aboutsummaryrefslogtreecommitdiff
path: root/Marlin/src/module/planner.h
diff options
context:
space:
mode:
Diffstat (limited to 'Marlin/src/module/planner.h')
-rw-r--r--Marlin/src/module/planner.h983
1 files changed, 983 insertions, 0 deletions
diff --git a/Marlin/src/module/planner.h b/Marlin/src/module/planner.h
new file mode 100644
index 0000000..cd906c5
--- /dev/null
+++ b/Marlin/src/module/planner.h
@@ -0,0 +1,983 @@
+/**
+ * Marlin 3D Printer Firmware
+ * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
+ *
+ * Based on Sprinter and grbl.
+ * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <https://www.gnu.org/licenses/>.
+ *
+ */
+#pragma once
+
+/**
+ * planner.h
+ *
+ * Buffer movement commands and manage the acceleration profile plan
+ *
+ * Derived from Grbl
+ * Copyright (c) 2009-2011 Simen Svale Skogsrud
+ */
+
+#include "../MarlinCore.h"
+
+#if ENABLED(JD_HANDLE_SMALL_SEGMENTS)
+ // Enable this option for perfect accuracy but maximum
+ // computation. Should be fine on ARM processors.
+ //#define JD_USE_MATH_ACOS
+
+ // Disable this option to save 120 bytes of PROGMEM,
+ // but incur increased computation and a reduction
+ // in accuracy.
+ #define JD_USE_LOOKUP_TABLE
+#endif
+
+#include "motion.h"
+#include "../gcode/queue.h"
+
+#if ENABLED(DELTA)
+ #include "delta.h"
+#endif
+
+#if ABL_PLANAR
+ #include "../libs/vector_3.h" // for matrix_3x3
+#endif
+
+#if ENABLED(FWRETRACT)
+ #include "../feature/fwretract.h"
+#endif
+
+#if ENABLED(MIXING_EXTRUDER)
+ #include "../feature/mixing.h"
+#endif
+
+#if HAS_CUTTER
+ #include "../feature/spindle_laser_types.h"
+#endif
+
+#if ENABLED(DIRECT_STEPPING)
+ #include "../feature/direct_stepping.h"
+ #define IS_PAGE(B) TEST(B->flag, BLOCK_BIT_IS_PAGE)
+#else
+ #define IS_PAGE(B) false
+#endif
+
+// Feedrate for manual moves
+#ifdef MANUAL_FEEDRATE
+ constexpr xyze_feedrate_t _mf = MANUAL_FEEDRATE,
+ manual_feedrate_mm_s { _mf.x / 60.0f, _mf.y / 60.0f, _mf.z / 60.0f, _mf.e / 60.0f };
+#endif
+
+#if IS_KINEMATIC && HAS_JUNCTION_DEVIATION
+ #define HAS_DIST_MM_ARG 1
+#endif
+
+enum BlockFlagBit : char {
+ // Recalculate trapezoids on entry junction. For optimization.
+ BLOCK_BIT_RECALCULATE,
+
+ // Nominal speed always reached.
+ // i.e., The segment is long enough, so the nominal speed is reachable if accelerating
+ // from a safe speed (in consideration of jerking from zero speed).
+ BLOCK_BIT_NOMINAL_LENGTH,
+
+ // The block is segment 2+ of a longer move
+ BLOCK_BIT_CONTINUED,
+
+ // Sync the stepper counts from the block
+ BLOCK_BIT_SYNC_POSITION
+
+ // Direct stepping page
+ #if ENABLED(DIRECT_STEPPING)
+ , BLOCK_BIT_IS_PAGE
+ #endif
+};
+
+enum BlockFlag : char {
+ BLOCK_FLAG_RECALCULATE = _BV(BLOCK_BIT_RECALCULATE)
+ , BLOCK_FLAG_NOMINAL_LENGTH = _BV(BLOCK_BIT_NOMINAL_LENGTH)
+ , BLOCK_FLAG_CONTINUED = _BV(BLOCK_BIT_CONTINUED)
+ , BLOCK_FLAG_SYNC_POSITION = _BV(BLOCK_BIT_SYNC_POSITION)
+ #if ENABLED(DIRECT_STEPPING)
+ , BLOCK_FLAG_IS_PAGE = _BV(BLOCK_BIT_IS_PAGE)
+ #endif
+};
+
+#if ENABLED(LASER_POWER_INLINE)
+
+ typedef struct {
+ bool isPlanned:1;
+ bool isEnabled:1;
+ bool dir:1;
+ bool Reserved:6;
+ } power_status_t;
+
+ typedef struct {
+ power_status_t status; // See planner settings for meaning
+ uint8_t power; // Ditto; When in trapezoid mode this is nominal power
+ #if ENABLED(LASER_POWER_INLINE_TRAPEZOID)
+ uint8_t power_entry; // Entry power for the laser
+ #if DISABLED(LASER_POWER_INLINE_TRAPEZOID_CONT)
+ uint8_t power_exit; // Exit power for the laser
+ uint32_t entry_per, // Steps per power increment (to avoid floats in stepper calcs)
+ exit_per; // Steps per power decrement
+ #endif
+ #endif
+ } block_laser_t;
+
+#endif
+
+/**
+ * struct block_t
+ *
+ * A single entry in the planner buffer.
