aboutsummaryrefslogtreecommitdiff
path: root/Marlin/src/feature/max7219.cpp
blob: ebcb56490d4fc98aafaf7c6dc35ee8df15f7264f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
/**
 * Marlin 3D Printer Firmware
 * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
 *
 * Based on Sprinter and grbl.
 * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 *
 */

/**
 * This module is off by default, but can be enabled to facilitate the display of
 * extra debug information during code development.
 *
 * Just connect up 5V and GND to give it power, then connect up the pins assigned
 * in Configuration_adv.h. For example, on the Re-ARM you could use:
 *
 *   #define MAX7219_CLK_PIN   77
 *   #define MAX7219_DIN_PIN   78
 *   #define MAX7219_LOAD_PIN  79
 *
 * send() is called automatically at startup, and then there are a number of
 * support functions available to control the LEDs in the 8x8 grid.
 */

#include "../inc/MarlinConfigPre.h"

#if ENABLED(MAX7219_DEBUG)

#define MAX7219_ERRORS // Disable to save 406 bytes of Program Memory

#include "max7219.h"

#include "../module/planner.h"
#include "../module/stepper.h"
#include "../MarlinCore.h"
#include "../HAL/shared/Delay.h"

#if ENABLED(MAX7219_SIDE_BY_SIDE) && MAX7219_NUMBER_UNITS > 1
  #define HAS_SIDE_BY_SIDE 1
#endif

#if _ROT == 0 || _ROT == 180
  #define MAX7219_X_LEDS TERN(HAS_SIDE_BY_SIDE, 8, MAX7219_LINES)
  #define MAX7219_Y_LEDS TERN(HAS_SIDE_BY_SIDE, MAX7219_LINES, 8)
#elif _ROT == 90 || _ROT == 270
  #define MAX7219_X_LEDS TERN(HAS_SIDE_BY_SIDE, MAX7219_LINES, 8)
  #define MAX7219_Y_LEDS TERN(HAS_SIDE_BY_SIDE, 8, MAX7219_LINES)
#else
  #error "MAX7219_ROTATE must be a multiple of +/- 90°."
#endif

Max7219 max7219;

uint8_t Max7219::led_line[MAX7219_LINES]; // = { 0 };
uint8_t Max7219::suspended; // = 0;

#define LINE_REG(Q)     (max7219_reg_digit0 + ((Q) & 0x7))

#if _ROT == 0 || _ROT == 270
  #define _LED_BIT(Q)   (7 - ((Q) & 0x7))
#else
  #define _LED_BIT(Q)   ((Q) & 0x7)
#endif
#if _ROT == 0 || _ROT == 180
  #define LED_BIT(X,Y)  _LED_BIT(X)
#else
  #define LED_BIT(X,Y)  _LED_BIT(Y)
#endif
#if _ROT == 0 || _ROT == 90
  #define _LED_IND(P,Q) (_LED_TOP(P) + ((Q) & 0x7))
#else
  #define _LED_IND(P,Q) (_LED_TOP(P) + (7 - ((Q) & 0x7)))
#endif

#if HAS_SIDE_BY_SIDE
  #if (_ROT == 0 || _ROT == 90) == DISABLED(MAX7219_REVERSE_ORDER)
    #define _LED_TOP(Q)  ((MAX7219_NUMBER_UNITS - 1 - ((Q) >> 3)) << 3)
  #else
    #define _LED_TOP(Q)  ((Q) & ~0x7)
  #endif
  #if _ROT == 0 || _ROT == 180
    #define LED_IND(X,Y)  _LED_IND(Y,Y)
  #elif _ROT == 90 || _ROT == 270
    #define LED_IND(X,Y)  _LED_IND(X,X)
  #endif
#else
  #if (_ROT == 0 || _ROT == 270) == DISABLED(MAX7219_REVERSE_ORDER)
    #define _LED_TOP(Q)  ((Q) & ~0x7)
  #else
    #define _LED_TOP(Q)  ((MAX7219_NUMBER_UNITS - 1 - ((Q) >> 3)) << 3)
  #endif
  #if _ROT == 0 || _ROT == 180
    #define LED_IND(X,Y)  _LED_IND(X,Y)
  #elif _ROT == 90 || _ROT == 270
    #define LED_IND(X,Y)  _LED_IND(Y,X)
  #endif
#endif

