1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
|
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#if defined(ARDUINO_ARCH_STM32) && !defined(STM32GENERIC)
#include "../../../inc/MarlinConfig.h"
#if HAS_SPI_TFT
#include "tft_spi.h"
#include "pinconfig.h"
SPI_HandleTypeDef TFT_SPI::SPIx;
DMA_HandleTypeDef TFT_SPI::DMAtx;
void TFT_SPI::Init() {
SPI_TypeDef *spiInstance;
OUT_WRITE(TFT_A0_PIN, HIGH);
OUT_WRITE(TFT_CS_PIN, HIGH);
if ((spiInstance = (SPI_TypeDef *)pinmap_peripheral(digitalPinToPinName(TFT_SCK_PIN), PinMap_SPI_SCLK)) == NP) return;
if (spiInstance != (SPI_TypeDef *)pinmap_peripheral(digitalPinToPinName(TFT_MOSI_PIN), PinMap_SPI_MOSI)) return;
#if PIN_EXISTS(TFT_MISO) && TFT_MISO_PIN != TFT_MOSI_PIN
if (spiInstance != (SPI_TypeDef *)pinmap_peripheral(digitalPinToPinName(TFT_MISO_PIN), PinMap_SPI_MISO)) return;
#endif
SPIx.Instance = spiInstance;
SPIx.State = HAL_SPI_STATE_RESET;
SPIx.Init.NSS = SPI_NSS_SOFT;
SPIx.Init.Mode = SPI_MODE_MASTER;
SPIx.Init.Direction = (TFT_MISO_PIN == TFT_MOSI_PIN) ? SPI_DIRECTION_1LINE : SPI_DIRECTION_2LINES;
SPIx.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2;
SPIx.Init.CLKPhase = SPI_PHASE_1EDGE;
SPIx.Init.CLKPolarity = SPI_POLARITY_LOW;
SPIx.Init.DataSize = SPI_DATASIZE_8BIT;
SPIx.Init.FirstBit = SPI_FIRSTBIT_MSB;
SPIx.Init.TIMode = SPI_TIMODE_DISABLE;
SPIx.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
SPIx.Init.CRCPolynomial = 10;
pinmap_pinout(digitalPinToPinName(TFT_SCK_PIN), PinMap_SPI_SCLK);
pinmap_pinout(digitalPinToPinName(TFT_MOSI_PIN), PinMap_SPI_MOSI);
#if PIN_EXISTS(TFT_MISO) && TFT_MISO_PIN != TFT_MOSI_PIN
pinmap_pinout(digitalPinToPinName(TFT_MISO_PIN), PinMap_SPI_MISO);
#endif
pin_PullConfig(get_GPIO_Port(STM_PORT(digitalPinToPinName(TFT_SCK_PIN))), STM_LL_GPIO_PIN(digitalPinToPinName(TFT_SCK_PIN)), GPIO_PULLDOWN);
#ifdef SPI1_BASE
if (SPIx.Instance == SPI1) {
__HAL_RCC_SPI1_CLK_ENABLE();
#ifdef STM32F1xx
__HAL_RCC_DMA1_CLK_ENABLE();
DMAtx.Instance = DMA1_Channel3;
#elif defined(STM32F4xx)
__HAL_RCC_DMA2_CLK_ENABLE();
DMAtx.Instance = DMA2_Stream3;
DMAtx.Init.Channel = DMA_CHANNEL_3;
#endif
SPIx.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_4;
}
#endif
#ifdef SPI2_BASE
if (SPIx.Instance == SPI2) {
__HAL_RCC_SPI2_CLK_ENABLE();
#ifdef STM32F1xx
__HAL_RCC_DMA1_CLK_ENABLE();
DMAtx.Instance = DMA1_Channel5;
#elif defined(STM32F4xx)
__HAL_RCC_DMA1_CLK_ENABLE();
DMAtx.Instance = DMA1_Stream4;
DMAtx.Init.Channel = DMA_CHANNEL_0;
#endif
}
#endif
#ifdef SPI3_BASE
if (SPIx.Instance == SPI3) {
__HAL_RCC_SPI3_CLK_ENABLE();
#ifdef STM32F1xx
__HAL_RCC_DMA2_CLK_ENABLE();
DMAtx.Instance = DMA2_Channel2;
#elif defined(STM32F4xx)
__HAL_RCC_DMA1_CLK_ENABLE();
DMAtx.Instance = DMA1_Stream5;
DMAtx.Init.Channel = DMA_CHANNEL_0;
#endif
}
#endif
HAL_SPI_Init(&SPIx);
DMAtx.Init.Direction = DMA_MEMORY_TO_PERIPH;
DMAtx.Init.PeriphInc = DMA_PINC_DISABLE;
DMAtx.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
DMAtx.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD;
DMAtx.Init.Mode = DMA_NORMAL;
DMAtx.Init.Priority = DMA_PRIORITY_LOW;