+ * Tracks linear movement over multiple axes.
+ *
+ * The "nominal" values are as-specified by gcode, and
+ * may never actually be reached due to acceleration limits.
+ */
+typedef struct block_t {
+
+ volatile uint8_t flag; // Block flags (See BlockFlag enum above) - Modified by ISR and main thread!
+
+ // Fields used by the motion planner to manage acceleration
+ float nominal_speed_sqr, // The nominal speed for this block in (mm/sec)^2
+ entry_speed_sqr, // Entry speed at previous-current junction in (mm/sec)^2
+ max_entry_speed_sqr, // Maximum allowable junction entry speed in (mm/sec)^2
+ millimeters, // The total travel of this block in mm
+ acceleration; // acceleration mm/sec^2
+
+ union {
+ abce_ulong_t steps; // Step count along each axis
+ abce_long_t position; // New position to force when this sync block is executed
+ };
+ uint32_t step_event_count; // The number of step events required to complete this block
+
+ #if HAS_MULTI_EXTRUDER
+ uint8_t extruder; // The extruder to move (if E move)
+ #else
+ static constexpr uint8_t extruder = 0;
+ #endif
+
+ TERN_(MIXING_EXTRUDER, MIXER_BLOCK_FIELD); // Normalized color for the mixing steppers
+
+ // Settings for the trapezoid generator
+ uint32_t accelerate_until, // The index of the step event on which to stop acceleration
+ decelerate_after; // The index of the step event on which to start decelerating
+
+ #if ENABLED(S_CURVE_ACCELERATION)
+ uint32_t cruise_rate, // The actual cruise rate to use, between end of the acceleration phase and start of deceleration phase
+ acceleration_time, // Acceleration time and deceleration time in STEP timer counts
+ deceleration_time,
+ acceleration_time_inverse, // Inverse of acceleration and deceleration periods, expressed as integer. Scale depends on CPU being used
+ deceleration_time_inverse;
+ #else
+ uint32_t acceleration_rate; // The acceleration rate used for acceleration calculation
+ #endif
+
+ uint8_t direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
+
+ // Advance extrusion
+ #if ENABLED(LIN_ADVANCE)
+ bool use_advance_lead;
+ uint16_t advance_speed, // STEP timer value for extruder speed offset ISR
+ max_adv_steps, // max. advance steps to get cruising speed pressure (not always nominal_speed!)
+ final_adv_steps; // advance steps due to exit speed
+ float e_D_ratio;
+ #endif
+
+ uint32_t nominal_rate, // The nominal step rate for this block in step_events/sec
+ initial_rate, // The jerk-adjusted step rate at start of block
+ final_rate, // The minimal rate at exit
+ acceleration_steps_per_s2; // acceleration steps/sec^2
+
+ #if ENABLED(DIRECT_STEPPING)
+ page_idx_t page_idx; // Page index used for direct stepping
+ #endif
+
+ #if HAS_CUTTER
+ cutter_power_t cutter_power; // Power level for Spindle, Laser, etc.
+ #endif
+
+ #if HAS_FAN
+ uint8_t fan_speed[FAN_COUNT];
+ #endif
+
+ #if ENABLED(BARICUDA)
+ uint8_t valve_pressure, e_to_p_pressure;
+ #endif
+
+ #if HAS_WIRED_LCD
+ uint32_t segment_time_us;
+ #endif
+
+ #if ENABLED(POWER_LOSS_RECOVERY)
+ uint32_t sdpos;
+ #endif
+
+ #if ENABLED(LASER_POWER_INLINE)
+ block_laser_t laser;
+ #endif
+
+} block_t;
+
+#if ANY(LIN_ADVANCE, SCARA_FEEDRATE_SCALING, GRADIENT_MIX, LCD_SHOW_E_TOTAL)
+ #define HAS_POSITION_FLOAT 1
+#endif
+
+#define BLOCK_MOD(n) ((n)&(BLOCK_BUFFER_SIZE-1))
+
+#if ENABLED(LASER_POWER_INLINE)
+ typedef struct {
+ /**
+ * Laser status flags
+ */
+ power_status_t status;
+ /**
+ * Laser power: 0 or 255 in case of PWM-less laser,
+ * or the OCR (oscillator count register) value;
+ *
+ * Using OCR instead of raw power, because it avoids
+ * floating point operations during the move loop.
+ */
+ uint8_t power;
+ } laser_state_t;
+#endif
+
+typedef struct {
+ uint32_t max_acceleration_mm_per_s2[XYZE_N], // (mm/s^2) M201 XYZE
+ min_segment_time_us; // (µs) M205 B
+ float axis_steps_per_mm[XYZE_N]; // (steps) M92 XYZE - Steps per millimeter
+ feedRate_t max_feedrate_mm_s[XYZE_N]; // (mm/s) M203 XYZE - Max speeds
+ float acceleration, // (mm/s^2) M204 S - Normal acceleration. DEFAULT ACCELERATION for all printing moves.
