aboutsummaryrefslogtreecommitdiff
path: root/Marlin/src/HAL/AVR/fast_pwm.cpp
blob: 238c1124adeb693d78541d4001497f2bbec96608 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
/**
 * Marlin 3D Printer Firmware
 * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
 *
 * Based on Sprinter and grbl.
 * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 *
 */
#ifdef __AVR__

#include "../../inc/MarlinConfigPre.h"

#if NEEDS_HARDWARE_PWM // Specific meta-flag for features that mandate PWM

#include "HAL.h"

struct Timer {
  volatile uint8_t* TCCRnQ[3];  // max 3 TCCR registers per timer
  volatile uint16_t* OCRnQ[3];  // max 3 OCR registers per timer
  volatile uint16_t* ICRn;      // max 1 ICR register per timer
  uint8_t n;                    // the timer number [0->5]
  uint8_t q;                    // the timer output [0->2] (A->C)
};

/**
 * get_pwm_timer
 *  Get the timer information and register of the provided pin.
 *  Return a Timer struct containing this information.
 *  Used by set_pwm_frequency, set_pwm_duty
 */
Timer get_pwm_timer(const pin_t pin) {
  uint8_t q = 0;
  switch (digitalPinToTimer(pin)) {
    // Protect reserved timers (TIMER0 & TIMER1)
    #ifdef TCCR0A
      #if !AVR_AT90USB1286_FAMILY
        case TIMER0A:
      #endif
      case TIMER0B:
    #endif
    #ifdef TCCR1A
      case TIMER1A: case TIMER1B:
    #endif
                                        break;
    #if defined(TCCR2) || defined(TCCR2A)
      #ifdef TCCR2
        case TIMER2: {
          Timer timer = {
            /*TCCRnQ*/  { &TCCR2, nullptr, nullptr },
            /*OCRnQ*/   { (uint16_t*)&OCR2, nullptr, nullptr },
            /*ICRn*/      nullptr,
            /*n, q*/      2, 0
          };
        }
      #elif defined(TCCR2A)
        #if ENABLED(USE_OCR2A_AS_TOP)
          case TIMER2A:   break; // protect TIMER2A
          case TIMER2B: {
            Timer timer = {
              /*TCCRnQ*/  { &TCCR2A,  &TCCR2B,  nullptr },
              /*OCRnQ*/   { (uint16_t*)&OCR2A, (uint16_t*)&OCR2B, nullptr },
              /*ICRn*/      nullptr,
              /*n, q*/      2, 1
            };
            return timer;
          }
        #else
          case TIMER2B:   ++q;
          case TIMER2A: {
            Timer timer = {
              /*TCCRnQ*/  { &TCCR2A,  &TCCR2B,  nullptr },
              /*OCRnQ*/   { (uint16_t*)&OCR2A, (uint16_t*)&OCR2B, nullptr },
              /*ICRn*/      nullptr,
                            2, q
            };
            return timer;
          }
        #endif
      #endif
    #endif
    #ifdef OCR3C
      case TIMER3C:   ++q;
      case TIMER3B:   ++q;
      case TIMER3A: {
        Timer timer = {
          /*TCCRnQ*/  { &TCCR3A,  &TCCR3B,  &TCCR3C },
          /*OCRnQ*/   { &OCR3A,   &OCR3B,   &OCR3C },
          /*ICRn*/      &ICR3,
          /*n, q*/      3, q
        };
        return timer;
      }
    #elif defined(OCR3B)
      case TIMER3B:   ++q;
      case TIMER3A: {
        Timer timer = {
          /*TCCRnQ*/  { &TCCR3A,  &TCCR3B,  nullptr },
          /*OCRnQ*/   { &OCR3A,   &OCR3B,  nullptr },
          /*ICRn*/      &ICR3,
          /*n, q*/      3, q
        };
        return timer;
      }
    #endif
    #ifdef TCCR4A
      case TIMER4C:   ++q;
      case TIMER4B:   ++q;
      case TIMER4A: {
        Timer timer = {
          /*TCCRnQ*/  { &TCCR4A,  &TCCR4B,  &TCCR4C },
          /*OCRnQ*/   { &OCR4A,   &OCR4B,   &OCR4C },
          /*ICRn*/      &ICR4,
          /*n, q*/      4, q
        };
        return timer;
      }
    #endif
    #ifdef TCCR5A
      case TIMER5C:   ++q;
      case TIMER5B:   ++q;
      case TIMER5A: {
        Timer timer = {
          /*TCCRnQ*/  { &TCCR5A,  &TCCR5B,  &TCCR5C },
          /*OCRnQ*/   { &OCR5A,   &OCR5B,   &OCR5C },
          /*ICRn*/      &ICR5,
          /*n, q*/      5, q
        };
        return timer;
      }
    #endif
  }
  Timer timer = {
      /*TCCRnQ*/  { nullptr, nullptr, nullptr },
      /*OCRnQ*/   { nullptr, nullptr, nullptr },
      /*ICRn*/      nullptr,
                    0, 0
  };
  return timer;
}

void set_pwm_frequency(const pin_t pin, int f_desired) {
  Timer timer = get_pwm_timer(pin);
  if (timer.n == 0) return; // Don't proceed if protected timer or not recognised
  uint16_t size;
  if (timer.n == 2) size = 255; else size = 65535;

  uint16_t res = 255;   // resolution (TOP value)
  uint8_t j = 0;        // prescaler index
  uint8_t wgm = 1;      // waveform generation mode

