diff options
Diffstat (limited to 'buildroot/share/scripts/MarlinMesh.scad')
-rw-r--r-- | buildroot/share/scripts/MarlinMesh.scad | 304 |
1 files changed, 304 insertions, 0 deletions
diff --git a/buildroot/share/scripts/MarlinMesh.scad b/buildroot/share/scripts/MarlinMesh.scad new file mode 100644 index 0000000..6d78bb9 --- /dev/null +++ b/buildroot/share/scripts/MarlinMesh.scad @@ -0,0 +1,304 @@ + /**************************************\ + * * + * OpenSCAD Mesh Display * + * by Thinkyhead - April 2017 * + * * + * Copy the grid output from Marlin, * + * paste below as shown, and use * + * OpenSCAD to see a visualization * + * of your mesh. * + * * + \**************************************/ + +$t = 0.15; // comment out during animation! +X = 0; Y = 1; +L = 0; R = 1; F = 2; B = 3; + +// +// Sample Mesh - Replace with your own +// +measured_z = [ + [ -1.20, -1.13, -1.09, -1.03, -1.19 ], + [ -1.16, -1.25, -1.27, -1.25, -1.08 ], + [ -1.13, -1.26, -1.39, -1.31, -1.18 ], + [ -1.09, -1.20, -1.26, -1.21, -1.18 ], + [ -1.13, -0.99, -1.03, -1.06, -1.32 ] +]; + +// +// An offset to add to all points in the mesh +// +zadjust = 0; + +// +// Mesh characteristics +// +bed_size = [ 200, 200 ]; + +mesh_inset = [ 10, 10, 10, 10 ]; // L, F, R, B + +mesh_bounds = [ + [ mesh_inset[L], mesh_inset[F] ], + [ bed_size[X] - mesh_inset[R], bed_size[Y] - mesh_inset[B] ] +]; + +mesh_size = mesh_bounds[1] - mesh_bounds[0]; + + // NOTE: Marlin meshes already subtract the probe offset +NAN = 0; // Z to use for un-measured points + +// +// Geometry +// + +max_z_scale = 100; // Scale at Time 0.5 +min_z_scale = 10; // Scale at Time 0.0 and 1.0 +thickness = 0.5; // thickness of the mesh triangles +tesselation = 1; // levels of tesselation from 0-2 +alternation = 2; // direction change modulus (try it) + +// +// Appearance +// + +show_plane = true; +show_labels = true; +show_coords = true; +arrow_length = 5; + +label_font_lg = "Arial"; +label_font_sm = "Arial"; +mesh_color = [1,1,1,0.5]; +plane_color = [0.4,0.6,0.9,0.6]; + +//================================================ Derive useful values + +big_z = max_2D(measured_z,0); +lil_z = min_2D(measured_z,0); + +mean_value = (big_z + lil_z) / 2.0; + +mesh_points_y = len(measured_z); +mesh_points_x = len(measured_z[0]); + +xspace = mesh_size[X] / (mesh_points_x - 1); +yspace = mesh_size[Y] / (mesh_points_y - 1); + +// At $t=0 and $t=1 scale will be 100% +z_scale_factor = min_z_scale + (($t > 0.5) ? 1.0 - $t : $t) * (max_z_scale - min_z_scale) * 2; + +// +// Min and max recursive functions for 1D and 2D arrays +// Return the smallest or largest value in the array +// +function some_1D(b,i) = (i<len(b)-1) ? (b[i] && some_1D(b,i+1)) : b[i] != 0; +function some_2D(a,j) = (j<len(a)-1) ? some_2D(a,j+1) : some_1D(a[j], 0); +function min_1D(b,i) = (i<len(b)-1) ? min(b[i], min_1D(b,i+1)) : b[i]; +function min_2D(a,j) = (j<len(a)-1) ? min_2D(a,j+1) : min_1D(a[j], 0); +function max_1D(b,i) = (i<len(b)-1) ? max(b[i], max_1D(b,i+1)) : b[i]; +function max_2D(a,j) = (j<len(a)-1) ? max_2D(a,j+1) : max_1D(a[j], 0); + +// +// Get the corner probe points of a grid square. +// +// Input : x,y grid indexes +// Output : An array of the 4 corner points +// +function grid_square(x,y) = [ + [x * xspace, y * yspace, z_scale_factor * (measured_z[y][x] - mean_value)], + [x * xspace, (y+1) * yspace, z_scale_factor * (measured_z[y+1][x] - mean_value)], + [(x+1) * xspace, (y+1) * yspace, z_scale_factor * (measured_z[y+1][x+1] - mean_value)], + [(x+1) * xspace, y * yspace, z_scale_factor * (measured_z[y][x+1] - mean_value)] +]; + +// The corner point of a grid square with Z centered on the mean +function pos(x,y,z) = [x * xspace, y * yspace, z_scale_factor * (z - mean_value)]; + +// +// Draw the point markers and labels +// +module point_markers(show_home=true) { + // Mark the home position 0,0 + if (show_home) + translate([1,1]) color([0,0,0,0.25]) + cylinder(r=1, h=z_scale_factor, center=true); + + for (x=[0:mesh_points_x-1], y=[0:mesh_points_y-1]) { + z = measured_z[y][x] - zadjust; + down = z < mean_value; + xyz = pos(x, y, z); + translate([ xyz[0], xyz[1] ]) { + + // Show the XY as well as the Z! + if (show_coords) { + color("black") + translate([0,0,0.5]) { + $fn=8; + rotate([0,0]) { + posx = floor(mesh_bounds[0][X] + x * xspace); + posy = floor(mesh_bounds[0][Y] + y * yspace); + text(str(posx, ",", posy), 2, label_font_sm, halign="center", valign="center"); + } + } + } + + translate([ 0, 0, xyz[2] ]) { + // Label each point with the Z + v = z - mean_value; + if (show_labels) { + + color(abs(v) < 0.1 ? [0,0.5,0] : [0.25,0,0]) + translate([0,0,down?