#define XOR_7219(X,Y) do{ led_line[LED_IND(X,Y)] ^=  _BV(LED_BIT(X,Y)); }while(0)
#define SET_7219(X,Y) do{ led_line[LED_IND(X,Y)] |=  _BV(LED_BIT(X,Y)); }while(0)
#define CLR_7219(X,Y) do{ led_line[LED_IND(X,Y)] &= ~_BV(LED_BIT(X,Y)); }while(0)
#define BIT_7219(X,Y) TEST(led_line[LED_IND(X,Y)], LED_BIT(X,Y))

#ifdef CPU_32_BIT
  #define SIG_DELAY() DELAY_US(1)   // Approximate a 1µs delay on 32-bit ARM
  #undef CRITICAL_SECTION_START
  #undef CRITICAL_SECTION_END
  #define CRITICAL_SECTION_START() NOOP
  #define CRITICAL_SECTION_END()   NOOP
#else
  #define SIG_DELAY() DELAY_NS(250)
#endif

void Max7219::error(const char * const func, const int32_t v1, const int32_t v2/*=-1*/) {
  #if ENABLED(MAX7219_ERRORS)
    SERIAL_ECHOPGM("??? Max7219::");
    serialprintPGM(func);
    SERIAL_CHAR('(');
    SERIAL_ECHO(v1);
    if (v2 > 0) SERIAL_ECHOPAIR(", ", v2);
    SERIAL_CHAR(')');
    SERIAL_EOL();
  #else
    UNUSED(func); UNUSED(v1); UNUSED(v2);
  #endif
}

/**
 * Flip the lowest n_bytes of the supplied bits:
 *  flipped(x, 1) flips the low 8  bits of x.
 *  flipped(x, 2) flips the low 16 bits of x.
 *  flipped(x, 3) flips the low 24 bits of x.
 *  flipped(x, 4) flips the low 32 bits of x.
 */
inline uint32_t flipped(const uint32_t bits, const uint8_t n_bytes) {
  uint32_t mask = 1, outbits = 0;
  LOOP_L_N(b, n_bytes * 8) {
    outbits <<= 1;
    if (bits & mask) outbits |= 1;
    mask <<= 1;
  }
  return outbits;
}

void Max7219::noop() {
  CRITICAL_SECTION_START();
  SIG_DELAY();
  WRITE(MAX7219_DIN_PIN, LOW);
  for (uint8_t i = 16; i--;) {
    SIG_DELAY();
    WRITE(MAX7219_CLK_PIN, LOW);
    SIG_DELAY();
    SIG_DELAY();
    WRITE(MAX7219_CLK_PIN, HIGH);
    SIG_DELAY();
  }
  CRITICAL_SECTION_END();
}

void Max7219::putbyte(uint8_t data) {
  CRITICAL_SECTION_START();
  for (uint8_t i = 8; i--;) {
    SIG_DELAY();
    WRITE(MAX7219_CLK_PIN, LOW);       // tick
    SIG_DELAY();
    WRITE(MAX7219_DIN_PIN, (data & 0x80) ? HIGH : LOW);  // send 1 or 0 based on data bit
    SIG_DELAY();
    WRITE(MAX7219_CLK_PIN, HIGH);      // tock
    SIG_DELAY();
    data <<= 1;
  }
  CRITICAL_SECTION_END();
}

void Max7219::pulse_load() {
  SIG_DELAY();
  WRITE(MAX7219_LOAD_PIN, LOW);  // tell the chip to load the data
  SIG_DELAY();
  WRITE(MAX7219_LOAD_PIN, HIGH);
  SIG_DELAY();
}

void Max7219::send(const uint8_t reg, const uint8_t data) {
  SIG_DELAY();
  CRITICAL_SECTION_START();
  SIG_DELAY();
  putbyte(reg);          // specify register
  SIG_DELAY();
  putbyte(data);         // put data
  CRITICAL_SECTION_END();
}