+ retract_acceleration, // (mm/s^2) M204 R - Retract acceleration. Filament pull-back and push-forward while standing still in the other axes
+ travel_acceleration; // (mm/s^2) M204 T - Travel acceleration. DEFAULT ACCELERATION for all NON printing moves.
+ feedRate_t min_feedrate_mm_s, // (mm/s) M205 S - Minimum linear feedrate
+ min_travel_feedrate_mm_s; // (mm/s) M205 T - Minimum travel feedrate
+} planner_settings_t;
+
+#if DISABLED(SKEW_CORRECTION)
+ #define XY_SKEW_FACTOR 0
+ #define XZ_SKEW_FACTOR 0
+ #define YZ_SKEW_FACTOR 0
+#endif
+
+typedef struct {
+ #if ENABLED(SKEW_CORRECTION_GCODE)
+ float xy;
+ #if ENABLED(SKEW_CORRECTION_FOR_Z)
+ float xz, yz;
+ #else
+ const float xz = XZ_SKEW_FACTOR, yz = YZ_SKEW_FACTOR;
+ #endif
+ #else
+ const float xy = XY_SKEW_FACTOR,
+ xz = XZ_SKEW_FACTOR, yz = YZ_SKEW_FACTOR;
+ #endif
+} skew_factor_t;
+
+#if ENABLED(DISABLE_INACTIVE_EXTRUDER)
+ typedef IF<(BLOCK_BUFFER_SIZE > 64), uint16_t, uint8_t>::type last_move_t;
+#endif
+
+class Planner {
+ public:
+
+ /**
+ * The move buffer, calculated in stepper steps
+ *
+ * block_buffer is a ring buffer...
+ *
+ * head,tail : indexes for write,read
+ * head==tail : the buffer is empty
+ * head!=tail : blocks are in the buffer
+ * head==(tail-1)%size : the buffer is full
+ *
+ * Writer of head is Planner::buffer_segment().
+ * Reader of tail is Stepper::isr(). Always consider tail busy / read-only
+ */
+ static block_t block_buffer[BLOCK_BUFFER_SIZE];
+ static volatile uint8_t block_buffer_head, // Index of the next block to be pushed
+ block_buffer_nonbusy, // Index of the first non busy block
+ block_buffer_planned, // Index of the optimally planned block
+ block_buffer_tail; // Index of the busy block, if any
+ static uint16_t cleaning_buffer_counter; // A counter to disable queuing of blocks
+ static uint8_t delay_before_delivering; // This counter delays delivery of blocks when queue becomes empty to allow the opportunity of merging blocks
+
+
+ #if ENABLED(DISTINCT_E_FACTORS)
+ static uint8_t last_extruder; // Respond to extruder change
+ #endif
+
+ #if ENABLED(DIRECT_STEPPING)
+ static uint32_t last_page_step_rate; // Last page step rate given
+ static xyze_bool_t last_page_dir; // Last page direction given
+ #endif
+
+ #if EXTRUDERS
+ static int16_t flow_percentage[EXTRUDERS]; // Extrusion factor for each extruder
+ static float e_factor[EXTRUDERS]; // The flow percentage and volumetric multiplier combine to scale E movement
+ #endif
+
+ #if DISABLED(NO_VOLUMETRICS)
+ static float filament_size[EXTRUDERS], // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder
+ volumetric_area_nominal, // Nominal cross-sectional area
+ volumetric_multiplier[EXTRUDERS]; // Reciprocal of cross-sectional area of filament (in mm^2). Pre-calculated to reduce computation in the planner
+ // May be auto-adjusted by a filament width sensor
+ #endif
+
+ #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
+ static float volumetric_extruder_limit[EXTRUDERS], // Maximum mm^3/sec the extruder can handle
+ volumetric_extruder_feedrate_limit[EXTRUDERS]; // Feedrate limit (mm/s) calculated from volume limit
+ #endif
+
+ static planner_settings_t settings;
+
+ #if ENABLED(LASER_POWER_INLINE)
+ static laser_state_t laser_inline;
+ #endif
+
+ static uint32_t max_acceleration_steps_per_s2[XYZE_N]; // (steps/s^2) Derived from mm_per_s2
+ static float steps_to_mm[XYZE_N]; // Millimeters per step
+
+ #if HAS_JUNCTION_DEVIATION
+ static float junction_deviation_mm; // (mm) M205 J
+ #if HAS_LINEAR_E_JERK
+ static float max_e_jerk[DISTINCT_E]; // Calculated from junction_deviation_mm
+ #endif
+ #endif
+
+ #if HAS_CLASSIC_JERK
+ // (mm/s^2) M205 XYZ(E) - The largest speed change requiring no acceleration.
