aboutsummaryrefslogtreecommitdiff
path: root/Marlin/src/HAL/DUE/MarlinSerial.cpp
blob: 50b84c0b1d4034362267a1af88beef13bcb7b673 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
/**
 * Marlin 3D Printer Firmware
 * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
 *
 * Based on Sprinter and grbl.
 * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 *
 */

/**
 * MarlinSerial_Due.cpp - Hardware serial library for Arduino DUE
 * Copyright (c) 2017 Eduardo José Tagle. All right reserved
 * Based on MarlinSerial for AVR, copyright (c) 2006 Nicholas Zambetti.  All right reserved.
 */
#ifdef ARDUINO_ARCH_SAM

#include "../../inc/MarlinConfig.h"

#include "MarlinSerial.h"
#include "InterruptVectors.h"
#include "../../MarlinCore.h"

template<typename Cfg> typename MarlinSerial<Cfg>::ring_buffer_r MarlinSerial<Cfg>::rx_buffer = { 0, 0, { 0 } };
template<typename Cfg> typename MarlinSerial<Cfg>::ring_buffer_t MarlinSerial<Cfg>::tx_buffer = { 0 };
template<typename Cfg> bool     MarlinSerial<Cfg>::_written = false;
template<typename Cfg> uint8_t  MarlinSerial<Cfg>::xon_xoff_state = MarlinSerial<Cfg>::XON_XOFF_CHAR_SENT | MarlinSerial<Cfg>::XON_CHAR;
template<typename Cfg> uint8_t  MarlinSerial<Cfg>::rx_dropped_bytes = 0;
template<typename Cfg> uint8_t  MarlinSerial<Cfg>::rx_buffer_overruns = 0;
template<typename Cfg> uint8_t  MarlinSerial<Cfg>::rx_framing_errors = 0;
template<typename Cfg> typename MarlinSerial<Cfg>::ring_buffer_pos_t MarlinSerial<Cfg>::rx_max_enqueued = 0;

// A SW memory barrier, to ensure GCC does not overoptimize loops
#define sw_barrier() asm volatile("": : :"memory");

#include "../../feature/e_parser.h"

// (called with RX interrupts disabled)
template<typename Cfg>
FORCE_INLINE void MarlinSerial<Cfg>::store_rxd_char() {

  static EmergencyParser::State emergency_state; // = EP_RESET

  // Get the tail - Nothing can alter its value while we are at this ISR
  const ring_buffer_pos_t t = rx_buffer.tail;

  // Get the head pointer
  ring_buffer_pos_t h = rx_buffer.head;

  // Get the next element
  ring_buffer_pos_t i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);

  // Read the character from the USART
  uint8_t c = HWUART->UART_RHR;

  if (Cfg::EMERGENCYPARSER) emergency_parser.update(emergency_state, c);

  // If the character is to be stored at the index just before the tail
  // (such that the head would advance to the current tail), the RX FIFO is
  // full, so don't write the character or advance the head.
  if (i != t) {
    rx_buffer.buffer[h] = c;
    h = i;
  }
  else if (Cfg::DROPPED_RX && !++rx_dropped_bytes)
    --rx_dropped_bytes;

  const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
  // Calculate count of bytes stored into the RX buffer

  // Keep track of the maximum count of enqueued bytes
  if (Cfg::MAX_RX_QUEUED) NOLESS(rx_max_enqueued, rx_count);

  if (Cfg::XONOFF) {
    // If the last char that was sent was an XON
    if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XON_CHAR) {

      // Bytes stored into the RX buffer
      const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);

      // If over 12.5% of RX buffer capacity, send XOFF before running out of
      // RX buffer space .. 325 bytes @ 250kbits/s needed to let the host react
      // and stop sending bytes. This translates to 13mS propagation time.
      if (rx_count >= (Cfg::RX_SIZE) / 8) {

        // At this point, definitely no TX interrupt was executing, since the TX isr can't be preempted.
        // Don't enable the TX interrupt here as a means to trigger the XOFF char, because if it happens
        // to be in the middle of trying to disable the RX interrupt in the main program, eventually the
        // enabling of the TX interrupt could be undone. The ONLY reliable thing this can do to ensure
        // the sending of the XOFF char is to send it HERE AND NOW.