// Send out a single native row of bits to just one unit
void Max7219::refresh_unit_line(const uint8_t line) {
  if (suspended) return;
  #if MAX7219_NUMBER_UNITS == 1
    send(LINE_REG(line), led_line[line]);
  #else
    for (uint8_t u = MAX7219_NUMBER_UNITS; u--;)
      if (u == (line >> 3)) send(LINE_REG(line), led_line[line]); else noop();
  #endif
  pulse_load();
}

// Send out a single native row of bits to all units
void Max7219::refresh_line(const uint8_t line) {
  if (suspended) return;
  #if MAX7219_NUMBER_UNITS == 1
    refresh_unit_line(line);
  #else
    for (uint8_t u = MAX7219_NUMBER_UNITS; u--;)
      send(LINE_REG(line), led_line[(u << 3) | (line & 0x7)]);
  #endif
  pulse_load();
}

void Max7219::set(const uint8_t line, const uint8_t bits) {
  led_line[line] = bits;
  refresh_unit_line(line);
}

#if ENABLED(MAX7219_NUMERIC)

  // Draw an integer with optional leading zeros and optional decimal point
  void Max7219::print(const uint8_t start, int16_t value, uint8_t size, const bool leadzero=false, bool dec=false) {
    if (suspended) return;
    constexpr uint8_t led_numeral[10] = { 0x7E, 0x60, 0x6D, 0x79, 0x63, 0x5B, 0x5F, 0x70, 0x7F, 0x7A },
                      led_decimal = 0x80, led_minus = 0x01;
    bool blank = false, neg = value < 0;
    if (neg) value *= -1;
    while (size--) {
      const bool minus = neg && blank;
      if (minus) neg = false;
      send(
        max7219_reg_digit0 + start + size,
        minus ? led_minus : blank ? 0x00 : led_numeral[value % 10] | (dec ? led_decimal : 0x00)
      );
      pulse_load();  // tell the chips to load the clocked out data
      value /= 10;
      if (!value && !leadzero) blank = true;
      dec = false;
    }
  }

  // Draw a float with a decimal point and optional digits
  void Max7219::print(const uint8_t start, const float value, const uint8_t pre_size, const uint8_t post_size, const bool leadzero=false) {
    if (pre_size) print(start, value, pre_size, leadzero, !!post_size);
    if (post_size) {
      const int16_t after = ABS(value) * (10 ^ post_size);
      print(start + pre_size, after, post_size, true);
    }
  }

#endif // MAX7219_NUMERIC

// Modify a single LED bit and send the changed line
void Max7219::led_set(const uint8_t x, const uint8_t y, const bool on) {
  if (x >= MAX7219_X_LEDS || y >= MAX7219_Y_LEDS) return error(PSTR("led_set"), x, y);
  if (BIT_7219(x, y) == on) return;
  XOR_7219(x, y);
  refresh_unit_line(LED_IND(x, y));
}

void Max7219::led_on(const uint8_t x, const uint8_t y) {
  if (x >= MAX7219_X_LEDS || y >= MAX7219_Y_LEDS) return error(PSTR("led_on"), x, y);
  led_set(x, y, true);
}

void Max7219::led_off(const uint8_t x, const uint8_t y) {
  if (x >= MAX7219_X_LEDS || y >= MAX7219_Y_LEDS) return error(PSTR("led_off"), x, y);
  led_set(x, y, false);
}

void Max7219::led_toggle(const uint8_t x, const uint8_t y) {
  if (x >= MAX7219_X_LEDS || y >= MAX7219_Y_LEDS) return error(PSTR("led_toggle"), x, y);
  led_set(x, y, !BIT_7219(x, y));
}

void Max7219::send_row(const uint8_t row) {
  if (suspended) return;
  #if _ROT == 0 || _ROT == 180            // Native Lines are horizontal too
    #if MAX7219_X_LEDS <= 8
      refresh_unit_line(LED_IND(0, row)); // A single unit line
    #else
      refresh_line(LED_IND(0, row));      // Same line, all units
    #endif
  #else                                   // Native lines are vertical
    UNUSED(row);
    refresh();                            // Actually a column
  #endif
}

void Max7219::send_column(const uint8_t col) {
  if (suspended) return;
  #if _ROT == 90 || _ROT == 270           // Native Lines are vertical too
    #if MAX7219_Y_LEDS <= 8
      refresh_unit_line(LED_IND(col, 0)); // A single unit line
    #else
      refresh_line(LED_IND(col, 0));      // Same line, all units
    #endif
  #else                                   // Native lines are horizontal
    UNUSED(col);
    refresh();                            // Actually a row
  #endif
}

