aboutsummaryrefslogtreecommitdiff
path: root/Marlin/src/module/temperature.h
diff options
context:
space:
mode:
Diffstat (limited to 'Marlin/src/module/temperature.h')
-rw-r--r--Marlin/src/module/temperature.h885
1 files changed, 885 insertions, 0 deletions
diff --git a/Marlin/src/module/temperature.h b/Marlin/src/module/temperature.h
new file mode 100644
index 0000000..002e1cb
--- /dev/null
+++ b/Marlin/src/module/temperature.h
@@ -0,0 +1,885 @@
+/**
+ * Marlin 3D Printer Firmware
+ * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
+ *
+ * Based on Sprinter and grbl.
+ * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <https://www.gnu.org/licenses/>.
+ *
+ */
+#pragma once
+
+/**
+ * temperature.h - temperature controller
+ */
+
+#include "thermistor/thermistors.h"
+
+#include "../inc/MarlinConfig.h"
+
+#if ENABLED(AUTO_POWER_CONTROL)
+ #include "../feature/power.h"
+#endif
+
+#if ENABLED(AUTO_REPORT_TEMPERATURES)
+ #include "../libs/autoreport.h"
+#endif
+
+#ifndef SOFT_PWM_SCALE
+ #define SOFT_PWM_SCALE 0
+#endif
+
+#define HOTEND_INDEX TERN(HAS_MULTI_HOTEND, e, 0)
+#define E_NAME TERN_(HAS_MULTI_HOTEND, e)
+
+// Heater identifiers. Positive values are hotends. Negative values are other heaters.
+typedef enum : int8_t {
+ INDEX_NONE = -5,
+ H_PROBE, H_REDUNDANT, H_CHAMBER, H_BED,
+ H_E0, H_E1, H_E2, H_E3, H_E4, H_E5, H_E6, H_E7
+} heater_id_t;
+
+// PID storage
+typedef struct { float Kp, Ki, Kd; } PID_t;
+typedef struct { float Kp, Ki, Kd, Kc; } PIDC_t;
+typedef struct { float Kp, Ki, Kd, Kf; } PIDF_t;
+typedef struct { float Kp, Ki, Kd, Kc, Kf; } PIDCF_t;
+
+typedef
+ #if BOTH(PID_EXTRUSION_SCALING, PID_FAN_SCALING)
+ PIDCF_t
+ #elif ENABLED(PID_EXTRUSION_SCALING)
+ PIDC_t
+ #elif ENABLED(PID_FAN_SCALING)
+ PIDF_t
+ #else
+ PID_t
+ #endif
+hotend_pid_t;
+
+#if ENABLED(PID_EXTRUSION_SCALING)
+ typedef IF<(LPQ_MAX_LEN > 255), uint16_t, uint8_t>::type lpq_ptr_t;
+#endif
+
+#define PID_PARAM(F,H) _PID_##F(TERN(PID_PARAMS_PER_HOTEND, H, 0 & H)) // Always use 'H' to suppress warning
+#define _PID_Kp(H) TERN(PIDTEMP, Temperature::temp_hotend[H].pid.Kp, NAN)
+#define _PID_Ki(H) TERN(PIDTEMP, Temperature::temp_hotend[H].pid.Ki, NAN)
+#define _PID_Kd(H) TERN(PIDTEMP, Temperature::temp_hotend[H].pid.Kd, NAN)
+#if ENABLED(PIDTEMP)
+ #define _PID_Kc(H) TERN(PID_EXTRUSION_SCALING, Temperature::temp_hotend[H].pid.Kc, 1)
+ #define _PID_Kf(H) TERN(PID_FAN_SCALING, Temperature::temp_hotend[H].pid.Kf, 0)
+#else
+ #define _PID_Kc(H) 1
+ #define _PID_Kf(H) 0
+#endif
+
+/**
+ * States for ADC reading in the ISR
+ */
+enum ADCSensorState : char {
+ StartSampling,
+ #if HAS_TEMP_ADC_0
+ PrepareTemp_0, MeasureTemp_0,
+ #endif
+ #if HAS_TEMP_ADC_BED
+ PrepareTemp_BED, MeasureTemp_BED,
+ #endif
+ #if HAS_TEMP_ADC_CHAMBER
+ PrepareTemp_CHAMBER, MeasureTemp_CHAMBER,
+ #endif
+ #if HAS_TEMP_ADC_PROBE
+ PrepareTemp_PROBE, MeasureTemp_PROBE,
+ #endif
+ #if HAS_TEMP_ADC_1
+ PrepareTemp_1, MeasureTemp_1,
+ #endif
+ #if HAS_TEMP_ADC_2
+ PrepareTemp_2, MeasureTemp_2,
