop._enabled) return; + + #if IS_KINEMATIC + + if (TERN0(DELTA, !all_axes_homed())) return; + + #if BOTH(HAS_HOTEND_OFFSET, DELTA) + // The effector center position will be the target minus the hotend offset. + const xy_pos_t offs = hotend_offset[active_extruder]; + #else + // SCARA needs to consider the angle of the arm through the entire move, so for now use no tool offset. + constexpr xy_pos_t offs{0}; + #endif + + if (TERN1(IS_SCARA, axis_was_homed(X_AXIS) && axis_was_homed(Y_AXIS))) { + const float dist_2 = HYPOT2(target.x - offs.x, target.y - offs.y); + if (dist_2 > delta_max_radius_2) + target *= float(delta_max_radius / SQRT(dist_2)); // 200 / 300 = 0.66 + } + + #else + + if (axis_was_homed(X_AXIS)) { + #if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MIN_SOFTWARE_ENDSTOP_X) + NOLESS(target.x, soft_endstop.min.x); + #endif + #if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MAX_SOFTWARE_ENDSTOP_X) + NOMORE(target.x, soft_endstop.max.x); + #endif + } + + if (axis_was_homed(Y_AXIS)) { + #if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MIN_SOFTWARE_ENDSTOP_Y) + NOLESS(target.y, soft_endstop.min.y); + #endif + #if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MAX_SOFTWARE_ENDSTOP_Y) + NOMORE(target.y, soft_endstop.max.y); + #endif + } + + #endif + + if (axis_was_homed(Z_AXIS)) { + #if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MIN_SOFTWARE_ENDSTOP_Z) + NOLESS(target.z, soft_endstop.min.z); + #endif + #if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MAX_SOFTWARE_ENDSTOP_Z) + NOMORE(target.z, soft_endstop.max.z); + #endif + } + } + +#else // !HAS_SOFTWARE_ENDSTOPS + + soft_endstops_t soft_endstop; + +#endif // !HAS_SOFTWARE_ENDSTOPS + +#if !UBL_SEGMENTED + +FORCE_INLINE void segment_idle(millis_t &next_idle_ms) { + const millis_t ms = millis(); + if (ELAPSED(ms, next_idle_ms)) { + next_idle_ms = ms + 200UL; + return idle(); + } + thermalManager.manage_heater(); // Returns immediately on most calls +} + +#if IS_KINEMATIC + + #if IS_SCARA + /** + * Before raising this value, use M665 S[seg_per_sec] to decrease + * the number of segments-per-second. Default is 200. Some deltas + * do better with 160 or lower. It would be good to know how many + * segments-per-second are actually possible for SCARA on AVR. + * + * Longer segments result in less kinematic overhead + * but may produce jagged lines. Try 0.5mm, 1.0mm, and 2.0mm + * and compare the difference. + */ + #define SCARA_MIN_SEGMENT_LENGTH 0.5f + #endif + + /** + * Prepare a linear move in a DELTA or SCARA setup. + * + * Called from prepare_line_to_destination as the + * default Delta/SCARA segmenter. + * + * This calls planner.buffer_line several times, adding + * small incremental moves for DELTA or SCARA. + * + * For Unified Bed Leveling (Delta or Segmented Cartesian) + * the ubl.line_to_destination_segmented method replaces this. + * + * For Auto Bed Leveling (Bilinear) with SEGMENT_LEVELED_MOVES + * this is replaced by segmented_line_to_destination below. + */ + inline bool line_to_destination_kinematic() { + + // Get the top feedrate of the move in the XY plane + const float scaled_fr_mm_s = MMS_SCALED(feedrate_mm_s); + + const xyze_float_t diff = destination - current_position; + + // If the move is only in Z/E don't split up the move + if (!diff.x && !diff.y) { + planner.buffer_line(destination, scaled_fr_mm_s, active_extruder); + return false; // caller will update current_position + } + + // Fail if attempting move outside printable radius + if (!position_is_reachable(destination)) return true; + + // Get the linear distance in XYZ + float cartesian_mm = diff.magnitude(); + + // If the move is very short, check the E move distance + if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = ABS(diff.e); + + // No E move either? Game over. + if (UNEAR_ZERO(cartesian_mm)) return true; + + // Minimum number of seconds to move the given distance + const float seconds = cartesian_mm / scaled_fr_mm_s; + + // The number of segments-per-second times the duration + // gives the number of segments + uint16_t segments = delta_segments_per_second * seconds; + + // For SCARA enforce a minimum segment size + #if IS_SCARA + NOMORE(segments, cartesian_mm * RECIPROCAL(SCARA_MIN_SEGMENT_LENGTH)); + #endif + + // At least one segment is required + NOLESS(segments, 1U); + + // The approximate length of each segment + const float inv_segments = 1.0f / float(segments), + cartesian_segment_mm = cartesian_mm * inv_segments; + const xyze_float_t segment_distance = diff * inv_segments; + + #if ENABLED(SCARA_FEEDRATE_SCALING) + const float inv_duration = scaled_fr_mm_s / cartesian_segment_mm; + #endif + + /* + SERIAL_ECHOPAIR("mm=", cartesian_mm); + SERIAL_ECHOPAIR(" seconds=", seconds); + SERIAL_ECHOPAIR(" segments=", segments); + SERIAL_ECHOPAIR(" segment_mm=", cartesian_segment_mm); + SERIAL_EOL(); + //*/ + + // Get the current position as starting point + xyze_pos_t raw = current_position; + + // Calculate and