void Max7219::clear() {
  ZERO(led_line);
  refresh();
}

void Max7219::fill() {
  memset(led_line, 0xFF, sizeof(led_line));
  refresh();
}

void Max7219::clear_row(const uint8_t row) {
  if (row >= MAX7219_Y_LEDS) return error(PSTR("clear_row"), row);
  LOOP_L_N(x, MAX7219_X_LEDS) CLR_7219(x, row);
  send_row(row);
}

void Max7219::clear_column(const uint8_t col) {
  if (col >= MAX7219_X_LEDS) return error(PSTR("set_column"), col);
  LOOP_L_N(y, MAX7219_Y_LEDS) CLR_7219(col, y);
  send_column(col);
}

/**
 * Plot the low order bits of val to the specified row of the matrix.
 * With 4 Max7219 units in the chain, it's possible to set 32 bits at
 * once with a single call to the function (if rotated 90° or 270°).
 */
void Max7219::set_row(const uint8_t row, const uint32_t val) {
  if (row >= MAX7219_Y_LEDS) return error(PSTR("set_row"), row);
  uint32_t mask = _BV32(MAX7219_X_LEDS - 1);
  LOOP_L_N(x, MAX7219_X_LEDS) {
    if (val & mask) SET_7219(x, row); else CLR_7219(x, row);
    mask >>= 1;
  }
  send_row(row);
}

/**
 * Plot the low order bits of val to the specified column of the matrix.
 * With 4 Max7219 units in the chain, it's possible to set 32 bits at
 * once with a single call to the function (if rotated 0° or 180°).
 */
void Max7219::set_column(const uint8_t col, const uint32_t val) {
  if (col >= MAX7219_X_LEDS) return error(PSTR("set_column"), col);
  uint32_t mask = _BV32(MAX7219_Y_LEDS - 1);
  LOOP_L_N(y, MAX7219_Y_LEDS) {
    if (val & mask) SET_7219(col, y); else CLR_7219(col, y);
    mask >>= 1;
  }
  send_column(col);
}

void Max7219::set_rows_16bits(const uint8_t y, uint32_t val) {
  #if MAX7219_X_LEDS == 8
    if (y > MAX7219_Y_LEDS - 2) return error(PSTR("set_rows_16bits"), y, val);
    set_row(y + 1, val); val >>= 8;
    set_row(y + 0, val);
  #else // at least 16 bits on each row
    if (y > MAX7219_Y_LEDS - 1) return error(PSTR("set_rows_16bits"), y, val);
    set_row(y, val);
  #endif
}

void Max7219::set_rows_32bits(const uint8_t y, uint32_t val) {
  #if MAX7219_X_LEDS == 8
    if (y > MAX7219_Y_LEDS - 4) return error(PSTR("set_rows_32bits"), y, val);
    set_row(y + 3, val); val >>= 8;
    set_row(y + 2, val); val >>= 8;
    set_row(y + 1, val); val >>= 8;
    set_row(y + 0, val);
  #elif MAX7219_X_LEDS == 16
    if (y > MAX7219_Y_LEDS - 2) return error(PSTR("set_rows_32bits"), y, val);
    set_row(y + 1, val); val >>= 16;
    set_row(y + 0, val);
  #else // at least 24 bits on each row.  In the 3 matrix case, just display the low 24 bits
    if (y > MAX7219_Y_LEDS - 1) return error(PSTR("set_rows_32bits"), y, val);
    set_row(y, val);
  #endif
}

void Max7219::set_columns_16bits(const uint8_t x, uint32_t val) {
  #if MAX7219_Y_LEDS == 8
    if (x > MAX7219_X_LEDS - 2) return error(PSTR("set_columns_16bits"), x, val);
    set_column(x + 0, val); val >>= 8;
    set_column(x + 1, val);
  #else // at least 16 bits in each column
    if (x > MAX7219_X_LEDS - 1) return error(PSTR("set_columns_16bits"), x, val);
    set_column(x, val);
  #endif
}