-10:10]) { + + $fn=8; + rotate([90,0]) + text(str(z), 6, label_font_lg, halign="center", valign="center"); + + if (v) + translate([0,0,down?-6:6]) rotate([90,0]) + text(str(down || !v ? "" : "+", v), 3, label_font_sm, halign="center", valign="center"); + } + } + + // Show an arrow pointing up or down + if (v) { + rotate([0, down ? 180 : 0]) translate([0,0,-1]) + cylinder( + r1=0.5, + r2=0.1, + h=arrow_length, $fn=12, center=1 + ); + } + else + color([1,0,1,0.4]) sphere(r=1.0, $fn=20, center=1); + } + } + } +} + +// +// Split a square on the diagonal into +// two triangles and render them. +// +// s : a square +// alt : a flag to split on the other diagonal +// +module tesselated_square(s, alt=false) { + add = [0,0,thickness]; + p1 = [ + s[0], s[1], s[2], s[3], + s[0]+add, s[1]+add, s[2]+add, s[3]+add + ]; + f1 = alt + ? [ [0,1,3], [4,5,1,0], [4,7,5], [5,7,3,1], [7,4,0,3] ] + : [ [0,1,2], [4,5,1,0], [4,6,5], [5,6,2,1], [6,4,0,2] ]; + f2 = alt + ? [ [1,2,3], [5,6,2,1], [5,6,7], [6,7,3,2], [7,5,1,3] ] + : [ [0,2,3], [4,6,2,0], [4,7,6], [6,7,3,2], [7,4,0,3] ]; + + // Use the other diagonal + polyhedron(points=p1, faces=f1); + polyhedron(points=p1, faces=f2); +} + +/** + * The simplest mesh display + */ +module simple_mesh(show_plane=show_plane) { + if (show_plane) color(plane_color) cube([mesh_size[X], mesh_size[Y], thickness]); + color(mesh_color) + for (x=[0:mesh_points_x-2], y=[0:mesh_points_y-2]) + tesselated_square(grid_square(x, y)); +} + +/** + * Subdivide the mesh into smaller squares. + */ +module bilinear_mesh(show_plane=show_plane,tesselation=tesselation) { + if (show_plane) color(plane_color) translate([-5,-5]) cube([mesh_size[X]+10, mesh_size[Y]+10, thickness]); + + if (some_2D(measured_z, 0)) { + + tesselation = tesselation % 4; + color(mesh_color) + for (x=[0:mesh_points_x-2], y=[0:mesh_points_y-2]) { + square = grid_square(x, y); + if (tesselation < 1) { + tesselated_square(square,(x%alternation)-(y%alternation)); + } + else { + subdiv_4 = subdivided_square(square); + if (tesselation < 2) { + for (i=[0:3]) tesselated_square(subdiv_4[i],i%alternation); + } + else { + for (i=[0:3]) { + subdiv_16 = subdivided_square(subdiv_4[i]); + if (tesselation < 3) { + for (j=[0:3]) tesselated_square(subdiv_16[j],j%alternation); + } + else { + for (j=[0:3]) { + subdiv_64 = subdivided_square(subdiv_16[j]); + if (tesselation < 4) { + for (k=[0:3]) tesselated_square(subdiv_64[k]); + } + } + } + } + } + } + } + + } +} + +// +// Subdivision helpers +// +function ctrz(a) = (a[0][2]+a[1][2]+a[3][2]+a[2][2])/4; +function avgx(a,i) = (a[i][0]+a[(i+1)%4][0])/2; +function avgy(a,i) = (a[i][1]+a[(i+1)%4][1])/2; +function avgz(a,i) = (a[i][2]+a[(i+1)%4][2])/2; + +// +// Convert one square into 4, applying bilinear averaging +// +// Input : 1 square (4 points) +// Output : An array of 4 squares +// +function subdivided_square(a) = [ + [ // SW square + a[0], // SW + [a[0][0],avgy(a,0),avgz(a,0)], // CW + [avgx(a,1),avgy(a,0),ctrz(a)], // CC + [avgx(a,1),a[0][1],avgz(a,3)] // SC + ], + [ // NW square + [a[0][0],avgy(a,0),avgz(a,0)], // CW + a[1], // NW + [avgx(a,1),a[1][1],avgz(a,1)], // NC + [avgx(a,1),avgy(a,0),ctrz(a)] // CC + ], + [ // NE square + [avgx(a,1),avgy(a,0),ctrz(a)], // CC + [avgx(a,1),a[1][1],avgz(a,1)], // NC + a[2], // NE + [a[2][0],avgy(a,0),avgz(a,2)] // CE + ], + [ // SE square + [avgx(a,1),a[0][1],avgz(a,3)], // SC + [avgx(a,1),avgy(a,0),ctrz(a)], // CC + [a[2][0],avgy(a,0),avgz(a,2)], // CE + a[3] // SE + ] +]; + + +//================================================ Run the plan + +translate([-mesh_size[X] / 2, -mesh_size[Y] / 2]) { + $fn = 12; + point_markers(); + bilinear_mesh(); +} |