        // About to send the XOFF char
        xon_xoff_state = XOFF_CHAR | XON_XOFF_CHAR_SENT;

        // Wait until the TX register becomes empty and send it - Here there could be a problem
        // - While waiting for the TX register to empty, the RX register could receive a new
        //   character. This must also handle that situation!
        uint32_t status;
        while (!((status = HWUART->UART_SR) & UART_SR_TXRDY)) {

          if (status & UART_SR_RXRDY) {
            // We received a char while waiting for the TX buffer to be empty - Receive and process it!

            i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);

            // Read the character from the USART
            c = HWUART->UART_RHR;

            if (Cfg::EMERGENCYPARSER) emergency_parser.update(emergency_state, c);

            // If the character is to be stored at the index just before the tail
            // (such that the head would advance to the current tail), the FIFO is
            // full, so don't write the character or advance the head.
            if (i != t) {
              rx_buffer.buffer[h] = c;
              h = i;
            }
            else if (Cfg::DROPPED_RX && !++rx_dropped_bytes)
              --rx_dropped_bytes;
          }
          sw_barrier();
        }

        HWUART->UART_THR = XOFF_CHAR;

        // At this point there could be a race condition between the write() function
        // and this sending of the XOFF char. This interrupt could happen between the
        // wait to be empty TX buffer loop and the actual write of the character. Since
        // the TX buffer is full because it's sending the XOFF char, the only way to be
        // sure the write() function will succeed is to wait for the XOFF char to be
        // completely sent. Since an extra character could be received during the wait
        // it must also be handled!
        while (!((status = HWUART->UART_SR) & UART_SR_TXRDY)) {

          if (status & UART_SR_RXRDY) {
            // A char arrived while waiting for the TX buffer to be empty - Receive and process it!

            i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);

            // Read the character from the USART
            c = HWUART->UART_RHR;

            if (Cfg::EMERGENCYPARSER) emergency_parser.update(emergency_state, c);

            // If the character is to be stored at the index just before the tail
            // (such that the head would advance to the current tail), the FIFO is
            // full, so don't write the character or advance the head.
            if (i != t) {
              rx_buffer.buffer[h] = c;
              h = i;
            }
            else if (Cfg::DROPPED_RX && !++rx_dropped_bytes)
              --rx_dropped_bytes;
          }
          sw_barrier();
        }

        // At this point everything is ready. The write() function won't
        // have any issues writing to the UART TX register if it needs to!
      }
    }
  }

  // Store the new head value
  rx_buffer.head = h;
}

template<typename Cfg>
FORCE_INLINE void MarlinSerial<Cfg>::_tx_thr_empty_irq() {
  if (Cfg::TX_SIZE > 0) {
    // Read positions
    uint8_t t = tx_buffer.tail;
    const uint8_t h = tx_buffer.head;

    if (Cfg::XONOFF) {
      // If an XON char is pending to be sent, do it now
      if (xon_xoff_state == XON_CHAR) {

        // Send the character
        HWUART->UART_THR = XON_CHAR;

        // Remember we sent it.
        xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT;

        // If nothing else to transmit, just disable TX interrupts.
        if (h == t) HWUART->UART_IDR = UART_IDR_TXRDY;

        return;
      }
    }

    // If nothing to transmit, just disable TX interrupts. This could
    // happen as the result of the non atomicity of the disabling of RX
    // interrupts that could end reenabling TX interrupts as a side effect.
    if (h == t) {
      HWUART->UART_IDR = UART_IDR_TXRDY;
      return;
    }

    // There is something to TX, Send the next byte
    const uint8_t c = tx_buffer.buffer[t];
    t = (t + 1) & (Cfg::TX_SIZE - 1);
    HWUART->UART_THR = c;
    tx_buffer.tail = t;

    // Disable interrupts if there is nothing to transmit following this byte
    if (h == t) HWUART->UART_IDR = UART_IDR_TXRDY;
  }
}

template<typename Cfg>
void MarlinSerial<Cfg>::UART_ISR() {
  const uint32_t status = HWUART->UART_SR;

  // Data received?
  if (status & UART_SR_RXRDY) store_rxd_char();

  if (Cfg::TX_SIZE > 0) {
    // Something to send, and TX interrupts are enabled (meaning something to send)?
    if ((status & UART_SR_TXRDY) && (HWUART->UART_IMR & UART_IMR_TXRDY)) _tx_thr_empty_irq();
  }

  // Acknowledge errors
  if ((status & UART_SR_OVRE) || (status & UART_SR_FRAME)) {
    if (Cfg::DROPPED_RX && (status & UART_SR_OVRE) && !++rx_dropped_bytes) --rx_dropped_bytes;
    if (Cfg::RX_OVERRUNS && (status & UART_SR_OVRE) && !++rx_buffer_overruns) --rx_buffer_overruns;
    if (Cfg::RX_FRAMING_ERRORS && (status & UART_SR_FRAME) && !++rx_framing_errors) --rx_framing_errors;