execute the segments + millis_t next_idle_ms = millis() + 200UL; + while (--segments) { + segment_idle(next_idle_ms); + raw += segment_distance; + if (!planner.buffer_line(raw, scaled_fr_mm_s, active_extruder, cartesian_segment_mm + #if ENABLED(SCARA_FEEDRATE_SCALING) + , inv_duration + #endif + )) break; + } + + // Ensure last segment arrives at target location. + planner.buffer_line(destination, scaled_fr_mm_s, active_extruder, cartesian_segment_mm + #if ENABLED(SCARA_FEEDRATE_SCALING) + , inv_duration + #endif + ); + + return false; // caller will update current_position + } + +#else // !IS_KINEMATIC + + #if ENABLED(SEGMENT_LEVELED_MOVES) + + /** + * Prepare a segmented move on a CARTESIAN setup. + * + * This calls planner.buffer_line several times, adding + * small incremental moves. This allows the planner to + * apply more detailed bed leveling to the full move. + */ + inline void segmented_line_to_destination(const feedRate_t &fr_mm_s, const float segment_size=LEVELED_SEGMENT_LENGTH) { + + const xyze_float_t diff = destination - current_position; + + // If the move is only in Z/E don't split up the move + if (!diff.x && !diff.y) { + planner.buffer_line(destination, fr_mm_s, active_extruder); + return; + } + + // Get the linear distance in XYZ + // If the move is very short, check the E move distance + // No E move either? Game over. + float cartesian_mm = diff.magnitude(); + if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = ABS(diff.e); + if (UNEAR_ZERO(cartesian_mm)) return; + + // The length divided by the segment size + // At least one segment is required + uint16_t segments = cartesian_mm / segment_size; + NOLESS(segments, 1U); + + // The approximate length of each segment + const float inv_segments = 1.0f / float(segments), + cartesian_segment_mm = cartesian_mm * inv_segments; + const xyze_float_t segment_distance = diff * inv_segments; + + #if ENABLED(SCARA_FEEDRATE_SCALING) + const float inv_duration = scaled_fr_mm_s / cartesian_segment_mm; + #endif + + // SERIAL_ECHOPAIR("mm=", cartesian_mm); + // SERIAL_ECHOLNPAIR(" segments=", segments); + // SERIAL_ECHOLNPAIR(" segment_mm=", cartesian_segment_mm); + + // Get the raw current position as starting point + xyze_pos_t raw = current_position; + + // Calculate and execute the segments + millis_t next_idle_ms = millis() + 200UL; + while (--segments) { + segment_idle(next_idle_ms); + raw += segment_distance; + if (!planner.buffer_line(raw, fr_mm_s, active_extruder, cartesian_segment_mm + #if ENABLED(SCARA_FEEDRATE_SCALING) + , inv_duration + #endif + )) break; + } + + // Since segment_distance is only approximate, + // the final move must be to the exact destination. + planner.buffer_line(destination, fr_mm_s, active_extruder, cartesian_segment_mm + #if ENABLED(SCARA_FEEDRATE_SCALING) + , inv_duration + #endif + ); + } + + #endif // SEGMENT_LEVELED_MOVES + + /** + * Prepare a linear move in a Cartesian setup. + * + * When a mesh-based leveling system is active, moves are segmented + * according to the configuration of the leveling system. + * + * Return true if 'current_position' was set to 'destination' + */ + inline bool line_to_destination_cartesian() { + const float scaled_fr_mm_s = MMS_SCALED(feedrate_mm_s); + #if HAS_MESH + if (planner.leveling_active && planner.leveling_active_at_z(destination.z)) { + #if ENABLED(AUTO_BED_LEVELING_UBL) + ubl.line_to_destination_cartesian(scaled_fr_mm_s, active_extruder); // UBL's motion routine needs to know about + return true; // all moves, including Z-only moves. + #elif ENABLED(SEGMENT_LEVELED_MOVES) + segmented_line_to_destination(scaled_fr_mm_s); + return false; // caller will update current_position + #else + /** + * For MBL and ABL-BILINEAR only segment moves when X or Y are involved. + * Otherwise fall through to do a direct single move. + */ + if (xy_pos_t(current_position) != xy_pos_t(destination)) { + #if ENABLED(MESH_BED_LEVELING) + mbl.line_to_destination(scaled_fr_mm_s); + #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) + bilinear_line_to_destination(scaled_fr_mm_s); + #endif + return true; + } + #endif + } + #endif // HAS_MESH + + planner.buffer_line(destination, scaled_fr_mm_s, active_extruder); + return false; // caller will update current_position + } + +#endif // !IS_KINEMATIC +#endif // !UBL_SEGMENTED + +#if HAS_DUPLICATION_MODE + bool extruder_duplication_enabled; + #if ENABLED(MULTI_NOZZLE_DUPLICATION) + uint8_t duplication_e_mask; // = 0 + #endif +#endif + +#if ENABLED(DUAL_X_CARRIAGE) + + DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE; + float inactive_extruder_x = X2_MAX_POS, // Used in mode 0 & 1 + duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // Used in mode 2 + xyz_pos_t raised_parked_position; // Used in mode 1 + bool active_extruder_parked = false; // Used in mode 1 & 2 + millis_t delayed_move_time = 0; // Used in mode 1 + int16_t duplicate_extruder_temp_offset = 0; // Used in mode 2 + bool idex_mirrored_mode = false; // Used in mode 