+ static TERN(HAS_LINEAR_E_JERK, xyz_pos_t, xyze_pos_t) max_jerk;
+ #endif
+
+ #if HAS_LEVELING
+ static bool leveling_active; // Flag that bed leveling is enabled
+ #if ABL_PLANAR
+ static matrix_3x3 bed_level_matrix; // Transform to compensate for bed level
+ #endif
+ #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
+ static float z_fade_height, inverse_z_fade_height;
+ #endif
+ #else
+ static constexpr bool leveling_active = false;
+ #endif
+
+ #if ENABLED(LIN_ADVANCE)
+ static float extruder_advance_K[EXTRUDERS];
+ #endif
+
+ /**
+ * The current position of the tool in absolute steps
+ * Recalculated if any axis_steps_per_mm are changed by gcode
+ */
+ static xyze_long_t position;
+
+ #if HAS_POSITION_FLOAT
+ static xyze_pos_t position_float;
+ #endif
+
+ #if IS_KINEMATIC
+ static xyze_pos_t position_cart;
+ #endif
+
+ static skew_factor_t skew_factor;
+
+ #if ENABLED(SD_ABORT_ON_ENDSTOP_HIT)
+ static bool abort_on_endstop_hit;
+ #endif
+ #ifdef XY_FREQUENCY_LIMIT
+ static int8_t xy_freq_limit_hz; // Minimum XY frequency setting
+ static float xy_freq_min_speed_factor; // Minimum speed factor setting
+ static int32_t xy_freq_min_interval_us; // Minimum segment time based on xy_freq_limit_hz
+ static inline void refresh_frequency_limit() {
+ //xy_freq_min_interval_us = xy_freq_limit_hz ?: LROUND(1000000.0f / xy_freq_limit_hz);
+ if (xy_freq_limit_hz)
+ xy_freq_min_interval_us = LROUND(1000000.0f / xy_freq_limit_hz);
+ }
+ static inline void set_min_speed_factor_u8(const uint8_t v255) {
+ xy_freq_min_speed_factor = float(ui8_to_percent(v255)) / 100;
+ }
+ static inline void set_frequency_limit(const uint8_t hz) {
+ xy_freq_limit_hz = constrain(hz, 0, 100);
+ refresh_frequency_limit();
+ }
+ #endif
+
+ private:
+
+ /**
+ * Speed of previous path line segment
+ */
+ static xyze_float_t previous_speed;
+
+ /**
+ * Nominal speed of previous path line segment (mm/s)^2
+ */
+ static float previous_nominal_speed_sqr;
+
+ /**
+ * Limit where 64bit math is necessary for acceleration calculation
+ */
+ static uint32_t cutoff_long;
+
+ #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
+ static float last_fade_z;
+ #endif
+
+ #if ENABLED(DISABLE_INACTIVE_EXTRUDER)
+ // Counters to manage disabling inactive extruders
+ static last_move_t g_uc_extruder_last_move[EXTRUDERS];
+ #endif
+
+ #if HAS_WIRED_LCD
+ volatile static uint32_t block_buffer_runtime_us; // Theoretical block buffer runtime in µs
+ #endif
+
+ public:
+
+ /**
+ * Instance Methods
+ */
+
+ Planner();
+
+ void init();
+
+ /**
+ * Static (class) Methods
+ */
+
+ static void reset_acceleration_rates();
+ static void refresh_positioning();
+ static void set_max_acceleration(const uint8_t axis, float targetValue);
+ static void set_max_feedrate(const uint8_t axis, float targetValue);
+ static void set_max_jerk(const AxisEnum axis, float targetValue);
+
+
+ #if EXTRUDERS
+ FORCE_INLINE static void refresh_e_factor(const uint8_t e) {
+ e_factor[e] = flow_percentage[e] * 0.01f * TERN(NO_VOLUMETRICS, 1.0f, volumetric_multiplier[e]);
+ }
+
+ static inline void set_flow(const uint8_t e, const int16_t flow) {
+ flow_percentage[e] = flow;
+ refresh_e_factor(e);
+ }
+
+ #endif
+
+ // Manage fans, paste pressure, etc.
+ static void check_axes_activity();
+
+ #if ENABLED(FILAMENT_WIDTH_SENSOR)
+ void apply_filament_width_sensor(const int8_t encoded_ratio);
+
+ static inline float volumetric_percent(const bool vol) {
+ return 100.0f * (vol
+ ? volumetric_area_nominal / volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM]
+ : volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM]
+ );
+ }
+ #endif
+
+ #if DISABLED(NO_VOLUMETRICS)
+
+ // Update multipliers based on new diameter measurements
+ static void calculate_volumetric_multipliers();
+
+ #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
+ // Update pre calculated extruder feedrate limits based on volumetric values
+ static void calculate_volumetric_extruder_limit(const uint8_t e);
+ static void calculate_volumetric_extruder_limits();
+ #endif
+
+ FORCE_INLINE static void set_filament_size(const uint8_t e, const float &v) {
+ filament_size[e] = v;
+ if (v > 0) volumetric_area_nominal = CIRCLE_AREA(v * 0.5); //TODO: should it be per extruder
+ // make sure all extruders have some sane value for the filament size
+ LOOP_L_N(i, COUNT(filament_size))
+ if (!filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
+ }
+
+ #endif
+
+ #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
+ FORCE_INLINE static void set_volumetric_extruder_limit(const uint8_t e, const float &v) {
+ volumetric_extruder_limit[e] = v;
+ calculate_volumetric_extruder_limit(e);
+ }
+ #endif
+
+ #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
+
+ /**
+ * Get the Z leveling fade factor based on the given Z height,
+ * re-calculating only when needed.