+ #endif
+ #if HAS_TEMP_ADC_3
+ PrepareTemp_3, MeasureTemp_3,
+ #endif
+ #if HAS_TEMP_ADC_4
+ PrepareTemp_4, MeasureTemp_4,
+ #endif
+ #if HAS_TEMP_ADC_5
+ PrepareTemp_5, MeasureTemp_5,
+ #endif
+ #if HAS_TEMP_ADC_6
+ PrepareTemp_6, MeasureTemp_6,
+ #endif
+ #if HAS_TEMP_ADC_7
+ PrepareTemp_7, MeasureTemp_7,
+ #endif
+ #if HAS_JOY_ADC_X
+ PrepareJoy_X, MeasureJoy_X,
+ #endif
+ #if HAS_JOY_ADC_Y
+ PrepareJoy_Y, MeasureJoy_Y,
+ #endif
+ #if HAS_JOY_ADC_Z
+ PrepareJoy_Z, MeasureJoy_Z,
+ #endif
+ #if ENABLED(FILAMENT_WIDTH_SENSOR)
+ Prepare_FILWIDTH, Measure_FILWIDTH,
+ #endif
+ #if ENABLED(POWER_MONITOR_CURRENT)
+ Prepare_POWER_MONITOR_CURRENT,
+ Measure_POWER_MONITOR_CURRENT,
+ #endif
+ #if ENABLED(POWER_MONITOR_VOLTAGE)
+ Prepare_POWER_MONITOR_VOLTAGE,
+ Measure_POWER_MONITOR_VOLTAGE,
+ #endif
+ #if HAS_ADC_BUTTONS
+ Prepare_ADC_KEY, Measure_ADC_KEY,
+ #endif
+ SensorsReady, // Temperatures ready. Delay the next round of readings to let ADC pins settle.
+ StartupDelay // Startup, delay initial temp reading a tiny bit so the hardware can settle
+};
+
+// Minimum number of Temperature::ISR loops between sensor readings.
+// Multiplied by 16 (OVERSAMPLENR) to obtain the total time to
+// get all oversampled sensor readings
+#define MIN_ADC_ISR_LOOPS 10
+
+#define ACTUAL_ADC_SAMPLES _MAX(int(MIN_ADC_ISR_LOOPS), int(SensorsReady))
+
+#if HAS_PID_HEATING
+ #define PID_K2 (1-float(PID_K1))
+ #define PID_dT ((OVERSAMPLENR * float(ACTUAL_ADC_SAMPLES)) / TEMP_TIMER_FREQUENCY)
+
+ // Apply the scale factors to the PID values
+ #define scalePID_i(i) ( float(i) * PID_dT )
+ #define unscalePID_i(i) ( float(i) / PID_dT )
+ #define scalePID_d(d) ( float(d) / PID_dT )
+ #define unscalePID_d(d) ( float(d) * PID_dT )
+#endif
+
+#if BOTH(HAS_LCD_MENU, G26_MESH_VALIDATION)
+ #define G26_CLICK_CAN_CANCEL 1
+#endif
+
+// A temperature sensor
+typedef struct TempInfo {
+ uint16_t acc;
+ int16_t raw;
+ float celsius;
+ inline void reset() { acc = 0; }
+ inline void sample(const uint16_t s) { acc += s; }
+ inline void update() { raw = acc; }
+} temp_info_t;
+
+// A PWM heater with temperature sensor
+typedef struct HeaterInfo : public TempInfo {
+ int16_t target;
+ uint8_t soft_pwm_amount;
+} heater_info_t;
+
+// A heater with PID stabilization
+template<typename T>
+struct PIDHeaterInfo : public HeaterInfo {
+ T pid; // Initialized by settings.load()
+};
+
+#if ENABLED(PIDTEMP)
+ typedef struct PIDHeaterInfo<hotend_pid_t> hotend_info_t;
+#else
+ typedef heater_info_t hotend_info_t;
+#endif
+#if HAS_HEATED_BED
+ #if ENABLED(PIDTEMPBED)
+ typedef struct PIDHeaterInfo<PID_t> bed_info_t;
+ #else
+ typedef heater_info_t bed_info_t;
+ #endif
+#endif
+#if HAS_TEMP_PROBE
+ typedef temp_info_t probe_info_t;
+#endif
+#if HAS_HEATED_CHAMBER
+ typedef heater_info_t chamber_info_t;
+#elif HAS_TEMP_CHAMBER
+ typedef temp_info_t chamber_info_t;
+#endif
+
+// Heater watch handling
+template <int INCREASE, int HYSTERESIS, millis_t PERIOD>
+struct HeaterWatch {