3 + + float x_home_pos(const uint8_t extruder) { + if (extruder == 0) + return base_home_pos(X_AXIS); + else + /** + * In dual carriage mode the extruder offset provides an override of the + * second X-carriage position when homed - otherwise X2_HOME_POS is used. + * This allows soft recalibration of the second extruder home position + * without firmware reflash (through the M218 command). + */ + return hotend_offset[1].x > 0 ? hotend_offset[1].x : X2_HOME_POS; + } + + void idex_set_mirrored_mode(const bool mirr) { + idex_mirrored_mode = mirr; + stepper.set_directions(); + } + + void set_duplication_enabled(const bool dupe, const int8_t tool_index/*=-1*/) { + extruder_duplication_enabled = dupe; + if (tool_index >= 0) active_extruder = tool_index; + stepper.set_directions(); + } + + void idex_set_parked(const bool park/*=true*/) { + delayed_move_time = 0; + active_extruder_parked = park; + if (park) raised_parked_position = current_position; // Remember current raised toolhead position for use by unpark + } + + /** + * Prepare a linear move in a dual X axis setup + * + * Return true if current_position[] was set to destination[] + */ + inline bool dual_x_carriage_unpark() { + if (active_extruder_parked) { + switch (dual_x_carriage_mode) { + + case DXC_FULL_CONTROL_MODE: break; + + case DXC_AUTO_PARK_MODE: { + if (current_position.e == destination.e) { + // This is a travel move (with no extrusion) + // Skip it, but keep track of the current position + // (so it can be used as the start of the next non-travel move) + if (delayed_move_time != 0xFFFFFFFFUL) { + current_position = destination; + NOLESS(raised_parked_position.z, destination.z); + delayed_move_time = millis() + 1000UL; + return true; + } + } + // + // Un-park the active extruder + // + const feedRate_t fr_zfast = planner.settings.max_feedrate_mm_s[Z_AXIS]; + #define CURPOS current_position + #define RAISED raised_parked_position + // 1. Move to the raised parked XYZ. Presumably the tool is already at XY. + if (planner.buffer_line(RAISED.x, RAISED.y, RAISED.z, CURPOS.e, fr_zfast, active_extruder)) { + // 2. Move to the current native XY and raised Z. Presumably this is a null move. + if (planner.buffer_line(CURPOS.x, CURPOS.y, RAISED.z, CURPOS.e, PLANNER_XY_FEEDRATE(), active_extruder)) { + // 3. Lower Z back down + line_to_current_position(fr_zfast); + } + } + stepper.set_directions(); + + idex_set_parked(false); + if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("idex_set_parked(false)"); + } break; + + case DXC_MIRRORED_MODE: + case DXC_DUPLICATION_MODE: + if (active_extruder == 0) { + xyze_pos_t new_pos = current_position; + if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) + new_pos.x += duplicate_extruder_x_offset; + else + new_pos.x = inactive_extruder_x; + // Move duplicate extruder into correct duplication position. + if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("Set planner X", inactive_extruder_x, " ... Line to X", new_pos.x); + planner.set_position_mm(inactive_extruder_x, current_position.y, current_position.z, current_position.e); + if (!planner.buffer_line(new_pos, planner.settings.max_feedrate_mm_s[X_AXIS], 1)) break; + + planner.synchronize(); + sync_plan_position(); + + set_duplication_enabled(true); + idex_set_parked(false); + if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("set_duplication_enabled(true)\nidex_set_parked(false)"); + } + else if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("Active extruder not 0"); + break; + } + } + return false; + } + +#endif // DUAL_X_CARRIAGE + +/** + * Prepare a single move and get ready for the next one + * + * This may result in several calls to planner.buffer_line to + * do smaller moves for DELTA, SCARA, mesh moves, etc. + * + * Make sure current_position.e and destination.e are good + * before calling or cold/lengthy extrusion may get missed. + * + * Before exit, current_position is set to destination. + */ +void prepare_line_to_destination() { + apply_motion_limits(destination); + + #if EITHER(PREVENT_COLD_EXTRUSION, PREVENT_LENGTHY_EXTRUDE) + + if (!DEBUGGING(DRYRUN) && destination.e != current_position.e) { + bool ignore_e = false; + + #if ENABLED(PREVENT_COLD_EXTRUSION) + ignore_e = thermalManager.tooColdToExtrude(active_extruder); + if (ignore_e) SERIAL_ECHO_MSG(STR_ERR_COLD_EXTRUDE_STOP); + #endif + + #if ENABLED(PREVENT_LENGTHY_EXTRUDE) + const float e_delta = ABS(destination.e - current_position.e) * planner.e_factor[active_extruder]; + if (e_delta > (EXTRUDE_MAXLENGTH)) { + #if ENABLED(MIXING_EXTRUDER) + float collector[MIXING_STEPPERS]; + mixer.refresh_collector(1.0, mixer.get_current_vtool(), collector); + MIXER_STEPPER_LOOP(e) { + if (e_delta * collector[e] > (EXTRUDE_MAXLENGTH)) { + ignore_e = true; + SERIAL_ECHO_MSG(STR_ERR_LONG_EXTRUDE_STOP); + break; + } + } + #else + ignore_e = true; + SERIAL_ECHO_MSG(STR_ERR_LONG_EXTRUDE_STOP); + #endif + } + #endif + + if (ignore_e) { + current_position.e = destination.e; // Behave