diff options
Diffstat (limited to 'Marlin/src/module/probe.h')
-rw-r--r-- | Marlin/src/module/probe.h | 256 |
1 files changed, 256 insertions, 0 deletions
diff --git a/Marlin/src/module/probe.h b/Marlin/src/module/probe.h new file mode 100644 index 0000000..d28cdff --- /dev/null +++ b/Marlin/src/module/probe.h @@ -0,0 +1,256 @@ +/** + * Marlin 3D Printer Firmware + * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] + * + * Based on Sprinter and grbl. + * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <https://www.gnu.org/licenses/>. + * + */ +#pragma once + +/** + * module/probe.h - Move, deploy, enable, etc. + */ + +#include "../inc/MarlinConfig.h" + +#include "motion.h" + +#if HAS_BED_PROBE + enum ProbePtRaise : uint8_t { + PROBE_PT_NONE, // No raise or stow after run_z_probe + PROBE_PT_STOW, // Do a complete stow after run_z_probe + PROBE_PT_RAISE, // Raise to "between" clearance after run_z_probe + PROBE_PT_BIG_RAISE // Raise to big clearance after run_z_probe + }; +#endif + +#if HAS_CUSTOM_PROBE_PIN + #define PROBE_TRIGGERED() (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING) +#else + #define PROBE_TRIGGERED() (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING) +#endif + +class Probe { +public: + + #if HAS_BED_PROBE + + static xyz_pos_t offset; + + #if EITHER(PREHEAT_BEFORE_PROBING, PREHEAT_BEFORE_LEVELING) + static void preheat_for_probing(const uint16_t hotend_temp, const uint16_t bed_temp); + #endif + + static bool set_deployed(const bool deploy); + + #if IS_KINEMATIC + + #if HAS_PROBE_XY_OFFSET + // Return true if the both nozzle and the probe can reach the given point. + // Note: This won't work on SCARA since the probe offset rotates with the arm. + static bool can_reach(const float &rx, const float &ry) { + return position_is_reachable(rx - offset_xy.x, ry - offset_xy.y) // The nozzle can go where it needs to go? + && position_is_reachable(rx, ry, ABS(PROBING_MARGIN)); // Can the nozzle also go near there? + } + #else + static bool can_reach(const float &rx, const float &ry) { + return position_is_reachable(rx, ry, PROBING_MARGIN); + } + #endif + + #else + + /** + * Return whether the given position is within the bed, and whether the nozzle + * can reach the position required to put the probe at the given position. + * + * Example: For a probe offset of -10,+10, then for the probe to reach 0,0 the + * nozzle must be be able to reach +10,-10. + */ + static bool can_reach(const float &rx, const float &ry) { + return position_is_reachable(rx - offset_xy.x, ry - offset_xy.y) + && WITHIN(rx, min_x() - fslop, max_x() + fslop) + && WITHIN(ry, min_y() - fslop, max_y() + fslop); + } + + #endif + + static void move_z_after_probing() { + #ifdef Z_AFTER_PROBING + do_z_clearance(Z_AFTER_PROBING, true, true, true); // Move down still permitted + #endif + } + static float probe_at_point(const float &rx, const float &ry, const ProbePtRaise raise_after=PROBE_PT_NONE, const uint8_t verbose_level=0, const bool probe_relative=true, const bool sanity_check=true); + static float probe_at_point(const xy_pos_t &pos, const ProbePtRaise raise_after=PROBE_PT_NONE, const uint8_t verbose_level=0, const bool probe_relative=true, const bool sanity_check=true) { + return probe_at_point(pos.x, pos.y, raise_after, verbose_level, probe_relative, sanity_check); + } + + #else + + static constexpr xyz_pos_t offset = xyz_pos_t({ 0, 0, 0 }); // See #16767 + + static bool set_deployed(const bool) { return false; } + + static bool can_reach(const float &rx, const float &ry) { return position_is_reachable(rx, ry); } + + #endif + + static void move_z_after_homing() { + #ifdef Z_AFTER_HOMING + do_z_clearance(Z_AFTER_HOMING, true, true, true); + #elif BOTH(Z_AFTER_PROBING, HAS_BED_PROBE) + move_z_after_probing(); + #endif + } + + static bool can_reach(const xy_pos_t &pos) { return can_reach(pos.x, pos.y); } + + static bool good_bounds(const xy_pos_t &lf, const xy_pos_t &rb) { + return ( + #if IS_KINEMATIC + can_reach(lf.x, 0) && can_reach(rb.x, 0) && can_reach(0, lf.y) && can_reach(0, rb.y) + #else + can_reach(lf) && can_reach(rb) + #endif + ); + } + + // Use offset_xy for read only access + // More optimal the XY offset is known to always be zero. + #if HAS_PROBE_XY_OFFSET + static const xy_pos_t &offset_xy; + #else + static constexpr xy_pos_t offset_xy = xy_pos_t({ 0, 0 }); // See #16767 + #endif + + static bool deploy() { return