+ uint16_t target;
+ millis_t next_ms;
+ inline bool elapsed(const millis_t &ms) { return next_ms && ELAPSED(ms, next_ms); }
+ inline bool elapsed() { return elapsed(millis()); }
+
+ inline void restart(const int16_t curr, const int16_t tgt) {
+ if (tgt) {
+ const int16_t newtarget = curr + INCREASE;
+ if (newtarget < tgt - HYSTERESIS - 1) {
+ target = newtarget;
+ next_ms = millis() + SEC_TO_MS(PERIOD);
+ return;
+ }
+ }
+ next_ms = 0;
+ }
+};
+
+#if WATCH_HOTENDS
+ typedef struct HeaterWatch<WATCH_TEMP_INCREASE, TEMP_HYSTERESIS, WATCH_TEMP_PERIOD> hotend_watch_t;
+#endif
+#if WATCH_BED
+ typedef struct HeaterWatch<WATCH_BED_TEMP_INCREASE, TEMP_BED_HYSTERESIS, WATCH_BED_TEMP_PERIOD> bed_watch_t;
+#endif
+#if WATCH_CHAMBER
+ typedef struct HeaterWatch<WATCH_CHAMBER_TEMP_INCREASE, TEMP_CHAMBER_HYSTERESIS, WATCH_CHAMBER_TEMP_PERIOD> chamber_watch_t;
+#endif
+
+// Temperature sensor read value ranges
+typedef struct { int16_t raw_min, raw_max; } raw_range_t;
+typedef struct { int16_t mintemp, maxtemp; } celsius_range_t;
+typedef struct { int16_t raw_min, raw_max, mintemp, maxtemp; } temp_range_t;
+
+#define THERMISTOR_ABS_ZERO_C -273.15f // bbbbrrrrr cold !
+#define THERMISTOR_RESISTANCE_NOMINAL_C 25.0f // mmmmm comfortable
+
+#if HAS_USER_THERMISTORS
+
+ enum CustomThermistorIndex : uint8_t {
+ #if HEATER_0_USER_THERMISTOR
+ CTI_HOTEND_0,
+ #endif
+ #if HEATER_1_USER_THERMISTOR
+ CTI_HOTEND_1,
+ #endif
+ #if HEATER_2_USER_THERMISTOR
+ CTI_HOTEND_2,
+ #endif
+ #if HEATER_3_USER_THERMISTOR
+ CTI_HOTEND_3,
+ #endif
+ #if HEATER_4_USER_THERMISTOR
+ CTI_HOTEND_4,
+ #endif
+ #if HEATER_5_USER_THERMISTOR
+ CTI_HOTEND_5,
+ #endif
+ #if HEATER_BED_USER_THERMISTOR
+ CTI_BED,
+ #endif
+ #if HEATER_PROBE_USER_THERMISTOR
+ CTI_PROBE,
+ #endif
+ #if HEATER_CHAMBER_USER_THERMISTOR
+ CTI_CHAMBER,
+ #endif
+ USER_THERMISTORS
+ };
+
+ // User-defined thermistor
+ typedef struct {
+ bool pre_calc; // true if pre-calculations update needed
+ float sh_c_coeff, // Steinhart-Hart C coefficient .. defaults to '0.0'
+ sh_alpha,
+ series_res,
+ res_25, res_25_recip,
+ res_25_log,
+ beta, beta_recip;
+ } user_thermistor_t;
+
+#endif
+
+class Temperature {
+
+ public:
+
+ #if HAS_HOTEND
+ #define HOTEND_TEMPS (HOTENDS + ENABLED(TEMP_SENSOR_1_AS_REDUNDANT))
+ static hotend_info_t temp_hotend[HOTEND_TEMPS];
+ static const uint16_t heater_maxtemp[HOTENDS];
+ #endif
+ TERN_(HAS_HEATED_BED, static bed_info_t temp_bed);
+ TERN_(HAS_TEMP_PROBE, static probe_info_t temp_probe);
+ TERN_(HAS_TEMP_CHAMBER, static chamber_info_t temp_chamber);
+
+ TERN_(AUTO_POWER_E_FANS, static uint8_t autofan_speed[HOTENDS]);
+ TERN_(AUTO_POWER_CHAMBER_FAN, static uint8_t chamberfan_speed);
+
+ #if ENABLED(FAN_SOFT_PWM)
+ static uint8_t soft_pwm_amount_fan[FAN_COUNT],
+ soft_pwm_count_fan[FAN_COUNT];
+ #endif
+
+ #if ENABLED(PREVENT_COLD_EXTRUSION)
+ static bool allow_cold_extrude;
+ static int16_t extrude_min_temp;
+ FORCE_INLINE static bool tooCold(const int16_t temp) { return allow_cold_extrude ? false : temp < extrude_min_temp - (TEMP_WINDOW); }