  // Calculating the prescaler and resolution to use to achieve closest frequency
  if (f_desired != 0) {
    int f = (F_CPU) / (2 * 1024 * size) + 1; // Initialize frequency as lowest (non-zero) achievable
    uint16_t prescaler[] = { 0, 1, 8, /*TIMER2 ONLY*/32, 64, /*TIMER2 ONLY*/128, 256, 1024 };

    // loop over prescaler values
    LOOP_S_L_N(i, 1, 8) {
      uint16_t res_temp_fast = 255, res_temp_phase_correct = 255;
      if (timer.n == 2) {
        // No resolution calculation for TIMER2 unless enabled USE_OCR2A_AS_TOP
        #if ENABLED(USE_OCR2A_AS_TOP)
          const uint16_t rtf = (F_CPU) / (prescaler[i] * f_desired);
          res_temp_fast = rtf - 1;
          res_temp_phase_correct = rtf / 2;
        #endif
      }
      else {
        // Skip TIMER2 specific prescalers when not TIMER2
        if (i == 3 || i == 5) continue;
        const uint16_t rtf = (F_CPU) / (prescaler[i] * f_desired);
        res_temp_fast = rtf - 1;
        res_temp_phase_correct = rtf / 2;
      }

      LIMIT(res_temp_fast, 1U, size);
      LIMIT(res_temp_phase_correct, 1U, size);
      // Calculate frequencies of test prescaler and resolution values
      const int f_temp_fast = (F_CPU) / (prescaler[i] * (1 + res_temp_fast)),
                f_temp_phase_correct = (F_CPU) / (2 * prescaler[i] * res_temp_phase_correct),
                f_diff = ABS(f - f_desired),
                f_fast_diff = ABS(f_temp_fast - f_desired),
                f_phase_diff = ABS(f_temp_phase_correct - f_desired);

      // If FAST values are closest to desired f
      if (f_fast_diff < f_diff && f_fast_diff <= f_phase_diff) {
        // Remember this combination
        f = f_temp_fast;
        res = res_temp_fast;
        j = i;
        // Set the Wave Generation Mode to FAST PWM
        if (timer.n == 2) {
          wgm = (
            #if ENABLED(USE_OCR2A_AS_TOP)
              WGM2_FAST_PWM_OCR2A
            #else
              WGM2_FAST_PWM
            #endif
          );
        }
        else wgm = WGM_FAST_PWM_ICRn;
      }
      // If PHASE CORRECT values are closes to desired f
      else if (f_phase_diff < f_diff) {
        f = f_temp_phase_correct;
        res = res_temp_phase_correct;
        j = i;
        // Set the Wave Generation Mode to PWM PHASE CORRECT
        if (timer.n == 2) {
          wgm = (
            #if ENABLED(USE_OCR2A_AS_TOP)
              WGM2_PWM_PC_OCR2A
            #else
              WGM2_PWM_PC
            #endif
          );
        }
        else wgm = WGM_PWM_PC_ICRn;
      }
    }
  }
  _SET_WGMnQ(timer.TCCRnQ, wgm);
  _SET_CSn(timer.TCCRnQ, j);

  if (timer.n == 2) {
    #if ENABLED(USE_OCR2A_AS_TOP)
      _SET_OCRnQ(timer.OCRnQ, 0, res);  // Set OCR2A value (TOP) = res
    #endif
  }
  else
    _SET_ICRn(timer.ICRn, res);         // Set ICRn value (TOP) = res
}

void set_pwm_duty(const pin_t pin, const uint16_t v, const uint16_t v_size/*=255*/, const bool invert/*=false*/) {
  // If v is 0 or v_size (max), digitalWrite to LOW or HIGH.
  // Note that digitalWrite also disables pwm output for us (sets COM bit to 0)
  if (v == 0)
    digitalWrite(pin, invert);
  else if (v == v_size)
    digitalWrite(pin, !invert);
  else {
    Timer timer = get_pwm_timer(pin);
    if (timer.n == 0) return; // Don't proceed if protected timer or not recognised
    // Set compare output mode to CLEAR -> SET or SET -> CLEAR (if inverted)
    _SET_COMnQ(timer.TCCRnQ, (timer.q
        #ifdef TCCR2
          + (timer.q == 2) // COM20 is on bit 4 of TCCR2, thus requires q + 1 in the macro
        #endif
      ), COM_CLEAR_SET + invert
    );

    uint16_t top;
    if (timer.n == 2) { // if TIMER2
      top = (
        #if ENABLED(USE_OCR2A_AS_TOP)
          *timer.OCRnQ[0] // top = OCR2A
        #else
          255 // top = 0xFF (max)
        #endif
      );
    }
    else
      top = *timer.ICRn; // top = ICRn

    _SET_OCRnQ(timer.OCRnQ, timer.q, v * float(top) / float(v_size)); // Scale 8/16-bit v to top value
  }
}

#endif // NEEDS_HARDWARE_PWM
#endif // __AVR__