aboutsummaryrefslogtreecommitdiff
path: root/Marlin/src/gcode/calibrate/M48.cpp
blob: 97aea59221de89a94f40f171bdd2dd69987af6e6 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
/**
 * Marlin 3D Printer Firmware
 * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
 *
 * Based on Sprinter and grbl.
 * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 *
 */

#include "../../inc/MarlinConfig.h"

#if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)

#include "../gcode.h"
#include "../../module/motion.h"
#include "../../module/probe.h"
#include "../../lcd/marlinui.h"

#include "../../feature/bedlevel/bedlevel.h"

#if HAS_LEVELING
  #include "../../module/planner.h"
#endif

/**
 * M48: Z probe repeatability measurement function.
 *
 * Usage:
 *   M48 <P#> <X#> <Y#> <V#> <E> <L#> <S>
 *     P = Number of sampled points (4-50, default 10)
 *     X = Sample X position
 *     Y = Sample Y position
 *     V = Verbose level (0-4, default=1)
 *     E = Engage Z probe for each reading
 *     L = Number of legs of movement before probe
 *     S = Schizoid (Or Star if you prefer)
 *
 * This function requires the machine to be homed before invocation.
 */

void GcodeSuite::M48() {

  if (homing_needed_error()) return;

  const int8_t verbose_level = parser.byteval('V', 1);
  if (!WITHIN(verbose_level, 0, 4)) {
    SERIAL_ECHOLNPGM("?(V)erbose level implausible (0-4).");
    return;
  }

  if (verbose_level > 0)
    SERIAL_ECHOLNPGM("M48 Z-Probe Repeatability Test");

  const int8_t n_samples = parser.byteval('P', 10);
  if (!WITHIN(n_samples, 4, 50)) {
    SERIAL_ECHOLNPGM("?Sample size not plausible (4-50).");
    return;
  }

  const ProbePtRaise raise_after = parser.boolval('E') ? PROBE_PT_STOW : PROBE_PT_RAISE;

  // Test at the current position by default, overridden by X and Y
  const xy_pos_t test_position = {
    parser.linearval('X', current_position.x + probe.offset_xy.x),  // If no X use the probe's current X position
    parser.linearval('Y', current_position.y + probe.offset_xy.y)   // If no Y, ditto
  };

  if (!probe.can_reach(test_position)) {
    ui.set_status_P(GET_TEXT(MSG_M48_OUT_OF_BOUNDS), 99);
    SERIAL_ECHOLNPGM("? (X,Y) out of bounds.");
    return;
  }

  // Get the number of leg moves per test-point
  bool seen_L = parser.seen('L');
  uint8_t n_legs = seen_L ? parser.value_byte() : 0;
  if (n_legs > 15) {
    SERIAL_ECHOLNPGM("?Legs of movement implausible (0-15).");
    return;
  }
  if (n_legs == 1) n_legs = 2;

  // Schizoid motion as an optional stress-test
  const bool schizoid_flag = parser.boolval('S');
  if (schizoid_flag && !seen_L) n_legs = 7;

  if (verbose_level > 2)
    SERIAL_ECHOLNPGM("Positioning the probe...");

  // Always disable Bed Level correction before probing...

  #if HAS_LEVELING
    const bool was_enabled = planner.leveling_active;
    set_bed_leveling_enabled(false);
  #endif

  // Work with reasonable feedrates
  remember_feedrate_scaling_off();

  // Working variables
  float mean = 0.0,     // The average of all points so far, used to calculate deviation
        sigma = 0.0,    // Standard deviation of all points so far
        min = 99999.9,  // Smallest value sampled so far
        max = -99999.9, // Largest value sampled so far
        sample_set[n_samples];  // Storage for sampled values

  auto dev_report = [](const bool verbose, const float &mean, const float &sigma, const float &min, const float &max, const bool final=false) {
    if (verbose) {
      SERIAL_ECHOPAIR_F("Mean: ", mean, 6);
      if (!final) SERIAL_ECHOPAIR_F(" Sigma: ", sigma, 6);
      SERIAL_ECHOPAIR_F(" Min: ", min, 3);
      SERIAL_ECHOPAIR_F(" Max: ", max, 3);
      SERIAL_ECHOPAIR_F(" Range: ", max-min, 3);
      if (final) SERIAL_EOL();
    }
    if (final) {
      SERIAL_ECHOLNPAIR_F("Standard Deviation: ", sigma, 6);
      SERIAL_EOL();
    }
  };

  // Move to the first point, deploy, and probe
  const float t = probe.probe_at_point(test_position, raise_after, verbose_level);
  bool probing_good = !isnan(t);

  if (probing_good) {
    randomSeed(millis());

    float sample_sum = 0.0;