as if the E move really took place + planner.set_e_position_mm(destination.e); // Prevent the planner from complaining too + } + } + + #endif // PREVENT_COLD_EXTRUSION || PREVENT_LENGTHY_EXTRUDE + + if (TERN0(DUAL_X_CARRIAGE, dual_x_carriage_unpark())) return; + + if ( + #if UBL_SEGMENTED + #if IS_KINEMATIC // UBL using Kinematic / Cartesian cases as a workaround for now. + ubl.line_to_destination_segmented(MMS_SCALED(feedrate_mm_s)) + #else + line_to_destination_cartesian() + #endif + #elif IS_KINEMATIC + line_to_destination_kinematic() + #else + line_to_destination_cartesian() + #endif + ) return; + + current_position = destination; +} + +uint8_t axes_should_home(uint8_t axis_bits/*=0x07*/) { + #define SHOULD_HOME(A) TERN(HOME_AFTER_DEACTIVATE, axis_is_trusted, axis_was_homed)(A) + // Clear test bits that are trusted + if (TEST(axis_bits, X_AXIS) && SHOULD_HOME(X_AXIS)) CBI(axis_bits, X_AXIS); + if (TEST(axis_bits, Y_AXIS) && SHOULD_HOME(Y_AXIS)) CBI(axis_bits, Y_AXIS); + if (TEST(axis_bits, Z_AXIS) && SHOULD_HOME(Z_AXIS)) CBI(axis_bits, Z_AXIS); + return axis_bits; +} + +bool homing_needed_error(uint8_t axis_bits/*=0x07*/) { + if ((axis_bits = axes_should_home(axis_bits))) { + PGM_P home_first = GET_TEXT(MSG_HOME_FIRST); + char msg[strlen_P(home_first)+1]; + sprintf_P(msg, home_first, + TEST(axis_bits, X_AXIS) ? "X" : "", + TEST(axis_bits, Y_AXIS) ? "Y" : "", + TEST(axis_bits, Z_AXIS) ? "Z" : "" + ); + SERIAL_ECHO_START(); + SERIAL_ECHOLN(msg); + TERN_(HAS_DISPLAY, ui.set_status(msg)); + return true; + } + return false; +} + +/** + * Homing bump feedrate (mm/s) + */ +feedRate_t get_homing_bump_feedrate(const AxisEnum axis) { + #if HOMING_Z_WITH_PROBE + if (axis == Z_AXIS) return MMM_TO_MMS(Z_PROBE_SPEED_SLOW); + #endif + static const uint8_t homing_bump_divisor[] PROGMEM = HOMING_BUMP_DIVISOR; + uint8_t hbd = pgm_read_byte(&homing_bump_divisor[axis]); + if (hbd < 1) { + hbd = 10; + SERIAL_ECHO_MSG("Warning: Homing Bump Divisor < 1"); + } + return homing_feedrate(axis) / float(hbd); +} + +#if ENABLED(SENSORLESS_HOMING) + /** + * Set sensorless homing if the axis has it, accounting for Core Kinematics. + */ + sensorless_t start_sensorless_homing_per_axis(const AxisEnum axis) { + sensorless_t stealth_states { false }; + + switch (axis) { + default: break; + #if X_SENSORLESS + case X_AXIS: + stealth_states.x = tmc_enable_stallguard(stepperX); + #if AXIS_HAS_STALLGUARD(X2) + stealth_states.x2 = tmc_enable_stallguard(stepperX2); + #endif + #if EITHER(CORE_IS_XY, MARKFORGED_XY) && Y_SENSORLESS + stealth_states.y = tmc_enable_stallguard(stepperY); + #elif CORE_IS_XZ && Z_SENSORLESS + stealth_states.z = tmc_enable_stallguard(stepperZ); + #endif + break; + #endif + #if Y_SENSORLESS + case Y_AXIS: + stealth_states.y = tmc_enable_stallguard(stepperY); + #if AXIS_HAS_STALLGUARD(Y2) + stealth_states.y2 = tmc_enable_stallguard(stepperY2); + #endif + #if EITHER(CORE_IS_XY, MARKFORGED_XY) && X_SENSORLESS + stealth_states.x = tmc_enable_stallguard(stepperX); + #elif CORE_IS_YZ && Z_SENSORLESS + stealth_states.z = tmc_enable_stallguard(stepperZ); + #endif + break; + #endif + #if Z_SENSORLESS + case Z_AXIS: + stealth_states.z = tmc_enable_stallguard(stepperZ); + #if AXIS_HAS_STALLGUARD(Z2) + stealth_states.z2 = tmc_enable_stallguard(stepperZ2); + #endif + #if AXIS_HAS_STALLGUARD(Z3) + stealth_states.z3 = tmc_enable_stallguard(stepperZ3); + #endif + #if AXIS_HAS_STALLGUARD(Z4) + stealth_states.z4 = tmc_enable_stallguard(stepperZ4); + #endif + #if CORE_IS_XZ && X_SENSORLESS + stealth_states.x = tmc_enable_stallguard(stepperX); + #elif CORE_IS_YZ && Y_SENSORLESS + stealth_states.y = tmc_enable_stallguard(stepperY); + #endif + break; + #endif + } + + #if ENABLED(SPI_ENDSTOPS) + switch (axis) { + case X_AXIS: if (ENABLED(X_SPI_SENSORLESS)) endstops.tmc_spi_homing.x = true; break; + case Y_AXIS: if (ENABLED(Y_SPI_SENSORLESS)) endstops.tmc_spi_homing.y = true; break; + case Z_AXIS: if (ENABLED(Z_SPI_SENSORLESS)) endstops.tmc_spi_homing.z = true; break; + default: break; + } + #endif + + TERN_(IMPROVE_HOMING_RELIABILITY, sg_guard_period = millis() + default_sg_guard_duration); + + return stealth_states; + } + + void end_sensorless_homing_per_axis(const AxisEnum axis, sensorless_t enable_stealth) { + switch (axis) { + default: break; + #if X_SENSORLESS + case X_AXIS: + tmc_disable_stallguard(stepperX, enable_stealth.x); + #if AXIS_HAS_STALLGUARD(X2) + tmc_disable_stallguard(stepperX2, enable_stealth.x2); + #endif + #if EITHER(CORE_IS_XY, MARKFORGED_XY) && Y_SENSORLESS + tmc_disable_stallguard(stepperY, enable_stealth.y); + #elif CORE_IS_XZ && Z_SENSORLESS + tmc_disable_stallguard(stepperZ, enable_stealth.z); + #endif + break; + #endif + #if Y_SENSORLESS + case Y_AXIS: + tmc_disable_stallguard(stepperY, enable_stealth.y); + #if AXIS_HAS_STALLGUARD(Y2) + tmc_disable_stallguard(stepperY2, enable_stealth.y2); + #endif + #if EITHER(CORE_IS_XY, MARKFORGED_XY) && X_SENSORLESS + tmc_disable_stallguard(stepperX, enable_stealth.x); + #elif