aboutsummaryrefslogtreecommitdiff
path: root/Marlin/src/module/stepper.h
diff options
context:
space:
mode:
Diffstat (limited to 'Marlin/src/module/stepper.h')
-rw-r--r--Marlin/src/module/stepper.h607
1 files changed, 607 insertions, 0 deletions
diff --git a/Marlin/src/module/stepper.h b/Marlin/src/module/stepper.h
new file mode 100644
index 0000000..639a1b2
--- /dev/null
+++ b/Marlin/src/module/stepper.h
@@ -0,0 +1,607 @@
+/**
+ * Marlin 3D Printer Firmware
+ * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
+ *
+ * Based on Sprinter and grbl.
+ * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <https://www.gnu.org/licenses/>.
+ *
+ */
+#pragma once
+
+/**
+ * stepper.h - stepper motor driver: executes motion plans of planner.c using the stepper motors
+ * Derived from Grbl
+ *
+ * Copyright (c) 2009-2011 Simen Svale Skogsrud
+ *
+ * Grbl is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * Grbl is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with Grbl. If not, see <https://www.gnu.org/licenses/>.
+ */
+
+#include "../inc/MarlinConfig.h"
+
+#include "planner.h"
+#include "stepper/indirection.h"
+#ifdef __AVR__
+ #include "speed_lookuptable.h"
+#endif
+
+// Disable multiple steps per ISR
+//#define DISABLE_MULTI_STEPPING
+
+//
+// Estimate the amount of time the Stepper ISR will take to execute
+//
+
+/**
+ * The method of calculating these cycle-constants is unclear.
+ * Most of them are no longer used directly for pulse timing, and exist
+ * only to estimate a maximum step rate based on the user's configuration.
+ * As 32-bit processors continue to diverge, maintaining cycle counts
+ * will become increasingly difficult and error-prone.
+ */
+
+#ifdef CPU_32_BIT
+ /**
+ * Duration of START_TIMED_PULSE
+ *
+ * ...as measured on an LPC1768 with a scope and converted to cycles.
+ * Not applicable to other 32-bit processors, but as long as others
+ * take longer, pulses will be longer. For example the SKR Pro
+ * (stm32f407zgt6) requires ~60 cyles.
+ */
+ #define TIMER_READ_ADD_AND_STORE_CYCLES 34UL
+
+ // The base ISR takes 792 cycles
+ #define ISR_BASE_CYCLES 792UL
+
+ // Linear advance base time is 64 cycles
+ #if ENABLED(LIN_ADVANCE)
+ #define ISR_LA_BASE_CYCLES 64UL
+ #else
+ #define ISR_LA_BASE_CYCLES 0UL
+ #endif
+
+ // S curve interpolation adds 40 cycles
+ #if ENABLED(S_CURVE_ACCELERATION)
+ #define ISR_S_CURVE_CYCLES 40UL
+ #else
+ #define ISR_S_CURVE_CYCLES 0UL
+ #endif
+
+ // Stepper Loop base cycles
+ #define ISR_LOOP_BASE_CYCLES 4UL
+
+ // To start the step pulse, in the worst case takes
+ #define ISR_START_STEPPER_CYCLES 13UL
+
+ // And each stepper (start + stop pulse) takes in worst case
+ #define ISR_STEPPER_CYCLES 16UL
+
+#else
+ // Cycles to perform actions in START_TIMED_PULSE
+ #define TIMER_READ_ADD_AND_STORE_CYCLES 13UL
+
+ // The base ISR takes 752 cycles
+ #define ISR_BASE_CYCLES 752UL
+
+ // Linear advance base time is 32 cycles
+ #if ENABLED(LIN_ADVANCE)
+ #define ISR_LA_BASE_CYCLES 32UL
+ #else
+ #define ISR_LA_BASE_CYCLES 0UL
+ #endif
+
+ // S curve interpolation adds 160 cycles
+ #if ENABLED(S_CURVE_ACCELERATION)