+ *
+ * Returns 1.0 if planner.z_fade_height is 0.0.
+ * Returns 0.0 if Z is past the specified 'Fade Height'.
+ */
+ static inline float fade_scaling_factor_for_z(const float &rz) {
+ static float z_fade_factor = 1;
+ if (!z_fade_height) return 1;
+ if (rz >= z_fade_height) return 0;
+ if (last_fade_z != rz) {
+ last_fade_z = rz;
+ z_fade_factor = 1 - rz * inverse_z_fade_height;
+ }
+ return z_fade_factor;
+ }
+
+ FORCE_INLINE static void force_fade_recalc() { last_fade_z = -999.999f; }
+
+ FORCE_INLINE static void set_z_fade_height(const float &zfh) {
+ z_fade_height = zfh > 0 ? zfh : 0;
+ inverse_z_fade_height = RECIPROCAL(z_fade_height);
+ force_fade_recalc();
+ }
+
+ FORCE_INLINE static bool leveling_active_at_z(const float &rz) {
+ return !z_fade_height || rz < z_fade_height;
+ }
+
+ #else
+
+ FORCE_INLINE static float fade_scaling_factor_for_z(const float&) { return 1; }
+
+ FORCE_INLINE static bool leveling_active_at_z(const float&) { return true; }
+
+ #endif
+
+ #if ENABLED(SKEW_CORRECTION)
+
+ FORCE_INLINE static void skew(float &cx, float &cy, const float &cz) {
+ if (WITHIN(cx, X_MIN_POS + 1, X_MAX_POS) && WITHIN(cy, Y_MIN_POS + 1, Y_MAX_POS)) {
+ const float sx = cx - cy * skew_factor.xy - cz * (skew_factor.xz - (skew_factor.xy * skew_factor.yz)),
+ sy = cy - cz * skew_factor.yz;
+ if (WITHIN(sx, X_MIN_POS, X_MAX_POS) && WITHIN(sy, Y_MIN_POS, Y_MAX_POS)) {
+ cx = sx; cy = sy;
+ }
+ }
+ }
+ FORCE_INLINE static void skew(xyz_pos_t &raw) { skew(raw.x, raw.y, raw.z); }
+
+ FORCE_INLINE static void unskew(float &cx, float &cy, const float &cz) {
+ if (WITHIN(cx, X_MIN_POS, X_MAX_POS) && WITHIN(cy, Y_MIN_POS, Y_MAX_POS)) {
+ const float sx = cx + cy * skew_factor.xy + cz * skew_factor.xz,
+ sy = cy + cz * skew_factor.yz;
+ if (WITHIN(sx, X_MIN_POS, X_MAX_POS) && WITHIN(sy, Y_MIN_POS, Y_MAX_POS)) {
+ cx = sx; cy = sy;
+ }
+ }
+ }
+ FORCE_INLINE static void unskew(xyz_pos_t &raw) { unskew(raw.x, raw.y, raw.z); }
+
+ #endif // SKEW_CORRECTION
+
+ #if HAS_LEVELING
+ /**
+ * Apply leveling to transform a cartesian position
+ * as it will be given to the planner and steppers.