+ FORCE_INLINE static bool tooColdToExtrude(const uint8_t E_NAME) {
+ return tooCold(degHotend(HOTEND_INDEX));
+ }
+ FORCE_INLINE static bool targetTooColdToExtrude(const uint8_t E_NAME) {
+ return tooCold(degTargetHotend(HOTEND_INDEX));
+ }
+ #else
+ FORCE_INLINE static bool tooColdToExtrude(const uint8_t) { return false; }
+ FORCE_INLINE static bool targetTooColdToExtrude(const uint8_t) { return false; }
+ #endif
+
+ FORCE_INLINE static bool hotEnoughToExtrude(const uint8_t e) { return !tooColdToExtrude(e); }
+ FORCE_INLINE static bool targetHotEnoughToExtrude(const uint8_t e) { return !targetTooColdToExtrude(e); }
+
+ #if ENABLED(SINGLENOZZLE_STANDBY_FAN)
+ static uint16_t singlenozzle_temp[EXTRUDERS];
+ #if HAS_FAN
+ static uint8_t singlenozzle_fan_speed[EXTRUDERS];
+ #endif
+ static void singlenozzle_change(const uint8_t old_tool, const uint8_t new_tool);
+ #endif
+
+ #if HEATER_IDLE_HANDLER
+
+ // Heater idle handling. Marlin creates one per hotend and one for the heated bed.
+ typedef struct {
+ millis_t timeout_ms;
+ bool timed_out;
+ inline void update(const millis_t &ms) { if (!timed_out && timeout_ms && ELAPSED(ms, timeout_ms)) timed_out = true; }
+ inline void start(const millis_t &ms) { timeout_ms = millis() + ms; timed_out = false; }
+ inline void reset() { timeout_ms = 0; timed_out = false; }
+ inline void expire() { start(0); }
+ } heater_idle_t;
+
+ // Indices and size for the heater_idle array
+ #define _ENUM_FOR_E(N) IDLE_INDEX_E##N,
+ enum IdleIndex : uint8_t {
+ REPEAT(HOTENDS, _ENUM_FOR_E)
+ #if ENABLED(HAS_HEATED_BED)
+ IDLE_INDEX_BED,
+ #endif
+ NR_HEATER_IDLE
+ };
+ #undef _ENUM_FOR_E
+
+ // Convert the given heater_id_t to idle array index
+ static inline IdleIndex idle_index_for_id(const int8_t heater_id) {
+ #if HAS_HEATED_BED
+ if (heater_id == H_BED) return IDLE_INDEX_BED;
+ #endif
+ return (IdleIndex)_MAX(heater_id, 0);
+ }
+
+ static heater_idle_t heater_idle[NR_HEATER_IDLE];
+
+ #endif
+
+ private:
+
+ TERN_(EARLY_WATCHDOG, static bool inited); // If temperature controller is running
+
+ static volatile bool raw_temps_ready;
+
+ TERN_(WATCH_HOTENDS, static hotend_watch_t watch_hotend[HOTENDS]);
+
+ #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
+ static uint16_t redundant_temperature_raw;
+ static float redundant_temperature;
+ #endif
+
+ #if ENABLED(PID_EXTRUSION_SCALING)
+ static int32_t last_e_position, lpq[LPQ_MAX_LEN];
+ static lpq_ptr_t lpq_ptr;
+ #endif
+
+ TERN_(HAS_HOTEND, static temp_range_t temp_range[HOTENDS]);
+
+ #if HAS_HEATED_BED
+ TERN_(WATCH_BED, static bed_watch_t watch_bed);
+ IF_DISABLED(PIDTEMPBED, static millis_t next_bed_check_ms);
+ #ifdef BED_MINTEMP
+ static int16_t mintemp_raw_BED;
+ #endif
+ #ifdef BED_MAXTEMP
+ static int16_t maxtemp_raw_BED;
+ #endif
+ #endif
+
+ #if HAS_HEATED_CHAMBER
+ TERN_(WATCH_CHAMBER, static chamber_watch_t watch_chamber);
+ static millis_t next_chamber_check_ms;
+ #ifdef CHAMBER_MINTEMP