+ #define ISR_S_CURVE_CYCLES 160UL
+ #else
+ #define ISR_S_CURVE_CYCLES 0UL
+ #endif
+
+ // Stepper Loop base cycles
+ #define ISR_LOOP_BASE_CYCLES 32UL
+
+ // To start the step pulse, in the worst case takes
+ #define ISR_START_STEPPER_CYCLES 57UL
+
+ // And each stepper (start + stop pulse) takes in worst case
+ #define ISR_STEPPER_CYCLES 88UL
+
+#endif
+
+// Add time for each stepper
+#if HAS_X_STEP
+ #define ISR_X_STEPPER_CYCLES ISR_STEPPER_CYCLES
+#else
+ #define ISR_X_STEPPER_CYCLES 0UL
+#endif
+#if HAS_Y_STEP
+ #define ISR_Y_STEPPER_CYCLES ISR_STEPPER_CYCLES
+#else
+ #define ISR_START_Y_STEPPER_CYCLES 0UL
+ #define ISR_Y_STEPPER_CYCLES 0UL
+#endif
+#if HAS_Z_STEP
+ #define ISR_Z_STEPPER_CYCLES ISR_STEPPER_CYCLES
+#else
+ #define ISR_Z_STEPPER_CYCLES 0UL
+#endif
+
+// E is always interpolated, even for mixing extruders
+#define ISR_E_STEPPER_CYCLES ISR_STEPPER_CYCLES
+
+// If linear advance is disabled, the loop also handles them
+#if DISABLED(LIN_ADVANCE) && ENABLED(MIXING_EXTRUDER)
+ #define ISR_MIXING_STEPPER_CYCLES ((MIXING_STEPPERS) * (ISR_STEPPER_CYCLES))
+#else
+ #define ISR_MIXING_STEPPER_CYCLES 0UL
+#endif
+
+// And the total minimum loop time, not including the base
+#define MIN_ISR_LOOP_CYCLES (ISR_X_STEPPER_CYCLES + ISR_Y_STEPPER_CYCLES + ISR_Z_STEPPER_CYCLES + ISR_E_STEPPER_CYCLES + ISR_MIXING_STEPPER_CYCLES)
+
+// Calculate the minimum MPU cycles needed per pulse to enforce, limited to the max stepper rate
+#define _MIN_STEPPER_PULSE_CYCLES(N) _MAX(uint32_t((F_CPU) / (MAXIMUM_STEPPER_RATE)), ((F_CPU) / 500000UL) * (N))
+#if MINIMUM_STEPPER_PULSE
+ #define MIN_STEPPER_PULSE_CYCLES _MIN_STEPPER_PULSE_CYCLES(uint32_t(MINIMUM_STEPPER_PULSE))
+#elif HAS_DRIVER(LV8729)
+ #define MIN_STEPPER_PULSE_CYCLES uint32_t((((F_CPU) - 1) / 2000000) + 1) // 0.5µs, aka 500ns
+#else
+ #define MIN_STEPPER_PULSE_CYCLES _MIN_STEPPER_PULSE_CYCLES(1UL)
+#endif
+
+// Calculate the minimum pulse times (high and low)
+#if MINIMUM_STEPPER_PULSE && MAXIMUM_STEPPER_RATE
+ constexpr uint32_t _MIN_STEP_PERIOD_NS = 1000000000UL / MAXIMUM_STEPPER_RATE;
+ constexpr uint32_t _MIN_PULSE_HIGH_NS = 1000UL * MINIMUM_STEPPER_PULSE;
+ constexpr uint32_t _MIN_PULSE_LOW_NS = _MAX((_MIN_STEP_PERIOD_NS - _MIN(_MIN_STEP_PERIOD_NS, _MIN_PULSE_HIGH_NS)), _MIN_PULSE_HIGH_NS);
+#elif MINIMUM_STEPPER_PULSE
+ // Assume 50% duty cycle
+ constexpr uint32_t _MIN_PULSE_HIGH_NS = 1000UL * MINIMUM_STEPPER_PULSE;
+ constexpr uint32_t _MIN_PULSE_LOW_NS = _MIN_PULSE_HIGH_NS;
+#elif MAXIMUM_STEPPER_RATE
+ // Assume 50% duty cycle
+ constexpr uint32_t _MIN_PULSE_HIGH_NS = 500000000UL / MAXIMUM_STEPPER_RATE;
+ constexpr uint32_t _MIN_PULSE_LOW_NS = _MIN_PULSE_HIGH_NS;
+#else
+ #error "Expected at least one of MINIMUM_STEPPER_PULSE or MAXIMUM_STEPPER_RATE to be defined"
+#endif
+
+// But the user could be enforcing a minimum time, so the loop time is
+#define ISR_LOOP_CYCLES (ISR_LOOP_BASE_CYCLES + _MAX(MIN_STEPPER_PULSE_CYCLES, MIN_ISR_LOOP_CYCLES))
+
+// If linear advance is enabled, then it is handled separately
+#if ENABLED(LIN_ADVANCE)
+
+ // Estimate the minimum LA loop time
+ #if ENABLED(MIXING_EXTRUDER) // ToDo: ???