+ */
+ static void apply_leveling(xyz_pos_t &raw);
+ static void unapply_leveling(xyz_pos_t &raw);
+ FORCE_INLINE static void force_unapply_leveling(xyz_pos_t &raw) {
+ leveling_active = true;
+ unapply_leveling(raw);
+ leveling_active = false;
+ }
+ #else
+ FORCE_INLINE static void apply_leveling(xyz_pos_t&) {}
+ FORCE_INLINE static void unapply_leveling(xyz_pos_t&) {}
+ #endif
+
+ #if ENABLED(FWRETRACT)
+ static void apply_retract(float &rz, float &e);
+ FORCE_INLINE static void apply_retract(xyze_pos_t &raw) { apply_retract(raw.z, raw.e); }
+ static void unapply_retract(float &rz, float &e);
+ FORCE_INLINE static void unapply_retract(xyze_pos_t &raw) { unapply_retract(raw.z, raw.e); }
+ #endif
+
+ #if HAS_POSITION_MODIFIERS
+ FORCE_INLINE static void apply_modifiers(xyze_pos_t &pos, bool leveling=ENABLED(PLANNER_LEVELING)) {
+ TERN_(SKEW_CORRECTION, skew(pos));
+ if (leveling) apply_leveling(pos);
+ TERN_(FWRETRACT, apply_retract(pos));
+ }
+
+ FORCE_INLINE static void unapply_modifiers(xyze_pos_t &pos, bool leveling=ENABLED(PLANNER_LEVELING)) {
+ TERN_(FWRETRACT, unapply_retract(pos));
+ if (leveling) unapply_leveling(pos);
+ TERN_(SKEW_CORRECTION, unskew(pos));
+ }
+ #endif // HAS_POSITION_MODIFIERS
+
+ // Number of moves currently in the planner including the busy block, if any
+ FORCE_INLINE static uint8_t movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_tail); }
+
+ // Number of nonbusy moves currently in the planner
+ FORCE_INLINE static uint8_t nonbusy_movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_nonbusy); }
+
+ // Remove all blocks from the buffer
+ FORCE_INLINE static void clear_block_buffer() { block_buffer_nonbusy = block_buffer_planned = block_buffer_head = block_buffer_tail = 0; }
+
+ // Check if movement queue is full
+ FORCE_INLINE static bool is_full() { return block_buffer_tail == next_block_index(block_buffer_head); }
+
+ // Get count of movement slots free
+ FORCE_INLINE static uint8_t moves_free() { return BLOCK_BUFFER_SIZE - 1 - movesplanned(); }
+
+ /**
+ * Planner::get_next_free_block
+ *
+ * - Get the next head indices (passed by reference)
+ * - Wait for the number of spaces to open up in the planner
+ * - Return the first head block
+ */
+ FORCE_INLINE static block_t* get_next_free_block(uint8_t &next_buffer_head, const uint8_t count=1) {
+
+ // Wait until there are enough slots free
+ while (moves_free() < count) { idle(); }
+
+ // Return the first available block
+ next_buffer_head = next_block_index(block_buffer_head);
+ return &block_buffer[block_buffer_head];
+ }
+
+ /**
+ * Planner::_buffer_steps
+ *
+ * Add a new linear movement to the buffer (in terms of steps).
+ *
+ * target - target position in steps units
+ * fr_mm_s - (target) speed of the move
+ * extruder - target extruder
+ * millimeters - the length of the movement, if known
+ *
+ * Returns true if movement was buffered, false otherwise
+ */
+ static bool _buffer_steps(const xyze_long_t &target
+ #if HAS_POSITION_FLOAT
+ , const xyze_pos_t &target_float
+ #endif
+ #if HAS_DIST_MM_ARG
+ , const xyze_float_t &cart_dist_mm
+ #endif
+ , feedRate_t fr_mm_s, const uint8_t extruder, const float &millimeters=0.0
+ );
+
+ /**
+ * Planner::_populate_block
+ *
+ * Fills a new linear movement in the block (in terms of steps).
+ *
+ * target - target position in steps units
+ * fr_mm_s - (target) speed of the move
+ * extruder - target extruder
+ * millimeters - the length of the movement, if known
+ *
+ * Returns true is movement is acceptable, false otherwise
+ */
+ static bool _populate_block(block_t * const block, bool split_move,
+ const xyze_long_t &target
+ #if HAS_POSITION_FLOAT
+ , const xyze_pos_t &target_float
+ #endif
+ #if HAS_DIST_MM_ARG
+ , const xyze_float_t &cart_dist_mm
+ #endif
+ , feedRate_t fr_mm_s, const uint8_t extruder, const float &millimeters=0.0
+ );
+
+ /**
+ * Planner::buffer_sync_block
+ * Add a block to the buffer that just updates the position
+ */
+ static void buffer_sync_block();
+
+ #if IS_KINEMATIC
+ private:
+
+ // Allow do_homing_move to access internal functions, such as buffer_segment.
+ friend void do_homing_move(const AxisEnum, const float, const feedRate_t, const bool);
+ #endif
+
+ /**
+ * Planner::buffer_segment
+ *
+ * Add a new linear movement to the buffer in axis units.
+ *
+ * Leveling and kinematics should be applied ahead of calling this.
+ *
+ * a,b,c,e - target positions in mm and/or degrees
+ * fr_mm_s - (target) speed of the move
+ * extruder - target extruder
+ * millimeters - the length of the movement, if known
+ */
+ static bool buffer_segment(const float &a, const float &b, const float &c, const float &e
+ #if HAS_DIST_MM_ARG
+ , const xyze_float_t &cart_dist_mm
+ #endif
+ , const feedRate_t &fr_mm_s, const uint8_t extruder, const float &millimeters=0.0
+ );
+
+ FORCE_INLINE static bool buffer_segment(abce_pos_t &abce
+ #if HAS_DIST_MM_ARG
+ , const xyze_float_t &cart_dist_mm
+ #endif
+ , const feedRate_t &fr_mm_s, const uint8_t extruder, const float &millimeters=0.0
+ ) {
+ return buffer_segment(abce.a, abce.b, abce.c, abce.e
+ #if HAS_DIST_MM_ARG
+ , cart_dist_mm
+ #endif
+ , fr_mm_s, extruder, millimeters);
+ }
+
+ public:
+
+ /**
+ * Add a new linear movement to the buffer.