CORE_IS_YZ && Z_SENSORLESS + tmc_disable_stallguard(stepperZ, enable_stealth.z); + #endif + break; + #endif + #if Z_SENSORLESS + case Z_AXIS: + tmc_disable_stallguard(stepperZ, enable_stealth.z); + #if AXIS_HAS_STALLGUARD(Z2) + tmc_disable_stallguard(stepperZ2, enable_stealth.z2); + #endif + #if AXIS_HAS_STALLGUARD(Z3) + tmc_disable_stallguard(stepperZ3, enable_stealth.z3); + #endif + #if AXIS_HAS_STALLGUARD(Z4) + tmc_disable_stallguard(stepperZ4, enable_stealth.z4); + #endif + #if CORE_IS_XZ && X_SENSORLESS + tmc_disable_stallguard(stepperX, enable_stealth.x); + #elif CORE_IS_YZ && Y_SENSORLESS + tmc_disable_stallguard(stepperY, enable_stealth.y); + #endif + break; + #endif + } + + #if ENABLED(SPI_ENDSTOPS) + switch (axis) { + case X_AXIS: if (ENABLED(X_SPI_SENSORLESS)) endstops.tmc_spi_homing.x = false; break; + case Y_AXIS: if (ENABLED(Y_SPI_SENSORLESS)) endstops.tmc_spi_homing.y = false; break; + case Z_AXIS: if (ENABLED(Z_SPI_SENSORLESS)) endstops.tmc_spi_homing.z = false; break; + default: break; + } + #endif + } + +#endif // SENSORLESS_HOMING + +/** + * Home an individual linear axis + */ +void do_homing_move(const AxisEnum axis, const float distance, const feedRate_t fr_mm_s=0.0, const bool final_approach=true) { + DEBUG_SECTION(log_move, "do_homing_move", DEBUGGING(LEVELING)); + + const feedRate_t home_fr_mm_s = fr_mm_s ?: homing_feedrate(axis); + + if (DEBUGGING(LEVELING)) { + DEBUG_ECHOPAIR("...(", axis_codes[axis], ", ", distance, ", "); + if (fr_mm_s) + DEBUG_ECHO(fr_mm_s); + else + DEBUG_ECHOPAIR("[", home_fr_mm_s, "]"); + DEBUG_ECHOLNPGM(")"); + } + + // Only do some things when moving towards an endstop + const int8_t axis_home_dir = TERN0(DUAL_X_CARRIAGE, axis == X_AXIS) + ? x_home_dir(active_extruder) : home_dir(axis); + const bool is_home_dir = (axis_home_dir > 0) == (distance > 0); + + #if ENABLED(SENSORLESS_HOMING) + sensorless_t stealth_states; + #endif + + if (is_home_dir) { + + if (TERN0(HOMING_Z_WITH_PROBE, axis == Z_AXIS)) { + #if ALL(HAS_HEATED_BED, WAIT_FOR_BED_HEATER) + // Wait for bed to heat back up between probing points + thermalManager.wait_for_bed_heating(); + #endif + + TERN_(HAS_QUIET_PROBING, if (final_approach) probe.set_probing_paused(true)); + } + + // Disable stealthChop if used. Enable diag1 pin on driver. + TERN_(SENSORLESS_HOMING, stealth_states = start_sensorless_homing_per_axis(axis)); + } + + #if IS_SCARA + // Tell the planner the axis is at 0 + current_position[axis] = 0; + sync_plan_position(); + current_position[axis] = distance; + line_to_current_position(home_fr_mm_s); + #else + // Get the ABC or XYZ positions in mm + abce_pos_t target = planner.get_axis_positions_mm(); + + target[axis] = 0; // Set the single homing axis to 0 + planner.set_machine_position_mm(target); // Update the machine position + + #if HAS_DIST_MM_ARG + const xyze_float_t cart_dist_mm{0}; + #endif + + // Set delta/cartesian axes directly + target[axis] = distance; // The move will be towards the endstop + planner.buffer_segment(target + #if HAS_DIST_MM_ARG + , cart_dist_mm + #endif + , home_fr_mm_s, active_extruder + ); + #endif + + planner.synchronize(); + + if (is_home_dir) { + + #if HOMING_Z_WITH_PROBE && HAS_QUIET_PROBING + if (axis == Z_AXIS && final_approach) probe.set_probing_paused(false); + #endif + + endstops.validate_homing_move(); + + // Re-enable stealthChop if used. Disable diag1 pin on driver. + TERN_(SENSORLESS_HOMING, end_sensorless_homing_per_axis(axis, stealth_states)); + } +} + +/** + * Set an axis' current position to its home position (after homing). + * + * For Core and Cartesian robots this applies one-to-one when an + * individual axis has been homed. + * + * DELTA should wait until all homing is done before setting the XYZ + * current_position to home, because homing is a single operation. + * In the case where the axis positions are trusted and previously + * homed, DELTA could home to X or Y individually by moving either one + * to the center. However, homing Z always homes XY and Z. + * + * SCARA should wait until all XY homing is done before setting the XY + * current_position to home, because neither X nor Y is at home until + * both are at home. Z can however be homed individually. + * + * Callers must sync the planner position after calling this! + */ +void set_axis_is_at_home(const AxisEnum axis) { + if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR(">>> set_axis_is_at_home(", axis_codes[axis], ")"); + + set_axis_trusted(axis); + set_axis_homed(axis); + + #if ENABLED(DUAL_X_CARRIAGE) + if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) { + current_position.x = x_home_pos(active_extruder); + return; + } + #endif + + #if ENABLED(MORGAN_SCARA) + scara_set_axis_is_at_home(axis); + #elif ENABLED(DELTA) + current_position[axis] = (axis == Z_AXIS) ? delta_height - TERN0(HAS_BED_PROBE, probe.offset.z) : base_home_pos(axis); + #else + current_position[axis] = base_home_pos(axis); + #endif + + /** + * Z Probe Z