+ // HELP ME: What is what?
+ // Directions are set up for MIXING_STEPPERS - like before.
+ // Finding the right stepper may last up to MIXING_STEPPERS loops in get_next_stepper().
+ // These loops are a bit faster than advancing a bresenham counter.
+ // Always only one e-stepper is stepped.
+ #define MIN_ISR_LA_LOOP_CYCLES ((MIXING_STEPPERS) * (ISR_STEPPER_CYCLES))
+ #else
+ #define MIN_ISR_LA_LOOP_CYCLES ISR_STEPPER_CYCLES
+ #endif
+
+ // And the real loop time
+ #define ISR_LA_LOOP_CYCLES _MAX(MIN_STEPPER_PULSE_CYCLES, MIN_ISR_LA_LOOP_CYCLES)
+
+#else
+ #define ISR_LA_LOOP_CYCLES 0UL
+#endif
+
+// Now estimate the total ISR execution time in cycles given a step per ISR multiplier
+#define ISR_EXECUTION_CYCLES(R) (((ISR_BASE_CYCLES + ISR_S_CURVE_CYCLES + (ISR_LOOP_CYCLES) * (R) + ISR_LA_BASE_CYCLES + ISR_LA_LOOP_CYCLES)) / (R))
+
+// The maximum allowable stepping frequency when doing x128-x1 stepping (in Hz)
+#define MAX_STEP_ISR_FREQUENCY_128X ((F_CPU) / ISR_EXECUTION_CYCLES(128))
+#define MAX_STEP_ISR_FREQUENCY_64X ((F_CPU) / ISR_EXECUTION_CYCLES(64))
+#define MAX_STEP_ISR_FREQUENCY_32X ((F_CPU) / ISR_EXECUTION_CYCLES(32))
+#define MAX_STEP_ISR_FREQUENCY_16X ((F_CPU) / ISR_EXECUTION_CYCLES(16))
+#define MAX_STEP_ISR_FREQUENCY_8X ((F_CPU) / ISR_EXECUTION_CYCLES(8))
+#define MAX_STEP_ISR_FREQUENCY_4X ((F_CPU) / ISR_EXECUTION_CYCLES(4))
+#define MAX_STEP_ISR_FREQUENCY_2X ((F_CPU) / ISR_EXECUTION_CYCLES(2))
+#define MAX_STEP_ISR_FREQUENCY_1X ((F_CPU) / ISR_EXECUTION_CYCLES(1))
+
+// The minimum step ISR rate used by ADAPTIVE_STEP_SMOOTHING to target 50% CPU usage
+// This does not account for the possibility of multi-stepping.
+// Perhaps DISABLE_MULTI_STEPPING should be required with ADAPTIVE_STEP_SMOOTHING.