void Max7219::set_columns_32bits(const uint8_t x, uint32_t val) {
  #if MAX7219_Y_LEDS == 8
    if (x > MAX7219_X_LEDS - 4) return error(PSTR("set_rows_32bits"), x, val);
    set_column(x + 3, val); val >>= 8;
    set_column(x + 2, val); val >>= 8;
    set_column(x + 1, val); val >>= 8;
    set_column(x + 0, val);
  #elif MAX7219_Y_LEDS == 16
    if (x > MAX7219_X_LEDS - 2) return error(PSTR("set_rows_32bits"), x, val);
    set_column(x + 1, val); val >>= 16;
    set_column(x + 0, val);
  #else // at least 24 bits on each row.  In the 3 matrix case, just display the low 24 bits
    if (x > MAX7219_X_LEDS - 1) return error(PSTR("set_rows_32bits"), x, val);
    set_column(x, val);
  #endif
}

// Initialize the Max7219
void Max7219::register_setup() {
  LOOP_L_N(i, MAX7219_NUMBER_UNITS)
    send(max7219_reg_scanLimit, 0x07);
  pulse_load();                               // Tell the chips to load the clocked out data

  LOOP_L_N(i, MAX7219_NUMBER_UNITS)
    send(max7219_reg_decodeMode, 0x00);       // Using an led matrix (not digits)
  pulse_load();                               // Tell the chips to load the clocked out data

  LOOP_L_N(i, MAX7219_NUMBER_UNITS)
    send(max7219_reg_shutdown, 0x01);         // Not in shutdown mode
  pulse_load();                               // Tell the chips to load the clocked out data

  LOOP_L_N(i, MAX7219_NUMBER_UNITS)
    send(max7219_reg_displayTest, 0x00);      // No display test
  pulse_load();                               // Tell the chips to load the clocked out data

  LOOP_L_N(i, MAX7219_NUMBER_UNITS)
    send(max7219_reg_intensity, 0x01 & 0x0F); // The first 0x0F is the value you can set
                                              // Range: 0x00 to 0x0F
  pulse_load();                               // Tell the chips to load the clocked out data
}

#ifdef MAX7219_INIT_TEST

  uint8_t test_mode = 0;
  millis_t next_patt_ms;
  bool patt_on;

  #if MAX7219_INIT_TEST == 2

    #define MAX7219_LEDS (MAX7219_X_LEDS * MAX7219_Y_LEDS)

    constexpr millis_t pattern_delay = 4;

    int8_t spiralx, spiraly, spiral_dir;
    IF<(MAX7219_LEDS > 255), uint16_t, uint8_t>::type spiral_count;

    void Max7219::test_pattern() {
      constexpr int8_t way[][2] = { { 1, 0 }, { 0, 1 }, { -1, 0 }, { 0, -1 } };
      led_set(spiralx, spiraly, patt_on);
      const int8_t x = spiralx + way[spiral_dir][0], y = spiraly + way[spiral_dir][1];
      if (!WITHIN(x, 0, MAX7219_X_LEDS - 1) || !WITHIN(y, 0, MAX7219_Y_LEDS - 1) || BIT_7219(x, y) == patt_on)
        spiral_dir = (spiral_dir + 1) & 0x3;
      spiralx += way[spiral_dir][0];
      spiraly += way[spiral_dir][1];
      if (!spiral_count--) {
        if (!patt_on)
          test_mode = 0;
        else {
          spiral_count = MAX7219_LEDS;
          spiralx = spiraly = spiral_dir = 0;
          patt_on = false;
        }
      }
    }

  #else

    constexpr millis_t pattern_delay = 20;
    int8_t sweep_count, sweepx, sweep_dir;

    void Max7219::test_pattern() {
      set_column(sweepx, patt_on ? 0xFFFFFFFF : 0x00000000);
      sweepx += sweep_dir;
      if (!WITHIN(sweepx, 0, MAX7219_X_LEDS - 1)) {
        if (!patt_on) {
          sweep_dir *= -1;
          sweepx += sweep_dir;
        }
        else
          sweepx -= MAX7219_X_LEDS * sweep_dir;
        patt_on ^= true;
        next_patt_ms += 100;
        if (++test_mode > 4) test_mode = 0;
      }
    }