    // TODO: error reporting outside ISR
    HWUART->UART_CR = UART_CR_RSTSTA;
  }
}

// Public Methods
template<typename Cfg>
void MarlinSerial<Cfg>::begin(const long baud_setting) {

  // Disable UART interrupt in NVIC
  NVIC_DisableIRQ( HWUART_IRQ );

  // We NEED memory barriers to ensure Interrupts are actually disabled!
  // ( https://dzone.com/articles/nvic-disabling-interrupts-on-arm-cortex-m-and-the )
  __DSB();
  __ISB();

  // Disable clock
  pmc_disable_periph_clk( HWUART_IRQ_ID );

  // Configure PMC
  pmc_enable_periph_clk( HWUART_IRQ_ID );

  // Disable PDC channel
  HWUART->UART_PTCR = UART_PTCR_RXTDIS | UART_PTCR_TXTDIS;

  // Reset and disable receiver and transmitter
  HWUART->UART_CR = UART_CR_RSTRX | UART_CR_RSTTX | UART_CR_RXDIS | UART_CR_TXDIS;

  // Configure mode: 8bit, No parity, 1 bit stop
  HWUART->UART_MR = UART_MR_CHMODE_NORMAL | US_MR_CHRL_8_BIT | US_MR_NBSTOP_1_BIT | UART_MR_PAR_NO;

  // Configure baudrate (asynchronous, no oversampling)
  HWUART->UART_BRGR = (SystemCoreClock / (baud_setting << 4));

  // Configure interrupts
  HWUART->UART_IDR = 0xFFFFFFFF;
  HWUART->UART_IER = UART_IER_RXRDY | UART_IER_OVRE | UART_IER_FRAME;

  // Install interrupt handler
  install_isr(HWUART_IRQ, UART_ISR);

  // Configure priority. We need a very high priority to avoid losing characters
  // and we need to be able to preempt the Stepper ISR and everything else!
  // (this could probably be fixed by using DMA with the Serial port)
  NVIC_SetPriority(HWUART_IRQ, 1);

  // Enable UART interrupt in NVIC
  NVIC_EnableIRQ(HWUART_IRQ);

  // Enable receiver and transmitter
  HWUART->UART_CR = UART_CR_RXEN | UART_CR_TXEN;

  if (Cfg::TX_SIZE > 0) _written = false;
}

template<typename Cfg>
void MarlinSerial<Cfg>::end() {
  // Disable UART interrupt in NVIC
  NVIC_DisableIRQ( HWUART_IRQ );

  // We NEED memory barriers to ensure Interrupts are actually disabled!
  // ( https://dzone.com/articles/nvic-disabling-interrupts-on-arm-cortex-m-and-the )
  __DSB();
  __ISB();

  pmc_disable_periph_clk( HWUART_IRQ_ID );
}

template<typename Cfg>
int MarlinSerial<Cfg>::peek() {
  const int v = rx_buffer.head == rx_buffer.tail ? -1 : rx_buffer.buffer[rx_buffer.tail];
  return v;
}

template<typename Cfg>
int MarlinSerial<Cfg>::read() {

  const ring_buffer_pos_t h = rx_buffer.head;
  ring_buffer_pos_t t = rx_buffer.tail;

  if (h == t) return -1;

  int v = rx_buffer.buffer[t];
  t = (ring_buffer_pos_t)(t + 1) & (Cfg::RX_SIZE - 1);

  // Advance tail
  rx_buffer.tail = t;

  if (Cfg::XONOFF) {
    // If the XOFF char was sent, or about to be sent...
    if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) {
      // Get count of bytes in the RX buffer
      const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
      // When below 10% of RX buffer capacity, send XON before running out of RX buffer bytes
      if (rx_count < (Cfg::RX_SIZE) / 10) {
        if (Cfg::TX_SIZE > 0) {
          // Signal we want an XON character to be sent.
          xon_xoff_state = XON_CHAR;
          // Enable TX isr.
          HWUART->UART_IER = UART_IER_TXRDY;
        }
        else {
          // If not using TX interrupts, we must send the XON char now
          xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT;
          while (!(HWUART->UART_SR & UART_SR_TXRDY)) sw_barrier();
          HWUART->UART_THR = XON_CHAR;
        }
      }
    }
  }

  return v;
}

template<typename Cfg>
typename MarlinSerial<Cfg>::ring_buffer_pos_t MarlinSerial<Cfg>::available() {
  const ring_buffer_pos_t h = rx_buffer.head, t = rx_buffer.tail;
  return (ring_buffer_pos_t)(Cfg::RX_SIZE + h - t) & (Cfg::RX_SIZE - 1);
}

template<typename Cfg>
void MarlinSerial<Cfg>::flush() {
  rx_buffer.tail = rx_buffer.head;