+#define MIN_STEP_ISR_FREQUENCY (MAX_STEP_ISR_FREQUENCY_1X / 2)
+
+//
+// Stepper class definition
+//
+class Stepper {
+
+ public:
+
+ #if EITHER(HAS_EXTRA_ENDSTOPS, Z_STEPPER_AUTO_ALIGN)
+ static bool separate_multi_axis;
+ #endif
+
+ #if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
+ #if HAS_MOTOR_CURRENT_PWM
+ #ifndef PWM_MOTOR_CURRENT
+ #define PWM_MOTOR_CURRENT DEFAULT_PWM_MOTOR_CURRENT
+ #endif
+ #define MOTOR_CURRENT_COUNT 3
+ #elif HAS_MOTOR_CURRENT_SPI
+ static constexpr uint32_t digipot_count[] = DIGIPOT_MOTOR_CURRENT;
+ #define MOTOR_CURRENT_COUNT COUNT(Stepper::digipot_count)
+ #endif
+ static bool initialized;
+ static uint32_t motor_current_setting[MOTOR_CURRENT_COUNT]; // Initialized by settings.load()
+ #endif
+
+ // Last-moved extruder, as set when the last movement was fetched from planner
+ #if HAS_MULTI_EXTRUDER
+ static uint8_t last_moved_extruder;
+ #else
+ static constexpr uint8_t last_moved_extruder = 0;
+ #endif
+
+ private:
+
+ static block_t* current_block; // A pointer to the block currently being traced
+
+ static uint8_t last_direction_bits, // The next stepping-bits to be output
+ axis_did_move; // Last Movement in the given direction is not null, as computed when the last movement was fetched from planner
+
+ static bool abort_current_block; // Signals to the stepper that current block should be aborted
+
+ #if ENABLED(X_DUAL_ENDSTOPS)
+ static bool locked_X_motor, locked_X2_motor;
+ #endif
+ #if ENABLED(Y_DUAL_ENDSTOPS)
+ static bool locked_Y_motor, locked_Y2_motor;
+ #endif
+ #if EITHER(Z_MULTI_ENDSTOPS, Z_STEPPER_AUTO_ALIGN)
+ static bool locked_Z_motor, locked_Z2_motor
+ #if NUM_Z_STEPPER_DRIVERS >= 3
+ , locked_Z3_motor
+ #if NUM_Z_STEPPER_DRIVERS >= 4
+ , locked_Z4_motor
+ #endif
+ #endif
+ ;
+ #endif
+
+ static uint32_t acceleration_time, deceleration_time; // time measured in Stepper Timer ticks
+ static uint8_t steps_per_isr; // Count of steps to perform per Stepper ISR call
+
+ #if ENABLED(ADAPTIVE_STEP_SMOOTHING)
+ static uint8_t oversampling_factor; // Oversampling factor (log2(multiplier)) to increase temporal resolution of axis
+ #else
+ static constexpr uint8_t oversampling_factor = 0;
+ #endif
+
+ // Delta error variables for the Bresenham line tracer
+ static xyze_long_t delta_error;
+ static xyze_ulong_t advance_dividend;
+ static uint32_t advance_divisor,
+ step_events_completed, // The number of step events executed in the current block
+ accelerate_until, // The point from where we need to stop acceleration
+ decelerate_after, // The point from where we need to start decelerating
+ step_event_count; // The total event count for the current block
+
+ #if EITHER(HAS_MULTI_EXTRUDER, MIXING_EXTRUDER)
+ static uint8_t stepper_extruder;
+ #else
+ static constexpr uint8_t stepper_extruder = 0;
+ #endif
+
+ #if ENABLED(S_CURVE_ACCELERATION)
+ static int32_t bezier_A, // A coefficient in Bézier speed curve
+ bezier_B, // B coefficient in Bézier speed curve
+ bezier_C; // C coefficient in Bézier speed curve
+ static uint32_t bezier_F, // F coefficient in Bézier speed curve
+ bezier_AV; // AV coefficient in Bézier speed curve
+ #ifdef __AVR__
+ static bool A_negative; // If A coefficient was negative
+ #endif
+ static bool bezier_2nd_half; // If Bézier curve has been initialized or not
+ #endif
+
+ #if ENABLED(LIN_ADVANCE)
+ static constexpr uint32_t LA_ADV_NEVER = 0xFFFFFFFF;
+ static uint32_t nextAdvanceISR, LA_isr_rate;
+ static uint16_t LA_current_adv_steps, LA_final_adv_steps, LA_max_adv_steps; // Copy from current executed block. Needed because current_block is set to NULL "too early".