  #endif

  void Max7219::run_test_pattern() {
    const millis_t ms = millis();
    if (PENDING(ms, next_patt_ms)) return;
    next_patt_ms = ms + pattern_delay;
    test_pattern();
  }

  void Max7219::start_test_pattern() {
    clear();
    test_mode = 1;
    patt_on = true;
    #if MAX7219_INIT_TEST == 2
      spiralx = spiraly = spiral_dir = 0;
      spiral_count = MAX7219_LEDS;
    #else
      sweep_dir = 1;
      sweepx = 0;
      sweep_count = MAX7219_X_LEDS;
    #endif
  }

#endif // MAX7219_INIT_TEST

void Max7219::init() {
  SET_OUTPUT(MAX7219_DIN_PIN);
  SET_OUTPUT(MAX7219_CLK_PIN);
  OUT_WRITE(MAX7219_LOAD_PIN, HIGH);
  delay(1);

  register_setup();

  LOOP_LE_N(i, 7) {  // Empty registers to turn all LEDs off
    led_line[i] = 0x00;
    send(max7219_reg_digit0 + i, 0);
    pulse_load();                     // Tell the chips to load the clocked out data
  }

  #ifdef MAX7219_INIT_TEST
    start_test_pattern();
  #endif
}

/**
 * This code demonstrates some simple debugging using a single 8x8 LED Matrix. If your feature could
 * benefit from matrix display, add its code here. Very little processing is required, so the 7219 is
 * ideal for debugging when realtime feedback is important but serial output can't be used.
 */

// Apply changes to update a marker
void Max7219::mark16(const uint8_t pos, const uint8_t v1, const uint8_t v2) {
  #if MAX7219_X_LEDS > 8    // At least 16 LEDs on the X-Axis. Use single line.
    led_off(v1 & 0xF, pos);
     led_on(v2 & 0xF, pos);
  #elif MAX7219_Y_LEDS > 8  // At least 16 LEDs on the Y-Axis. Use a single column.
    led_off(pos, v1 & 0xF);
     led_on(pos, v2 & 0xF);
  #else                     // Single 8x8 LED matrix. Use two lines to get 16 LEDs.
    led_off(v1 & 0x7, pos + (v1 >= 8));
     led_on(v2 & 0x7, pos + (v2 >= 8));
  #endif
}

// Apply changes to update a tail-to-head range
void Max7219::range16(const uint8_t y, const uint8_t ot, const uint8_t nt, const uint8_t oh, const uint8_t nh) {
  #if MAX7219_X_LEDS > 8    // At least 16 LEDs on the X-Axis. Use single line.
    if (ot != nt) for (uint8_t n = ot & 0xF; n != (nt & 0xF) && n != (nh & 0xF); n = (n + 1) & 0xF)
      led_off(n & 0xF, y);
    if (oh != nh) for (uint8_t n = (oh + 1) & 0xF; n != ((nh + 1) & 0xF); n = (n + 1) & 0xF)
       led_on(n & 0xF, y);
  #elif MAX7219_Y_LEDS > 8  // At least 16 LEDs on the Y-Axis. Use a single column.
    if (ot != nt) for (uint8_t n = ot & 0xF; n != (nt & 0xF) && n != (nh & 0xF); n = (n + 1) & 0xF)
      led_off(y, n & 0xF);
    if (oh != nh) for (uint8_t n = (oh + 1) & 0xF; n != ((nh + 1) & 0xF); n = (n + 1) & 0xF)
       led_on(y, n & 0xF);
  #else                     // Single 8x8 LED matrix. Use two lines to get 16 LEDs.
    if (ot != nt) for (uint8_t n = ot & 0xF; n != (nt & 0xF) && n != (nh & 0xF); n = (n + 1) & 0xF)
      led_off(n & 0x7, y + (n >= 8));
    if (oh != nh) for (uint8_t n = (oh + 1) & 0xF; n != ((nh + 1) & 0xF); n = (n + 1) & 0xF)
       led_on(n & 0x7, y + (n >= 8));
  #endif
}