+ static int16_t mintemp_raw_CHAMBER;
+ #endif
+ #ifdef CHAMBER_MAXTEMP
+ static int16_t maxtemp_raw_CHAMBER;
+ #endif
+ #endif
+
+ #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
+ static uint8_t consecutive_low_temperature_error[HOTENDS];
+ #endif
+
+ #ifdef MILLISECONDS_PREHEAT_TIME
+ static millis_t preheat_end_time[HOTENDS];
+ #endif
+
+ TERN_(HAS_AUTO_FAN, static millis_t next_auto_fan_check_ms);
+
+ TERN_(PROBING_HEATERS_OFF, static bool paused);
+
+ public:
+ #if HAS_ADC_BUTTONS
+ static uint32_t current_ADCKey_raw;
+ static uint16_t ADCKey_count;
+ #endif
+
+ TERN_(PID_EXTRUSION_SCALING, static int16_t lpq_len);
+
+ /**
+ * Instance Methods
+ */
+
+ void init();
+
+ /**
+ * Static (class) methods
+ */
+
+ #if HAS_USER_THERMISTORS
+ static user_thermistor_t user_thermistor[USER_THERMISTORS];
+ static void log_user_thermistor(const uint8_t t_index, const bool eprom=false);
+ static void reset_user_thermistors();
+ static float user_thermistor_to_deg_c(const uint8_t t_index, const int raw);
+ static bool set_pull_up_res(int8_t t_index, float value) {
+ //if (!WITHIN(t_index, 0, USER_THERMISTORS - 1)) return false;
+ if (!WITHIN(value, 1, 1000000)) return false;
+ user_thermistor[t_index].series_res = value;
+ return true;
+ }
+ static bool set_res25(int8_t t_index, float value) {
+ if (!WITHIN(value, 1, 10000000)) return false;
+ user_thermistor[t_index].res_25 = value;
+ user_thermistor[t_index].pre_calc = true;
+ return true;
+ }
+ static bool set_beta(int8_t t_index, float value) {
+ if (!WITHIN(value, 1, 1000000)) return false;
+ user_thermistor[t_index].beta = value;
+ user_thermistor[t_index].pre_calc = true;
+ return true;
+ }
+ static bool set_sh_coeff(int8_t t_index, float value) {
+ if (!WITHIN(value, -0.01f, 0.01f)) return false;
+ user_thermistor[t_index].sh_c_coeff = value;
+ user_thermistor[t_index].pre_calc = true;
+ return true;
+ }
+ #endif
+
+ #if HAS_HOTEND
+ static float analog_to_celsius_hotend(const int raw, const uint8_t e);
+ #endif
+
+ #if HAS_HEATED_BED
+ static float analog_to_celsius_bed(const int raw);
+ #endif
+ #if HAS_TEMP_PROBE
+ static float analog_to_celsius_probe(const int raw);
+ #endif
+ #if HAS_TEMP_CHAMBER
+ static float analog_to_celsius_chamber(const int raw);
+ #endif
+
+ #if HAS_FAN
+
+ static uint8_t fan_speed[FAN_COUNT];
+ #define FANS_LOOP(I) LOOP_L_N(I, FAN_COUNT)
+
+ static void set_fan_speed(const uint8_t target, const uint16_t speed);
+
+ #if ENABLED(REPORT_FAN_CHANGE)
+ static void report_fan_speed(const uint8_t target);
+ #endif
+
+ #if EITHER(PROBING_FANS_OFF, ADVANCED_PAUSE_FANS_PAUSE)
+ static bool fans_paused;
+ static uint8_t saved_fan_speed[FAN_COUNT];
+ #endif
+
+ static constexpr inline uint8_t fanPercent(const uint8_t speed) { return ui8_to_percent(speed); }
+
+ TERN_(ADAPTIVE_FAN_SLOWING, static uint8_t fan_speed_scaler[FAN_COUNT]);
+
+ static inline uint8_t scaledFanSpeed(const uint8_t target, const uint8_t fs) {
+ UNUSED(target); // Potentially unused!