+ static int8_t LA_steps;
+ static bool LA_use_advance_lead;
+ #endif
+
+ #if ENABLED(INTEGRATED_BABYSTEPPING)
+ static constexpr uint32_t BABYSTEP_NEVER = 0xFFFFFFFF;
+ static uint32_t nextBabystepISR;
+ #endif
+
+ #if ENABLED(DIRECT_STEPPING)
+ static page_step_state_t page_step_state;
+ #endif
+
+ static int32_t ticks_nominal;
+ #if DISABLED(S_CURVE_ACCELERATION)
+ static uint32_t acc_step_rate; // needed for deceleration start point
+ #endif
+
+ // Exact steps at which an endstop was triggered
+ static xyz_long_t endstops_trigsteps;
+
+ // Positions of stepper motors, in step units
+ static xyze_long_t count_position;
+
+ // Current stepper motor directions (+1 or -1)
+ static xyze_int8_t count_direction;
+
+ #if ENABLED(LASER_POWER_INLINE_TRAPEZOID)
+
+ typedef struct {
+ bool enabled; // Trapezoid needed flag (i.e., laser on, planner in control)
+ uint8_t cur_power; // Current laser power
+ bool cruise_set; // Power set up for cruising?
+
+ #if DISABLED(LASER_POWER_INLINE_TRAPEZOID_CONT)
+ uint32_t last_step_count, // Step count from the last update
+ acc_step_count; // Bresenham counter for laser accel/decel
+ #else
+ uint16_t till_update; // Countdown to the next update
+ #endif
+ } stepper_laser_t;
+
+ static stepper_laser_t laser_trap;
+
+ #endif
+
+ public:
+ // Initialize stepper hardware
+ static void init();
+
+ // Interrupt Service Routine and phases
+
+ // The stepper subsystem goes to sleep when it runs out of things to execute.
+ // Call this to notify the subsystem that it is time to go to work.
+ static inline void wake_up() { ENABLE_STEPPER_DRIVER_INTERRUPT(); }
+
+ static inline bool is_awake() { return STEPPER_ISR_ENABLED(); }
+
+ static inline bool suspend() {
+ const bool awake = is_awake();
+ if (awake) DISABLE_STEPPER_DRIVER_INTERRUPT();
+ return awake;
+ }
+
+ // The ISR scheduler
+ static void isr();
+
+ // The stepper pulse ISR phase
+ static void pulse_phase_isr();
+
+ // The stepper block processing ISR phase
+ static uint32_t block_phase_isr();
+
+ #if ENABLED(LIN_ADVANCE)
+ // The Linear advance ISR phase
+ static uint32_t advance_isr();
+ FORCE_INLINE static void initiateLA() { nextAdvanceISR = 0; }
+ #endif
+
+ #if ENABLED(INTEGRATED_BABYSTEPPING)
+ // The Babystepping ISR phase
+ static uint32_t babystepping_isr();
+ FORCE_INLINE static void initiateBabystepping() {
+ if (nextBabystepISR == BABYSTEP_NEVER) {
+ nextBabystepISR = 0;
+ wake_up();
+ }
+ }
+ #endif
+
+ // Check if the given block is busy or not - Must not be called from ISR contexts
+ static bool is_block_busy(const block_t* const block);
+
+ // Get the position of a stepper, in steps
+ static int32_t position(const AxisEnum axis);
+
+ // Set the current position in steps
+ static void set_position(const int32_t &a, const int32_t &b, const int32_t &c, const int32_t &e);
+ static inline void set_position(const xyze_long_t &abce) { set_position(abce.a, abce.b, abce.c, abce.e); }
+ static void set_axis_position(const AxisEnum a, const int32_t &v);
+
+ // Report the positions of the steppers, in steps
+ static void report_a_position(const xyz_long_t &pos);
+ static void report_positions();
+
+ // Discard current block and free any resources
+ FORCE_INLINE static void discard_current_block() {
+ #if ENABLED(DIRECT_STEPPING)
+ if (IS_PAGE(current_block))
+ page_manager.free_page(current_block->page_idx);
+ #endif
+ current_block = nullptr;
+ axis_did_move = 0;
+ planner.release_current_block();
+ }
+
+ // Quickly stop all steppers
+ FORCE_INLINE static void quick_stop() { abort_current_block = true; }
+
+ // The direction of a single motor
+ FORCE_INLINE static bool motor_direction(const AxisEnum axis) { return TEST(last_direction_bits, axis); }
+
+ // The last movement direction was not null on the specified axis. Note that motor direction is not necessarily the same.