// Apply changes to update a quantity
void Max7219::quantity16(const uint8_t pos, const uint8_t ov, const uint8_t nv) {
  for (uint8_t i = _MIN(nv, ov); i < _MAX(nv, ov); i++)
    led_set(
      #if MAX7219_X_LEDS > 8    // At least 16 LEDs on the X-Axis. Use single line.
        i, pos
      #elif MAX7219_Y_LEDS > 8  // At least 16 LEDs on the Y-Axis. Use a single column.
        pos, i
      #else                     // Single 8x8 LED matrix. Use two lines to get 16 LEDs.
        i >> 1, pos + (i & 1)
      #endif
      , nv >= ov
    );
}

void Max7219::idle_tasks() {
  #define MAX7219_USE_HEAD (defined(MAX7219_DEBUG_PLANNER_HEAD) || defined(MAX7219_DEBUG_PLANNER_QUEUE))
  #define MAX7219_USE_TAIL (defined(MAX7219_DEBUG_PLANNER_TAIL) || defined(MAX7219_DEBUG_PLANNER_QUEUE))
  #if MAX7219_USE_HEAD || MAX7219_USE_TAIL
    CRITICAL_SECTION_START();
    #if MAX7219_USE_HEAD
      const uint8_t head = planner.block_buffer_head;
    #endif
    #if MAX7219_USE_TAIL
      const uint8_t tail = planner.block_buffer_tail;
    #endif
    CRITICAL_SECTION_END();
  #endif

  #if ENABLED(MAX7219_DEBUG_PRINTER_ALIVE)
    static uint8_t refresh_cnt; // = 0
    constexpr uint16_t refresh_limit = 5;
    static millis_t next_blink = 0;
    const millis_t ms = millis();
    const bool do_blink = ELAPSED(ms, next_blink);
  #else
    static uint16_t refresh_cnt; // = 0
    constexpr bool do_blink = true;
    constexpr uint16_t refresh_limit = 50000;
  #endif

  // Some Max7219 units are vulnerable to electrical noise, especially
  // with long wires next to high current wires. If the display becomes
  // corrupted, this will fix it within a couple seconds.
  if (do_blink && ++refresh_cnt >= refresh_limit) {
    refresh_cnt = 0;
    register_setup();
  }

  #ifdef MAX7219_INIT_TEST
    if (test_mode) {
      run_test_pattern();
      return;
    }
  #endif

  #if ENABLED(MAX7219_DEBUG_PRINTER_ALIVE)
    if (do_blink) {
      led_toggle(MAX7219_X_LEDS - 1, MAX7219_Y_LEDS - 1);
      next_blink = ms + 1000;
    }
  #endif

  #if defined(MAX7219_DEBUG_PLANNER_HEAD) && defined(MAX7219_DEBUG_PLANNER_TAIL) && MAX7219_DEBUG_PLANNER_HEAD == MAX7219_DEBUG_PLANNER_TAIL

    static int16_t last_head_cnt = 0xF, last_tail_cnt = 0xF;

    if (last_head_cnt != head || last_tail_cnt != tail) {
      range16(MAX7219_DEBUG_PLANNER_HEAD, last_tail_cnt, tail, last_head_cnt, head);
      last_head_cnt = head;
      last_tail_cnt = tail;
    }

  #else

    #ifdef MAX7219_DEBUG_PLANNER_HEAD
      static int16_t last_head_cnt = 0x1;
      if (last_head_cnt != head) {
        mark16(MAX7219_DEBUG_PLANNER_HEAD, last_head_cnt, head);
        last_head_cnt = head;
      }
    #endif

    #ifdef MAX7219_DEBUG_PLANNER_TAIL
      static int16_t last_tail_cnt = 0x1;
      if (last_tail_cnt != tail) {
        mark16(MAX7219_DEBUG_PLANNER_TAIL, last_tail_cnt, tail);
        last_tail_cnt = tail;
      }
    #endif

  #endif

  #ifdef MAX7219_DEBUG_PLANNER_QUEUE
    static int16_t last_depth = 0;
    const int16_t current_depth = (head - tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1) & 0xF;
    if (current_depth != last_depth) {
      quantity16(MAX7219_DEBUG_PLANNER_QUEUE, last_depth, current_depth);
      last_depth = current_depth;
    }
  #endif

  // After resume() automatically do a refresh()
  if (suspended == 0x80) {
    suspended = 0;
    refresh();
  }
}

#endif // MAX7219_DEBUG