Homing? Account for the probe's Z offset. + */ + #if HAS_BED_PROBE && Z_HOME_DIR < 0 + if (axis == Z_AXIS) { + #if HOMING_Z_WITH_PROBE + + current_position.z -= probe.offset.z; + + if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***\n> probe.offset.z = ", probe.offset.z); + + #else + + if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("*** Z HOMED TO ENDSTOP ***"); + + #endif + } + #endif + + TERN_(I2C_POSITION_ENCODERS, I2CPEM.homed(axis)); + + TERN_(BABYSTEP_DISPLAY_TOTAL, babystep.reset_total(axis)); + + #if HAS_POSITION_SHIFT + position_shift[axis] = 0; + update_workspace_offset(axis); + #endif + + if (DEBUGGING(LEVELING)) { + #if HAS_HOME_OFFSET + DEBUG_ECHOLNPAIR("> home_offset[", axis_codes[axis], "] = ", home_offset[axis]); + #endif + DEBUG_POS("", current_position); + DEBUG_ECHOLNPAIR("<<< set_axis_is_at_home(", axis_codes[axis], ")"); + } +} + +/** + * Set an axis to be unhomed. + */ +void set_axis_never_homed(const AxisEnum axis) { + if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR(">>> set_axis_never_homed(", axis_codes[axis], ")"); + + set_axis_untrusted(axis); + set_axis_unhomed(axis); + + if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("<<< set_axis_never_homed(", axis_codes[axis], ")"); + + TERN_(I2C_POSITION_ENCODERS, I2CPEM.unhomed(axis)); +} + +#ifdef TMC_HOME_PHASE + /** + * Move the axis back to its home_phase if set and driver is capable (TMC) + * + * Improves homing repeatability by homing to stepper coil's nearest absolute + * phase position. Trinamic drivers use a stepper phase table with 1024 values + * spanning 4 full steps with 256 positions each (ergo, 1024 positions). + */ + void backout_to_tmc_homing_phase(const AxisEnum axis) { + const xyz_long_t home_phase = TMC_HOME_PHASE; + + // check if home phase is disabled for this axis. + if (home_phase[axis] < 0) return; + + int16_t phasePerUStep, // TMC µsteps(phase) per Marlin µsteps + phaseCurrent, // The TMC µsteps(phase) count of the current position + effectorBackoutDir, // Direction in which the effector mm coordinates move away from endstop. + stepperBackoutDir; // Direction in which the TMC µstep count(phase) move away from endstop. + + #define PHASE_PER_MICROSTEP(N) (256 / _MAX(1, N##_MICROSTEPS)) + + switch (axis) { + #ifdef X_MICROSTEPS + case X_AXIS: + phasePerUStep = PHASE_PER_MICROSTEP(X); + phaseCurrent = stepperX.get_microstep_counter(); + effectorBackoutDir = -X_HOME_DIR; + stepperBackoutDir = INVERT_X_DIR ? effectorBackoutDir : -effectorBackoutDir; + break; + #endif + #ifdef Y_MICROSTEPS + case Y_AXIS: + phasePerUStep = PHASE_PER_MICROSTEP(Y); + phaseCurrent = stepperY.get_microstep_counter(); + effectorBackoutDir = -Y_HOME_DIR; + stepperBackoutDir = INVERT_Y_DIR ? effectorBackoutDir : -effectorBackoutDir; + break; + #endif + #ifdef Z_MICROSTEPS + case Z_AXIS: + phasePerUStep = PHASE_PER_MICROSTEP(Z); + phaseCurrent = stepperZ.get_microstep_counter(); + effectorBackoutDir = -Z_HOME_DIR; + stepperBackoutDir = INVERT_Z_DIR ? effectorBackoutDir : -effectorBackoutDir; + break; + #endif + default: return; + } + + // Phase distance to nearest home phase position when moving in the backout direction from endstop(may be negative). + int16_t phaseDelta = (home_phase[axis] - phaseCurrent) * stepperBackoutDir; + + // Check if home distance within endstop assumed repeatability noise of .05mm and warn. + if (ABS(phaseDelta) * planner.steps_to_mm[axis] / phasePerUStep < 0.05f) + SERIAL_ECHOLNPAIR("Selected home phase ", home_phase[axis], + " too close to endstop trigger phase ", phaseCurrent, + ". Pick a different phase for ", axis_codes[axis]); + + // Skip to next if target position is behind current. So it only moves away from endstop. + if (phaseDelta < 0) phaseDelta += 1024; + + // Convert TMC µsteps(phase) to whole Marlin µsteps to effector backout direction to mm + const float mmDelta = int16_t(phaseDelta / phasePerUStep) * effectorBackoutDir * planner.steps_to_mm[axis]; + + // Optional debug messages + if (DEBUGGING(LEVELING)) { + DEBUG_ECHOLNPAIR( + "Endstop ", axis_codes[axis], " hit at Phase:", phaseCurrent, + " Delta:", phaseDelta, " Distance:", mmDelta + ); + } + + if (mmDelta != 0) { + // Retrace by the amount computed in mmDelta. + do_homing_move(axis, mmDelta, get_homing_bump_feedrate(axis)); + } + } +#endif + +/** + * Home an individual "raw axis" to its endstop. + * This applies to XYZ on Cartesian and Core robots, and + * to the individual ABC steppers on DELTA and SCARA. + * + * At the end of the procedure the axis is marked as + * homed and the current position of that axis is updated. + * Kinematic robots should wait till all axes are homed + * before updating the current position. + */ + +void homeaxis(const AxisEnum axis) { + + #if IS_SCARA + // Only Z homing (with probe) is permitted + if (axis != Z_AXIS) { BUZZ(100, 880); return; } + #else + #define _CAN_HOME(A) (axis == _AXIS(A) && ( \ + ENABLED(A##_SPI_SENSORLESS) \ + || (_AXIS(A) == Z_AXIS && ENABLED(HOMING_Z_WITH_PROBE)) \ + || (A##_MIN_PIN > -1 && A##_HOME_DIR < 0) \ + || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0) \ + )) + if (!