+ FORCE_INLINE static bool axis_is_moving(const AxisEnum axis) { return TEST(axis_did_move, axis); }
+
+ // Handle a triggered endstop
+ static void endstop_triggered(const AxisEnum axis);
+
+ // Triggered position of an axis in steps
+ static int32_t triggered_position(const AxisEnum axis);
+
+ #if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
+ static void set_digipot_value_spi(const int16_t address, const int16_t value);
+ static void set_digipot_current(const uint8_t driver, const int16_t current);
+ #endif
+
+ #if HAS_MICROSTEPS
+ static void microstep_ms(const uint8_t driver, const int8_t ms1, const int8_t ms2, const int8_t ms3);
+ static void microstep_mode(const uint8_t driver, const uint8_t stepping);
+ static void microstep_readings();
+ #endif
+
+ #if EITHER(HAS_EXTRA_ENDSTOPS, Z_STEPPER_AUTO_ALIGN)
+ FORCE_INLINE static void set_separate_multi_axis(const bool state) { separate_multi_axis = state; }
+ #endif
+ #if ENABLED(X_DUAL_ENDSTOPS)
+ FORCE_INLINE static void set_x_lock(const bool state) { locked_X_motor = state; }
+ FORCE_INLINE static void set_x2_lock(const bool state) { locked_X2_motor = state; }
+ #endif
+ #if ENABLED(Y_DUAL_ENDSTOPS)
+ FORCE_INLINE static void set_y_lock(const bool state) { locked_Y_motor = state; }
+ FORCE_INLINE static void set_y2_lock(const bool state) { locked_Y2_motor = state; }
+ #endif
+ #if EITHER(Z_MULTI_ENDSTOPS, Z_STEPPER_AUTO_ALIGN)
+ FORCE_INLINE static void set_z1_lock(const bool state) { locked_Z_motor = state; }
+ FORCE_INLINE static void set_z2_lock(const bool state) { locked_Z2_motor = state; }
+ #if NUM_Z_STEPPER_DRIVERS >= 3
+ FORCE_INLINE static void set_z3_lock(const bool state) { locked_Z3_motor = state; }
+ #if NUM_Z_STEPPER_DRIVERS >= 4
+ FORCE_INLINE static void set_z4_lock(const bool state) { locked_Z4_motor = state; }
+ #endif
+ #endif
+ static inline void set_all_z_lock(const bool lock, const int8_t except=-1) {
+ set_z1_lock(lock ^ (except == 0));
+ set_z2_lock(lock ^ (except == 1));
+ #if NUM_Z_STEPPER_DRIVERS >= 3
+ set_z3_lock(lock ^ (except == 2));
+ #if NUM_Z_STEPPER_DRIVERS >= 4
+ set_z4_lock(lock ^ (except == 3));
+ #endif
+ #endif
+ }
+ #endif
+
+ #if ENABLED(BABYSTEPPING)
+ static void do_babystep(const AxisEnum axis, const bool direction); // perform a short step with a single stepper motor, outside of any convention
+ #endif
+
+ #if HAS_MOTOR_CURRENT_PWM
+ static void refresh_motor_power();
+ #endif
+
+ // Update direction states for all steppers
+ static void set_directions();
+
+ // Set direction bits and update all stepper DIR states
+ static void set_directions(const uint8_t bits) {
+ last_direction_bits = bits;
+ set_directions();
+ }
+
+ private:
+
+ // Set the current position in steps