+ return (fs * uint16_t(TERN(ADAPTIVE_FAN_SLOWING, fan_speed_scaler[target], 128))) >> 7;
+ }
+
+ static inline uint8_t scaledFanSpeed(const uint8_t target) {
+ return scaledFanSpeed(target, fan_speed[target]);
+ }
+
+ #if ENABLED(EXTRA_FAN_SPEED)
+ static uint8_t old_fan_speed[FAN_COUNT], new_fan_speed[FAN_COUNT];
+ static void set_temp_fan_speed(const uint8_t fan, const uint16_t tmp_temp);
+ #endif
+
+ #if EITHER(PROBING_FANS_OFF, ADVANCED_PAUSE_FANS_PAUSE)
+ void set_fans_paused(const bool p);
+ #endif
+
+ #endif // HAS_FAN
+
+ static inline void zero_fan_speeds() {
+ #if HAS_FAN
+ FANS_LOOP(i) set_fan_speed(i, 0);
+ #endif
+ }
+
+ /**
+ * Called from the Temperature ISR
+ */
+ static void readings_ready();
+ static void tick();
+
+ /**
+ * Call periodically to manage heaters
+ */
+ static void manage_heater() _O2; // Added _O2 to work around a compiler error
+
+ /**
+ * Preheating hotends
+ */
+ #ifdef MILLISECONDS_PREHEAT_TIME
+ static bool is_preheating(const uint8_t E_NAME) {
+ return preheat_end_time[HOTEND_INDEX] && PENDING(millis(), preheat_end_time[HOTEND_INDEX]);
+ }
+ static void start_preheat_time(const uint8_t E_NAME) {
+ preheat_end_time[HOTEND_INDEX] = millis() + MILLISECONDS_PREHEAT_TIME;
+ }
+ static void reset_preheat_time(const uint8_t E_NAME) {
+ preheat_end_time[HOTEND_INDEX] = 0;
+ }
+ #else
+ #define is_preheating(n) (false)
+ #endif
+
+ //high level conversion routines, for use outside of temperature.cpp
+ //inline so that there is no performance decrease.
+ //deg=degreeCelsius
+
+ FORCE_INLINE static float degHotend(const uint8_t E_NAME) {
+ return TERN0(HAS_HOTEND, temp_hotend[HOTEND_INDEX].celsius);
+ }
+
+ #if ENABLED(SHOW_TEMP_ADC_VALUES)
+ FORCE_INLINE static int16_t rawHotendTemp(const uint8_t E_NAME) {
+ return TERN0(HAS_HOTEND, temp_hotend[HOTEND_INDEX].raw);
+ }
+ #endif
+
+ FORCE_INLINE static int16_t degTargetHotend(const uint8_t E_NAME) {
+ return TERN0(HAS_HOTEND, temp_hotend[HOTEND_INDEX].target);
+ }
+
+ #if WATCH_HOTENDS
+ static void start_watching_hotend(const uint8_t e=0);
+ #else
+ static inline void start_watching_hotend(const uint8_t=0) {}
+ #endif
+
+ #if HAS_HOTEND
+
+ static void setTargetHotend(const int16_t celsius, const uint8_t E_NAME) {
+ const uint8_t ee = HOTEND_INDEX;
+ #ifdef MILLISECONDS_PREHEAT_TIME
+ if (celsius == 0)
+ reset_preheat_time(ee);
+ else if (temp_hotend[ee].target == 0)
+ start_preheat_time(ee);
+ #endif
+ TERN_(AUTO_POWER_CONTROL, if (celsius) powerManager.power_on());
+ temp_hotend[ee].target = _MIN(celsius, temp_range[ee].maxtemp - HOTEND_OVERSHOOT);
+ start_watching_hotend(ee);
+ }
+
+ FORCE_INLINE static bool isHeatingHotend(const uint8_t E_NAME) {
+ return temp_hotend[HOTEND_INDEX].target > temp_hotend[HOTEND_INDEX].celsius;
+ }
+
+ FORCE_INLINE static bool isCoolingHotend(const uint8_t E_NAME) {
+ return temp_hotend[HOTEND_INDEX].target < temp_hotend[HOTEND_INDEX].celsius;
+ }
+
+ #if HAS_TEMP_HOTEND
+ static bool wait_for_hotend(const uint8_t target_extruder, const bool no_wait_for_cooling=true
+ #if G26_CLICK_CAN_CANCEL
+ , const bool click_to_cancel=false
+ #endif
+ );
+ #endif
+
+ FORCE_INLINE static bool still_heating(const uint8_t e) {
+ return degTargetHotend(e) > TEMP_HYSTERESIS && ABS(degHotend(e) - degTargetHotend(e)) > TEMP_HYSTERESIS;
+ }
+
+ FORCE_INLINE static bool degHotendNear(const uint8_t e, const float &temp) {
+ return ABS(degHotend(e) - temp) < (TEMP_HYSTERESIS);
+ }
+
+ #endif // HAS_HOTEND
+
+ #if HAS_HEATED_BED
+
+ #if ENABLED(SHOW_TEMP_ADC_VALUES)
+ FORCE_INLINE static int16_t rawBedTemp() { return temp_bed.raw; }
+ #endif