_CAN_HOME(X) && !_CAN_HOME(Y) && !_CAN_HOME(Z)) return; + #endif + + if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR(">>> homeaxis(", axis_codes[axis], ")"); + + const int axis_home_dir = TERN0(DUAL_X_CARRIAGE, axis == X_AXIS) + ? x_home_dir(active_extruder) : home_dir(axis); + + // + // Homing Z with a probe? Raise Z (maybe) and deploy the Z probe. + // + if (TERN0(HOMING_Z_WITH_PROBE, axis == Z_AXIS && probe.deploy())) + return; + + // Set flags for X, Y, Z motor locking + #if HAS_EXTRA_ENDSTOPS + switch (axis) { + TERN_(X_DUAL_ENDSTOPS, case X_AXIS:) + TERN_(Y_DUAL_ENDSTOPS, case Y_AXIS:) + TERN_(Z_MULTI_ENDSTOPS, case Z_AXIS:) + stepper.set_separate_multi_axis(true); + default: break; + } + #endif + + // + // Deploy BLTouch or tare the probe just before probing + // + #if HOMING_Z_WITH_PROBE + if (axis == Z_AXIS) { + if (TERN0(BLTOUCH, bltouch.deploy())) return; // BLTouch was deployed above, but get the alarm state. + if (TERN0(PROBE_TARE, probe.tare())) return; + } + #endif + + // + // Back away to prevent an early X/Y sensorless trigger + // + #if DISABLED(DELTA) && defined(SENSORLESS_BACKOFF_MM) + const xy_float_t backoff = SENSORLESS_BACKOFF_MM; + if ((TERN0(X_SENSORLESS, axis == X_AXIS) || TERN0(Y_SENSORLESS, axis == Y_AXIS)) && backoff[axis]) { + const float backoff_length = -ABS(backoff[axis]) * axis_home_dir; + if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("Sensorless backoff: ", backoff_length, "mm"); + do_homing_move(axis, backoff_length, homing_feedrate(axis)); + } + #endif + + // Determine if a homing bump will be done and the bumps distance + // When homing Z with probe respect probe clearance + const bool use_probe_bump = TERN0(HOMING_Z_WITH_PROBE, axis == Z_AXIS && home_bump_mm(Z_AXIS)); + const float bump = axis_home_dir * ( + use_probe_bump ? _MAX(TERN0(HOMING_Z_WITH_PROBE, Z_CLEARANCE_BETWEEN_PROBES), home_bump_mm(Z_AXIS)) : home_bump_mm(axis) + ); + + // + // Fast move towards endstop until triggered + // + const float move_length = 1.5f * max_length(TERN(DELTA, Z_AXIS, axis)) * axis_home_dir; + if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("Home Fast: ", move_length, "mm"); + do_homing_move(axis, move_length, 0.0, !use_probe_bump); + + #if BOTH(HOMING_Z_WITH_PROBE, BLTOUCH_SLOW_MODE) + if (axis == Z_AXIS) bltouch.stow(); // Intermediate STOW (in LOW SPEED MODE) + #endif + + // If a second homing move is configured... + if (bump) { + // Move away from the endstop by the axis HOMING_BUMP_MM + if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("Move Away: ", -bump, "mm"); + do_homing_move(axis, -bump, TERN0(HOMING_Z_WITH_PROBE, axis == Z_AXIS) ? MMM_TO_MMS(Z_PROBE_SPEED_FAST) : 0, false); + + #if ENABLED(DETECT_BROKEN_ENDSTOP) + // Check for a broken endstop + EndstopEnum es; + switch (axis) { + default: + case X_AXIS: es = X_ENDSTOP; break; + case Y_AXIS: es = Y_ENDSTOP; break; + case Z_AXIS: es = Z_ENDSTOP; break; + } + if (TEST(endstops.state(), es)) { + SERIAL_ECHO_MSG("Bad ", axis_codes[axis], " Endstop?"); + kill(GET_TEXT(MSG_KILL_HOMING_FAILED)); + } + #endif + + #if BOTH(HOMING_Z_WITH_PROBE, BLTOUCH_SLOW_MODE) + if (axis == Z_AXIS && bltouch.deploy()) return; // Intermediate DEPLOY (in LOW SPEED MODE) + #endif + + // Slow move towards endstop until triggered + const float rebump = bump * 2; + if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("Re-bump: ", rebump, "mm"); + do_homing_move(axis, rebump, get_homing_bump_feedrate(axis), true); + + #if BOTH(HOMING_Z_WITH_PROBE, BLTOUCH) + if (axis == Z_AXIS) bltouch.stow(); // The final STOW + #endif + } + + #if HAS_EXTRA_ENDSTOPS + const bool pos_dir = axis_home_dir > 0; + #if ENABLED(X_DUAL_ENDSTOPS) + if (axis == X_AXIS) { + const float adj = ABS(endstops.x2_endstop_adj); + if (adj) { + if (pos_dir ? (endstops.x2_endstop_adj > 0) : (endstops.x2_endstop_adj < 0)) stepper.set_x_lock(true); else stepper.set_x2_lock(true); + do_homing_move(axis, pos_dir ? -adj : adj); + stepper.set_x_lock(false); + stepper.set_x2_lock(false); + } + } + #endif + #if ENABLED(Y_DUAL_ENDSTOPS) + if (axis == Y_AXIS) { + const float adj = ABS(endstops.y2_endstop_adj); + if (adj) { + if (pos_dir ? (endstops.y2_endstop_adj > 0) : (endstops.y2_endstop_adj < 0)) stepper.set_y_lock(true); else stepper.set_y2_lock(true); + do_homing_move(axis, pos_dir ? -adj : adj); + stepper.set_y_lock(false); + stepper.set_y2_lock(false); + } + } + #endif + + #if ENABLED(Z_MULTI_ENDSTOPS) + if (axis == Z_AXIS) { + + #if NUM_Z_STEPPER_DRIVERS == 2 + + const float adj = ABS(endstops.z2_endstop_adj); + if (adj) { + if (pos_dir ? (endstops.z2_endstop_adj > 0) : (endstops.z2_endstop_adj < 0)) stepper.set_z1_lock(true); else stepper.set_z2_lock(true); + do_homing_move(axis, pos_dir ? -adj : adj); + stepper.set_z1_lock(false); + stepper.set_z2_lock(false); + } + + #else + + // Handy arrays of stepper lock