+ * The target is cartesian. It's translated to
+ * delta/scara if needed.
+ *
+ * rx,ry,rz,e - target position in mm or degrees
+ * fr_mm_s - (target) speed of the move (mm/s)
+ * extruder - target extruder
+ * millimeters - the length of the movement, if known
+ * inv_duration - the reciprocal if the duration of the movement, if known (kinematic only if feeedrate scaling is enabled)
+ */
+ static bool buffer_line(const float &rx, const float &ry, const float &rz, const float &e, const feedRate_t &fr_mm_s, const uint8_t extruder, const float millimeters=0.0
+ #if ENABLED(SCARA_FEEDRATE_SCALING)
+ , const float &inv_duration=0.0
+ #endif
+ );
+
+ FORCE_INLINE static bool buffer_line(const xyze_pos_t &cart, const feedRate_t &fr_mm_s, const uint8_t extruder, const float millimeters=0.0
+ #if ENABLED(SCARA_FEEDRATE_SCALING)
+ , const float &inv_duration=0.0
+ #endif
+ ) {
+ return buffer_line(cart.x, cart.y, cart.z, cart.e, fr_mm_s, extruder, millimeters
+ #if ENABLED(SCARA_FEEDRATE_SCALING)
+ , inv_duration
+ #endif
+ );
+ }
+
+ #if ENABLED(DIRECT_STEPPING)
+ static void buffer_page(const page_idx_t page_idx, const uint8_t extruder, const uint16_t num_steps);
+ #endif
+
+ /**
+ * Set the planner.position and individual stepper positions.
+ * Used by G92, G28, G29, and other procedures.
+ *
+ * The supplied position is in the cartesian coordinate space and is
+ * translated in to machine space as needed. Modifiers such as leveling
+ * and skew are also applied.
+ *
+ * Multiplies by axis_steps_per_mm[] and does necessary conversion
+ * for COREXY / COREXZ / COREYZ to set the corresponding stepper positions.
+ *
+ * Clears previous speed values.
+ */
+ static void set_position_mm(const float &rx, const float &ry, const float &rz, const float &e);
+ FORCE_INLINE static void set_position_mm(const xyze_pos_t &cart) { set_position_mm(cart.x, cart.y, cart.z, cart.e); }
+ static void set_e_position_mm(const float &e);
+
+ /**
+ * Set the planner.position and individual stepper positions.
+ *
+ * The supplied position is in machine space, and no additional
+ * conversions are applied.
+ */
+ static void set_machine_position_mm(const float &a, const float &b, const float &c, const float &e);
+ FORCE_INLINE static void set_machine_position_mm(const abce_pos_t &abce) { set_machine_position_mm(abce.a, abce.b, abce.c, abce.e); }
+
+ /**
+ * Get an axis position according to stepper position(s)
+ * For CORE machines apply translation from ABC to XYZ.
+ */
+ static float get_axis_position_mm(const AxisEnum axis);
+
+ static inline abce_pos_t get_axis_positions_mm() {
+ const abce_pos_t out = {
+ get_axis_position_mm(A_AXIS),
+ get_axis_position_mm(B_AXIS),
+ get_axis_position_mm(C_AXIS),
+ get_axis_position_mm(E_AXIS)
+ };
+ return out;
+ }
+
+ // SCARA AB axes are in degrees, not mm
+ #if IS_SCARA
+ FORCE_INLINE static float get_axis_position_degrees(const AxisEnum axis) { return get_axis_position_mm(axis); }
+ #endif
+
+ // Called to force a quick stop of the machine (for example, when
+ // a Full Shutdown is required, or when endstops are hit)
+ static void quick_stop();
+
+ // Called when an endstop is triggered. Causes the machine to stop inmediately
+ static void endstop_triggered(const AxisEnum axis);
+
+ // Triggered position of an axis in mm (not core-savvy)
+ static float triggered_position_mm(const AxisEnum axis);
+
+ // Block until all buffered steps are executed / cleaned
+ static void synchronize();
+
+ // Wait for moves to finish and disable all steppers
+ static void finish_and_disable();
+
+ // Periodic tick to handle cleaning timeouts
+ // Called from the Temperature ISR at ~1kHz
+ static void tick() {
+ if (cleaning_buffer_counter) --cleaning_buffer_counter;
+ }
+
+ /**
+ * Does the buffer have any blocks queued?
+ */
+ FORCE_INLINE static bool has_blocks_queued() { return (block_buffer_head != block_buffer_tail); }
+
+ /**
+ * Get the current block for processing
+ * and mark the block as busy.
+ * Return nullptr if the buffer is empty
+ * or if there is a first-block delay.
+ *
+ * WARNING: Called from Stepper ISR context!
