diff options
Diffstat (limited to 'Marlin/src/module/temperature.cpp')
-rw-r--r-- | Marlin/src/module/temperature.cpp | 3578 |
1 files changed, 3578 insertions, 0 deletions
diff --git a/Marlin/src/module/temperature.cpp b/Marlin/src/module/temperature.cpp new file mode 100644 index 0000000..b5820e1 --- /dev/null +++ b/Marlin/src/module/temperature.cpp @@ -0,0 +1,3578 @@ +/** + * Marlin 3D Printer Firmware + * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] + * + * Based on Sprinter and grbl. + * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <https://www.gnu.org/licenses/>. + * + */ + +/** + * temperature.cpp - temperature control + */ + +// Useful when debugging thermocouples +//#define IGNORE_THERMOCOUPLE_ERRORS + +#include "../MarlinCore.h" +#include "../HAL/shared/Delay.h" +#include "../lcd/marlinui.h" + +#include "temperature.h" +#include "endstops.h" +#include "planner.h" + +#if ENABLED(EMERGENCY_PARSER) + #include "motion.h" +#endif + +#if ENABLED(DWIN_CREALITY_LCD) + #include "../lcd/dwin/e3v2/dwin.h" +#endif + +#if ENABLED(EXTENSIBLE_UI) + #include "../lcd/extui/ui_api.h" +#endif + +#if MAX6675_0_IS_MAX31865 || MAX6675_1_IS_MAX31865 + #include <Adafruit_MAX31865.h> + #if MAX6675_0_IS_MAX31865 && !defined(MAX31865_CS_PIN) && PIN_EXISTS(MAX6675_SS) + #define MAX31865_CS_PIN MAX6675_SS_PIN + #endif + #if MAX6675_1_IS_MAX31865 && !defined(MAX31865_CS2_PIN) && PIN_EXISTS(MAX6675_SS2) + #define MAX31865_CS2_PIN MAX6675_SS2_PIN + #endif + #ifndef MAX31865_MOSI_PIN + #define MAX31865_MOSI_PIN SD_MOSI_PIN + #endif + #ifndef MAX31865_MISO_PIN + #define MAX31865_MISO_PIN MAX6675_DO_PIN + #endif + #ifndef MAX31865_SCK_PIN + #define MAX31865_SCK_PIN MAX6675_SCK_PIN + #endif + #if MAX6675_0_IS_MAX31865 && PIN_EXISTS(MAX31865_CS) + #define HAS_MAX31865 1 + Adafruit_MAX31865 max31865_0 = Adafruit_MAX31865(MAX31865_CS_PIN + #if MAX31865_CS_PIN != MAX6675_SS_PIN + , MAX31865_MOSI_PIN, MAX31865_MISO_PIN, MAX31865_SCK_PIN // For software SPI also set MOSI/MISO/SCK + #endif + ); + #endif + #if MAX6675_1_IS_MAX31865 && PIN_EXISTS(MAX31865_CS2) + #define HAS_MAX31865 1 + Adafruit_MAX31865 max31865_1 = Adafruit_MAX31865(MAX31865_CS2_PIN + #if MAX31865_CS2_PIN != MAX6675_SS2_PIN + , MAX31865_MOSI_PIN, MAX31865_MISO_PIN, MAX31865_SCK_PIN // For software SPI also set MOSI/MISO/SCK + #endif + ); + #endif +#endif + +#if EITHER(HEATER_0_USES_MAX6675, HEATER_1_USES_MAX6675) && PINS_EXIST(MAX6675_SCK, MAX6675_DO) + #define MAX6675_SEPARATE_SPI 1 +#endif + +#if MAX6675_SEPARATE_SPI + #include "../libs/private_spi.h" +#endif + +#if ENABLED(PID_EXTRUSION_SCALING) + #include "stepper.h" +#endif + +#if ENABLED(BABYSTEPPING) && DISABLED(INTEGRATED_BABYSTEPPING) + #include "../feature/babystep.h" +#endif + +#include "printcounter.h" + +#if ENABLED(FILAMENT_WIDTH_SENSOR) + #include "../feature/filwidth.h" +#endif + +#if HAS_POWER_MONITOR + #include "../feature/power_monitor.h" +#endif + +#if ENABLED(EMERGENCY_PARSER) + #include "../feature/e_parser.h" +#endif + +#if ENABLED(PRINTER_EVENT_LEDS) + #include "../feature/leds/printer_event_leds.h" +#endif + +#if ENABLED(JOYSTICK) + #include "../feature/joystick.h" +#endif + +#if ENABLED(SINGLENOZZLE) + #include "tool_change.h" +#endif + +#if USE_BEEPER + #include "../libs/buzzer.h" +#endif + +#if HAS_SERVOS + #include "./servo.h" +#endif + +#if ANY(HEATER_0_USES_THERMISTOR, HEATER_1_USES_THERMISTOR, HEATER_2_USES_THERMISTOR, HEATER_3_USES_THERMISTOR, \ + HEATER_4_USES_THERMISTOR, HEATER_5_USES_THERMISTOR, HEATER_6_USES_THERMISTOR, HEATER_7_USES_THERMISTOR ) + #define HAS_HOTEND_THERMISTOR 1 +#endif + +#if HAS_HOTEND_THERMISTOR + #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT) + static const temp_entry_t* heater_ttbl_map[2] = { HEATER_0_TEMPTABLE, HEATER_1_TEMPTABLE }; + static constexpr uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN }; + #else + #define NEXT_TEMPTABLE(N) ,HEATER_##N##_TEMPTABLE + #define NEXT_TEMPTABLE_LEN(N) ,HEATER_##N##_TEMPTABLE_LEN + static const temp_entry_t* heater_ttbl_map[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_TEMPTABLE REPEAT_S(1, HOTENDS, NEXT_TEMPTABLE)); + static constexpr uint8_t heater_ttbllen_map[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_TEMPTABLE_LEN REPEAT_S(1, HOTENDS, NEXT_TEMPTABLE_LEN)); + #endif +#endif + +Temperature thermalManager; + +const char str_t_thermal_runaway[] PROGMEM = STR_T_THERMAL_RUNAWAY, + str_t_heating_failed[] PROGMEM = STR_T_HEATING_FAILED; + +/** + * Macros to include the heater id in temp errors. The compiler's dead-code + * elimination should (hopefully) optimize out the unused strings. + */ + +#if HAS_HEATED_BED + #define _BED_PSTR(h) (h) == H_BED ? GET_TEXT(MSG_BED) : +#else + #define _BED_PSTR(h) +#endif +#if HAS_HEATED_CHAMBER + #define _CHAMBER_PSTR(h) (h) == H_CHAMBER ? GET_TEXT(MSG_CHAMBER) : +#else + #define _CHAMBER_PSTR(h) +#endif +#define _E_PSTR(h,N) ((HOTENDS) > N && (h) == N) ? PSTR(LCD_STR_E##N) : +#define HEATER_PSTR(h) _BED_PSTR(h) _CHAMBER_PSTR(h) _E_PSTR(h,1) _E_PSTR(h,2) _E_PSTR(h,3) _E_PSTR(h,4) _E_PSTR(h,5) PSTR(LCD_STR_E0) + +// public: + +#if ENABLED(NO_FAN_SLOWING_IN_PID_TUNING) + bool Temperature::adaptive_fan_slowing = true; +#endif + +#if HAS_HOTEND + hotend_info_t Temperature::temp_hotend[HOTEND_TEMPS]; // = { 0 } + const uint16_t Temperature::heater_maxtemp[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_MAXTEMP, HEATER_1_MAXTEMP, HEATER_2_MAXTEMP, HEATER_3_MAXTEMP, HEATER_4_MAXTEMP, HEATER_5_MAXTEMP, HEATER_6_MAXTEMP, HEATER_7_MAXTEMP); +#endif + +#if ENABLED(AUTO_POWER_E_FANS) + uint8_t Temperature::autofan_speed[HOTENDS]; // = { 0 } +#endif + +#if ENABLED(AUTO_POWER_CHAMBER_FAN) + uint8_t Temperature::chamberfan_speed; // = 0 +#endif + +#if HAS_FAN + + uint8_t Temperature::fan_speed[FAN_COUNT]; // = { 0 } + + #if ENABLED(EXTRA_FAN_SPEED) + uint8_t Temperature::old_fan_speed[FAN_COUNT], Temperature::new_fan_speed[FAN_COUNT]; + + void Temperature::set_temp_fan_speed(const uint8_t fan, const uint16_t tmp_temp) { + switch (tmp_temp) { + case 1: + set_fan_speed(fan, old_fan_speed[fan]); + break; + case 2: + old_fan_speed[fan] = fan_speed[fan]; + set_fan_speed(fan, new_fan_speed[fan]); + break; + default: + new_fan_speed[fan] = _MIN(tmp_temp, 255U); + break; + } + } + + #endif + + #if EITHER(PROBING_FANS_OFF, ADVANCED_PAUSE_FANS_PAUSE) + bool Temperature::fans_paused; // = false; + uint8_t Temperature::saved_fan_speed[FAN_COUNT]; // = { 0 } + #endif + + #if ENABLED(ADAPTIVE_FAN_SLOWING) + uint8_t Temperature::fan_speed_scaler[FAN_COUNT] = ARRAY_N(FAN_COUNT, 128, 128, 128, 128, 128, 128, 128, 128); + #endif + + /** + * Set the print fan speed for a target extruder + */ + void Temperature::set_fan_speed(uint8_t target, uint16_t speed) { + + NOMORE(speed, 255U); + + #if ENABLED(SINGLENOZZLE_STANDBY_FAN) + if (target != active_extruder) { + if (target < EXTRUDERS) singlenozzle_fan_speed[target] = speed; + return; + } + #endif + + TERN_(SINGLENOZZLE, target = 0); // Always use fan index 0 with SINGLENOZZLE + + if (target >= FAN_COUNT) return; + + fan_speed[target] = speed; + + TERN_(REPORT_FAN_CHANGE, report_fan_speed(target)); + } + + #if ENABLED(REPORT_FAN_CHANGE) + /** + * Report print fan speed for a target extruder + */ + void Temperature::report_fan_speed(const uint8_t target) { + if (target >= FAN_COUNT) return; + PORT_REDIRECT(SERIAL_ALL); + SERIAL_ECHOLNPAIR("M106 P", target, " S", fan_speed[target]); + } + #endif + + #if EITHER(PROBING_FANS_OFF, ADVANCED_PAUSE_FANS_PAUSE) + + void Temperature::set_fans_paused(const bool p) { + if (p != fans_paused) { + fans_paused = p; + if (p) + FANS_LOOP(i) { saved_fan_speed[i] = fan_speed[i]; fan_speed[i] = 0; } + else + FANS_LOOP(i) fan_speed[i] = saved_fan_speed[i]; + } + } + + #endif + +#endif // HAS_FAN + +#if WATCH_HOTENDS + hotend_watch_t Temperature::watch_hotend[HOTENDS]; // = { { 0 } } +#endif +#if HEATER_IDLE_HANDLER + Temperature::heater_idle_t Temperature::heater_idle[NR_HEATER_IDLE]; // = { { 0 } } +#endif + +#if HAS_HEATED_BED + bed_info_t Temperature::temp_bed; // = { 0 } + // Init min and max temp with extreme values to prevent false errors during startup + #ifdef BED_MINTEMP + int16_t Temperature::mintemp_raw_BED = HEATER_BED_RAW_LO_TEMP; + #endif + #ifdef BED_MAXTEMP + int16_t Temperature::maxtemp_raw_BED = HEATER_BED_RAW_HI_TEMP; + #endif + TERN_(WATCH_BED, bed_watch_t Temperature::watch_bed); // = { 0 } + IF_DISABLED(PIDTEMPBED, millis_t Temperature::next_bed_check_ms); +#endif // HAS_HEATED_BED + +#if HAS_TEMP_CHAMBER + chamber_info_t Temperature::temp_chamber; // = { 0 } + #if HAS_HEATED_CHAMBER + int16_t fan_chamber_pwm; + bool flag_chamber_off; + bool flag_chamber_excess_heat = false; + millis_t next_cool_check_ms_2 = 0; + float old_temp = 9999; + #ifdef CHAMBER_MINTEMP + int16_t Temperature::mintemp_raw_CHAMBER = HEATER_CHAMBER_RAW_LO_TEMP; + #endif + #ifdef CHAMBER_MAXTEMP + int16_t Temperature::maxtemp_raw_CHAMBER = HEATER_CHAMBER_RAW_HI_TEMP; + #endif + #if WATCH_CHAMBER + chamber_watch_t Temperature::watch_chamber{0}; + #endif + millis_t Temperature::next_chamber_check_ms; + #endif // HAS_HEATED_CHAMBER +#endif // HAS_TEMP_CHAMBER + +#if HAS_TEMP_PROBE + probe_info_t Temperature::temp_probe; // = { 0 } +#endif + +// Initialized by settings.load() +#if ENABLED(PIDTEMP) + //hotend_pid_t Temperature::pid[HOTENDS]; +#endif + +#if ENABLED(PREVENT_COLD_EXTRUSION) + bool Temperature::allow_cold_extrude = false; + int16_t Temperature::extrude_min_temp = EXTRUDE_MINTEMP; +#endif + +// private: + +#if EARLY_WATCHDOG + bool Temperature::inited = false; +#endif + +#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT) + uint16_t Temperature::redundant_temperature_raw = 0; + float Temperature::redundant_temperature = 0.0; +#endif + +volatile bool Temperature::raw_temps_ready = false; + +#if ENABLED(PID_EXTRUSION_SCALING) + int32_t Temperature::last_e_position, Temperature::lpq[LPQ_MAX_LEN]; + lpq_ptr_t Temperature::lpq_ptr = 0; +#endif + +#define TEMPDIR(N) ((HEATER_##N##_RAW_LO_TEMP) < (HEATER_##N##_RAW_HI_TEMP) ? 1 : -1) + +#if HAS_HOTEND + // Init mintemp and maxtemp with extreme values to prevent false errors during startup + constexpr temp_range_t sensor_heater_0 { HEATER_0_RAW_LO_TEMP, HEATER_0_RAW_HI_TEMP, 0, 16383 }, + sensor_heater_1 { HEATER_1_RAW_LO_TEMP, HEATER_1_RAW_HI_TEMP, 0, 16383 }, + sensor_heater_2 { HEATER_2_RAW_LO_TEMP, HEATER_2_RAW_HI_TEMP, 0, 16383 }, + sensor_heater_3 { HEATER_3_RAW_LO_TEMP, HEATER_3_RAW_HI_TEMP, 0, 16383 }, + sensor_heater_4 { HEATER_4_RAW_LO_TEMP, HEATER_4_RAW_HI_TEMP, 0, 16383 }, + sensor_heater_5 { HEATER_5_RAW_LO_TEMP, HEATER_5_RAW_HI_TEMP, 0, 16383 }, + sensor_heater_6 { HEATER_6_RAW_LO_TEMP, HEATER_6_RAW_HI_TEMP, 0, 16383 }, + sensor_heater_7 { HEATER_7_RAW_LO_TEMP, HEATER_7_RAW_HI_TEMP, 0, 16383 }; + + temp_range_t Temperature::temp_range[HOTENDS] = ARRAY_BY_HOTENDS(sensor_heater_0, sensor_heater_1, sensor_heater_2, sensor_heater_3, sensor_heater_4, sensor_heater_5, sensor_heater_6, sensor_heater_7); +#endif + +#ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED + uint8_t Temperature::consecutive_low_temperature_error[HOTENDS] = { 0 }; +#endif + +#ifdef MILLISECONDS_PREHEAT_TIME + millis_t Temperature::preheat_end_time[HOTENDS] = { 0 }; +#endif + +#if HAS_AUTO_FAN + millis_t Temperature::next_auto_fan_check_ms = 0; +#endif + +#if ENABLED(FAN_SOFT_PWM) + uint8_t Temperature::soft_pwm_amount_fan[FAN_COUNT], + Temperature::soft_pwm_count_fan[FAN_COUNT]; +#endif + +#if ENABLED(SINGLENOZZLE_STANDBY_TEMP) + uint16_t Temperature::singlenozzle_temp[EXTRUDERS]; + #if HAS_FAN + uint8_t Temperature::singlenozzle_fan_speed[EXTRUDERS]; + #endif +#endif + +#if ENABLED(PROBING_HEATERS_OFF) + bool Temperature::paused; +#endif + +// public: + +#if HAS_ADC_BUTTONS + uint32_t Temperature::current_ADCKey_raw = HAL_ADC_RANGE; + uint16_t Temperature::ADCKey_count = 0; +#endif + +#if ENABLED(PID_EXTRUSION_SCALING) + int16_t Temperature::lpq_len; // Initialized in settings.cpp +#endif + +#if HAS_PID_HEATING + + inline void say_default_() { SERIAL_ECHOPGM("#define DEFAULT_"); } + + /** + * PID Autotuning (M303) + * + * Alternately heat and cool the nozzle, observing its behavior to + * determine the best PID values to achieve a stable temperature. + * Needs sufficient heater power to make some overshoot at target + * temperature to succeed. + */ + void Temperature::PID_autotune(const float &target, const heater_id_t heater_id, const int8_t ncycles, const bool set_result/*=false*/) { + float current_temp = 0.0; + int cycles = 0; + bool heating = true; + + millis_t next_temp_ms = millis(), t1 = next_temp_ms, t2 = next_temp_ms; + long t_high = 0, t_low = 0; + + long bias, d; + PID_t tune_pid = { 0, 0, 0 }; + float maxT = 0, minT = 10000; + + const bool isbed = (heater_id == H_BED); + + #if HAS_PID_FOR_BOTH + #define GHV(B,H) (isbed ? (B) : (H)) + #define SHV(B,H) do{ if (isbed) temp_bed.soft_pwm_amount = B; else temp_hotend[heater_id].soft_pwm_amount = H; }while(0) + #define ONHEATINGSTART() (isbed ? printerEventLEDs.onBedHeatingStart() : printerEventLEDs.onHotendHeatingStart()) + #define ONHEATING(S,C,T) (isbed ? printerEventLEDs.onBedHeating(S,C,T) : printerEventLEDs.onHotendHeating(S,C,T)) + #elif ENABLED(PIDTEMPBED) + #define GHV(B,H) B + #define SHV(B,H) (temp_bed.soft_pwm_amount = B) + #define ONHEATINGSTART() printerEventLEDs.onBedHeatingStart() + #define ONHEATING(S,C,T) printerEventLEDs.onBedHeating(S,C,T) + #else + #define GHV(B,H) H + #define SHV(B,H) (temp_hotend[heater_id].soft_pwm_amount = H) + #define ONHEATINGSTART() printerEventLEDs.onHotendHeatingStart() + #define ONHEATING(S,C,T) printerEventLEDs.onHotendHeating(S,C,T) + #endif + #define WATCH_PID BOTH(WATCH_BED, PIDTEMPBED) || BOTH(WATCH_HOTENDS, PIDTEMP) + + #if WATCH_PID + #if ALL(THERMAL_PROTECTION_HOTENDS, PIDTEMP, THERMAL_PROTECTION_BED, PIDTEMPBED) + #define GTV(B,H) (isbed ? (B) : (H)) + #elif BOTH(THERMAL_PROTECTION_HOTENDS, PIDTEMP) + #define GTV(B,H) (H) + #else + #define GTV(B,H) (B) + #endif + const uint16_t watch_temp_period = GTV(WATCH_BED_TEMP_PERIOD, WATCH_TEMP_PERIOD); + const uint8_t watch_temp_increase = GTV(WATCH_BED_TEMP_INCREASE, WATCH_TEMP_INCREASE); + const float watch_temp_target = target - float(watch_temp_increase + GTV(TEMP_BED_HYSTERESIS, TEMP_HYSTERESIS) + 1); + millis_t temp_change_ms = next_temp_ms + SEC_TO_MS(watch_temp_period); + float next_watch_temp = 0.0; + bool heated = false; + #endif + + TERN_(HAS_AUTO_FAN, next_auto_fan_check_ms = next_temp_ms + 2500UL); + + if (target > GHV(BED_MAX_TARGET, temp_range[heater_id].maxtemp - HOTEND_OVERSHOOT)) { + SERIAL_ECHOLNPGM(STR_PID_TEMP_TOO_HIGH); + TERN_(EXTENSIBLE_UI, ExtUI::onPidTuning(ExtUI::result_t::PID_TEMP_TOO_HIGH)); + return; + } + + SERIAL_ECHOLNPGM(STR_PID_AUTOTUNE_START); + + disable_all_heaters(); + TERN_(AUTO_POWER_CONTROL, powerManager.power_on()); + + SHV(bias = d = (MAX_BED_POWER) >> 1, bias = d = (PID_MAX) >> 1); + + #if ENABLED(PRINTER_EVENT_LEDS) + const float start_temp = GHV(temp_bed.celsius, temp_hotend[heater_id].celsius); + LEDColor color = ONHEATINGSTART(); + #endif + + TERN_(NO_FAN_SLOWING_IN_PID_TUNING, adaptive_fan_slowing = false); + + // PID Tuning loop + wait_for_heatup = true; // Can be interrupted with M108 + while (wait_for_heatup) { + + const millis_t ms = millis(); + + if (raw_temps_ready) { // temp sample ready + updateTemperaturesFromRawValues(); + + // Get the current temperature and constrain it + current_temp = GHV(temp_bed.celsius, temp_hotend[heater_id].celsius); + NOLESS(maxT, current_temp); + NOMORE(minT, current_temp); + + #if ENABLED(PRINTER_EVENT_LEDS) + ONHEATING(start_temp, current_temp, target); + #endif + + #if HAS_AUTO_FAN + if (ELAPSED(ms, next_auto_fan_check_ms)) { + checkExtruderAutoFans(); + next_auto_fan_check_ms = ms + 2500UL; + } + #endif + + if (heating && current_temp > target) { + if (ELAPSED(ms, t2 + 5000UL)) { + heating = false; + SHV((bias - d) >> 1, (bias - d) >> 1); + t1 = ms; + t_high = t1 - t2; + maxT = target; + } + } + + if (!heating && current_temp < target) { + if (ELAPSED(ms, t1 + 5000UL)) { + heating = true; + t2 = ms; + t_low = t2 - t1; + if (cycles > 0) { + const long max_pow = GHV(MAX_BED_POWER, PID_MAX); + bias += (d * (t_high - t_low)) / (t_low + t_high); + LIMIT(bias, 20, max_pow - 20); + d = (bias > max_pow >> 1) ? max_pow - 1 - bias : bias; + + SERIAL_ECHOPAIR(STR_BIAS, bias, STR_D_COLON, d, STR_T_MIN, minT, STR_T_MAX, maxT); + if (cycles > 2) { + const float Ku = (4.0f * d) / (float(M_PI) * (maxT - minT) * 0.5f), + Tu = float(t_low + t_high) * 0.001f, + pf = isbed ? 0.2f : 0.6f, + df = isbed ? 1.0f / 3.0f : 1.0f / 8.0f; + + SERIAL_ECHOPAIR(STR_KU, Ku, STR_TU, Tu); + if (isbed) { // Do not remove this otherwise PID autotune won't work right for the bed! + tune_pid.Kp = Ku * 0.2f; + tune_pid.Ki = 2 * tune_pid.Kp / Tu; + tune_pid.Kd = tune_pid.Kp * Tu / 3; + SERIAL_ECHOLNPGM("\n" " No overshoot"); // Works far better for the bed. Classic and some have bad ringing. + SERIAL_ECHOLNPAIR(STR_KP, tune_pid.Kp, STR_KI, tune_pid.Ki, STR_KD, tune_pid.Kd); + } + else { + tune_pid.Kp = Ku * pf; + tune_pid.Kd = tune_pid.Kp * Tu * df; + tune_pid.Ki = 2 * tune_pid.Kp / Tu; + SERIAL_ECHOLNPGM("\n" STR_CLASSIC_PID); + SERIAL_ECHOLNPAIR(STR_KP, tune_pid.Kp, STR_KI, tune_pid.Ki, STR_KD, tune_pid.Kd); + } + + /** + tune_pid.Kp = 0.33 * Ku; + tune_pid.Ki = tune_pid.Kp / Tu; + tune_pid.Kd = tune_pid.Kp * Tu / 3; + SERIAL_ECHOLNPGM(" Some overshoot"); + SERIAL_ECHOLNPAIR(" Kp: ", tune_pid.Kp, " Ki: ", tune_pid.Ki, " Kd: ", tune_pid.Kd, " No overshoot"); + tune_pid.Kp = 0.2 * Ku; + tune_pid.Ki = 2 * tune_pid.Kp / Tu; + tune_pid.Kd = tune_pid.Kp * Tu / 3; + SERIAL_ECHOPAIR(" Kp: ", tune_pid.Kp, " Ki: ", tune_pid.Ki, " Kd: ", tune_pid.Kd); + */ + } + } + SHV((bias + d) >> 1, (bias + d) >> 1); + cycles++; + minT = target; + } + } + } + + // Did the temperature overshoot very far? + #ifndef MAX_OVERSHOOT_PID_AUTOTUNE + #define MAX_OVERSHOOT_PID_AUTOTUNE 30 + #endif + if (current_temp > target + MAX_OVERSHOOT_PID_AUTOTUNE) { + SERIAL_ECHOLNPGM(STR_PID_TEMP_TOO_HIGH); + TERN_(EXTENSIBLE_UI, ExtUI::onPidTuning(ExtUI::result_t::PID_TEMP_TOO_HIGH)); + break; + } + + // Report heater states every 2 seconds + if (ELAPSED(ms, next_temp_ms)) { + #if HAS_TEMP_SENSOR + print_heater_states(isbed ? active_extruder : heater_id); + SERIAL_EOL(); + #endif + next_temp_ms = ms + 2000UL; + + // Make sure heating is actually working + #if WATCH_PID + if (BOTH(WATCH_BED, WATCH_HOTENDS) || isbed == DISABLED(WATCH_HOTENDS)) { + if (!heated) { // If not yet reached target... + if (current_temp > next_watch_temp) { // Over the watch temp? + next_watch_temp = current_temp + watch_temp_increase; // - set the next temp to watch for + temp_change_ms = ms + SEC_TO_MS(watch_temp_period); // - move the expiration timer up + if (current_temp > watch_temp_target) heated = true; // - Flag if target temperature reached + } + else if (ELAPSED(ms, temp_change_ms)) // Watch timer expired + _temp_error(heater_id, str_t_heating_failed, GET_TEXT(MSG_HEATING_FAILED_LCD)); + } + else if (current_temp < target - (MAX_OVERSHOOT_PID_AUTOTUNE)) // Heated, then temperature fell too far? + _temp_error(heater_id, str_t_thermal_runaway, GET_TEXT(MSG_THERMAL_RUNAWAY)); + } + #endif + } // every 2 seconds + + // Timeout after MAX_CYCLE_TIME_PID_AUTOTUNE minutes since the last undershoot/overshoot cycle + #ifndef MAX_CYCLE_TIME_PID_AUTOTUNE + #define MAX_CYCLE_TIME_PID_AUTOTUNE 20L + #endif + if ((ms - _MIN(t1, t2)) > (MAX_CYCLE_TIME_PID_AUTOTUNE * 60L * 1000L)) { + TERN_(DWIN_CREALITY_LCD, DWIN_Popup_Temperature(0)); + TERN_(EXTENSIBLE_UI, ExtUI::onPidTuning(ExtUI::result_t::PID_TUNING_TIMEOUT)); + SERIAL_ECHOLNPGM(STR_PID_TIMEOUT); + break; + } + + if (cycles > ncycles && cycles > 2) { + SERIAL_ECHOLNPGM(STR_PID_AUTOTUNE_FINISHED); + + #if HAS_PID_FOR_BOTH + const char * const estring = GHV(PSTR("bed"), NUL_STR); + say_default_(); serialprintPGM(estring); SERIAL_ECHOLNPAIR("Kp ", tune_pid.Kp); + say_default_(); serialprintPGM(estring); SERIAL_ECHOLNPAIR("Ki ", tune_pid.Ki); + say_default_(); serialprintPGM(estring); SERIAL_ECHOLNPAIR("Kd ", tune_pid.Kd); + #elif ENABLED(PIDTEMP) + say_default_(); SERIAL_ECHOLNPAIR("Kp ", tune_pid.Kp); + say_default_(); SERIAL_ECHOLNPAIR("Ki ", tune_pid.Ki); + say_default_(); SERIAL_ECHOLNPAIR("Kd ", tune_pid.Kd); + #else + say_default_(); SERIAL_ECHOLNPAIR("bedKp ", tune_pid.Kp); + say_default_(); SERIAL_ECHOLNPAIR("bedKi ", tune_pid.Ki); + say_default_(); SERIAL_ECHOLNPAIR("bedKd ", tune_pid.Kd); + #endif + + #define _SET_BED_PID() do { \ + temp_bed.pid.Kp = tune_pid.Kp; \ + temp_bed.pid.Ki = scalePID_i(tune_pid.Ki); \ + temp_bed.pid.Kd = scalePID_d(tune_pid.Kd); \ + }while(0) + + #define _SET_EXTRUDER_PID() do { \ + PID_PARAM(Kp, heater_id) = tune_pid.Kp; \ + PID_PARAM(Ki, heater_id) = scalePID_i(tune_pid.Ki); \ + PID_PARAM(Kd, heater_id) = scalePID_d(tune_pid.Kd); \ + updatePID(); }while(0) + + // Use the result? (As with "M303 U1") + if (set_result) { + #if HAS_PID_FOR_BOTH + if (isbed) _SET_BED_PID(); else _SET_EXTRUDER_PID(); + #elif ENABLED(PIDTEMP) + _SET_EXTRUDER_PID(); + #else + _SET_BED_PID(); + #endif + } + + TERN_(PRINTER_EVENT_LEDS, printerEventLEDs.onPidTuningDone(color)); + + TERN_(EXTENSIBLE_UI, ExtUI::onPidTuning(ExtUI::result_t::PID_DONE)); + + goto EXIT_M303; + } + + // Run HAL idle tasks + TERN_(HAL_IDLETASK, HAL_idletask()); + + // Run UI update + TERN(DWIN_CREALITY_LCD, DWIN_Update(), ui.update()); + } + wait_for_heatup = false; + + disable_all_heaters(); + + TERN_(PRINTER_EVENT_LEDS, printerEventLEDs.onPidTuningDone(color)); + + TERN_(EXTENSIBLE_UI, ExtUI::onPidTuning(ExtUI::result_t::PID_DONE)); + + EXIT_M303: + TERN_(NO_FAN_SLOWING_IN_PID_TUNING, adaptive_fan_slowing = true); + return; + } + +#endif // HAS_PID_HEATING + +/** + * Class and Instance Methods + */ + +int16_t Temperature::getHeaterPower(const heater_id_t heater_id) { + switch (heater_id) { + #if HAS_HEATED_BED + case H_BED: return temp_bed.soft_pwm_amount; + #endif + #if HAS_HEATED_CHAMBER + case H_CHAMBER: return temp_chamber.soft_pwm_amount; + #endif + default: + return TERN0(HAS_HOTEND, temp_hotend[heater_id].soft_pwm_amount); + } +} + +#define _EFANOVERLAP(A,B) _FANOVERLAP(E##A,B) + +#if HAS_AUTO_FAN + + #define CHAMBER_FAN_INDEX HOTENDS + + void Temperature::checkExtruderAutoFans() { + #define _EFAN(B,A) _EFANOVERLAP(A,B) ? B : + static const uint8_t fanBit[] PROGMEM = { + 0 + #if HAS_MULTI_HOTEND + #define _NEXT_FAN(N) , REPEAT2(N,_EFAN,N) N + RREPEAT_S(1, HOTENDS, _NEXT_FAN) + #endif + #if HAS_AUTO_CHAMBER_FAN + #define _CFAN(B) _FANOVERLAP(CHAMBER,B) ? B : + , REPEAT(HOTENDS,_CFAN) (HOTENDS) + #endif + }; + + uint8_t fanState = 0; + HOTEND_LOOP() + if (temp_hotend[e].celsius >= EXTRUDER_AUTO_FAN_TEMPERATURE) + SBI(fanState, pgm_read_byte(&fanBit[e])); + + #if HAS_AUTO_CHAMBER_FAN + if (temp_chamber.celsius >= CHAMBER_AUTO_FAN_TEMPERATURE) + SBI(fanState, pgm_read_byte(&fanBit[CHAMBER_FAN_INDEX])); + #endif + + #define _UPDATE_AUTO_FAN(P,D,A) do{ \ + if (PWM_PIN(P##_AUTO_FAN_PIN) && A < 255) \ + analogWrite(pin_t(P##_AUTO_FAN_PIN), D ? A : 0); \ + else \ + WRITE(P##_AUTO_FAN_PIN, D); \ + }while(0) + + uint8_t fanDone = 0; + LOOP_L_N(f, COUNT(fanBit)) { + const uint8_t realFan = pgm_read_byte(&fanBit[f]); + if (TEST(fanDone, realFan)) continue; + const bool fan_on = TEST(fanState, realFan); + switch (f) { + #if ENABLED(AUTO_POWER_CHAMBER_FAN) + case CHAMBER_FAN_INDEX: + chamberfan_speed = fan_on ? CHAMBER_AUTO_FAN_SPEED : 0; + break; + #endif + default: + #if ENABLED(AUTO_POWER_E_FANS) + autofan_speed[realFan] = fan_on ? EXTRUDER_AUTO_FAN_SPEED : 0; + #endif + break; + } + + switch (f) { + #if HAS_AUTO_FAN_0 + case 0: _UPDATE_AUTO_FAN(E0, fan_on, EXTRUDER_AUTO_FAN_SPEED); break; + #endif + #if HAS_AUTO_FAN_1 + case 1: _UPDATE_AUTO_FAN(E1, fan_on, EXTRUDER_AUTO_FAN_SPEED); break; + #endif + #if HAS_AUTO_FAN_2 + case 2: _UPDATE_AUTO_FAN(E2, fan_on, EXTRUDER_AUTO_FAN_SPEED); break; + #endif + #if HAS_AUTO_FAN_3 + case 3: _UPDATE_AUTO_FAN(E3, fan_on, EXTRUDER_AUTO_FAN_SPEED); break; + #endif + #if HAS_AUTO_FAN_4 + case 4: _UPDATE_AUTO_FAN(E4, fan_on, EXTRUDER_AUTO_FAN_SPEED); break; + #endif + #if HAS_AUTO_FAN_5 + case 5: _UPDATE_AUTO_FAN(E5, fan_on, EXTRUDER_AUTO_FAN_SPEED); break; + #endif + #if HAS_AUTO_FAN_6 + case 6: _UPDATE_AUTO_FAN(E6, fan_on, EXTRUDER_AUTO_FAN_SPEED); break; + #endif + #if HAS_AUTO_FAN_7 + case 7: _UPDATE_AUTO_FAN(E7, fan_on, EXTRUDER_AUTO_FAN_SPEED); break; + #endif + #if HAS_AUTO_CHAMBER_FAN && !AUTO_CHAMBER_IS_E + case CHAMBER_FAN_INDEX: _UPDATE_AUTO_FAN(CHAMBER, fan_on, CHAMBER_AUTO_FAN_SPEED); break; + #endif + } + SBI(fanDone, realFan); + } + } + +#endif // HAS_AUTO_FAN + +// +// Temperature Error Handlers +// + +inline void loud_kill(PGM_P const lcd_msg, const heater_id_t heater_id) { + marlin_state = MF_KILLED; + #if USE_BEEPER + thermalManager.disable_all_heaters(); + for (uint8_t i = 20; i--;) { + WRITE(BEEPER_PIN, HIGH); + delay(25); + watchdog_refresh(); + WRITE(BEEPER_PIN, LOW); + delay(40); + watchdog_refresh(); + delay(40); + watchdog_refresh(); + } + WRITE(BEEPER_PIN, HIGH); + #endif + kill(lcd_msg, HEATER_PSTR(heater_id)); +} + +void Temperature::_temp_error(const heater_id_t heater_id, PGM_P const serial_msg, PGM_P const lcd_msg) { + + static uint8_t killed = 0; + + if (IsRunning() && TERN1(BOGUS_TEMPERATURE_GRACE_PERIOD, killed == 2)) { + SERIAL_ERROR_START(); + serialprintPGM(serial_msg); + SERIAL_ECHOPGM(STR_STOPPED_HEATER); + if (heater_id >= 0) + SERIAL_ECHO((int)heater_id); + else if (TERN0(HAS_HEATED_CHAMBER, heater_id == H_CHAMBER)) + SERIAL_ECHOPGM(STR_HEATER_CHAMBER); + else + SERIAL_ECHOPGM(STR_HEATER_BED); + SERIAL_EOL(); + } + + disable_all_heaters(); // always disable (even for bogus temp) + watchdog_refresh(); + + #if BOGUS_TEMPERATURE_GRACE_PERIOD + const millis_t ms = millis(); + static millis_t expire_ms; + switch (killed) { + case 0: + expire_ms = ms + BOGUS_TEMPERATURE_GRACE_PERIOD; + ++killed; + break; + case 1: + if (ELAPSED(ms, expire_ms)) ++killed; + break; + case 2: + loud_kill(lcd_msg, heater_id); + ++killed; + break; + } + #elif defined(BOGUS_TEMPERATURE_GRACE_PERIOD) + UNUSED(killed); + #else + if (!killed) { killed = 1; loud_kill(lcd_msg, heater_id); } + #endif +} + +void Temperature::max_temp_error(const heater_id_t heater_id) { + #if ENABLED(DWIN_CREALITY_LCD) && (HAS_HOTEND || HAS_HEATED_BED) + DWIN_Popup_Temperature(1); + #endif + _temp_error(heater_id, PSTR(STR_T_MAXTEMP), GET_TEXT(MSG_ERR_MAXTEMP)); +} + +void Temperature::min_temp_error(const heater_id_t heater_id) { + #if ENABLED(DWIN_CREALITY_LCD) && (HAS_HOTEND || HAS_HEATED_BED) + DWIN_Popup_Temperature(0); + #endif + _temp_error(heater_id, PSTR(STR_T_MINTEMP), GET_TEXT(MSG_ERR_MINTEMP)); +} + +#if HAS_HOTEND + #if