+ FORCE_INLINE static float degBed() { return temp_bed.celsius; }
+ FORCE_INLINE static int16_t degTargetBed() { return temp_bed.target; }
+ FORCE_INLINE static bool isHeatingBed() { return temp_bed.target > temp_bed.celsius; }
+ FORCE_INLINE static bool isCoolingBed() { return temp_bed.target < temp_bed.celsius; }
+
+ #if WATCH_BED
+ static void start_watching_bed();
+ #else
+ static inline void start_watching_bed() {}
+ #endif
+
+ static void setTargetBed(const int16_t celsius) {
+ TERN_(AUTO_POWER_CONTROL, if (celsius) powerManager.power_on());
+ temp_bed.target =
+ #ifdef BED_MAX_TARGET
+ _MIN(celsius, BED_MAX_TARGET)
+ #else
+ celsius
+ #endif
+ ;
+ start_watching_bed();
+ }
+
+ static bool wait_for_bed(const bool no_wait_for_cooling=true
+ #if G26_CLICK_CAN_CANCEL
+ , const bool click_to_cancel=false
+ #endif
+ );
+
+ static void wait_for_bed_heating();
+
+ FORCE_INLINE static bool degBedNear(const float &temp) {
+ return ABS(degBed() - temp) < (TEMP_BED_HYSTERESIS);
+ }
+
+ #endif // HAS_HEATED_BED
+
+ #if HAS_TEMP_PROBE
+ #if ENABLED(SHOW_TEMP_ADC_VALUES)
+ FORCE_INLINE static int16_t rawProbeTemp() { return temp_probe.raw; }
+ #endif
+ FORCE_INLINE static float degProbe() { return temp_probe.celsius; }
+ FORCE_INLINE static bool isProbeBelowTemp(const float target_temp) { return temp_probe.celsius < target_temp; }
+ FORCE_INLINE static bool isProbeAboveTemp(const float target_temp) { return temp_probe.celsius > target_temp; }
+ static bool wait_for_probe(const float target_temp, bool no_wait_for_cooling=true);
+ #endif
+
+ #if WATCH_PROBE
+ static void start_watching_probe();
+ #else
+ static inline void start_watching_probe() {}
+ #endif
+
+ #if HAS_TEMP_CHAMBER
+ #if ENABLED(SHOW_TEMP_ADC_VALUES)
+ FORCE_INLINE static int16_t rawChamberTemp() { return temp_chamber.raw; }
+ #endif
+ FORCE_INLINE static float degChamber() { return temp_chamber.celsius; }
+ #if HAS_HEATED_CHAMBER
+ FORCE_INLINE static int16_t degTargetChamber() { return temp_chamber.target; }
+ FORCE_INLINE static bool isHeatingChamber() { return temp_chamber.target > temp_chamber.celsius; }
+ FORCE_INLINE static bool isCoolingChamber() { return temp_chamber.target < temp_chamber.celsius; }
+
+ static bool wait_for_chamber(const bool no_wait_for_cooling=true);
+ #endif
+ #endif
+
+ #if WATCH_CHAMBER
+ static void start_watching_chamber();
+ #else
+ static inline void start_watching_chamber() {}
+ #endif
+
+ #if HAS_HEATED_CHAMBER
+ static void setTargetChamber(const int16_t celsius) {
+ temp_chamber.target =
+ #ifdef CHAMBER_MAXTEMP
+ _MIN(celsius, CHAMBER_MAXTEMP - 10)
+ #else
+ celsius
+ #endif
+ ;
+ start_watching_chamber();
+ }
+ #endif
+
+ /**
+ * The software PWM power for a heater
+ */
+ static int16_t getHeaterPower(const heater_id_t heater_id);
+
+ /**
+ * Switch off all heaters, set all target temperatures to 0
+ */
+ static void disable_all_heaters();
+
+ #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
+ /**
+ * Methods to check if heaters are enabled, indicating an active job
+ */
+ static bool auto_job_over_threshold();
+ static void auto_job_check_timer(const bool can_start, const bool can_stop);
+ #endif
+
+ /**
+ * Perform auto-tuning for hotend or bed in response to M303
+ */
+ #if HAS_PID_HEATING
+ static void PID_autotune(const float &target, const heater_id_t heater_id, const int8_t ncycles, const bool set_result=false);
+
+ #if ENABLED(NO_FAN_SLOWING_IN_PID_TUNING)
+ static bool adaptive_fan_slowing;
+ #elif ENABLED(ADAPTIVE_FAN_SLOWING)
+ static constexpr bool adaptive_fan_slowing = true;
+ #endif
+
+ /**
+ * Update the temp manager when PID values change