  if (Cfg::XONOFF) {
    if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) {
      if (Cfg::TX_SIZE > 0) {
        // Signal we want an XON character to be sent.
        xon_xoff_state = XON_CHAR;
        // Enable TX isr.
        HWUART->UART_IER = UART_IER_TXRDY;
      }
      else {
        // If not using TX interrupts, we must send the XON char now
        xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT;
        while (!(HWUART->UART_SR & UART_SR_TXRDY)) sw_barrier();
        HWUART->UART_THR = XON_CHAR;
      }
    }
  }
}

template<typename Cfg>
size_t MarlinSerial<Cfg>::write(const uint8_t c) {
  _written = true;

  if (Cfg::TX_SIZE == 0) {
    while (!(HWUART->UART_SR & UART_SR_TXRDY)) sw_barrier();
    HWUART->UART_THR = c;
  }
  else {

    // If the TX interrupts are disabled and the data register
    // is empty, just write the byte to the data register and
    // be done. This shortcut helps significantly improve the
    // effective datarate at high (>500kbit/s) bitrates, where
    // interrupt overhead becomes a slowdown.
    // Yes, there is a race condition between the sending of the
    // XOFF char at the RX isr, but it is properly handled there
    if (!(HWUART->UART_IMR & UART_IMR_TXRDY) && (HWUART->UART_SR & UART_SR_TXRDY)) {
      HWUART->UART_THR = c;
      return 1;
    }

    const uint8_t i = (tx_buffer.head + 1) & (Cfg::TX_SIZE - 1);

    // If global interrupts are disabled (as the result of being called from an ISR)...
    if (!ISRS_ENABLED()) {

      // Make room by polling if it is possible to transmit, and do so!
      while (i == tx_buffer.tail) {
        // If we can transmit another byte, do it.
        if (HWUART->UART_SR & UART_SR_TXRDY) _tx_thr_empty_irq();
        // Make sure compiler rereads tx_buffer.tail
        sw_barrier();
      }
    }
    else {
      // Interrupts are enabled, just wait until there is space
      while (i == tx_buffer.tail) sw_barrier();
    }

    // Store new char. head is always safe to move
    tx_buffer.buffer[tx_buffer.head] = c;
    tx_buffer.head = i;

    // Enable TX isr - Non atomic, but it will eventually enable TX isr
    HWUART->UART_IER = UART_IER_TXRDY;
  }
  return 1;
}

template<typename Cfg>
void MarlinSerial<Cfg>::flushTX() {
  // TX

  if (Cfg::TX_SIZE == 0) {
    // No bytes written, no need to flush. This special case is needed since there's
    // no way to force the TXC (transmit complete) bit to 1 during initialization.
    if (!_written) return;

    // Wait until everything was transmitted
    while (!(HWUART->UART_SR & UART_SR_TXEMPTY)) sw_barrier();

    // At this point nothing is queued anymore (DRIE is disabled) and
    // the hardware finished transmission (TXC is set).

  }
  else {
    // If we have never written a byte, no need to flush. This special
    // case is needed since there is no way to force the TXC (transmit
    // complete) bit to 1 during initialization
    if (!_written) return;

    // If global interrupts are disabled (as the result of being called from an ISR)...
    if (!ISRS_ENABLED()) {

      // Wait until everything was transmitted - We must do polling, as interrupts are disabled
      while (tx_buffer.head != tx_buffer.tail || !(HWUART->UART_SR & UART_SR_TXEMPTY)) {
        // If there is more space, send an extra character
        if (HWUART->UART_SR & UART_SR_TXRDY) _tx_thr_empty_irq();
        sw_barrier();
      }

    }
    else {
      // Wait until everything was transmitted
      while (tx_buffer.head != tx_buffer.tail || !(HWUART->UART_SR & UART_SR_TXEMPTY)) sw_barrier();
    }

    // At this point nothing is queued anymore (DRIE is disabled) and
    // the hardware finished transmission (TXC is set).
  }
}


// If not using the USB port as serial port
#if SERIAL_PORT >= 0
  template class MarlinSerial< MarlinSerialCfg<SERIAL_PORT> >;
  MSerialT customizedSerial1(MarlinSerialCfg<SERIAL_PORT>::EMERGENCYPARSER);
#endif

#if defined(SERIAL_PORT_2) && SERIAL_PORT_2 >= 0
  template class MarlinSerial< MarlinSerialCfg<SERIAL_PORT_2> >;
  MSerialT2 customizedSerial2(MarlinSerialCfg<SERIAL_PORT_2>::EMERGENCYPARSER);
#endif

#endif // ARDUINO_ARCH_SAM