ENABLED(PID_DEBUG) + extern bool pid_debug_flag; + #endif + + float Temperature::get_pid_output_hotend(const uint8_t E_NAME) { + const uint8_t ee = HOTEND_INDEX; + #if ENABLED(PIDTEMP) + #if DISABLED(PID_OPENLOOP) + static hotend_pid_t work_pid[HOTENDS]; + static float temp_iState[HOTENDS] = { 0 }, + temp_dState[HOTENDS] = { 0 }; + static bool pid_reset[HOTENDS] = { false }; + const float pid_error = temp_hotend[ee].target - temp_hotend[ee].celsius; + + float pid_output; + + if (temp_hotend[ee].target == 0 + || pid_error < -(PID_FUNCTIONAL_RANGE) + || TERN0(HEATER_IDLE_HANDLER, heater_idle[ee].timed_out) + ) { + pid_output = 0; + pid_reset[ee] = true; + } + else if (pid_error > PID_FUNCTIONAL_RANGE) { + pid_output = BANG_MAX; + pid_reset[ee] = true; + } + else { + if (pid_reset[ee]) { + temp_iState[ee] = 0.0; + work_pid[ee].Kd = 0.0; + pid_reset[ee] = false; + } + + work_pid[ee].Kd = work_pid[ee].Kd + PID_K2 * (PID_PARAM(Kd, ee) * (temp_dState[ee] - temp_hotend[ee].celsius) - work_pid[ee].Kd); + const float max_power_over_i_gain = float(PID_MAX) / PID_PARAM(Ki, ee) - float(MIN_POWER); + temp_iState[ee] = constrain(temp_iState[ee] + pid_error, 0, max_power_over_i_gain); + work_pid[ee].Kp = PID_PARAM(Kp, ee) * pid_error; + work_pid[ee].Ki = PID_PARAM(Ki, ee) * temp_iState[ee]; + + pid_output = work_pid[ee].Kp + work_pid[ee].Ki + work_pid[ee].Kd + float(MIN_POWER); + + #if ENABLED(PID_EXTRUSION_SCALING) + #if HOTENDS == 1 + constexpr bool this_hotend = true; + #else + const bool this_hotend = (ee == active_extruder); + #endif + work_pid[ee].Kc = 0; + if (this_hotend) { + const long e_position = stepper.position(E_AXIS); + if (e_position > last_e_position) { + lpq[lpq_ptr] = e_position - last_e_position; + last_e_position = e_position; + } + else + lpq[lpq_ptr] = 0; + + if (++lpq_ptr >= lpq_len) lpq_ptr = 0; + work_pid[ee].Kc = (lpq[lpq_ptr] * planner.steps_to_mm[E_AXIS]) * PID_PARAM(Kc, ee); + pid_output += work_pid[ee].Kc; + } + #endif // PID_EXTRUSION_SCALING + #if ENABLED(PID_FAN_SCALING) + if (fan_speed[active_extruder] > PID_FAN_SCALING_MIN_SPEED) { + work_pid[ee].Kf = PID_PARAM(Kf, ee) + (PID_FAN_SCALING_LIN_FACTOR) * fan_speed[active_extruder]; + pid_output += work_pid[ee].Kf; + } + //pid_output -= work_pid[ee].Ki; + //pid_output += work_pid[ee].Ki * work_pid[ee].Kf + #endif // PID_FAN_SCALING + LIMIT(pid_output, 0, PID_MAX); + } + temp_dState[ee] = temp_hotend[ee].celsius; + + #else // PID_OPENLOOP + + const float pid_output = constrain(temp_hotend[ee].target, 0, PID_MAX); + + #endif // PID_OPENLOOP + + #if ENABLED(PID_DEBUG) + if (ee == active_extruder && pid_debug_flag) { + SERIAL_ECHO_START(); + SERIAL_ECHOPAIR(STR_PID_DEBUG, ee, STR_PID_DEBUG_INPUT, temp_hotend[ee].celsius, STR_PID_DEBUG_OUTPUT, pid_output); + #if DISABLED(PID_OPENLOOP) + { + SERIAL_ECHOPAIR( + STR_PID_DEBUG_PTERM, work_pid[ee].Kp, + STR_PID_DEBUG_ITERM, work_pid[ee].Ki, + STR_PID_DEBUG_DTERM, work_pid[ee].Kd + #if ENABLED(PID_EXTRUSION_SCALING) + , STR_PID_DEBUG_CTERM, work_pid[ee].Kc + #endif + ); + } + #endif + SERIAL_EOL(); + } + #endif // PID_DEBUG + + #else // No PID enabled + + const bool is_idling = TERN0(HEATER_IDLE_HANDLER, heater_idle[ee].timed_out); + const float pid_output = (!is_idling && temp_hotend[ee].celsius < temp_hotend[ee].target) ? BANG_MAX : 0; + + #endif + + return pid_output; + } + +#endif // HAS_HOTEND + +#if ENABLED(PIDTEMPBED) + + float Temperature::get_pid_output_bed() { + + #if DISABLED(PID_OPENLOOP) + + static PID_t work_pid{0}; + static float temp_iState = 0, temp_dState = 0; + static bool pid_reset = true; + float pid_output = 0; + const float max_power_over_i_gain = float(MAX_BED_POWER) / temp_bed.pid.Ki - float(MIN_BED_POWER), + pid_error = temp_bed.target - temp_bed.celsius; + + if (!temp_bed.target || pid_error < -(PID_FUNCTIONAL_RANGE)) { + pid_output = 0; + pid_reset = true; + } + else if (pid_error > PID_FUNCTIONAL_RANGE) { + pid_output = MAX_BED_POWER; + pid_reset = true; + } + else { + if (pid_reset) { + temp_iState = 0.0; + work_pid.Kd = 0.0; + pid_reset = false; + } + + temp_iState = constrain(temp_iState + pid_error, 0, max_power_over_i_gain); + + work_pid.Kp = temp_bed.pid.Kp * pid_error; + work_pid.Ki = temp_bed.pid.Ki * temp_iState; + work_pid.Kd = work_pid.Kd + PID_K2 * (temp_bed.pid.Kd * (temp_dState - temp_bed.celsius) - work_pid.Kd); + + temp_dState = temp_bed.celsius; + + pid_output = constrain(work_pid.Kp + work_pid.Ki + work_pid.Kd + float(MIN_BED_POWER), 0, MAX_BED_POWER); + } + + #else // PID_OPENLOOP + + const float pid_output = constrain(temp_bed.target, 0, MAX_BED_POWER); + + #endif // PID_OPENLOOP + + #if ENABLED(PID_BED_DEBUG) + { + SERIAL_ECHO_START(); + SERIAL_ECHOLNPAIR( + " PID_BED_DEBUG : Input ", temp_bed.celsius, " Output ", pid_output, + #if DISABLED(PID_OPENLOOP) + STR_PID_DEBUG_PTERM, work_pid.Kp, + STR_PID_DEBUG_ITERM, work_pid.Ki, + STR_PID_DEBUG_DTERM, work_pid.Kd, + #endif + ); + } + #endif + + return pid_output; + } + +#endif // PIDTEMPBED + +/** + * Manage heating activities for extruder hot-ends and a heated bed + * - Acquire updated temperature readings + * - Also resets the watchdog timer + * - Invoke thermal runaway protection + * - Manage extruder auto-fan + * - Apply filament width to the extrusion rate (may move) + * - Update the heated bed PID output value + */ +void Temperature::manage_heater() { + + #if EARLY_WATCHDOG + // If thermal manager is still not running, make sure to at least reset the watchdog! + if (!inited) return watchdog_refresh(); + #endif + + #if ENABLED(EMERGENCY_PARSER) + if (emergency_parser.killed_by_M112) kill(M112_KILL_STR, nullptr, true); + + if (emergency_parser.quickstop_by_M410) { + emergency_parser.quickstop_by_M410 = false; // quickstop_stepper may call idle so clear this now! + quickstop_stepper(); + } + #endif + + if (!raw_temps_ready) return; + + updateTemperaturesFromRawValues(); // also resets the watchdog + + #if DISABLED(IGNORE_THERMOCOUPLE_ERRORS) + #if HEATER_0_USES_MAX6675 + if (temp_hotend[0].celsius > _MIN(HEATER_0_MAXTEMP, HEATER_0_MAX6675_TMAX - 1.0)) max_temp_error(H_E0); + if (temp_hotend[0].celsius < _MAX(HEATER_0_MINTEMP, HEATER_0_MAX6675_TMIN + .01)) min_temp_error(H_E0); + #endif + #if HEATER_1_USES_MAX6675 + if (temp_hotend[1].celsius > _MIN(HEATER_1_MAXTEMP, HEATER_1_MAX6675_TMAX - 1.0)) max_temp_error(H_E1); + if (temp_hotend[1].celsius < _MAX(HEATER_1_MINTEMP, HEATER_1_MAX6675_TMIN + .01)) min_temp_error(H_E1); + #endif + #endif + + millis_t ms = millis(); + + #if HAS_HOTEND + + HOTEND_LOOP() { + #if ENABLED(THERMAL_PROTECTION_HOTENDS) + if (degHotend(e) > temp_range[e].maxtemp) max_temp_error((heater_id_t)e); + #endif + + TERN_(HEATER_IDLE_HANDLER, heater_idle[e].update(ms)); + + #if ENABLED(THERMAL_PROTECTION_HOTENDS) + // Check for thermal runaway + tr_state_machine[e].run(temp_hotend[e].celsius, temp_hotend[e].target, (heater_id_t)e, THERMAL_PROTECTION_PERIOD, THERMAL_PROTECTION_HYSTERESIS); + #endif + + temp_hotend[e].soft_pwm_amount = (temp_hotend[e].celsius > temp_range[e].mintemp || is_preheating(e)) && temp_hotend[e].celsius < temp_range[e].maxtemp ? (int)get_pid_output_hotend(e) >> 1 : 0; + + #if WATCH_HOTENDS + // Make sure temperature is increasing + if (watch_hotend[e].next_ms && ELAPSED(ms, watch_hotend[e].next_ms)) { // Time to check this extruder? + if (degHotend(e) < watch_hotend[e].target) { // Failed to increase enough? + TERN_(DWIN_CREALITY_LCD, DWIN_Popup_Temperature(0)); + _temp_error((heater_id_t)e, str_t_heating_failed, GET_TEXT(MSG_HEATING_FAILED_LCD)); + } + else // Start again if the target is still far off + start_watching_hotend(e); + } + #endif + + #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT) + // Make sure measured temperatures are close together + if (ABS(temp_hotend[0].celsius - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) + _temp_error(H_E0, PSTR(STR_REDUNDANCY), GET_TEXT(MSG_ERR_REDUNDANT_TEMP)); + #endif + + } // HOTEND_LOOP + + #endif // HAS_HOTEND + + #if HAS_AUTO_FAN + if (ELAPSED(ms, next_auto_fan_check_ms)) { // only need to check fan state very infrequently + checkExtruderAutoFans(); + next_auto_fan_check_ms = ms + 2500UL; + } + #endif + + #if ENABLED(FILAMENT_WIDTH_SENSOR) + /** + * Dynamically set the volumetric multiplier based + * on the delayed Filament Width measurement. + */ + filwidth.update_volumetric(); + #endif + + #if HAS_HEATED_BED + + #if ENABLED(THERMAL_PROTECTION_BED) + if (degBed() > BED_MAXTEMP) max_temp_error(H_BED); + #endif + + #if WATCH_BED + // Make sure temperature is increasing + if (watch_bed.elapsed(ms)) { // Time to check the bed? + if (degBed() < watch_bed.target) { // Failed to increase enough? + TERN_(DWIN_CREALITY_LCD, DWIN_Popup_Temperature(0)); + _temp_error(H_BED, str_t_heating_failed, GET_TEXT(MSG_HEATING_FAILED_LCD)); + } + else // Start again if the target is still far off + start_watching_bed(); + } + #endif // WATCH_BED + + #if BOTH(PROBING_HEATERS_OFF, BED_LIMIT_SWITCHING) + #define PAUSE_CHANGE_REQD 1 + #endif + + #if PAUSE_CHANGE_REQD + static bool last_pause_state; + #endif + + do { + + #if DISABLED(PIDTEMPBED) + if (PENDING(ms, next_bed_check_ms) + && TERN1(PAUSE_CHANGE_REQD, paused == last_pause_state) + ) break; + next_bed_check_ms = ms + BED_CHECK_INTERVAL; + TERN_(PAUSE_CHANGE_REQD, last_pause_state = paused); + #endif + + TERN_(HEATER_IDLE_HANDLER, heater_idle[IDLE_INDEX_BED].update(ms)); + + #if HAS_THERMALLY_PROTECTED_BED + tr_state_machine[RUNAWAY_IND_BED].run(temp_bed.celsius, temp_bed.target, H_BED, THERMAL_PROTECTION_BED_PERIOD, THERMAL_PROTECTION_BED_HYSTERESIS); + #endif + + #if HEATER_IDLE_HANDLER + if (heater_idle[IDLE_INDEX_BED].timed_out) { + temp_bed.soft_pwm_amount = 0; + #if DISABLED(PIDTEMPBED) + WRITE_HEATER_BED(LOW); + #endif + } + else + #endif + { + #if ENABLED(PIDTEMPBED) + temp_bed.soft_pwm_amount = WITHIN(temp_bed.celsius, BED_MINTEMP, BED_MAXTEMP) ? (int)get_pid_output_bed() >> 1 : 0; + #else + // Check if temperature is within the correct band + if (WITHIN(temp_bed.celsius, BED_MINTEMP, BED_MAXTEMP)) { + #if ENABLED(BED_LIMIT_SWITCHING) + if (temp_bed.celsius >= temp_bed.target + BED_HYSTERESIS) + temp_bed.soft_pwm_amount = 0; + else if (temp_bed.celsius <= temp_bed.target - (BED_HYSTERESIS)) + temp_bed.soft_pwm_amount = MAX_BED_POWER >> 1; + #else // !PIDTEMPBED && !BED_LIMIT_SWITCHING + temp_bed.soft_pwm_amount = temp_bed.celsius < temp_bed.target ? MAX_BED_POWER >> 1 : 0; + #endif + } + else { + temp_bed.soft_pwm_amount = 0; + WRITE_HEATER_BED(LOW); + } + #endif + } + + } while (false); + + #endif // HAS_HEATED_BED + + #if HAS_HEATED_CHAMBER + + #ifndef CHAMBER_CHECK_INTERVAL + #define CHAMBER_CHECK_INTERVAL 1000UL + #endif + + #if ENABLED(THERMAL_PROTECTION_CHAMBER) + if (degChamber() > CHAMBER_MAXTEMP) max_temp_error(H_CHAMBER); + #endif + + #if WATCH_CHAMBER + // Make sure temperature is increasing + if (watch_chamber.elapsed(ms)) { // Time to check the chamber? + if (degChamber() < watch_chamber.target) // Failed to increase enough? + _temp_error(H_CHAMBER, str_t_heating_failed, GET_TEXT(MSG_HEATING_FAILED_LCD)); + else + start_watching_chamber(); // Start again if the target is still far off + } + #endif + + #if EITHER(CHAMBER_FAN, CHAMBER_VENT) + if (temp_chamber.target > CHAMBER_MINTEMP) { + flag_chamber_off = false; + + #if ENABLED(CHAMBER_FAN) + #if CHAMBER_FAN_MODE == 0 + fan_chamber_pwm = CHAMBER_FAN_BASE; + #elif CHAMBER_FAN_MODE == 1 + fan_chamber_pwm = (temp_chamber.celsius > temp_chamber.target) ? (CHAMBER_FAN_BASE) + (CHAMBER_FAN_FACTOR) * (temp_chamber.celsius - temp_chamber.target) : 0; + #elif CHAMBER_FAN_MODE == 2 + fan_chamber_pwm = (CHAMBER_FAN_BASE) + (CHAMBER_FAN_FACTOR) * ABS(temp_chamber.celsius - temp_chamber.target); + if (temp_chamber.soft_pwm_amount) + fan_chamber_pwm += (CHAMBER_FAN_FACTOR) * 2; + #endif + NOMORE(fan_chamber_pwm, 225); + set_fan_speed(2, fan_chamber_pwm); // TODO: instead of fan 2, set to chamber fan + #endif + + #if ENABLED(CHAMBER_VENT) + #ifndef MIN_COOLING_SLOPE_TIME_CHAMBER_VENT + #define MIN_COOLING_SLOPE_TIME_CHAMBER_VENT 20 + #endif + #ifndef MIN_COOLING_SLOPE_DEG_CHAMBER_VENT + #define MIN_COOLING_SLOPE_DEG_CHAMBER_VENT 1.5 + #endif + if (!flag_chamber_excess_heat && temp_chamber.celsius - temp_chamber.target >= HIGH_EXCESS_HEAT_LIMIT) { + // Open vent after MIN_COOLING_SLOPE_TIME_CHAMBER_VENT seconds if the + // temperature didn't drop at least MIN_COOLING_SLOPE_DEG_CHAMBER_VENT + if (next_cool_check_ms_2 == 0 || ELAPSED(ms, next_cool_check_ms_2)) { + if (old_temp - temp_chamber.celsius < float(MIN_COOLING_SLOPE_DEG_CHAMBER_VENT)) flag_chamber_excess_heat = true; //the bed is heating the chamber too much + next_cool_check_ms_2 = ms + SEC_TO_MS(MIN_COOLING_SLOPE_TIME_CHAMBER_VENT); + old_temp = temp_chamber.celsius; + } + } + else { + next_cool_check_ms_2 = 0; + old_temp = 9999; + } + if (flag_chamber_excess_heat && (temp_chamber.celsius - temp_chamber.target <= -LOW_EXCESS_HEAT_LIMIT) ) { + flag_chamber_excess_heat = false; + } + #endif + } + else if (!flag_chamber_off) { + #if ENABLED(CHAMBER_FAN) + flag_chamber_off = true; + set_fan_speed(2, 0); + #endif + #if ENABLED(CHAMBER_VENT) + flag_chamber_excess_heat = false; + MOVE_SERVO(CHAMBER_VENT_SERVO_NR, 90); + #endif + } + #endif + + if (ELAPSED(ms, next_chamber_check_ms)) { + next_chamber_check_ms = ms + CHAMBER_CHECK_INTERVAL; + + if (WITHIN(temp_chamber.celsius, CHAMBER_MINTEMP, CHAMBER_MAXTEMP)) { + if (flag_chamber_excess_heat) { + temp_chamber.soft_pwm_amount = 0; + #if ENABLED(CHAMBER_VENT) + if (!flag_chamber_off) MOVE_SERVO(CHAMBER_VENT_SERVO_NR, temp_chamber.celsius <= temp_chamber.target ? 