+ */
+ static block_t* get_current_block();
+
+ /**
+ * "Release" the current block so its slot can be reused.
+ * Called when the current block is no longer needed.
+ */
+ FORCE_INLINE static void release_current_block() {
+ if (has_blocks_queued())
+ block_buffer_tail = next_block_index(block_buffer_tail);
+ }
+
+ #if HAS_WIRED_LCD
+ static uint16_t block_buffer_runtime();
+ static void clear_block_buffer_runtime();
+ #endif
+
+ #if ENABLED(AUTOTEMP)
+ static float autotemp_min, autotemp_max, autotemp_factor;
+ static bool autotemp_enabled;
+ static void getHighESpeed();
+ static void autotemp_M104_M109();
+ static void autotemp_update();
+ #endif
+
+ #if HAS_LINEAR_E_JERK
+ FORCE_INLINE static void recalculate_max_e_jerk() {
+ const float prop = junction_deviation_mm * SQRT(0.5) / (1.0f - SQRT(0.5));
+ LOOP_L_N(i, EXTRUDERS)
+ max_e_jerk[E_INDEX_N(i)] = SQRT(prop * settings.max_acceleration_mm_per_s2[E_INDEX_N(i)]);
+ }
+ #endif
+
+ private:
+
+ /**
+ * Get the index of the next / previous block in the ring buffer
+ */
+ static constexpr uint8_t next_block_index(const uint8_t block_index) { return BLOCK_MOD(block_index + 1); }
+ static constexpr uint8_t prev_block_index(const uint8_t block_index) { return BLOCK_MOD(block_index - 1); }
+
+ /**
+ * Calculate the distance (not time) it takes to accelerate
+ * from initial_rate to target_rate using the given acceleration:
+ */
+ static float estimate_acceleration_distance(const float &initial_rate, const float &target_rate, const float &accel) {
+ if (accel == 0) return 0; // accel was 0, set acceleration distance to 0
+ return (sq(target_rate) - sq(initial_rate)) / (accel * 2);
+ }
+
+ /**
+ * Return the point at which you must start braking (at the rate of -'accel') if
+ * you start at 'initial_rate', accelerate (until reaching the point), and want to end at
+ * 'final_rate' after traveling 'distance'.
+ *
+ * This is used to compute the intersection point between acceleration and deceleration
+ * in cases where the "trapezoid" has no plateau (i.e., never reaches maximum speed)
+ */
+ static float intersection_distance(const float &initial_rate, const float &final_rate, const float &accel, const float &distance) {
+ if (accel == 0) return 0; // accel was 0, set intersection distance to 0
+ return (accel * 2 * distance - sq(initial_rate) + sq(final_rate)) / (accel * 4);
+ }
+
+ /**
+ * Calculate the maximum allowable speed squared at this point, in order
+ * to reach 'target_velocity_sqr' using 'acceleration' within a given
+ * 'distance'.
+ */
+ static float max_allowable_speed_sqr(const float &accel, const float &target_velocity_sqr, const float &distance) {
+ return target_velocity_sqr - 2 * accel * distance;
+ }
+
+ #if ENABLED(S_CURVE_ACCELERATION)
+ /**
+ * Calculate the speed reached given initial speed, acceleration and distance
+ */
+ static float final_speed(const float &initial_velocity, const float &accel, const float &distance) {
+ return SQRT(sq(initial_velocity) + 2 * accel * distance);
+ }
+ #endif
+
+ static void calculate_trapezoid_for_block(block_t* const block, const float &entry_factor, const float &exit_factor);
+
+ static void reverse_pass_kernel(block_t* const current, const block_t * const next);
+ static void forward_pass_kernel(const block_t * const previous, block_t* const current, uint8_t block_index);
+
+ static void reverse_pass();
+ static void forward_pass();
+
+ static void recalculate_trapezoids();
+
+ static void recalculate();
+
+ #if HAS_JUNCTION_DEVIATION
+
+ FORCE_INLINE static void normalize_junction_vector(xyze_float_t &vector) {
+ float magnitude_sq = 0;
+ LOOP_XYZE(idx) if (vector[idx]) magnitude_sq += sq(vector[idx]);
+ vector *= RSQRT(magnitude_sq);
+ }
+
+ FORCE_INLINE static float limit_value_by_axis_maximum(const float &max_value, xyze_float_t &unit_vec) {
+ float limit_value = max_value;
+ LOOP_XYZE(idx) {
+ if (unit_vec[idx]) {
+ if (limit_value * ABS(unit_vec[idx]) > settings.max_acceleration_mm_per_s2[idx])
+ limit_value = ABS(settings.max_acceleration_mm_per_s2[idx] / unit_vec[idx]);
+ }
+ }
+ return limit_value;
+ }
+
+ #endif // !CLASSIC_JERK
+};
+
+#define PLANNER_XY_FEEDRATE() _MIN(planner.settings.max_feedrate_mm_s[X_AXIS], planner.settings.max_feedrate_mm_s[Y_AXIS])
+
+extern Planner planner;