+ static void _set_position(const int32_t &a, const int32_t &b, const int32_t &c, const int32_t &e);
+ FORCE_INLINE static void _set_position(const abce_long_t &spos) { _set_position(spos.a, spos.b, spos.c, spos.e); }
+
+ FORCE_INLINE static uint32_t calc_timer_interval(uint32_t step_rate, uint8_t* loops) {
+ uint32_t timer;
+
+ // Scale the frequency, as requested by the caller
+ step_rate <<= oversampling_factor;
+
+ uint8_t multistep = 1;
+ #if DISABLED(DISABLE_MULTI_STEPPING)
+
+ // The stepping frequency limits for each multistepping rate
+ static const uint32_t limit[] PROGMEM = {
+ ( MAX_STEP_ISR_FREQUENCY_1X ),
+ ( MAX_STEP_ISR_FREQUENCY_2X >> 1),
+ ( MAX_STEP_ISR_FREQUENCY_4X >> 2),
+ ( MAX_STEP_ISR_FREQUENCY_8X >> 3),
+ ( MAX_STEP_ISR_FREQUENCY_16X >> 4),
+ ( MAX_STEP_ISR_FREQUENCY_32X >> 5),
+ ( MAX_STEP_ISR_FREQUENCY_64X >> 6),
+ (MAX_STEP_ISR_FREQUENCY_128X >> 7)
+ };
+
+ // Select the proper multistepping
+ uint8_t idx = 0;
+ while (idx < 7 && step_rate > (uint32_t)pgm_read_dword(&limit[idx])) {
+ step_rate >>= 1;
+ multistep <<= 1;
+ ++idx;
+ };
+ #else
+ NOMORE(step_rate, uint32_t(MAX_STEP_ISR_FREQUENCY_1X));
+ #endif
+ *loops = multistep;
+
+ #ifdef CPU_32_BIT
+ // In case of high-performance processor, it is able to calculate in real-time
+ timer = uint32_t(STEPPER_TIMER_RATE) / step_rate;
+ #else
+ constexpr uint32_t min_step_rate = (F_CPU) / 500000U;
+ NOLESS(step_rate, min_step_rate);
+ step_rate -= min_step_rate; // Correct for minimal speed
+ if (step_rate >= (8 * 256)) { // higher step rate
+ const uint8_t tmp_step_rate = (step_rate & 0x00FF);
+ const uint16_t table_address = (uint16_t)&speed_lookuptable_fast[(uint8_t)(step_rate >> 8)][0],
+ gain = (uint16_t)pgm_read_word(table_address + 2);
+ timer = MultiU16X8toH16(tmp_step_rate, gain);
+ timer = (uint16_t)pgm_read_word(table_address) - timer;
+ }
+ else { // lower step rates
+ uint16_t table_address = (uint16_t)&speed_lookuptable_slow[0][0];
+ table_address += ((step_rate) >> 1) & 0xFFFC;
+ timer = (uint16_t)pgm_read_word(table_address)
+ - (((uint16_t)pgm_read_word(table_address + 2) * (uint8_t)(step_rate & 0x0007)) >> 3);
+ }
+ // (there is no need to limit the timer value here. All limits have been
+ // applied above, and AVR is able to keep up at 30khz Stepping ISR rate)
+ #endif
+
+ return timer;
+ }
+
+ #if ENABLED(S_CURVE_ACCELERATION)
+ static void _calc_bezier_curve_coeffs(const int32_t v0, const int32_t v1, const uint32_t av);
+ static int32_t _eval_bezier_curve(const uint32_t curr_step);
+ #endif
+
+ #if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
+ static void digipot_init();
+ #endif
+
+ #if HAS_MICROSTEPS
+ static void microstep_init();
+ #endif
+
+};
+
+extern Stepper stepper;