+ */
+ #if ENABLED(PIDTEMP)
+ FORCE_INLINE static void updatePID() {
+ TERN_(PID_EXTRUSION_SCALING, last_e_position = 0);
+ }
+ #endif
+
+ #endif
+
+ #if ENABLED(PROBING_HEATERS_OFF)
+ static void pause(const bool p);
+ FORCE_INLINE static bool is_paused() { return paused; }
+ #endif
+
+ #if HEATER_IDLE_HANDLER
+
+ static void reset_hotend_idle_timer(const uint8_t E_NAME) {
+ heater_idle[HOTEND_INDEX].reset();
+ start_watching_hotend(HOTEND_INDEX);
+ }
+
+ #if HAS_HEATED_BED
+ static void reset_bed_idle_timer() {
+ heater_idle[IDLE_INDEX_BED].reset();
+ start_watching_bed();
+ }
+ #endif
+
+ #endif // HEATER_IDLE_HANDLER
+
+ #if HAS_TEMP_SENSOR
+ static void print_heater_states(const uint8_t target_extruder
+ #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
+ , const bool include_r=false
+ #endif
+ );
+ #if ENABLED(AUTO_REPORT_TEMPERATURES)
+ struct AutoReportTemp { static void report(); };
+ static AutoReporter<AutoReportTemp> auto_reporter;
+ #endif
+ #endif
+
+ TERN_(HAS_DISPLAY, static void set_heating_message(const uint8_t e));
+
+ #if HAS_LCD_MENU && HAS_TEMPERATURE
+ static void lcd_preheat(const int16_t e, const int8_t indh, const int8_t indb);
+ #endif
+
+ private:
+ static void update_raw_temperatures();
+ static void updateTemperaturesFromRawValues();
+
+ #define HAS_MAX6675 EITHER(HEATER_0_USES_MAX6675, HEATER_1_USES_MAX6675)
+ #if HAS_MAX6675
+ #define COUNT_6675 1 + BOTH(HEATER_0_USES_MAX6675, HEATER_1_USES_MAX6675)
+ #if COUNT_6675 > 1
+ #define HAS_MULTI_6675 1
+ #define READ_MAX6675(N) read_max6675(N)
+ #else
+ #define READ_MAX6675(N) read_max6675()
+ #endif
+ static int read_max6675(TERN_(HAS_MULTI_6675, const uint8_t hindex=0));
+ #endif
+
+ static void checkExtruderAutoFans();
+
+ static float get_pid_output_hotend(const uint8_t e);
+
+ TERN_(PIDTEMPBED, static float get_pid_output_bed());
+
+ TERN_(HAS_HEATED_CHAMBER, static float get_pid_output_chamber());
+
+ static void _temp_error(const heater_id_t e, PGM_P const serial_msg, PGM_P const lcd_msg);
+ static void min_temp_error(const heater_id_t e);
+ static void max_temp_error(const heater_id_t e);
+
+ #define HAS_THERMAL_PROTECTION ANY(THERMAL_PROTECTION_HOTENDS, THERMAL_PROTECTION_CHAMBER, HAS_THERMALLY_PROTECTED_BED)
+
+ #if HAS_THERMAL_PROTECTION
+
+ // Indices and size for the tr_state_machine array. One for each protected heater.
+ #define _ENUM_FOR_E(N) RUNAWAY_IND_E##N,
+ enum RunawayIndex : uint8_t {
+ #if ENABLED(THERMAL_PROTECTION_HOTENDS)
+ REPEAT(HOTENDS, _ENUM_FOR_E)
+ #endif
+ #if ENABLED(HAS_THERMALLY_PROTECTED_BED)
+ RUNAWAY_IND_BED,
+ #endif
+ #if ENABLED(THERMAL_PROTECTION_CHAMBER)
+ RUNAWAY_IND_CHAMBER,
+ #endif
+ NR_HEATER_RUNAWAY
+ };
+ #undef _ENUM_FOR_E
+
+ // Convert the given heater_id_t to runaway state array index
+ static inline RunawayIndex runaway_index_for_id(const int8_t heater_id) {
+ #if HAS_THERMALLY_PROTECTED_CHAMBER
+ if (heater_id == H_CHAMBER) return RUNAWAY_IND_CHAMBER;
+ #endif
+ #if HAS_THERMALLY_PROTECTED_BED
+ if (heater_id == H_BED) return RUNAWAY_IND_BED;
+ #endif
+ return (RunawayIndex)_MAX(heater_id, 0);
+ }
+
+ enum TRState : char { TRInactive, TRFirstHeating, TRStable, TRRunaway };
+
+ typedef struct {
+ millis_t timer = 0;
+ TRState state = TRInactive;
+ float running_temp;
+ void run(const float &current, const float &target, const heater_id_t heater_id, const uint16_t period_seconds, const uint16_t hysteresis_degc);
+ } tr_state_machine_t;
+
+ static tr_state_machine_t tr_state_machine[NR_HEATER_RUNAWAY];
+
+ #endif // HAS_THERMAL_PROTECTION
+};
+
+extern Temperature thermalManager;