0 : 90); + #endif + } + else { + #if ENABLED(CHAMBER_LIMIT_SWITCHING) + if (temp_chamber.celsius >= temp_chamber.target + TEMP_CHAMBER_HYSTERESIS) + temp_chamber.soft_pwm_amount = 0; + else if (temp_chamber.celsius <= temp_chamber.target - (TEMP_CHAMBER_HYSTERESIS)) + temp_chamber.soft_pwm_amount = (MAX_CHAMBER_POWER) >> 1; + #else + temp_chamber.soft_pwm_amount = temp_chamber.celsius < temp_chamber.target ? (MAX_CHAMBER_POWER) >> 1 : 0; + #endif + #if ENABLED(CHAMBER_VENT) + if (!flag_chamber_off) MOVE_SERVO(CHAMBER_VENT_SERVO_NR, 0); + #endif + } + } + else { + temp_chamber.soft_pwm_amount = 0; + WRITE_HEATER_CHAMBER(LOW); + } + + #if ENABLED(THERMAL_PROTECTION_CHAMBER) + tr_state_machine[RUNAWAY_IND_CHAMBER].run(temp_chamber.celsius, temp_chamber.target, H_CHAMBER, THERMAL_PROTECTION_CHAMBER_PERIOD, THERMAL_PROTECTION_CHAMBER_HYSTERESIS); + #endif + } + + // TODO: Implement true PID pwm + //temp_bed.soft_pwm_amount = WITHIN(temp_chamber.celsius, CHAMBER_MINTEMP, CHAMBER_MAXTEMP) ? (int)get_pid_output_chamber() >> 1 : 0; + + #endif // HAS_HEATED_CHAMBER + + UNUSED(ms); +} + +#define TEMP_AD595(RAW) ((RAW) * 5.0 * 100.0 / float(HAL_ADC_RANGE) / (OVERSAMPLENR) * (TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET) +#define TEMP_AD8495(RAW) ((RAW) * 6.6 * 100.0 / float(HAL_ADC_RANGE) / (OVERSAMPLENR) * (TEMP_SENSOR_AD8495_GAIN) + TEMP_SENSOR_AD8495_OFFSET) + +/** + * Bisect search for the range of the 'raw' value, then interpolate + * proportionally between the under and over values. + */ +#define SCAN_THERMISTOR_TABLE(TBL,LEN) do{ \ + uint8_t l = 0, r = LEN, m; \ + for (;;) { \ + m = (l + r) >> 1; \ + if (!m) return int16_t(pgm_read_word(&TBL[0].celsius)); \ + if (m == l || m == r) return int16_t(pgm_read_word(&TBL[LEN-1].celsius)); \ + int16_t v00 = pgm_read_word(&TBL[m-1].value), \ + v10 = pgm_read_word(&TBL[m-0].value); \ + if (raw < v00) r = m; \ + else if (raw > v10) l = m; \ + else { \ + const int16_t v01 = int16_t(pgm_read_word(&TBL[m-1].celsius)), \ + v11 = int16_t(pgm_read_word(&TBL[m-0].celsius)); \ + return v01 + (raw - v00) * float(v11 - v01) / float(v10 - v00); \ + } \ + } \ +}while(0) + +#if HAS_USER_THERMISTORS + + user_thermistor_t Temperature::user_thermistor[USER_THERMISTORS]; // Initialized by settings.load() + + void Temperature::reset_user_thermistors() { + user_thermistor_t default_user_thermistor[USER_THERMISTORS] = { + #if HEATER_0_USER_THERMISTOR + { true, 0, 0, HOTEND0_PULLUP_RESISTOR_OHMS, HOTEND0_RESISTANCE_25C_OHMS, 0, 0, HOTEND0_BETA, 0 }, + #endif + #if HEATER_1_USER_THERMISTOR + { true, 0, 0, HOTEND1_PULLUP_RESISTOR_OHMS, HOTEND1_RESISTANCE_25C_OHMS, 0, 0, HOTEND1_BETA, 0 }, + #endif + #if HEATER_2_USER_THERMISTOR + { true, 0, 0, HOTEND2_PULLUP_RESISTOR_OHMS, HOTEND2_RESISTANCE_25C_OHMS, 0, 0, HOTEND2_BETA, 0 }, + #endif + #if HEATER_3_USER_THERMISTOR + { true, 0, 0, HOTEND3_PULLUP_RESISTOR_OHMS, HOTEND3_RESISTANCE_25C_OHMS, 0, 0, HOTEND3_BETA, 0 }, + #endif + #if HEATER_4_USER_THERMISTOR + { true, 0, 0, HOTEND4_PULLUP_RESISTOR_OHMS, HOTEND4_RESISTANCE_25C_OHMS, 0, 0, HOTEND4_BETA, 0 }, + #endif + #if HEATER_5_USER_THERMISTOR + { true, 0, 0, HOTEND5_PULLUP_RESISTOR_OHMS, HOTEND5_RESISTANCE_25C_OHMS, 0, 0, HOTEND5_BETA, 0 }, + #endif + #if HEATER_6_USER_THERMISTOR + { true, 0, 0, HOTEND6_PULLUP_RESISTOR_OHMS, HOTEND6_RESISTANCE_25C_OHMS, 0, 0, HOTEND6_BETA, 0 }, + #endif + #if HEATER_7_USER_THERMISTOR + { true, 0, 0, HOTEND7_PULLUP_RESISTOR_OHMS, HOTEND7_RESISTANCE_25C_OHMS, 0, 0, HOTEND7_BETA, 0 }, + #endif + #if HEATER_BED_USER_THERMISTOR + { true, 0, 0, BED_PULLUP_RESISTOR_OHMS, BED_RESISTANCE_25C_OHMS, 0, 0, BED_BETA, 0 }, + #endif + #if HEATER_CHAMBER_USER_THERMISTOR + { true, 0, 0, CHAMBER_PULLUP_RESISTOR_OHMS, CHAMBER_RESISTANCE_25C_OHMS, 0, 0, CHAMBER_BETA, 0 } + #endif + }; + COPY(user_thermistor, default_user_thermistor); + } + + void Temperature::log_user_thermistor(const uint8_t t_index, const bool eprom/*=false*/) { + + if (eprom) + SERIAL_ECHOPGM(" M305 "); + else + SERIAL_ECHO_START(); + SERIAL_CHAR('P', '0' + t_index); + + const user_thermistor_t &t = user_thermistor[t_index]; + + SERIAL_ECHOPAIR_F(" R", t.series_res, 1); + SERIAL_ECHOPAIR_F_P(SP_T_STR, t.res_25, 1); + SERIAL_ECHOPAIR_F_P(SP_B_STR, t.beta, 1); + SERIAL_ECHOPAIR_F_P(SP_C_STR, t.sh_c_coeff, 9); + SERIAL_ECHOPGM(" ; "); + serialprintPGM( + TERN_(HEATER_0_USER_THERMISTOR, t_index == CTI_HOTEND_0 ? PSTR("HOTEND 0") :) + TERN_(HEATER_1_USER_THERMISTOR, t_index == CTI_HOTEND_1 ? PSTR("HOTEND 1") :) + TERN_(HEATER_2_USER_THERMISTOR, t_index == CTI_HOTEND_2 ? PSTR("HOTEND 2") :) + TERN_(HEATER_3_USER_THERMISTOR, t_index == CTI_HOTEND_3 ? PSTR("HOTEND 3") :) + TERN_(HEATER_4_USER_THERMISTOR, t_index == CTI_HOTEND_4 ? PSTR("HOTEND 4") :) + TERN_(HEATER_5_USER_THERMISTOR, t_index == CTI_HOTEND_5 ? PSTR("HOTEND 5") :) + TERN_(HEATER_6_USER_THERMISTOR, t_index == CTI_HOTEND_6 ? PSTR("HOTEND 6") :) + TERN_(HEATER_7_USER_THERMISTOR, t_index == CTI_HOTEND_7 ? PSTR("HOTEND 7") :) + TERN_(HEATER_BED_USER_THERMISTOR, t_index == CTI_BED ? PSTR("BED") :) + TERN_(HEATER_CHAMBER_USER_THERMISTOR, t_index == CTI_CHAMBER ? PSTR("CHAMBER") :) + nullptr + ); + SERIAL_EOL(); + } + + float Temperature::user_thermistor_to_deg_c(const uint8_t t_index, const int raw) { + //#if (MOTHERBOARD == BOARD_RAMPS_14_EFB) + // static uint32_t clocks_total = 0; + // static uint32_t calls = 0; + // uint32_t tcnt5 = TCNT5; + //#endif + + if (!WITHIN(t_index, 0, COUNT(user_thermistor) - 1)) return 25; + + user_thermistor_t &t = user_thermistor[t_index]; + if (t.pre_calc) { // pre-calculate some variables + t.pre_calc = false; + t.res_25_recip = 1.0f / t.res_25; + t.res_25_log = logf(t.res_25); + t.beta_recip = 1.0f / t.beta; + t.sh_alpha = RECIPROCAL(THERMISTOR_RESISTANCE_NOMINAL_C - (THERMISTOR_ABS_ZERO_C)) + - (t.beta_recip * t.res_25_log) - (t.sh_c_coeff * cu(t.res_25_log)); + } + + // maximum adc value .. take into account the over sampling + const int adc_max = MAX_RAW_THERMISTOR_VALUE, + adc_raw = constrain(raw, 1, adc_max - 1); // constrain to prevent divide-by-zero + + const float adc_inverse = (adc_max - adc_raw) - 0.5f, + resistance = t.series_res * (adc_raw + 0.5f) / adc_inverse, + log_resistance = logf(resistance); + + float value = t.sh_alpha; + value += log_resistance * t.beta_recip; + if (t.sh_c_coeff != 0) + value += t.sh_c_coeff * cu(log_resistance); + value = 1.0f / value; + + //#if (MOTHERBOARD == BOARD_RAMPS_14_EFB) + // int32_t clocks = TCNT5 - tcnt5; + // if (clocks >= 0) { + // clocks_total += clocks; + // calls++; + // } + //#endif + + // Return degrees C (up to 999, as the LCD only displays 3 digits) + return _MIN(value + THERMISTOR_ABS_ZERO_C, 999); + } +#endif + +#if HAS_HOTEND + // Derived from RepRap FiveD extruder::getTemperature() + // For hot end temperature measurement. + float Temperature::analog_to_celsius_hotend(const int raw, const uint8_t e) { + if (e > HOTENDS - DISABLED(TEMP_SENSOR_1_AS_REDUNDANT)) { + SERIAL_ERROR_START(); + SERIAL_ECHO((int)e); + SERIAL_ECHOLNPGM(STR_INVALID_EXTRUDER_NUM); + kill(); + return 0; + } + + switch (e) { + case 0: + #if HEATER_0_USER_THERMISTOR + return user_thermistor_to_deg_c(CTI_HOTEND_0, raw); + #elif HEATER_0_USES_MAX6675 + return TERN(MAX6675_0_IS_MAX31865, max31865_0.temperature(MAX31865_SENSOR_OHMS_0, MAX31865_CALIBRATION_OHMS_0), raw * 0.25); + #elif HEATER_0_USES_AD595 + return TEMP_AD595(raw); + #elif HEATER_0_USES_AD8495 + return TEMP_AD8495(raw); + #else + break; + #endif + case 1: + #if HEATER_1_USER_THERMISTOR + return user_thermistor_to_deg_c(CTI_HOTEND_1, raw); + #elif HEATER_1_USES_MAX6675 + return TERN(MAX6675_1_IS_MAX31865, max31865_1.temperature(MAX31865_SENSOR_OHMS_1, MAX31865_CALIBRATION_OHMS_1), raw * 0.25); + #elif HEATER_1_USES_AD595 + return TEMP_AD595(raw); + #elif HEATER_1_USES_AD8495 + return TEMP_AD8495(raw); + #else + break; + #endif + case 2: + #if HEATER_2_USER_THERMISTOR + return user_thermistor_to_deg_c(CTI_HOTEND_2, raw); + #elif HEATER_2_USES_AD595 + return TEMP_AD595(raw); + #elif HEATER_2_USES_AD8495 + return TEMP_AD8495(raw); + #else + break; + #endif + case 3: + #if HEATER_3_USER_THERMISTOR + return user_thermistor_to_deg_c(CTI_HOTEND_3, raw); + #elif HEATER_3_USES_AD595 + return TEMP_AD595(raw); + #elif HEATER_3_USES_AD8495 + return TEMP_AD8495(raw); + #else + break; + #endif + case 4: + #if HEATER_4_USER_THERMISTOR + return user_thermistor_to_deg_c(CTI_HOTEND_4, raw); + #elif HEATER_4_USES_AD595 + return TEMP_AD595(raw); + #elif HEATER_4_USES_AD8495 + return TEMP_AD8495(raw); + #else + break; + #endif + case 5: + #if HEATER_5_USER_THERMISTOR + return user_thermistor_to_deg_c(CTI_HOTEND_5, raw); + #elif HEATER_5_USES_AD595 + return TEMP_AD595(raw); + #elif HEATER_5_USES_AD8495 + return TEMP_AD8495(raw); + #else + break; + #endif + case 6: + #if HEATER_6_USER_THERMISTOR + return user_thermistor_to_deg_c(CTI_HOTEND_6, raw); + #elif HEATER_6_USES_AD595 + return TEMP_AD595(raw); + #elif HEATER_6_USES_AD8495 + return TEMP_AD8495(raw); + #else + break; + #endif + case 7: + #if HEATER_7_USER_THERMISTOR + return user_thermistor_to_deg_c(CTI_HOTEND_7, raw); + #elif HEATER_7_USES_AD595 + return TEMP_AD595(raw); + #elif HEATER_7_USES_AD8495 + return TEMP_AD8495(raw); + #else + break; + #endif + default: break; + } + + #if HAS_HOTEND_THERMISTOR + // Thermistor with conversion table? + const temp_entry_t(*tt)[] = (temp_entry_t(*)[])(heater_ttbl_map[e]); + SCAN_THERMISTOR_TABLE((*tt), heater_ttbllen_map[e]); + #endif + + return 0; + } +#endif // HAS_HOTEND + +#if HAS_HEATED_BED + // Derived from RepRap FiveD extruder::getTemperature() + // For bed temperature measurement. + float Temperature::analog_to_celsius_bed(const int raw) { + #if HEATER_BED_USER_THERMISTOR + return user_thermistor_to_deg_c(CTI_BED, raw); + #elif HEATER_BED_USES_THERMISTOR + SCAN_THERMISTOR_TABLE(BED_TEMPTABLE, BED_TEMPTABLE_LEN); + #elif HEATER_BED_USES_AD595 + return TEMP_AD595(raw); + #elif HEATER_BED_USES_AD8495 + return TEMP_AD8495(raw); + #else + UNUSED(raw); + return 0; + #endif + } +#endif // HAS_HEATED_BED + +#if HAS_TEMP_CHAMBER + // Derived from RepRap FiveD extruder::getTemperature() + // For chamber temperature measurement. + float Temperature::analog_to_celsius_chamber(const int raw) { + #if HEATER_CHAMBER_USER_THERMISTOR + return user_thermistor_to_deg_c(CTI_CHAMBER, raw); + #elif HEATER_CHAMBER_USES_THERMISTOR + SCAN_THERMISTOR_TABLE(CHAMBER_TEMPTABLE, CHAMBER_TEMPTABLE_LEN); + #elif HEATER_CHAMBER_USES_AD595 + return TEMP_AD595(raw); + #elif HEATER_CHAMBER_USES_AD8495 + return TEMP_AD8495(raw); + #else + UNUSED(raw); + return 0; + #endif + } +#endif // HAS_TEMP_CHAMBER + +#if HAS_TEMP_PROBE + // Derived from RepRap FiveD extruder::getTemperature() + // For probe temperature measurement. + float Temperature::analog_to_celsius_probe(const int raw) { + #if HEATER_PROBE_USER_THERMISTOR + return user_thermistor_to_deg_c(CTI_PROBE, raw); + #elif HEATER_PROBE_USES_THERMISTOR + SCAN_THERMISTOR_TABLE(PROBE_TEMPTABLE, PROBE_TEMPTABLE_LEN); + #elif HEATER_PROBE_USES_AD595 + return TEMP_AD595(raw); + #elif HEATER_PROBE_USES_AD8495 + return TEMP_AD8495(raw); + #else + UNUSED(raw); + return 0; + #endif + } +#endif // HAS_TEMP_PROBE + +/** + * Get the raw values into the actual temperatures. + * The raw values are created in interrupt context, + * and this function is called from normal context + * as it would block the stepper routine. + */ +void Temperature::updateTemperaturesFromRawValues() { + TERN_(HEATER_0_USES_MAX6675, temp_hotend[0].raw = READ_MAX6675(0)); + TERN_(HEATER_1_USES_MAX6675, temp_hotend[1].raw = READ_MAX6675(1)); + #if HAS_HOTEND + HOTEND_LOOP() temp_hotend[e].celsius = analog_to_celsius_hotend(temp_hotend[e].raw, e); + #endif + TERN_(HAS_HEATED_BED, temp_bed.celsius = analog_to_celsius_bed(temp_bed.raw)); + TERN_(HAS_TEMP_CHAMBER, temp_chamber.celsius = analog_to_celsius_chamber(temp_chamber.raw)); + TERN_(HAS_TEMP_PROBE, temp_probe.celsius = analog_to_celsius_probe(temp_probe.raw)); + TERN_(TEMP_SENSOR_1_AS_REDUNDANT, redundant_temperature = analog_to_celsius_hotend(redundant_temperature_raw, 1)); + TERN_(FILAMENT_WIDTH_SENSOR, filwidth.update_measured_mm()); + TERN_(HAS_POWER_MONITOR, power_monitor.capture_values()); + + // Reset the watchdog on good temperature measurement + watchdog_refresh(); + + raw_temps_ready = false; +} + +#if MAX6675_SEPARATE_SPI + template<uint8_t MisoPin, uint8_t MosiPin, uint8_t SckPin> SoftSPI<MisoPin, MosiPin, SckPin> SPIclass<MisoPin, MosiPin, SckPin>::softSPI; + SPIclass<MAX6675_DO_PIN, SD_MOSI_PIN, MAX6675_SCK_PIN> max6675_spi; +#endif + +// Init fans according to whether they're native PWM or Software PWM +#ifdef ALFAWISE_UX0 + #define _INIT_SOFT_FAN(P) OUT_WRITE_OD(P, FAN_INVERTING ? LOW : HIGH) +#else + #define _INIT_SOFT_FAN(P) OUT_WRITE(P, FAN_INVERTING ? LOW : HIGH) +#endif +#if ENABLED(FAN_SOFT_PWM) + #define _INIT_FAN_PIN(P) _INIT_SOFT_FAN(P) +#else + #define _INIT_FAN_PIN(P) do{ if (PWM_PIN(P)) SET_PWM(P); else _INIT_SOFT_FAN(P); }while(0) +#endif +#if ENABLED(FAST_PWM_FAN) + #define SET_FAST_PWM_FREQ(P) set_pwm_frequency(P, FAST_PWM_FAN_FREQUENCY) +#else + #define SET_FAST_PWM_FREQ(P) NOOP +#endif +#define INIT_FAN_PIN(P) do{ _INIT_FAN_PIN(P); SET_FAST_PWM_FREQ(P); }while(0) +#if EXTRUDER_AUTO_FAN_SPEED != 255 + #define INIT_E_AUTO_FAN_PIN(P) do{ if (P == FAN1_PIN || P == FAN2_PIN) { SET_PWM(P); SET_FAST_PWM_FREQ(P); } else SET_OUTPUT(P); }while(0) +#else + #define INIT_E_AUTO_FAN_PIN(P) SET_OUTPUT(P) +#endif +#if CHAMBER_AUTO_FAN_SPEED != 255 + #define INIT_CHAMBER_AUTO_FAN_PIN(P) do{ if (P == FAN1_PIN || P == FAN2_PIN) { SET_PWM(P); SET_FAST_PWM_FREQ(P); } else SET_OUTPUT(P); }while(0) +#else + #define INIT_CHAMBER_AUTO_FAN_PIN(P) SET_OUTPUT(P) +#endif + +/** + * Initialize the temperature manager + * The manager is implemented by periodic calls to manage_heater() + */ +void Temperature::init() { + + TERN_(MAX6675_0_IS_MAX31865, max31865_0.begin(MAX31865_2WIRE)); // MAX31865_2WIRE, MAX31865_3WIRE, MAX31865_4WIRE + TERN_(MAX6675_1_IS_MAX31865, max31865_1.begin(MAX31865_2WIRE)); + + #if EARLY_WATCHDOG + // Flag that the thermalManager should be running + if (inited) return; + inited = true; + #endif + + #if MB(RUMBA) + // Disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector + #define _AD(N) (HEATER_##N##_USES_AD595 || HEATER_##N##_USES_AD8495) + #if _AD(0) || _AD(1) || _AD(2) || _AD(BED) || _AD(CHAMBER) + MCUCR = _BV(JTD); + MCUCR = _BV(JTD); + #endif + #endif + + // Thermistor activation by MCU pin + #if PIN_EXISTS(TEMP_0_TR_ENABLE_PIN) + OUT_WRITE(TEMP_0_TR_ENABLE_PIN, ENABLED(HEATER_0_USES_MAX6675)); + #endif + #if PIN_EXISTS(TEMP_1_TR_ENABLE_PIN) + OUT_WRITE(TEMP_1_TR_ENABLE_PIN, ENABLED(HEATER_1_USES_MAX6675)); + #endif + + #if BOTH(PIDTEMP, PID_EXTRUSION_SCALING) + last_e_position = 0; + #endif + + #if HAS_HEATER_0 + #ifdef ALFAWISE_UX0 + OUT_WRITE_OD(HEATER_0_PIN, HEATER_0_INVERTING); + #else + OUT_WRITE(HEATER_0_PIN, HEATER_0_INVERTING); + #endif + #endif + + #if HAS_HEATER_1 + OUT_WRITE(HEATER_1_PIN, HEATER_1_INVERTING); + #endif + #if HAS_HEATER_2 + OUT_WRITE(HEATER_2_PIN, HEATER_2_INVERTING); + #endif + #if HAS_HEATER_3 + OUT_WRITE(HEATER_3_PIN, HEATER_3_INVERTING); + #endif + #if HAS_HEATER_4 + OUT_WRITE(HEATER_4_PIN, HEATER_4_INVERTING); + #endif + #if HAS_HEATER_5 + OUT_WRITE(HEATER_5_PIN, HEATER_5_INVERTING); + #endif + #if HAS_HEATER_6 + OUT_WRITE(HEATER_6_PIN, HEATER_6_INVERTING); + #endif + #if HAS_HEATER_7 + OUT_WRITE(HEATER_7_PIN, HEATER_7_INVERTING); + #endif + + #if HAS_HEATED_BED + #ifdef ALFAWISE_UX0 + OUT_WRITE_OD(HEATER_BED_PIN, HEATER_BED_INVERTING); + #else + OUT_WRITE(HEATER_BED_PIN, HEATER_BED_INVERTING); + #endif + #endif + + #if HAS_HEATED_CHAMBER + OUT_WRITE(HEATER_CHAMBER_PIN, HEATER_CHAMBER_INVERTING); + #endif + + #if HAS_FAN0 + INIT_FAN_PIN(FAN_PIN); + #endif + #if HAS_FAN1 + INIT_FAN_PIN(FAN1_PIN); + #endif + #if HAS_FAN2 + INIT_FAN_PIN(FAN2_PIN); + #endif + #if HAS_FAN3 + INIT_FAN_PIN(FAN3_PIN); + #endif + #if HAS_FAN4 + INIT_FAN_PIN(FAN4_PIN); + #endif + #if HAS_FAN5 + INIT_FAN_PIN(FAN5_PIN); + #endif + #if HAS_FAN6 + INIT_FAN_PIN(FAN6_PIN); + #endif + #if HAS_FAN7 + INIT_FAN_PIN(FAN7_PIN); + #endif + #if ENABLED(USE_CONTROLLER_FAN) + INIT_FAN_PIN(CONTROLLER_FAN_PIN); + #endif + + TERN_(MAX6675_SEPARATE_SPI, max6675_spi.init()); + + HAL_adc_init(); + + #if HAS_TEMP_ADC_0 + HAL_ANALOG_SELECT(TEMP_0_PIN); + #endif + #if HAS_TEMP_ADC_1 + HAL_ANALOG_SELECT(TEMP_1_PIN); + #endif + #if HAS_TEMP_ADC_2 + HAL_ANALOG_SELECT(TEMP_2_PIN); + #endif + #if HAS_TEMP_ADC_3 + HAL_ANALOG_SELECT(TEMP_3_PIN); + #endif + #if HAS_TEMP_ADC_4 + HAL_ANALOG_SELECT(TEMP_4_PIN); + #endif + #if HAS_TEMP_ADC_5 + HAL_ANALOG_SELECT(TEMP_5_PIN); + #endif + #if HAS_TEMP_ADC_6 + HAL_ANALOG_SELECT(TEMP_6_PIN); + #endif + #if HAS_TEMP_ADC_7 + HAL_ANALOG_SELECT(TEMP_7_PIN); + #endif + #if HAS_JOY_ADC_X + HAL_ANALOG_SELECT(JOY_X_PIN); + #endif + #if HAS_JOY_ADC_Y + HAL_ANALOG_SELECT(JOY_Y_PIN); + #endif + #if HAS_JOY_ADC_Z + HAL_ANALOG_SELECT(JOY_Z_PIN); + #endif + #if HAS_JOY_ADC_EN + SET_INPUT_PULLUP(JOY_EN_PIN); + #endif + #if HAS_TEMP_ADC_BED + HAL_ANALOG_SELECT(TEMP_BED_PIN); + #endif + #if HAS_TEMP_ADC_CHAMBER + HAL_ANALOG_SELECT(TEMP_CHAMBER_PIN); + #endif + #if HAS_TEMP_ADC_PROBE + HAL_ANALOG_SELECT(TEMP_PROBE_PIN); + #endif + #if ENABLED(FILAMENT_WIDTH_SENSOR) + HAL_ANALOG_SELECT(FILWIDTH_PIN); + #endif + #if HAS_ADC_BUTTONS + HAL_ANALOG_SELECT(ADC_KEYPAD_PIN); + #endif + #if ENABLED(POWER_MONITOR_CURRENT) + HAL_ANALOG_SELECT(POWER_MONITOR_CURRENT_PIN); + #endif + #if ENABLED(POWER_MONITOR_VOLTAGE) + HAL_ANALOG_SELECT(POWER_MONITOR_VOLTAGE_PIN); + #endif + + HAL_timer_start(TEMP_TIMER_NUM, TEMP_TIMER_FREQUENCY); + ENABLE_TEMPERATURE_INTERRUPT(); + + #if HAS_AUTO_FAN_0 + INIT_E_AUTO_FAN_PIN(E0_AUTO_FAN_PIN); + #endif + #if HAS_AUTO_FAN_1 && !_EFANOVERLAP(1,0) + INIT_E_AUTO_FAN_PIN(E1_AUTO_FAN_PIN); + #endif + #if HAS_AUTO_FAN_2 && !(_EFANOVERLAP(2,0) || _EFANOVERLAP(2,1)) + INIT_E_AUTO_FAN_PIN(E2_AUTO_FAN_PIN); + #endif + #if HAS_AUTO_FAN_3 && !(_EFANOVERLAP(3,0) || _EFANOVERLAP(3,1) || _EFANOVERLAP(3,2)) + INIT_E_AUTO_FAN_PIN(E3_AUTO_FAN_PIN); + #endif + #if HAS_AUTO_FAN_4 && !(_EFANOVERLAP(4,0) || _EFANOVERLAP(4,1) || _EFANOVERLAP(4,2) || _EFANOVERLAP(4,3)) + INIT_E_AUTO_FAN_PIN(E4_AUTO_FAN_PIN); + #endif + #if HAS_AUTO_FAN_5 && !(_EFANOVERLAP(5,0) || _EFANOVERLAP(5,1) || _EFANOVERLAP(5,2) || _EFANOVERLAP(5,3) || _EFANOVERLAP(5,4)) + INIT_E_AUTO_FAN_PIN(E5_AUTO_FAN_PIN); + #endif + #if HAS_AUTO_FAN_6 && !(_EFANOVERLAP(6,0) || _EFANOVERLAP(6,1) || _EFANOVERLAP(6,2) || _EFANOVERLAP(6,3) || _EFANOVERLAP(6,4) || _EFANOVERLAP(6,5)) + INIT_E_AUTO_FAN_PIN(E6_AUTO_FAN_PIN); + #endif + #if HAS_AUTO_FAN_7 && !(_EFANOVERLAP(7,0) || _EFANOVERLAP(7,1) || _EFANOVERLAP(7,2) || _EFANOVERLAP(7,3) || _EFANOVERLAP(7,4) || _EFANOVERLAP(7,5) || _EFANOVERLAP(7,6)) + INIT_E_AUTO_FAN_PIN(E7_AUTO_FAN_PIN); + #endif + #if HAS_AUTO_CHAMBER_FAN && !AUTO_CHAMBER_IS_E + INIT_CHAMBER_AUTO_FAN_PIN(CHAMBER_AUTO_FAN_PIN); + #endif + + // Wait for temperature measurement to settle + delay(250); + + #if HAS_HOTEND + + #define _TEMP_MIN_E(NR) do{ \ + const int16_t tmin = _MAX(HEATER_ ##NR## _MINTEMP, TERN(HEATER_##NR##_USER_THERMISTOR, 0, (int16_t)pgm_read_word(&HEATER_ ##NR## _TEMPTABLE[HEATER_ ##NR## _SENSOR_MINTEMP_IND].celsius))); \ + temp_range[NR].mintemp = tmin; \ + while (analog_to_celsius_hotend(temp_range[NR].raw_min, NR) < tmin) \ + temp_range[NR].raw_min += TEMPDIR(NR) * (OVERSAMPLENR); \ + }while(0) + #define _TEMP_MAX_E(NR) do{ \ + const int16_t tmax = _MIN(HEATER_ ##NR## _MAXTEMP, TERN(HEATER_##NR##_USER_THERMISTOR, 2000, (int16_t)pgm_read_word(&HEATER_ ##NR## _TEMPTABLE[HEATER_ ##NR## _SENSOR_MAXTEMP_IND].celsius) - 1)); \ + temp_range[NR].maxtemp = tmax; \ + while (analog_to_celsius_hotend(temp_range[NR].raw_max, NR) > tmax) \ + temp_range[NR].raw_max -= TEMPDIR(NR) * (OVERSAMPLENR); \ + }while(0) + + #define _MINMAX_TEST(N,M) (HOTENDS > N && THERMISTOR_HEATER_##N && THERMISTOR_HEATER_##N != 998 && THERMISTOR_HEATER_##N != 999 && defined(HEATER_##N##_##M##TEMP)) + + #if _MINMAX_TEST(0, MIN) + _TEMP_MIN_E(0); + #endif + #if _MINMAX_TEST(0, MAX) + _TEMP_MAX_E(0); + #endif + #if _MINMAX_TEST(1, MIN) + _TEMP_MIN_E(1); + #endif + #if _MINMAX_TEST(1, MAX) + _TEMP_MAX_E(1); + #endif + #if _MINMAX_TEST(2, MIN) + _TEMP_MIN_E(2); + #endif + #if _MINMAX_TEST(2, MAX) + _TEMP_MAX_E(2); + #endif + #if _MINMAX_TEST(3, MIN) + _TEMP_MIN_E(3); + #endif + #if _MINMAX_TEST(3, MAX) + _TEMP_MAX_E(3); + #endif + #if _MINMAX_TEST(4, MIN) + _TEMP_MIN_E(4); + #endif + #if _MINMAX_TEST(4, MAX) + _TEMP_MAX_E(4); + #endif + #if _MINMAX_TEST(5, MIN) + _TEMP_MIN_E(5); + #endif + #if _MINMAX_TEST(5, MAX) + _TEMP_MAX_E(5); + #endif + #if _MINMAX_TEST(6, MIN) + _TEMP_MIN_E(6); + #endif + #if _MINMAX_TEST(6, MAX) + _TEMP_MAX_E(6); + #endif + #if _MINMAX_TEST(7, MIN) + _TEMP_MIN_E(7); + #endif + #if _MINMAX_TEST(7, MAX) + _TEMP_MAX_E(7); + #endif + + #endif // HAS_HOTEND + + #if HAS_HEATED_BED + #ifdef BED_MINTEMP + while (analog_to_celsius_bed(mintemp_raw_BED) < BED_MINTEMP) mintemp_raw_BED += TEMPDIR(BED) * (OVERSAMPLENR); + #endif + #ifdef BED_MAXTEMP + while (analog_to_celsius_bed(maxtemp_raw_BED) > BED_MAXTEMP) maxtemp_raw_BED -= TEMPDIR(BED) * (OVERSAMPLENR); + #endif + #endif // HAS_HEATED_BED + + #if HAS_HEATED_CHAMBER + #ifdef CHAMBER_MINTEMP + while (analog_to_celsius_chamber(mintemp_raw_CHAMBER) < CHAMBER_MINTEMP) mintemp_raw_CHAMBER += TEMPDIR(CHAMBER) * (OVERSAMPLENR); + #endif + #ifdef CHAMBER_MAXTEMP + while (analog_to_celsius_chamber(maxtemp_raw_CHAMBER) > CHAMBER_MAXTEMP) maxtemp_raw_CHAMBER -= TEMPDIR(CHAMBER) * (OVERSAMPLENR); + #endif + #endif + + TERN_(PROBING_HEATERS_OFF, paused = false); +} + +#if WATCH_HOTENDS + /** + * Start Heating Sanity Check for hotends that are below + * their target temperature by a configurable margin. + * This is called when the temperature is set. (M104, M109) + */ + void Temperature::start_watching_hotend(const uint8_t E_NAME) { + const uint8_t ee = HOTEND_INDEX; + watch_hotend[ee].restart(degHotend(ee), degTargetHotend(ee)); + } +#endif + +#if WATCH_BED + /** + * Start Heating Sanity Check for hotends that are below + * their target temperature by a configurable margin. + * This is called when the temperature is set. (M140, M190) + */ + void Temperature::start_watching_bed() { + watch_bed.restart(degBed(), degTargetBed()); + } +#endif + +#if WATCH_CHAMBER + /** + * Start Heating Sanity Check for chamber that is below + * its target temperature by a configurable margin. + * This is called when the temperature is set. (M141, M191) + */ + void Temperature::start_watching_chamber() { + watch_chamber.restart(degChamber(), degTargetChamber()); + } +#endif + +#if HAS_THERMAL_PROTECTION + + Temperature::tr_state_machine_t Temperature::tr_state_machine[NR_HEATER_RUNAWAY]; // = { { TRInactive, 0 } }; + + /** + * @brief Thermal Runaway state machine for a single heater + * @param current current measured temperature + * @param target current target temperature + * @param heater_id extruder index + * @param period_seconds missed temperature allowed time + * @param hysteresis_degc allowed distance from target + * + * TODO: Embed the last 3 parameters during init, if not less optimal + */ + void Temperature::tr_state_machine_t::run(const float ¤t, const float &target, const heater_id_t heater_id, const uint16_t period_seconds, const uint16_t hysteresis_degc) { + + #if HEATER_IDLE_HANDLER + // Convert the given heater_id_t to an idle array index + const IdleIndex idle_index = idle_index_for_id(heater_id); + #endif + + /** + SERIAL_ECHO_START(); + SERIAL_ECHOPGM("Thermal Runaway Running. Heater ID: "); + switch (heater_id) { + case H_BED: SERIAL_ECHOPGM("bed"); break; + case H_CHAMBER: SERIAL_ECHOPGM("chamber"); break; + default: SERIAL_ECHO((int)heater_id); + } + SERIAL_ECHOLNPAIR( + " ; sizeof(running_temp):", sizeof(running_temp), + " ; State:", state, " ; Timer:", timer, " ; Temperature:", current, " ; Target Temp:", target + #if HEATER_IDLE_HANDLER + , " ; Idle Timeout:", heater_idle[idle_index].timed_out + #endif + ); + //*/ + + #if HEATER_IDLE_HANDLER + // If the heater idle timeout expires, restart + if (heater_idle[idle_index].timed_out) { + state = TRInactive; + running_temp = 0; + } + else + #endif + { + // If the target temperature changes, restart + if (running_temp != target) { + running_temp = target; + state = target > 0 ? TRFirstHeating : TRInactive; + } + } + + switch (state) { + // Inactive state waits for a target temperature to be set + case TRInactive: break; + + // When first heating, wait for the temperature to be reached then go to Stable state + case TRFirstHeating: + if (current < running_temp) break; + state = TRStable; + + // While the temperature is stable watch for a bad temperature + case TRStable: + + #if ENABLED(ADAPTIVE_FAN_SLOWING) + if (adaptive_fan_slowing && heater_id >= 0) { + const int fan_index = _MIN(heater_id, FAN_COUNT - 1); + if (fan_speed[fan_index] == 0 || current >= running_temp - (hysteresis_degc * 0.25f)) + fan_speed_scaler[fan_index] = 128; + else if (current >= running_temp - (hysteresis_degc * 0.3335f)) + fan_speed_scaler[fan_index] = 96; + else if (current >= running_temp - (hysteresis_degc * 0.5f)) + fan_speed_scaler[fan_index] = 64; + else if (current >= running_temp - (hysteresis_degc * 0.8f)) + fan_speed_scaler[fan_index] = 32; + else + fan_speed_scaler[fan_index] = 0; + } + #endif + + if (current >= running_temp - hysteresis_degc) { + timer = millis() + SEC_TO_MS(period_seconds); + break; + } + else if (PENDING(millis(), timer)) break; + state = TRRunaway; + + case TRRunaway: + TERN_(DWIN_CREALITY_LCD, DWIN_Popup_Temperature(0)); + _temp_error(heater_id, str_t_thermal_runaway, GET_TEXT(MSG_THERMAL_RUNAWAY)); + } + } + +#endif // HAS_THERMAL_PROTECTION + +void Temperature::disable_all_heaters() { + + TERN_(AUTOTEMP, planner.autotemp_enabled = false); + + // Unpause and reset everything + TERN_(PROBING_HEATERS_OFF, pause(false)); + + #if HAS_HOTEND + HOTEND_LOOP() { + setTargetHotend(0, e); + temp_hotend[e].soft_pwm_amount = 0; + } + #endif + + #if HAS_TEMP_HOTEND + #define DISABLE_HEATER(N) WRITE_HEATER_##N(LOW); + REPEAT(HOTENDS, DISABLE_HEATER); + #endif + + #if HAS_HEATED_BED + setTargetBed(0); + temp_bed.soft_pwm_amount = 0; + WRITE_HEATER_BED(LOW); + #endif + + #if HAS_HEATED_CHAMBER + setTargetChamber(0); + temp_chamber.soft_pwm_amount = 0; + WRITE_HEATER_CHAMBER(LOW); + #endif +} + +#if ENABLED(PRINTJOB_TIMER_AUTOSTART) + + bool Temperature::auto_job_over_threshold() { + #if HAS_HOTEND + HOTEND_LOOP() if (degTargetHotend(e) > (EXTRUDE_MINTEMP) / 2) return true; + #endif + return TERN0(HAS_HEATED_BED, degTargetBed() > BED_MINTEMP) + || TERN0(HAS_HEATED_CHAMBER, degTargetChamber() > CHAMBER_MINTEMP); + } + + void Temperature::auto_job_check_timer(const bool can_start, const bool can_stop) { + if (auto_job_over_threshold()) { + if (can_start) startOrResumeJob(); + } + else if (can_stop) { + print_job_timer.stop(); + ui.reset_status(); + } + } + +#endif + +#if ENABLED(PROBING_HEATERS_OFF) + + void Temperature::pause(const bool p) { + if (p != paused) { + paused = p; + if (p) { + HOTEND_LOOP() heater_idle[e].expire(); // Timeout immediately + TERN_(HAS_HEATED_BED, heater_idle[IDLE_INDEX_BED].expire()); // Timeout immediately + } + else { + HOTEND_LOOP() reset_hotend_idle_timer(e); + TERN_(HAS_HEATED_BED, reset_bed_idle_timer()); + } + } + } + +#endif // PROBING_HEATERS_OFF + +#if ENABLED(SINGLENOZZLE_STANDBY_TEMP) + + void Temperature::singlenozzle_change(const uint8_t old_tool, const uint8_t new_tool) { + #if HAS_FAN + singlenozzle_fan_speed[old_tool] = fan_speed[0]; + fan_speed[0] = singlenozzle_fan_speed[new_tool]; + #endif + singlenozzle_temp[old_tool] = temp_hotend[0].target; + if (singlenozzle_temp[new_tool] && singlenozzle_temp[new_tool] != singlenozzle_temp[old_tool]) { + setTargetHotend(singlenozzle_temp[new_tool], 0); + TERN_(AUTOTEMP, planner.autotemp_update()); + TERN_(HAS_DISPLAY, set_heating_message(0)); + (void)wait_for_hotend(0, false); // Wait for heating or cooling + } + } + +#endif + +#if HAS_MAX6675 + + #ifndef THERMOCOUPLE_MAX_ERRORS + #define THERMOCOUPLE_MAX_ERRORS 15 + #endif + + int Temperature::read_max6675(TERN_(HAS_MULTI_6675, const uint8_t hindex/*=0*/)) { + #define MAX6675_HEAT_INTERVAL 250UL + + #if MAX6675_0_IS_MAX31855 || MAX6675_1_IS_MAX31855 + static uint32_t max6675_temp = 2000; + #define MAX6675_ERROR_MASK 7 + #define MAX6675_DISCARD_BITS 18 + #define MAX6675_SPEED_BITS 3 // (_BV(SPR1)) // clock ÷ 64 + #elif HAS_MAX31865 + static uint16_t max6675_temp = 2000; // From datasheet 16 bits D15-D0 + #define MAX6675_ERROR_MASK 1 // D0 Bit not used + #define MAX6675_DISCARD_BITS 1 // Data is in D15-D1 + #define MAX6675_SPEED_BITS 3 // (_BV(SPR1)) // clock ÷ 64 + #else + static uint16_t max6675_temp = 2000; + #define MAX6675_ERROR_MASK 4 + #define MAX6675_DISCARD_BITS 3 + #define MAX6675_SPEED_BITS 2 // (_BV(SPR0)) // clock ÷ 16 + #endif + + #if HAS_MULTI_6675 + // Needed to return the correct temp when this is called between readings + static uint16_t max6675_temp_previous[COUNT_6675] = { 0 }; + #define MAX6675_TEMP(I) max6675_temp_previous[I] + #define MAX6675_SEL(A,B) (hindex ? (B) : (A)) + #define MAX6675_WRITE(V) do{ switch (hindex) { case 1: WRITE(MAX6675_SS2_PIN, V); break; default: WRITE(MAX6675_SS_PIN, V); } }while(0) + #define MAX6675_SET_OUTPUT() do{ switch (hindex) { case 1: SET_OUTPUT(MAX6675_SS2_PIN); break; default: SET_OUTPUT(MAX6675_SS_PIN); } }while(0) + #else + constexpr uint8_t hindex = 0; + #define MAX6675_TEMP(I) max6675_temp + #if MAX6675_1_IS_MAX31865 + #define MAX6675_SEL(A,B) B + #else + #define MAX6675_SEL(A,B) A + #endif + #if HEATER_0_USES_MAX6675 + #define MAX6675_WRITE(V) WRITE(MAX6675_SS_PIN, V) + #define MAX6675_SET_OUTPUT() SET_OUTPUT(MAX6675_SS_PIN) + #else + #define MAX6675_WRITE(V) WRITE(MAX6675_SS2_PIN, V) + #define MAX6675_SET_OUTPUT() SET_OUTPUT(MAX6675_SS2_PIN) + #endif + #endif + + static uint8_t max6675_errors[COUNT_6675] = { 0 }; + + // Return last-read value between readings + static millis_t next_max6675_ms[COUNT_6675] = { 0 }; + millis_t ms = millis(); + if (PENDING(ms, next_max6675_ms[hindex])) return int(MAX6675_TEMP(hindex)); + next_max6675_ms[hindex] = ms + MAX6675_HEAT_INTERVAL; + + #if HAS_MAX31865 + Adafruit_MAX31865 &maxref = MAX6675_SEL(max31865_0, max31865_1); + const uint16_t max31865_ohms = (uint32_t(maxref.readRTD()) * MAX6675_SEL(MAX31865_CALIBRATION_OHMS_0, MAX31865_CALIBRATION_OHMS_1)) >> 16; + #endif + + // + // TODO: spiBegin, spiRec and spiInit doesn't work when soft spi is used. + // + #if !MAX6675_SEPARATE_SPI + spiBegin(); + spiInit(MAX6675_SPEED_BITS); + #endif + + MAX6675_WRITE(LOW); // enable TT_MAX6675 + DELAY_NS(100); // Ensure 100ns delay + + // Read a big-endian temperature value + max6675_temp = 0; + for (uint8_t i = sizeof(max6675_temp); i--;) { + max6675_temp |= TERN(MAX6675_SEPARATE_SPI, max6675_spi.receive(), spiRec()); + if (i > 0) max6675_temp <<= 8; // shift left if not the last byte + } + + MAX6675_WRITE(HIGH); // disable TT_MAX6675 + + const uint8_t fault_31865 = TERN1(HAS_MAX31865, maxref.readFault()); + + if (DISABLED(IGNORE_THERMOCOUPLE_ERRORS) && (max6675_temp & MAX6675_ERROR_MASK) && fault_31865) { + max6675_errors[hindex]++; + if (max6675_errors[hindex] > THERMOCOUPLE_MAX_ERRORS) { + SERIAL_ERROR_START(); + SERIAL_ECHOPGM("Temp measurement error! "); + #if MAX6675_ERROR_MASK == 7 + SERIAL_ECHOPGM("MAX31855 "); + if (max6675_temp & 1) + SERIAL_ECHOLNPGM("Open Circuit"); + else if (max6675_temp & 2) + SERIAL_ECHOLNPGM("Short to GND"); + else if (max6675_temp & 4) + SERIAL_ECHOLNPGM("Short to VCC"); + #elif HAS_MAX31865 + if (fault_31865) { + maxref.clearFault(); + SERIAL_ECHOPAIR("MAX31865 Fault :(", fault_31865, ") >>"); + if (fault_31865 & MAX31865_FAULT_HIGHTHRESH) + SERIAL_ECHOLNPGM("RTD High Threshold"); + else if (fault_31865 & MAX31865_FAULT_LOWTHRESH) + SERIAL_ECHOLNPGM("RTD Low Threshold"); + else if (fault_31865 & MAX31865_FAULT_REFINLOW) + SERIAL_ECHOLNPGM("REFIN- > 0.85 x Bias"); + else if (fault_31865 & MAX31865_FAULT_REFINHIGH) + SERIAL_ECHOLNPGM("REFIN- < 0.85 x Bias - FORCE- open"); + else if (fault_31865 & MAX31865_FAULT_RTDINLOW) + SERIAL_ECHOLNPGM("REFIN- < 0.85 x Bias - FORCE- open"); + else if (fault_31865 & MAX31865_FAULT_OVUV) + SERIAL_ECHOLNPGM("Under/Over voltage"); + } + #else + SERIAL_ECHOLNPGM("MAX6675"); + #endif + + // Thermocouple open + max6675_temp = 4 * MAX6675_SEL(HEATER_0_MAX6675_TMAX, HEATER_1_MAX6675_TMAX); + } + else + max6675_temp >>= MAX6675_DISCARD_BITS; + } + else { + max6675_temp >>= MAX6675_DISCARD_BITS; + max6675_errors[hindex] = 0; + } + + #if MAX6675_0_IS_MAX31855 || MAX6675_1_IS_MAX31855 + if (max6675_temp & 0x00002000) max6675_temp |= 0xFFFFC000; // Support negative temperature + #endif + + // Return the RTD resistance for MAX31865 for display in SHOW_TEMP_ADC_VALUES + TERN_(HAS_MAX31865, max6675_temp = max31865_ohms); + + MAX6675_TEMP(hindex) = max6675_temp; + + return int(max6675_temp); + } + +#endif // HAS_MAX6675 + +/** + * Update raw temperatures + */ +void Temperature::update_raw_temperatures() { + + #if HAS_TEMP_ADC_0 && !HEATER_0_USES_MAX6675 + temp_hotend[0].update(); + #endif + + #if HAS_TEMP_ADC_1 + #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT) + redundant_temperature_raw = temp_hotend[1].acc; + #elif !HEATER_1_USES_MAX6675 + temp_hotend[1].update(); + #endif + #endif + + TERN_(HAS_TEMP_ADC_2, temp_hotend[2].update()); + TERN_(HAS_TEMP_ADC_3, temp_hotend[3].update()); + TERN_(HAS_TEMP_ADC_4, temp_hotend[4].update()); + TERN_(HAS_TEMP_ADC_5, temp_hotend[5].update()); + TERN_(HAS_TEMP_ADC_6, temp_hotend[6].update()); + TERN_(HAS_TEMP_ADC_7, temp_hotend[7].update()); + TERN_(HAS_TEMP_ADC_BED, temp_bed.update()); + TERN_(HAS_TEMP_ADC_CHAMBER, temp_chamber.update()); + TERN_(HAS_TEMP_ADC_PROBE, temp_probe.update()); + + TERN_(HAS_JOY_ADC_X, joystick.x.update()); + TERN_(HAS_JOY_ADC_Y, joystick.y.update()); + TERN_(HAS_JOY_ADC_Z, joystick.z.update()); + + raw_temps_ready = true; +} + +void Temperature::readings_ready() { + + // Update the raw values if they've been read. Else we could be updating them during reading. + if (!raw_temps_ready) update_raw_temperatures(); + + // Filament Sensor - can be read any time since IIR filtering is used + TERN_(FILAMENT_WIDTH_SENSOR, filwidth.reading_ready()); + + #if HAS_HOTEND + HOTEND_LOOP() temp_hotend[e].reset(); + TERN_(TEMP_SENSOR_1_AS_REDUNDANT, temp_hotend[1].reset()); + #endif + + TERN_(HAS_HEATED_BED, temp_bed.reset()); + TERN_(HAS_TEMP_CHAMBER, temp_chamber.reset()); + TERN_(HAS_TEMP_PROBE, temp_probe.reset()); + + TERN_(HAS_JOY_ADC_X, joystick.x.reset()); + TERN_(HAS_JOY_ADC_Y, joystick.y.reset()); + TERN_(HAS_JOY_ADC_Z, joystick.z.reset()); + + #if HAS_HOTEND + + static constexpr int8_t temp_dir[] = { + TERN(HEATER_0_USES_MAX6675, 0, TEMPDIR(0)) + #if HAS_MULTI_HOTEND + , TERN(HEATER_1_USES_MAX6675, 0, TEMPDIR(1)) + #if HOTENDS > 2 + #define _TEMPDIR(N) , TEMPDIR(N) + REPEAT_S(2, HOTENDS, _TEMPDIR) + #endif + #endif + }; + + LOOP_L_N(e, COUNT(temp_dir)) { + const int8_t tdir = temp_dir[e]; + if (tdir) { + const int16_t rawtemp = temp_hotend[e].raw * tdir; // normal direction, +rawtemp, else -rawtemp + const bool heater_on = (temp_hotend[e].target > 0 + || TERN0(PIDTEMP, temp_hotend[e].soft_pwm_amount) > 0 + ); + if (rawtemp > temp_range[e].raw_max * tdir) max_temp_error((heater_id_t)e); + if (heater_on && rawtemp < temp_range[e].raw_min * tdir && !is_preheating(e)) { + #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED + if (++consecutive_low_temperature_error[e] >= MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED) + #endif + min_temp_error((heater_id_t)e); + } + #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED + else + consecutive_low_temperature_error[e] = 0; + #endif + } + } + + #endif // HAS_HOTEND + + #if ENABLED(THERMAL_PROTECTION_BED) + #if TEMPDIR(BED) < 0 + #define BEDCMP(A,B) ((A)<(B)) + #else + #define BEDCMP(A,B) ((A)>(B)) + #endif + const bool bed_on = (temp_bed.target > 0) || TERN0(PIDTEMPBED, temp_bed.soft_pwm_amount > 0); + if (BEDCMP(temp_bed.raw, maxtemp_raw_BED)) max_temp_error(H_BED); + if (bed_on && BEDCMP(mintemp_raw_BED, temp_bed.raw)) min_temp_error(H_BED); + #endif + + #if BOTH(HAS_HEATED_CHAMBER, THERMAL_PROTECTION_CHAMBER) + #if TEMPDIR(CHAMBER) < 0 + #define CHAMBERCMP(A,B) ((A)<(B)) + #else + #define CHAMBERCMP(A,B) ((A)>(B)) + #endif + const bool chamber_on = (temp_chamber.target > 0); + if (CHAMBERCMP(temp_chamber.raw, maxtemp_raw_CHAMBER)) max_temp_error(H_CHAMBER); + if (chamber_on && CHAMBERCMP(mintemp_raw_CHAMBER, temp_chamber.raw)) min_temp_error(H_CHAMBER); + #endif +} + +/** + * Timer 0 is shared with millies so don't change the prescaler. + * + * On AVR this ISR uses the compare method so it runs at the base + * frequency (16 MHz / 64 / 256 = 976.5625 Hz), but at the TCNT0 set + * in OCR0B above (128 or halfway between OVFs). + * + * - Manage PWM to all the heaters and fan + * - Prepare or Measure one of the raw ADC sensor values + * - Check new temperature values for MIN/MAX errors (kill on error) + * - Step the babysteps value for each axis towards 0 + * - For PINS_DEBUGGING, monitor and report endstop pins + * - For ENDSTOP_INTERRUPTS_FEATURE check endstops if flagged + * - Call planner.tick to count down its "ignore" time + */ +HAL_TEMP_TIMER_ISR() { + HAL_timer_isr_prologue(TEMP_TIMER_NUM); + + Temperature::tick(); + + HAL_timer_isr_epilogue(TEMP_TIMER_NUM); +} + +#if ENABLED(SLOW_PWM_HEATERS) && !defined(MIN_STATE_TIME) + #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds +#endif + +class SoftPWM { +public: + uint8_t count; + inline bool add(const uint8_t mask, const uint8_t amount) { + count = (count & mask) + amount; return (count > mask); + } + #if ENABLED(SLOW_PWM_HEATERS) + bool state_heater; + uint8_t state_timer_heater; + inline void dec() { if (state_timer_heater > 0) state_timer_heater--; } + inline bool ready(const bool v) { + const bool rdy = !state_timer_heater; + if (rdy && state_heater != v) { + state_heater = v; + state_timer_heater = MIN_STATE_TIME; + } + return rdy; + } + #endif +}; + +/** + * Handle various ~1KHz tasks associated with temperature + * - Heater PWM (~1KHz with scaler) + * - LCD Button polling (~500Hz) + * - Start / Read one ADC sensor + * - Advance Babysteps + * - Endstop polling + * - Planner clean buffer + */ +void Temperature::tick() { + + static int8_t temp_count = -1; + static ADCSensorState adc_sensor_state = StartupDelay; + static uint8_t pwm_count = _BV(SOFT_PWM_SCALE); + + // avoid multiple loads of pwm_count + uint8_t pwm_count_tmp = pwm_count; + + #if HAS_ADC_BUTTONS + static unsigned int raw_ADCKey_value = 0; + static bool ADCKey_pressed = false; + #endif + + #if HAS_HOTEND + static SoftPWM soft_pwm_hotend[HOTENDS]; + #endif + + #if HAS_HEATED_BED + static SoftPWM soft_pwm_bed; + #endif + + #if HAS_HEATED_CHAMBER + static SoftPWM soft_pwm_chamber; + #endif + + #define WRITE_FAN(n, v) WRITE(FAN##n##_PIN, (v) ^ FAN_INVERTING) + + #if DISABLED(SLOW_PWM_HEATERS) + + #if ANY(HAS_HOTEND, HAS_HEATED_BED, HAS_HEATED_CHAMBER, FAN_SOFT_PWM) + constexpr uint8_t pwm_mask = TERN0(SOFT_PWM_DITHER, _BV(SOFT_PWM_SCALE) - 1); + #define _PWM_MOD(N,S,T) do{ \ + const bool on = S.add(pwm_mask, T.soft_pwm_amount); \ + WRITE_HEATER_##N(on); \ + }while(0) + #endif + + /** + * Standard heater PWM modulation + */ + if (pwm_count_tmp >= 127) { + pwm_count_tmp -= 127; + + #if HAS_HOTEND + #define _PWM_MOD_E(N) _PWM_MOD(N,soft_pwm_hotend[N],temp_hotend[N]); + REPEAT(HOTENDS, _PWM_MOD_E); + #endif + + #if HAS_HEATED_BED + _PWM_MOD(BED,soft_pwm_bed,temp_bed); + #endif + + #if HAS_HEATED_CHAMBER + _PWM_MOD(CHAMBER,soft_pwm_chamber,temp_chamber); + #endif + + #if ENABLED(FAN_SOFT_PWM) + #define _FAN_PWM(N) do{ \ + uint8_t &spcf = soft_pwm_count_fan[N]; \ + spcf = (spcf & pwm_mask) + (soft_pwm_amount_fan[N] >> 1); \ + WRITE_FAN(N, spcf > pwm_mask ? HIGH : LOW); \ + }while(0) + #if HAS_FAN0 + _FAN_PWM(0); + #endif + #if HAS_FAN1 + _FAN_PWM(1); + #endif + #if HAS_FAN2 + _FAN_PWM(2); + #endif + #if HAS_FAN3 + _FAN_PWM(3); + #endif + #if HAS_FAN4 + _FAN_PWM(4); + #endif + #if HAS_FAN5 + _FAN_PWM(5); + #endif + #if HAS_FAN6 + _FAN_PWM(6); + #endif + #if HAS_FAN7 + _FAN_PWM(7); + #endif + #endif + } + else { + #define _PWM_LOW(N,S) do{ if (S.count <= pwm_count_tmp) WRITE_HEATER_##N(LOW); }while(0) + #if HAS_HOTEND + #define _PWM_LOW_E(N) _PWM_LOW(N, soft_pwm_hotend[N]); + REPEAT(HOTENDS, _PWM_LOW_E); + #endif + + #if HAS_HEATED_BED + _PWM_LOW(BED, soft_pwm_bed); + #endif + + #if HAS_HEATED_CHAMBER + _PWM_LOW(CHAMBER, soft_pwm_chamber); + #endif + + #if ENABLED(FAN_SOFT_PWM) + #if HAS_FAN0 + if (soft_pwm_count_fan[0] <= pwm_count_tmp) WRITE_FAN(0, LOW); + #endif + #if HAS_FAN1 + if (soft_pwm_count_fan[1] <= pwm_count_tmp) WRITE_FAN(1, LOW); + #endif + #if HAS_FAN2 + if (soft_pwm_count_fan[2] <= pwm_count_tmp) WRITE_FAN(2, LOW); + #endif + #if HAS_FAN3 + if (soft_pwm_count_fan[3] <= pwm_count_tmp) WRITE_FAN(3, LOW); + #endif + #if HAS_FAN4 + if (soft_pwm_count_fan[4] <= pwm_count_tmp) WRITE_FAN(4, LOW); + #endif + #if HAS_FAN5 + if (soft_pwm_count_fan[5] <= pwm_count_tmp) WRITE_FAN(5, LOW); + #endif + #if HAS_FAN6 + if (soft_pwm_count_fan[6] <= pwm_count_tmp) WRITE_FAN(6, LOW); + #endif + #if HAS_FAN7 + if (soft_pwm_count_fan[7] <= pwm_count_tmp) WRITE_FAN(7, LOW); + #endif + #endif + } + + // SOFT_PWM_SCALE to frequency: + // + // 0: 16000000/64/256/128 = 7.6294 Hz + // 1: / 64 = 15.2588 Hz + // 2: / 32 = 30.5176 Hz + // 3: / 16 = 61.0352 Hz + // 4: / 8 = 122.0703 Hz + // 5: / 4 = 244.1406 Hz + pwm_count = pwm_count_tmp + _BV(SOFT_PWM_SCALE); + + #else // SLOW_PWM_HEATERS + + /** + * SLOW PWM HEATERS + * + * For relay-driven heaters + */ + #define _SLOW_SET(NR,PWM,V) do{ if (PWM.ready(V)) WRITE_HEATER_##NR(V); }while(0) + #define _SLOW_PWM(NR,PWM,SRC) do{ PWM.count = SRC.soft_pwm_amount; _SLOW_SET(NR,PWM,(PWM.count > 0)); }while(0) + #define _PWM_OFF(NR,PWM) do{ if (PWM.count < slow_pwm_count) _SLOW_SET(NR,PWM,0); }while(0) + + static uint8_t slow_pwm_count = 0; + + if (slow_pwm_count == 0) { + + #if HAS_HOTEND + #define _SLOW_PWM_E(N) _SLOW_PWM(N, soft_pwm_hotend[N], temp_hotend[N]); + REPEAT(HOTENDS, _SLOW_PWM_E); + #endif + + #if HAS_HEATED_BED + _SLOW_PWM(BED, soft_pwm_bed, temp_bed); + #endif + + #if HAS_HEATED_CHAMBER + _SLOW_PWM(CHAMBER, soft_pwm_chamber, temp_chamber); + #endif + + } // slow_pwm_count == 0 + + #if HAS_HOTEND + #define _PWM_OFF_E(N) _PWM_OFF(N, soft_pwm_hotend[N]); + REPEAT(HOTENDS, _PWM_OFF_E); + #endif + + #if HAS_HEATED_BED + _PWM_OFF(BED, soft_pwm_bed); + #endif + + #if HAS_HEATED_CHAMBER + _PWM_OFF(CHAMBER, soft_pwm_chamber); + #endif + + #if ENABLED(FAN_SOFT_PWM) + if (pwm_count_tmp >= 127) { + pwm_count_tmp = 0; + #define _PWM_FAN(N) do{ \ + soft_pwm_count_fan[N] = soft_pwm_amount_fan[N] >> 1; \ + WRITE_FAN(N, soft_pwm_count_fan[N] > 0 ? HIGH : LOW); \ + }while(0) + #if HAS_FAN0 + _PWM_FAN(0); + #endif + #if HAS_FAN1 + _PWM_FAN(1); + #endif + #if HAS_FAN2 + _PWM_FAN(2); + #endif + #if HAS_FAN3 + _FAN_PWM(3); + #endif + #if HAS_FAN4 + _FAN_PWM(4); + #endif + #if HAS_FAN5 + _FAN_PWM(5); + #endif + #if HAS_FAN6 + _FAN_PWM(6); + #endif + #if HAS_FAN7 + _FAN_PWM(7); + #endif + } + #if HAS_FAN0 + if (soft_pwm_count_fan[0] <= pwm_count_tmp) WRITE_FAN(0, LOW); + #endif + #if HAS_FAN1 + if (soft_pwm_count_fan[1] <= pwm_count_tmp) WRITE_FAN(1, LOW); + #endif + #if HAS_FAN2 + if (soft_pwm_count_fan[2] <= pwm_count_tmp) WRITE_FAN(2, LOW); + #endif + #if HAS_FAN3 + if (soft_pwm_count_fan[3] <= pwm_count_tmp) WRITE_FAN(3, LOW); + #endif + #if HAS_FAN4 + if (soft_pwm_count_fan[4] <= pwm_count_tmp) WRITE_FAN(4, LOW); + #endif + #if HAS_FAN5 + if (soft_pwm_count_fan[5] <= pwm_count_tmp) WRITE_FAN(5, LOW); + #endif + #if HAS_FAN6 + if (soft_pwm_count_fan[6] <= pwm_count_tmp) WRITE_FAN(6, LOW); + #endif + #if HAS_FAN7 + if (soft_pwm_count_fan[7] <= pwm_count_tmp) WRITE_FAN(7, LOW); + #endif + #endif // FAN_SOFT_PWM + + // SOFT_PWM_SCALE to frequency: + // + // 0: 16000000/64/256/128 = 7.6294 Hz + // 1: / 64 = 15.2588 Hz + // 2: / 32 = 30.5176 Hz + // 3: / 16 = 61.0352 Hz + // 4: / 8 = 122.0703 Hz + // 5: / 4 = 244.1406 Hz + pwm_count = pwm_count_tmp + _BV(SOFT_PWM_SCALE); + + // increment slow_pwm_count only every 64th pwm_count, + // i.e. yielding a PWM frequency of 16/128 Hz (8s). + if (((pwm_count >> SOFT_PWM_SCALE) & 0x3F) == 0) { + slow_pwm_count++; + slow_pwm_count &= 0x7F; + + #if HAS_HOTEND + HOTEND_LOOP() soft_pwm_hotend[e].dec(); + #endif + TERN_(HAS_HEATED_BED, soft_pwm_bed.dec()); + TERN_(HAS_HEATED_CHAMBER, soft_pwm_chamber.dec()); + } + + #endif // SLOW_PWM_HEATERS + + // + // Update lcd buttons 488 times per second + // + static bool do_buttons; + if ((do_buttons ^= true)) ui.update_buttons(); + + /** + * One sensor is sampled on every other call of the ISR. + * Each sensor is read 16 (OVERSAMPLENR) times, taking the average. + * + * On each Prepare pass, ADC is started for a sensor pin. + * On the next pass, the ADC value is read and accumulated. + * + * This gives each ADC 0.9765ms to charge up. + */ + #define ACCUMULATE_ADC(obj) do{ \ + if (!HAL_ADC_READY()) next_sensor_state = adc_sensor_state; \ + else obj.sample(HAL_READ_ADC()); \ + }while(0) + + ADCSensorState next_sensor_state = adc_sensor_state < SensorsReady ? (ADCSensorState)(int(adc_sensor_state) + 1) : StartSampling; + + switch (adc_sensor_state) { + + case SensorsReady: { + // All sensors have been read. Stay in this state for a few + // ISRs to save on calls to temp update/checking code below. + constexpr int8_t extra_loops = MIN_ADC_ISR_LOOPS - (int8_t)SensorsReady; + static uint8_t delay_count = 0; + if (extra_loops > 0) { + if (delay_count == 0) delay_count = extra_loops; // Init this delay + if (--delay_count) // While delaying... + next_sensor_state = SensorsReady; // retain this state (else, next state will be 0) + break; + } + else { + adc_sensor_state = StartSampling; // Fall-through to start sampling + next_sensor_state = (ADCSensorState)(int(StartSampling) + 1); + } + } + + case StartSampling: // Start of sampling loops. Do updates/checks. + if (++temp_count >= OVERSAMPLENR) { // 10 * 16 * 1/(16000000/64/256) = 164ms. + temp_count = 0; + readings_ready(); + } + break; + + #if HAS_TEMP_ADC_0 + case PrepareTemp_0: HAL_START_ADC(TEMP_0_PIN); break; + case MeasureTemp_0: ACCUMULATE_ADC(temp_hotend[0]); break; + #endif + + #if HAS_TEMP_ADC_BED + case PrepareTemp_BED: HAL_START_ADC(TEMP_BED_PIN); break; + case MeasureTemp_BED: ACCUMULATE_ADC(temp_bed); break; + #endif + + #if HAS_TEMP_ADC_CHAMBER + case PrepareTemp_CHAMBER: HAL_START_ADC(TEMP_CHAMBER_PIN); break; + case MeasureTemp_CHAMBER: ACCUMULATE_ADC(temp_chamber); break; + #endif + + #if HAS_TEMP_ADC_PROBE + case PrepareTemp_PROBE: HAL_START_ADC(TEMP_PROBE_PIN); break; + case MeasureTemp_PROBE: ACCUMULATE_ADC(temp_probe); break; + #endif + + #if HAS_TEMP_ADC_1 + case PrepareTemp_1: HAL_START_ADC(TEMP_1_PIN); break; + case MeasureTemp_1: ACCUMULATE_ADC(temp_hotend[1]); break; + #endif + + #if HAS_TEMP_ADC_2 + case PrepareTemp_2: HAL_START_ADC(TEMP_2_PIN); break; + case MeasureTemp_2: ACCUMULATE_ADC(temp_hotend[2]); break; + #endif + + #if HAS_TEMP_ADC_3 + case PrepareTemp_3: HAL_START_ADC(TEMP_3_PIN); break; + case MeasureTemp_3: ACCUMULATE_ADC(temp_hotend[3]); break; + #endif + + #if HAS_TEMP_ADC_4 + case PrepareTemp_4: HAL_START_ADC(TEMP_4_PIN); break; + case MeasureTemp_4: ACCUMULATE_ADC(temp_hotend[4]); break; + #endif + + #if HAS_TEMP_ADC_5 + case PrepareTemp_5: HAL_START_ADC(TEMP_5_PIN); break; + case MeasureTemp_5: ACCUMULATE_ADC(temp_hotend[5]); break; + #endif + + #if HAS_TEMP_ADC_6 + case PrepareTemp_6: HAL_START_ADC(TEMP_6_PIN); break; + case MeasureTemp_6: ACCUMULATE_ADC(temp_hotend[6]); break; + #endif + + #if HAS_TEMP_ADC_7 + case PrepareTemp_7: HAL_START_ADC(TEMP_7_PIN); break; + case MeasureTemp_7: ACCUMULATE_ADC(temp_hotend[7]); break; + #endif + + #if ENABLED(FILAMENT_WIDTH_SENSOR) + case Prepare_FILWIDTH: HAL_START_ADC(FILWIDTH_PIN); break; + case Measure_FILWIDTH: + if (!HAL_ADC_READY()) next_sensor_state = adc_sensor_state; // Redo this state + else filwidth.accumulate(HAL_READ_ADC()); + break; + #endif + + #if ENABLED(POWER_MONITOR_CURRENT) + case Prepare_POWER_MONITOR_CURRENT: + HAL_START_ADC(POWER_MONITOR_CURRENT_PIN); + break; + case Measure_POWER_MONITOR_CURRENT: + if (!HAL_ADC_READY()) next_sensor_state = adc_sensor_state; // Redo this state + else power_monitor.add_current_sample(HAL_READ_ADC()); + break; + #endif + + #if ENABLED(POWER_MONITOR_VOLTAGE) + case Prepare_POWER_MONITOR_VOLTAGE: + HAL_START_ADC(POWER_MONITOR_VOLTAGE_PIN); + break; + case Measure_POWER_MONITOR_VOLTAGE: + if (!HAL_ADC_READY()) next_sensor_state = adc_sensor_state; // Redo this state + else power_monitor.add_voltage_sample(HAL_READ_ADC()); + break; + #endif + + #if HAS_JOY_ADC_X + case PrepareJoy_X: HAL_START_ADC(JOY_X_PIN); break; + case MeasureJoy_X: ACCUMULATE_ADC(joystick.x); break; + #endif + + #if HAS_JOY_ADC_Y + case PrepareJoy_Y: HAL_START_ADC(JOY_Y_PIN); break; + case MeasureJoy_Y: ACCUMULATE_ADC(joystick.y); break; + #endif + + #if HAS_JOY_ADC_Z + case PrepareJoy_Z: HAL_START_ADC(JOY_Z_PIN); break; + case MeasureJoy_Z: ACCUMULATE_ADC(joystick.z); break; + #endif + + #if HAS_ADC_BUTTONS + #ifndef ADC_BUTTON_DEBOUNCE_DELAY + #define ADC_BUTTON_DEBOUNCE_DELAY 16 + #endif + case Prepare_ADC_KEY: HAL_START_ADC(ADC_KEYPAD_PIN); break; + case Measure_ADC_KEY: + if (!HAL_ADC_READY()) + next_sensor_state = adc_sensor_state; // redo this state + else if (ADCKey_count < ADC_BUTTON_DEBOUNCE_DELAY) { + raw_ADCKey_value = HAL_READ_ADC(); + if (raw_ADCKey_value <= 900UL * HAL_ADC_RANGE / 1024UL) { + NOMORE(current_ADCKey_raw, raw_ADCKey_value); + ADCKey_count++; + } + else { //ADC Key release + if (ADCKey_count > 0) ADCKey_count++; else ADCKey_pressed = false; + if (ADCKey_pressed) { + ADCKey_count = 0; + current_ADCKey_raw = HAL_ADC_RANGE; + } + } + } + if (ADCKey_count == ADC_BUTTON_DEBOUNCE_DELAY) ADCKey_pressed = true; + break; + #endif // HAS_ADC_BUTTONS + + case StartupDelay: break; + + } // switch(adc_sensor_state) + + // Go to the next state + adc_sensor_state = next_sensor_state; + + // + // Additional ~1KHz Tasks + // + + #if ENABLED(BABYSTEPPING) && DISABLED(INTEGRATED_BABYSTEPPING) + babystep.task(); + #endif + + // Poll endstops state, if required + endstops.poll(); + + // Periodically call the planner timer + planner.tick(); +} + +#if HAS_TEMP_SENSOR + + #include "../gcode/gcode.h" + + static void print_heater_state(const float &c, const float &t + #if ENABLED(SHOW_TEMP_ADC_VALUES) + , const float r + #endif + , const heater_id_t e=INDEX_NONE + ) { + char k; + switch (e) { + #if HAS_TEMP_CHAMBER + case H_CHAMBER: k = 'C'; break; + #endif + #if HAS_TEMP_PROBE + case H_PROBE: k = 'P'; break; + #endif + #if HAS_TEMP_HOTEND + default: k = 'T'; break; + #if HAS_HEATED_BED + case H_BED: k = 'B'; break; + #endif + #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT) + case H_REDUNDANT: k = 'R'; break; + #endif + #elif HAS_HEATED_BED + default: k = 'B'; break; + #endif + } + SERIAL_CHAR(' ', k); + #if HAS_MULTI_HOTEND + if (e >= 0) SERIAL_CHAR('0' + e); + #endif + #ifdef SERIAL_FLOAT_PRECISION + #define SFP _MIN(SERIAL_FLOAT_PRECISION, 2) + #else + #define SFP 2 + #endif + SERIAL_CHAR(':'); + SERIAL_PRINT(c, SFP); + SERIAL_ECHOPGM(" /"); + SERIAL_PRINT(t, SFP); + #if ENABLED(SHOW_TEMP_ADC_VALUES) + SERIAL_ECHOPAIR(" (", r * RECIPROCAL(OVERSAMPLENR)); + SERIAL_CHAR(')'); + #endif + delay(2); + } + + void Temperature::print_heater_states(const uint8_t target_extruder + #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT) + , const bool include_r/*=false*/ + #endif + ) { + #if HAS_TEMP_HOTEND + print_heater_state(degHotend(target_extruder), degTargetHotend(target_extruder) + #if ENABLED(SHOW_TEMP_ADC_VALUES) + , rawHotendTemp(target_extruder) + #endif + ); + #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT) + if (include_r) print_heater_state(redundant_temperature, degTargetHotend(target_extruder) + #if ENABLED(SHOW_TEMP_ADC_VALUES) + , redundant_temperature_raw + #endif + , H_REDUNDANT + ); + #endif + #endif + #if HAS_HEATED_BED + print_heater_state(degBed(), degTargetBed() + #if ENABLED(SHOW_TEMP_ADC_VALUES) + , rawBedTemp() + #endif + , H_BED + ); + #endif + #if HAS_TEMP_CHAMBER + print_heater_state(degChamber() + #if HAS_HEATED_CHAMBER + , degTargetChamber() + #else + , 0 + #endif + #if ENABLED(SHOW_TEMP_ADC_VALUES) + , rawChamberTemp() + #endif + , H_CHAMBER + ); + #endif // HAS_TEMP_CHAMBER + #if HAS_TEMP_PROBE + print_heater_state(degProbe(), 0 + #if ENABLED(SHOW_TEMP_ADC_VALUES) + , rawProbeTemp() + #endif + , H_PROBE + ); + #endif // HAS_TEMP_PROBE + #if HAS_MULTI_HOTEND + HOTEND_LOOP() print_heater_state(degHotend(e), degTargetHotend(e) + #if ENABLED(SHOW_TEMP_ADC_VALUES) + , rawHotendTemp(e) + #endif + , (heater_id_t)e + ); + #endif + SERIAL_ECHOPAIR(" @:", getHeaterPower((heater_id_t)target_extruder)); + #if HAS_HEATED_BED + SERIAL_ECHOPAIR(" B@:", getHeaterPower(H_BED)); + #endif + #if HAS_HEATED_CHAMBER + SERIAL_ECHOPAIR(" C@:", getHeaterPower(H_CHAMBER)); + #endif + #if HAS_MULTI_HOTEND + HOTEND_LOOP() { + SERIAL_ECHOPAIR(" @", e); + SERIAL_CHAR(':'); + SERIAL_ECHO(getHeaterPower((heater_id_t)e)); + } + #endif + } + + #if ENABLED(AUTO_REPORT_TEMPERATURES) + AutoReporter<Temperature::AutoReportTemp> Temperature::auto_reporter; + void Temperature::AutoReportTemp::report() { + print_heater_states(active_extruder); + SERIAL_EOL(); + } + #endif + + #if HAS_HOTEND && HAS_DISPLAY + void Temperature::set_heating_message(const uint8_t e) { + const bool heating = isHeatingHotend(e); + ui.status_printf_P(0, + #if HAS_MULTI_HOTEND + PSTR("E%c " S_FMT), '1' + e + #else + PSTR("E " S_FMT) + #endif + , heating ? GET_TEXT(MSG_HEATING) : GET_TEXT(MSG_COOLING) + ); + } + #endif + + #if HAS_TEMP_HOTEND + + #ifndef MIN_COOLING_SLOPE_DEG + #define MIN_COOLING_SLOPE_DEG 1.50 + #endif + #ifndef MIN_COOLING_SLOPE_TIME + #define MIN_COOLING_SLOPE_TIME 60 + #endif + + bool Temperature::wait_for_hotend(const uint8_t target_extruder, const bool no_wait_for_cooling/*=true*/ + #if G26_CLICK_CAN_CANCEL + , const bool click_to_cancel/*=false*/ + #endif + ) { + + #if ENABLED(AUTOTEMP) + REMEMBER(1, planner.autotemp_enabled, false); + #endif + + #if TEMP_RESIDENCY_TIME > 0 + millis_t residency_start_ms = 0; + bool first_loop = true; + // Loop until the temperature has stabilized + #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + SEC_TO_MS(TEMP_RESIDENCY_TIME))) + #else + // Loop until the temperature is very close target + #define TEMP_CONDITIONS (wants_to_cool ? isCoolingHotend(target_extruder) : isHeatingHotend(target_extruder)) + #endif + + #if DISABLED(BUSY_WHILE_HEATING) && ENABLED(HOST_KEEPALIVE_FEATURE) + KEEPALIVE_STATE(NOT_BUSY); + #endif + + #if ENABLED(PRINTER_EVENT_LEDS) + const float start_temp = degHotend(target_extruder); + printerEventLEDs.onHotendHeatingStart(); + #endif + + bool wants_to_cool = false; + float target_temp = -1.0, old_temp = 9999.0; + millis_t now, next_temp_ms = 0, next_cool_check_ms = 0; + wait_for_heatup = true; + do { + // Target temperature might be changed during the loop + if (target_temp != degTargetHotend(target_extruder)) { + wants_to_cool = isCoolingHotend(target_extruder); + target_temp = degTargetHotend(target_extruder); + + // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher> + if (no_wait_for_cooling && wants_to_cool) break; + } + + now = millis(); + if (ELAPSED(now, next_temp_ms)) { // Print temp & remaining time every 1s while waiting + next_temp_ms = now + 1000UL; + print_heater_states(target_extruder); + #if TEMP_RESIDENCY_TIME > 0 + SERIAL_ECHOPGM(" W:"); + if (residency_start_ms) + SERIAL_ECHO(long((SEC_TO_MS(TEMP_RESIDENCY_TIME) - (now - residency_start_ms)) / 1000UL)); + else + SERIAL_CHAR('?'); + #endif + SERIAL_EOL(); + } + + idle(); + gcode.reset_stepper_timeout(); // Keep steppers powered + + const float temp = degHotend(target_extruder); + + #if ENABLED(PRINTER_EVENT_LEDS) + // Gradually change LED strip from violet to red as nozzle heats up + if (!wants_to_cool) printerEventLEDs.onHotendHeating(start_temp, temp, target_temp); + #endif + + #if TEMP_RESIDENCY_TIME > 0 + + const float temp_diff = ABS(target_temp - temp); + + if (!residency_start_ms) { + // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time. + if (temp_diff < TEMP_WINDOW) + residency_start_ms = now + (first_loop ? SEC_TO_MS(TEMP_RESIDENCY_TIME) / 3 : 0); + } + else if (temp_diff > TEMP_HYSTERESIS) { + // Restart the timer whenever the temperature falls outside the hysteresis. + residency_start_ms = now; + } + + first_loop = false; + + #endif + + // Prevent a wait-forever situation if R is misused i.e. M109 R0 + if (wants_to_cool) { + // break after MIN_COOLING_SLOPE_TIME seconds + // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG + if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) { + if (old_temp - temp < float(MIN_COOLING_SLOPE_DEG)) break; + next_cool_check_ms = now + SEC_TO_MS(MIN_COOLING_SLOPE_TIME); + old_temp = temp; + } + } + + #if G26_CLICK_CAN_CANCEL + if (click_to_cancel && ui.use_click()) { + wait_for_heatup = false; + ui.quick_feedback(); + } + #endif + + } while (wait_for_heatup && TEMP_CONDITIONS); + + if (wait_for_heatup) { + wait_for_heatup = false; + #if ENABLED(DWIN_CREALITY_LCD) + HMI_flag.heat_flag = 0; + duration_t elapsed = print_job_timer.duration(); // print timer + dwin_heat_time = elapsed.value; + #else + ui.reset_status(); + #endif + TERN_(PRINTER_EVENT_LEDS, printerEventLEDs.onHeatingDone()); + return true; + } + + return false; + } + + #endif // HAS_TEMP_HOTEND + + #if HAS_HEATED_BED + + #ifndef MIN_COOLING_SLOPE_DEG_BED + #define MIN_COOLING_SLOPE_DEG_BED 1.00 + #endif + #ifndef MIN_COOLING_SLOPE_TIME_BED + #define MIN_COOLING_SLOPE_TIME_BED 60 + #endif + + bool Temperature::wait_for_bed(const bool no_wait_for_cooling/*=true*/ + #if G26_CLICK_CAN_CANCEL + , const bool click_to_cancel/*=false*/ + #endif + ) { + #if TEMP_BED_RESIDENCY_TIME > 0 + millis_t residency_start_ms = 0; + bool first_loop = true; + // Loop until the temperature has stabilized + #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + SEC_TO_MS(TEMP_BED_RESIDENCY_TIME))) + #else + // Loop until the temperature is very close target + #define TEMP_BED_CONDITIONS (wants_to_cool ? isCoolingBed() : isHeatingBed()) + #endif + + #if DISABLED(BUSY_WHILE_HEATING) && ENABLED(HOST_KEEPALIVE_FEATURE) + KEEPALIVE_STATE(NOT_BUSY); + #endif + + #if ENABLED(PRINTER_EVENT_LEDS) + const float start_temp = degBed(); + printerEventLEDs.onBedHeatingStart(); + #endif + + bool wants_to_cool = false; + float target_temp = -1, old_temp = 9999; + millis_t now, next_temp_ms = 0, next_cool_check_ms = 0; + wait_for_heatup = true; + do { + // Target temperature might be changed during the loop + if (target_temp != degTargetBed()) { + wants_to_cool = isCoolingBed(); + target_temp = degTargetBed(); + + // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher> + if (no_wait_for_cooling && wants_to_cool) break; + } + + now = millis(); + if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up. + next_temp_ms = now + 1000UL; + print_heater_states(active_extruder); + #if TEMP_BED_RESIDENCY_TIME > 0 + SERIAL_ECHOPGM(" W:"); + if (residency_start_ms) + SERIAL_ECHO(long((SEC_TO_MS(TEMP_BED_RESIDENCY_TIME) - (now - residency_start_ms)) / 1000UL)); + else + SERIAL_CHAR('?'); + #endif + SERIAL_EOL(); + } + + idle(); + gcode.reset_stepper_timeout(); // Keep steppers powered + + const float temp = degBed(); + + #if ENABLED(PRINTER_EVENT_LEDS) + // Gradually change LED strip from blue to violet as bed heats up + if (!wants_to_cool) printerEventLEDs.onBedHeating(start_temp, temp, target_temp); + #endif + + #if TEMP_BED_RESIDENCY_TIME > 0 + + const float temp_diff = ABS(target_temp - temp); + + if (!residency_start_ms) { + // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time. + if (temp_diff < TEMP_BED_WINDOW) + residency_start_ms = now + (first_loop ? SEC_TO_MS(TEMP_BED_RESIDENCY_TIME) / 3 : 0); + } + else if (temp_diff > TEMP_BED_HYSTERESIS) { + // Restart the timer whenever the temperature falls outside the hysteresis. + residency_start_ms = now; + } + + #endif // TEMP_BED_RESIDENCY_TIME > 0 + + // Prevent a wait-forever situation if R is misused i.e. M190 R0 + if (wants_to_cool) { + // Break after MIN_COOLING_SLOPE_TIME_BED seconds + // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED + if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) { + if (old_temp - temp < float(MIN_COOLING_SLOPE_DEG_BED)) break; + next_cool_check_ms = now + SEC_TO_MS(MIN_COOLING_SLOPE_TIME_BED); + old_temp = temp; + } + } + + #if G26_CLICK_CAN_CANCEL + if (click_to_cancel && ui.use_click()) { + wait_for_heatup = false; + ui.quick_feedback(); + } + #endif + + #if TEMP_BED_RESIDENCY_TIME > 0 + first_loop = false; + #endif + + } while (wait_for_heatup && TEMP_BED_CONDITIONS); + + if (wait_for_heatup) { + wait_for_heatup = false; + ui.reset_status(); + return true; + } + + return false; + } + + void Temperature::wait_for_bed_heating() { + if (isHeatingBed()) { + SERIAL_ECHOLNPGM("Wait for bed heating..."); + LCD_MESSAGEPGM(MSG_BED_HEATING); + wait_for_bed(); + ui.reset_status(); + } + } + + #endif // HAS_HEATED_BED + + #if HAS_TEMP_PROBE + + #ifndef MIN_DELTA_SLOPE_DEG_PROBE + #define MIN_DELTA_SLOPE_DEG_PROBE 1.0 + #endif + #ifndef MIN_DELTA_SLOPE_TIME_PROBE + #define MIN_DELTA_SLOPE_TIME_PROBE 600 + #endif + + bool Temperature::wait_for_probe(const float target_temp, bool no_wait_for_cooling/*=true*/) { + + const bool wants_to_cool = isProbeAboveTemp(target_temp); + const bool will_wait = !(wants_to_cool && no_wait_for_cooling); + if (will_wait) + SERIAL_ECHOLNPAIR("Waiting for probe to ", (wants_to_cool ? PSTR("cool down") : PSTR("heat up")), " to ", target_temp, " degrees."); + + #if DISABLED(BUSY_WHILE_HEATING) && ENABLED(HOST_KEEPALIVE_FEATURE) + KEEPALIVE_STATE(NOT_BUSY); + #endif + + float old_temp = 9999; + millis_t next_temp_ms = 0, next_delta_check_ms = 0; + wait_for_heatup = true; + while (will_wait && wait_for_heatup) { + + // Print Temp Reading every 10 seconds while heating up. + millis_t now = millis(); + if (!next_temp_ms || ELAPSED(now, next_temp_ms)) { + next_temp_ms = now + 10000UL; + print_heater_states(active_extruder); + SERIAL_EOL(); + } + + idle(); + gcode.reset_stepper_timeout(); // Keep steppers powered + + // Break after MIN_DELTA_SLOPE_TIME_PROBE seconds if the temperature + // did not drop at least MIN_DELTA_SLOPE_DEG_PROBE. This avoids waiting + // forever as the probe is not actively heated. + if (!next_delta_check_ms || ELAPSED(now, next_delta_check_ms)) { + const float temp = degProbe(), + delta_temp = old_temp > temp ? old_temp - temp : temp - old_temp; + if (delta_temp < float(MIN_DELTA_SLOPE_DEG_PROBE)) { + SERIAL_ECHOLNPGM("Timed out waiting for probe temperature."); + break; + } + next_delta_check_ms = now + SEC_TO_MS(MIN_DELTA_SLOPE_TIME_PROBE); + old_temp = temp; + } + + // Loop until the temperature is very close target + if (!(wants_to_cool ? isProbeAboveTemp(target_temp) : isProbeBelowTemp(target_temp))) { + SERIAL_ECHOLN(wants_to_cool ? PSTR("Cooldown") : PSTR("Heatup")); + SERIAL_ECHOLNPGM(" complete, target probe temperature reached."); + break; + } + } + + if (wait_for_heatup) { + wait_for_heatup = false; + ui.reset_status(); + return true; + } + else if (will_wait) + SERIAL_ECHOLNPGM("Canceled wait for probe temperature."); + + return false; + } + + #endif // HAS_TEMP_PROBE + + #if HAS_HEATED_CHAMBER + + #ifndef MIN_COOLING_SLOPE_DEG_CHAMBER + #define MIN_COOLING_SLOPE_DEG_CHAMBER 1.50 + #endif + #ifndef MIN_COOLING_SLOPE_TIME_CHAMBER + #define MIN_COOLING_SLOPE_TIME_CHAMBER 120 + #endif + + bool Temperature::wait_for_chamber(const bool no_wait_for_cooling/*=true*/) { + #if TEMP_CHAMBER_RESIDENCY_TIME > 0 + millis_t residency_start_ms = 0; + bool first_loop = true; + // Loop until the temperature has stabilized + #define TEMP_CHAMBER_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + SEC_TO_MS(TEMP_CHAMBER_RESIDENCY_TIME))) + #else + // Loop until the temperature is very close target + #define TEMP_CHAMBER_CONDITIONS (wants_to_cool ? isCoolingChamber() : isHeatingChamber()) + #endif + + #if DISABLED(BUSY_WHILE_HEATING) && ENABLED(HOST_KEEPALIVE_FEATURE) + KEEPALIVE_STATE(NOT_BUSY); + #endif + + bool wants_to_cool = false; + float target_temp = -1, old_temp = 9999; + millis_t now, next_temp_ms = 0, next_cool_check_ms = 0; + wait_for_heatup = true; + do { + // Target temperature might be changed during the loop + if (target_temp != degTargetChamber()) { + wants_to_cool = isCoolingChamber(); + target_temp = degTargetChamber(); + + // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher> + if (no_wait_for_cooling && wants_to_cool) break; + } + + now = millis(); + if (ELAPSED(now, next_temp_ms)) { // Print Temp Reading every 1 second while heating up. + next_temp_ms = now + 1000UL; + print_heater_states(active_extruder); + #if TEMP_CHAMBER_RESIDENCY_TIME > 0 + SERIAL_ECHOPGM(" W:"); + if (residency_start_ms) + SERIAL_ECHO(long((SEC_TO_MS(TEMP_CHAMBER_RESIDENCY_TIME) - (now - residency_start_ms)) / 1000UL)); + else + SERIAL_CHAR('?'); + #endif + SERIAL_EOL(); + } + + idle(); + gcode.reset_stepper_timeout(); // Keep steppers powered + + const float temp = degChamber(); + + #if TEMP_CHAMBER_RESIDENCY_TIME > 0 + + const float temp_diff = ABS(target_temp - temp); + + if (!residency_start_ms) { + // Start the TEMP_CHAMBER_RESIDENCY_TIME timer when we reach target temp for the first time. + if (temp_diff < TEMP_CHAMBER_WINDOW) + residency_start_ms = now + (first_loop ? SEC_TO_MS(TEMP_CHAMBER_RESIDENCY_TIME) / 3 : 0); + } + else if (temp_diff > TEMP_CHAMBER_HYSTERESIS) { + // Restart the timer whenever the temperature falls outside the hysteresis. + residency_start_ms = now; + } + + first_loop = false; + #endif // TEMP_CHAMBER_RESIDENCY_TIME > 0 + + // Prevent a wait-forever situation if R is misused i.e. M191 R0 + if (wants_to_cool) { + // Break after MIN_COOLING_SLOPE_TIME_CHAMBER seconds + // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_CHAMBER + if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) { + if (old_temp - temp < float(MIN_COOLING_SLOPE_DEG_CHAMBER)) break; + next_cool_check_ms = now + SEC_TO_MS(MIN_COOLING_SLOPE_TIME_CHAMBER); + old_temp = temp; + } + } + } while (wait_for_heatup && TEMP_CHAMBER_CONDITIONS); + + if (wait_for_heatup) { + wait_for_heatup = false; + ui.reset_status(); + return true; + } + + return false; + } + + #endif // HAS_HEATED_CHAMBER + +#endif // HAS_TEMP_SENSOR |