    LOOP_L_N(n, n_samples) {
      #if HAS_WIRED_LCD
        // Display M48 progress in the status bar
        ui.status_printf_P(0, PSTR(S_FMT ": %d/%d"), GET_TEXT(MSG_M48_POINT), int(n + 1), int(n_samples));
      #endif

      // When there are "legs" of movement move around the point before probing
      if (n_legs) {

        // Pick a random direction, starting angle, and radius
        const int dir = (random(0, 10) > 5.0) ? -1 : 1;  // clockwise or counter clockwise
        float angle = random(0, 360);
        const float radius = random(
          #if ENABLED(DELTA)
            int(0.1250000000 * (DELTA_PRINTABLE_RADIUS)),
            int(0.3333333333 * (DELTA_PRINTABLE_RADIUS))
          #else
            int(5), int(0.125 * _MIN(X_BED_SIZE, Y_BED_SIZE))
          #endif
        );
        if (verbose_level > 3) {
          SERIAL_ECHOPAIR("Start radius:", radius, " angle:", angle, " dir:");
          if (dir > 0) SERIAL_CHAR('C');
          SERIAL_ECHOLNPGM("CW");
        }

        // Move from leg to leg in rapid succession
        LOOP_L_N(l, n_legs - 1) {

          // Move some distance around the perimeter
          float delta_angle;
          if (schizoid_flag) {
            // The points of a 5 point star are 72 degrees apart.
            // Skip a point and go to the next one on the star.
            delta_angle = dir * 2.0 * 72.0;
          }
          else {
            // Just move further along the perimeter.
            delta_angle = dir * (float)random(25, 45);
          }
          angle += delta_angle;

          // Trig functions work without clamping, but just to be safe...
          while (angle > 360.0) angle -= 360.0;
          while (angle < 0.0) angle += 360.0;

          // Choose the next position as an offset to chosen test position
          const xy_pos_t noz_pos = test_position - probe.offset_xy;
          xy_pos_t next_pos = {
            noz_pos.x + float(cos(RADIANS(angle))) * radius,
            noz_pos.y + float(sin(RADIANS(angle))) * radius
          };

          #if ENABLED(DELTA)
            // If the probe can't reach the point on a round bed...
            // Simply scale the numbers to bring them closer to origin.
            while (!probe.can_reach(next_pos)) {
              next_pos *= 0.8f;
              if (verbose_level > 3)
                SERIAL_ECHOLNPAIR_P(PSTR("Moving inward: X"), next_pos.x, SP_Y_STR, next_pos.y);
            }
          #else
            // For a rectangular bed just keep the probe in bounds
            LIMIT(next_pos.x, X_MIN_POS, X_MAX_POS);
            LIMIT(next_pos.y, Y_MIN_POS, Y_MAX_POS);
          #endif

          if (verbose_level > 3)
            SERIAL_ECHOLNPAIR_P(PSTR("Going to: X"), next_pos.x, SP_Y_STR, next_pos.y);

          do_blocking_move_to_xy(next_pos);
        } // n_legs loop
      } // n_legs

      // Probe a single point
      const float pz = probe.probe_at_point(test_position, raise_after, 0);

      // Break the loop if the probe fails
      probing_good = !isnan(pz);
      if (!probing_good) break;

      // Store the new sample
      sample_set[n] = pz;

      // Keep track of the largest and smallest samples
      NOMORE(min, pz);
      NOLESS(max, pz);

      // Get the mean value of all samples thus far
      sample_sum += pz;
      mean = sample_sum / (n + 1);

      // Calculate the standard deviation so far.
      // The value after the last sample will be the final output.
      float dev_sum = 0.0;
      LOOP_LE_N(j, n) dev_sum += sq(sample_set[j] - mean);
      sigma = SQRT(dev_sum / (n + 1));

      if (verbose_level > 1) {
        SERIAL_ECHO((int)(n + 1));
        SERIAL_ECHOPAIR(" of ", (int)n_samples);
        SERIAL_ECHOPAIR_F(": z: ", pz, 3);
        SERIAL_CHAR(' ');
        dev_report(verbose_level > 2, mean, sigma, min, max);
        SERIAL_EOL();
      }

    } // n_samples loop
  }

  probe.stow();

  if (probing_good) {
    SERIAL_ECHOLNPGM("Finished!");
    dev_report(verbose_level > 0, mean, sigma, min, max, true);

    #if HAS_WIRED_LCD
      // Display M48 results in the status bar
      char sigma_str[8];
      ui.status_printf_P(0, PSTR(S_FMT ": %s"), GET_TEXT(MSG_M48_DEVIATION), dtostrf(sigma, 2, 6, sigma_str));
    #endif
  }

  restore_feedrate_and_scaling();

  // Re-enable bed level correction if it had been on
  TERN_(HAS_LEVELING, set_bed_leveling_enabled(was_enabled));

  report_current_position();
}

#endif // Z_MIN_PROBE_REPEATABILITY_TEST