function pointers + + typedef void (*adjustFunc_t)(const bool); + + adjustFunc_t lock[] = { + stepper.set_z1_lock, stepper.set_z2_lock, stepper.set_z3_lock + #if NUM_Z_STEPPER_DRIVERS >= 4 + , stepper.set_z4_lock + #endif + }; + float adj[] = { + 0, endstops.z2_endstop_adj, endstops.z3_endstop_adj + #if NUM_Z_STEPPER_DRIVERS >= 4 + , endstops.z4_endstop_adj + #endif + }; + + adjustFunc_t tempLock; + float tempAdj; + + // Manual bubble sort by adjust value + if (adj[1] < adj[0]) { + tempLock = lock[0], tempAdj = adj[0]; + lock[0] = lock[1], adj[0] = adj[1]; + lock[1] = tempLock, adj[1] = tempAdj; + } + if (adj[2] < adj[1]) { + tempLock = lock[1], tempAdj = adj[1]; + lock[1] = lock[2], adj[1] = adj[2]; + lock[2] = tempLock, adj[2] = tempAdj; + } + #if NUM_Z_STEPPER_DRIVERS >= 4 + if (adj[3] < adj[2]) { + tempLock = lock[2], tempAdj = adj[2]; + lock[2] = lock[3], adj[2] = adj[3]; + lock[3] = tempLock, adj[3] = tempAdj; + } + if (adj[2] < adj[1]) { + tempLock = lock[1], tempAdj = adj[1]; + lock[1] = lock[2], adj[1] = adj[2]; + lock[2] = tempLock, adj[2] = tempAdj; + } + #endif + if (adj[1] < adj[0]) { + tempLock = lock[0], tempAdj = adj[0]; + lock[0] = lock[1], adj[0] = adj[1]; + lock[1] = tempLock, adj[1] = tempAdj; + } + + if (pos_dir) { + // normalize adj to smallest value and do the first move + (*lock[0])(true); + do_homing_move(axis, adj[1] - adj[0]); + // lock the second stepper for the final correction + (*lock[1])(true); + do_homing_move(axis, adj[2] - adj[1]); + #if NUM_Z_STEPPER_DRIVERS >= 4 + // lock the third stepper for the final correction + (*lock[2])(true); + do_homing_move(axis, adj[3] - adj[2]); + #endif + } + else { + #if NUM_Z_STEPPER_DRIVERS >= 4 + (*lock[3])(true); + do_homing_move(axis, adj[2] - adj[3]); + #endif + (*lock[2])(true); + do_homing_move(axis, adj[1] - adj[2]); + (*lock[1])(true); + do_homing_move(axis, adj[0] - adj[1]); + } + + stepper.set_z1_lock(false); + stepper.set_z2_lock(false); + stepper.set_z3_lock(false); + #if NUM_Z_STEPPER_DRIVERS >= 4 + stepper.set_z4_lock(false); + #endif + + #endif + } + #endif + + // Reset flags for X, Y, Z motor locking + switch (axis) { + default: break; + TERN_(X_DUAL_ENDSTOPS, case X_AXIS:) + TERN_(Y_DUAL_ENDSTOPS, case Y_AXIS:) + TERN_(Z_MULTI_ENDSTOPS, case Z_AXIS:) + stepper.set_separate_multi_axis(false); + } + #endif + + #ifdef TMC_HOME_PHASE + // move back to homing phase if configured and capable + backout_to_tmc_homing_phase(axis); + #endif + + #if IS_SCARA + + set_axis_is_at_home(axis); + sync_plan_position(); + + #elif ENABLED(DELTA) + + // Delta has already moved all three towers up in G28 + // so here it re-homes each tower in turn. + // Delta homing treats the axes as normal linear axes. + + const float adjDistance = delta_endstop_adj[axis], + minDistance = (MIN_STEPS_PER_SEGMENT) * planner.steps_to_mm[axis]; + + // Retrace by the amount specified in delta_endstop_adj if more than min steps. + if (adjDistance * (Z_HOME_DIR) < 0 && ABS(adjDistance) > minDistance) { // away from endstop, more than min distance + if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("adjDistance:", adjDistance); + do_homing_move(axis, adjDistance, get_homing_bump_feedrate(axis)); + } + + #else // CARTESIAN / CORE / MARKFORGED_XY + + set_axis_is_at_home(axis); + sync_plan_position(); + + destination[axis] = current_position[axis]; + + if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position); + + #endif + + // Put away the Z probe + #if HOMING_Z_WITH_PROBE + if (axis == Z_AXIS && probe.stow()) return; + #endif + + #if DISABLED(DELTA) && defined(HOMING_BACKOFF_POST_MM) + const xyz_float_t endstop_backoff = HOMING_BACKOFF_POST_MM; + if (endstop_backoff[axis]) { + current_position[axis] -= ABS(endstop_backoff[axis]) * axis_home_dir; + line_to_current_position( + #if HOMING_Z_WITH_PROBE + (axis == Z_AXIS) ? z_probe_fast_mm_s : + #endif + homing_feedrate(axis) + ); + + #if ENABLED(SENSORLESS_HOMING) + planner.synchronize(); + if (false + #if EITHER(IS_CORE, MARKFORGED_XY) + || axis != NORMAL_AXIS + #endif + ) safe_delay(200); // Short delay to allow belts to spring back + #endif + } + #endif + + // Clear retracted status if homing the Z axis + #if ENABLED(FWRETRACT) + if (axis == Z_AXIS) fwretract.current_hop = 0.0; + #endif + + if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("<<< homeaxis(", axis_codes[axis], ")"); + +} // homeaxis() + +#if HAS_WORKSPACE_OFFSET + void update_workspace_offset(const AxisEnum axis) { + workspace_offset[axis] = home_offset[axis] + position_shift[axis]; + if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("Axis ", XYZ_CHAR(axis), " home_offset = ", home_offset[axis], " position_shift = ", position_shift[axis]); + } +#endif + +#if HAS_M206_COMMAND + /** + * Change the home offset for an axis. + * Also refreshes the workspace offset. + */ + void set_home_offset(const AxisEnum axis, const float v) { + home_offset[axis] = v; + update_workspace_offset(axis); + } +#endif // HAS_M206_COMMAND |