set_deployed(true); } + static bool stow() { return set_deployed(false); } + + #if HAS_BED_PROBE || HAS_LEVELING + #if IS_KINEMATIC + static constexpr float printable_radius = ( + TERN_(DELTA, DELTA_PRINTABLE_RADIUS) + TERN_(IS_SCARA, SCARA_PRINTABLE_RADIUS) + ); + static constexpr float probe_radius(const xy_pos_t &probe_offset_xy = offset_xy) { + return printable_radius - _MAX(PROBING_MARGIN, HYPOT(probe_offset_xy.x, probe_offset_xy.y)); + } + #endif + + static constexpr float _min_x(const xy_pos_t &probe_offset_xy = offset_xy) { + return TERN(IS_KINEMATIC, + (X_CENTER) - probe_radius(probe_offset_xy), + _MAX((X_MIN_BED) + (PROBING_MARGIN_LEFT), (X_MIN_POS) + probe_offset_xy.x) + ); + } + static constexpr float _max_x(const xy_pos_t &probe_offset_xy = offset_xy) { + return TERN(IS_KINEMATIC, + (X_CENTER) + probe_radius(probe_offset_xy), + _MIN((X_MAX_BED) - (PROBING_MARGIN_RIGHT), (X_MAX_POS) + probe_offset_xy.x) + ); + } + static constexpr float _min_y(const xy_pos_t &probe_offset_xy = offset_xy) { + return TERN(IS_KINEMATIC, + (Y_CENTER) - probe_radius(probe_offset_xy), + _MAX((Y_MIN_BED) + (PROBING_MARGIN_FRONT), (Y_MIN_POS) + probe_offset_xy.y) + ); + } + static constexpr float _max_y(const xy_pos_t &probe_offset_xy = offset_xy) { + return TERN(IS_KINEMATIC, + (Y_CENTER) + probe_radius(probe_offset_xy), + _MIN((Y_MAX_BED) - (PROBING_MARGIN_BACK), (Y_MAX_POS) + probe_offset_xy.y) + ); + } + + static float min_x() { return _min_x() - TERN0(NOZZLE_AS_PROBE, TERN0(HAS_HOME_OFFSET, home_offset.x)); } + static float max_x() { return _max_x() - TERN0(NOZZLE_AS_PROBE, TERN0(HAS_HOME_OFFSET, home_offset.x)); } + static float min_y() { return _min_y() - TERN0(NOZZLE_AS_PROBE, TERN0(HAS_HOME_OFFSET, home_offset.y)); } + static float max_y() { return _max_y() - TERN0(NOZZLE_AS_PROBE, TERN0(HAS_HOME_OFFSET, home_offset.y)); } + + // constexpr helpers used in build-time static_asserts, relying on default probe offsets. + class build_time { + static constexpr xyz_pos_t default_probe_xyz_offset = + #if HAS_BED_PROBE + NOZZLE_TO_PROBE_OFFSET + #else + { 0 } + #endif + ; + static constexpr xy_pos_t default_probe_xy_offset = { default_probe_xyz_offset.x, default_probe_xyz_offset.y }; + + public: + static constexpr bool can_reach(float x, float y) { + #if IS_KINEMATIC + return HYPOT2(x, y) <= sq(probe_radius(default_probe_xy_offset)); + #else + return WITHIN(x, _min_x(default_probe_xy_offset) - fslop, _max_x(default_probe_xy_offset) + fslop) + && WITHIN(y, _min_y(default_probe_xy_offset) - fslop, _max_y(default_probe_xy_offset) + fslop); + #endif + } + + static constexpr bool can_reach(const xy_pos_t &point) { return can_reach(point.x, point.y); } + }; + + #if NEEDS_THREE_PROBE_POINTS + // Retrieve three points to probe the bed. Any type exposing set(X,Y) may be used. + template <typename T> + static void get_three_points(T points[3]) { + #if HAS_FIXED_3POINT + #define VALIDATE_PROBE_PT(N) static_assert(Probe::build_time::can_reach(xy_pos_t{PROBE_PT_##N##_X, PROBE_PT_##N##_Y}), \ + "PROBE_PT_" STRINGIFY(N) "_(X|Y) is unreachable using default NOZZLE_TO_PROBE_OFFSET and PROBING_MARGIN"); + VALIDATE_PROBE_PT(1); VALIDATE_PROBE_PT(2); VALIDATE_PROBE_PT(3); + points[0].set(PROBE_PT_1_X, PROBE_PT_1_Y); + points[1].set(PROBE_PT_2_X, PROBE_PT_2_Y); + points[2].set(PROBE_PT_3_X, PROBE_PT_3_Y); + #else + #if IS_KINEMATIC + constexpr float SIN0 = 0.0, SIN120 = 0.866025, SIN240 = -0.866025, + COS0 = 1.0, COS120 = -0.5 , COS240 = -0.5; + points[0].set((X_CENTER) + probe_radius() * COS0, (Y_CENTER) + probe_radius() * SIN0); + points[1].set((X_CENTER) + probe_radius() * COS120, (Y_CENTER) + probe_radius() * SIN120); + points[2].set((X_CENTER) + probe_radius() * COS240, (Y_CENTER) + probe_radius() * SIN240); + #else + points[0].set(min_x(), min_y()); + points[1].set(max_x(), min_y()); + points[2].set((min_x() + max_x()) / 2, max_y()); + #endif + #endif + } + #endif + + #endif // HAS_BED_PROBE + + #if HAS_Z_SERVO_PROBE + static void servo_probe_init(); + #endif + + #if HAS_QUIET_PROBING + static void set_probing_paused(const bool p); + #endif + + #if ENABLED(PROBE_TARE) + static void tare_init(); + static bool tare(); + #endif + +private: + static bool probe_down_to_z(const float z, const feedRate_t fr_mm_s); + static void do_z_raise(const float z_raise); + static float run_z_probe(const bool sanity_check=true); +}; + +extern Probe probe; |