#ifdef STM32F4xx
DMAtx.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
#endif
}
void TFT_SPI::DataTransferBegin(uint16_t DataSize) {
SPIx.Init.DataSize = DataSize == DATASIZE_8BIT ? SPI_DATASIZE_8BIT : SPI_DATASIZE_16BIT;
HAL_SPI_Init(&SPIx);
WRITE(TFT_CS_PIN, LOW);
}
uint32_t TFT_SPI::GetID() {
uint32_t id;
id = ReadID(LCD_READ_ID);
if ((id & 0xFFFF) == 0 || (id & 0xFFFF) == 0xFFFF)
id = ReadID(LCD_READ_ID4);
return id;
}
uint32_t TFT_SPI::ReadID(uint16_t Reg) {
uint32_t Data = 0;
#if PIN_EXISTS(TFT_MISO)
uint32_t BaudRatePrescaler = SPIx.Init.BaudRatePrescaler;
uint32_t i;
SPIx.Init.BaudRatePrescaler = SPIx.Instance == SPI1 ? SPI_BAUDRATEPRESCALER_8 : SPI_BAUDRATEPRESCALER_4;
DataTransferBegin(DATASIZE_8BIT);
WriteReg(Reg);
if (SPIx.Init.Direction == SPI_DIRECTION_1LINE) SPI_1LINE_RX(&SPIx);
__HAL_SPI_ENABLE(&SPIx);
for (i = 0; i < 4; i++) {
#if TFT_MISO_PIN != TFT_MOSI_PIN
//if (hspi->Init.Direction == SPI_DIRECTION_2LINES) {
while ((SPIx.Instance->SR & SPI_FLAG_TXE) != SPI_FLAG_TXE) {}
SPIx.Instance->DR = 0;
//}
#endif
while ((SPIx.Instance->SR & SPI_FLAG_RXNE) != SPI_FLAG_RXNE) {}
Data = (Data << 8) | SPIx.Instance->DR;
}
__HAL_SPI_DISABLE(&SPIx);
DataTransferEnd();
SPIx.Init.BaudRatePrescaler = BaudRatePrescaler;
#endif
return Data >> 7;
}
bool TFT_SPI::isBusy() {
#if defined(STM32F1xx)
volatile bool dmaEnabled = (DMAtx.Instance->CCR & DMA_CCR_EN) != RESET;
#elif defined(STM32F4xx)
volatile bool dmaEnabled = DMAtx.Instance->CR & DMA_SxCR_EN;
#endif
if (dmaEnabled) {
if (__HAL_DMA_GET_FLAG(&DMAtx, __HAL_DMA_GET_TC_FLAG_INDEX(&DMAtx)) != 0 || __HAL_DMA_GET_FLAG(&DMAtx, __HAL_DMA_GET_TE_FLAG_INDEX(&DMAtx)) != 0)
Abort();
}
else
Abort();
return dmaEnabled;
}
void TFT_SPI::Abort() {
// Wait for any running spi
while ((SPIx.Instance->SR & SPI_FLAG_TXE) != SPI_FLAG_TXE) {}
while ((SPIx.Instance->SR & SPI_FLAG_BSY) == SPI_FLAG_BSY) {}
// First, abort any running dma
HAL_DMA_Abort(&DMAtx);
// DeInit objects
HAL_DMA_DeInit(&DMAtx);
HAL_SPI_DeInit(&SPIx);
// Deselect CS
DataTransferEnd();
}
void TFT_SPI::Transmit(uint16_t Data) {
if (TFT_MISO_PIN == TFT_MOSI_PIN)
SPI_1LINE_TX(&SPIx);
__HAL_SPI_ENABLE(&SPIx);
SPIx.Instance->DR = Data;
while ((SPIx.Instance->SR & SPI_FLAG_TXE) != SPI_FLAG_TXE) {}
while ((SPIx.Instance->SR & SPI_FLAG_BSY) == SPI_FLAG_BSY) {}
if (TFT_MISO_PIN != TFT_MOSI_PIN)
__HAL_SPI_CLEAR_OVRFLAG(&SPIx); /* Clear overrun flag in 2 Lines communication mode because received is not read */
}
void TFT_SPI::TransmitDMA(uint32_t MemoryIncrease, uint16_t *Data, uint16_t Count) {
// Wait last dma finish, to start another
while(isBusy()) { }
DMAtx.Init.MemInc = MemoryIncrease;
HAL_DMA_Init(&DMAtx);
if (TFT_MISO_PIN == TFT_MOSI_PIN)
SPI_1LINE_TX(&SPIx);
DataTransferBegin();
HAL_DMA_Start(&DMAtx, (uint32_t)Data, (uint32_t)&(SPIx.Instance->DR), Count);
__HAL_SPI_ENABLE(&SPIx);
SET_BIT(SPIx.Instance->CR2, SPI_CR2_TXDMAEN); /* Enable Tx DMA Request */
HAL_DMA_PollForTransfer(&DMAtx, HAL_DMA_FULL_TRANSFER, HAL_MAX_DELAY);
Abort();
}
#endif // HAS_SPI_TFT
#endif // ARDUINO_ARCH_STM32 && !STM32GENERIC
|