aboutsummaryrefslogtreecommitdiff
path: root/Marlin/src/module/planner.cpp
blob: 5897d10cd58175d5e37fd1048a4b900e6a5fc994 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
/**
 * Marlin 3D Printer Firmware
 * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
 *
 * Based on Sprinter and grbl.
 * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 *
 */

/**
 * planner.cpp
 *
 * Buffer movement commands and manage the acceleration profile plan
 *
 * Derived from Grbl
 * Copyright (c) 2009-2011 Simen Svale Skogsrud
 *
 * The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis.
 *
 *
 * Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
 *
 * s == speed, a == acceleration, t == time, d == distance
 *
 * Basic definitions:
 *   Speed[s_, a_, t_] := s + (a*t)
 *   Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
 *
 * Distance to reach a specific speed with a constant acceleration:
 *   Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
 *   d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
 *
 * Speed after a given distance of travel with constant acceleration:
 *   Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
 *   m -> Sqrt[2 a d + s^2]
 *
 * DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
 *
 * When to start braking (di) to reach a specified destination speed (s2) after accelerating
 * from initial speed s1 without ever stopping at a plateau:
 *   Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
 *   di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
 *
 * IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
 *
 * --
 *
 * The fast inverse function needed for Bézier interpolation for AVR
 * was designed, written and tested by Eduardo José Tagle on April/2018
 */

#include "planner.h"
#include "stepper.h"
#include "motion.h"
#include "temperature.h"
#include "../lcd/marlinui.h"
#include "../gcode/parser.h"

#include "../MarlinCore.h"

#if HAS_LEVELING
  #include "../feature/bedlevel/bedlevel.h"
#endif

#if ENABLED(FILAMENT_WIDTH_SENSOR)
  #include "../feature/filwidth.h"
#endif

#if ENABLED(BARICUDA)
  #include "../feature/baricuda.h"
#endif

#if ENABLED(MIXING_EXTRUDER)
  #include "../feature/mixing.h"
#endif

#if ENABLED(AUTO_POWER_CONTROL)
  #include "../feature/power.h"
#endif

#if ENABLED(EXTERNAL_CLOSED_LOOP_CONTROLLER)
  #include "../feature/closedloop.h"
#endif

#if ENABLED(BACKLASH_COMPENSATION)
  #include "../feature/backlash.h"
#endif

#if ENABLED(CANCEL_OBJECTS)
  #include "../feature/cancel_object.h"
#endif

#if ENABLED(POWER_LOSS_RECOVERY)
  #include "../feature/powerloss.h"
#endif

#if HAS_CUTTER
  #include "../feature/spindle_laser.h"
#endif

// Delay for delivery of first block to the stepper ISR, if the queue contains 2 or
// fewer movements. The delay is measured in milliseconds, and must be less than 250ms
#define BLOCK_DELAY_FOR_1ST_MOVE 100

Planner planner;

// public:

/**
 * A ring buffer of moves described in steps
 */
block_t Planner::block_buffer[BLOCK_BUFFER_SIZE];
volatile uint8_t Planner::block_buffer_head,    // Index of the next block to be pushed
                 Planner::block_buffer_nonbusy, // Index of the first non-busy block
                 Planner::block_buffer_planned, // Index of the optimally planned block
                 Planner::block_buffer_tail;    // Index of the busy block, if any
uint16_t Planner::cleaning_buffer_counter;      // A counter to disable queuing of blocks
uint8_t Planner::delay_before_delivering;       // This counter delays delivery of blocks when queue becomes empty to allow the opportunity of merging blocks

planner_settings_t Planner::settings;           // Initialized by settings.load()

#if ENABLED(LASER_POWER_INLINE)
  laser_state_t Planner::laser_inline;          // Current state for blocks
#endif

uint32_t Planner::max_acceleration_steps_per_s2[XYZE_N]; // (steps/s^2) Derived from mm_per_s2

float Planner::steps_to_mm[XYZE_N];             // (mm) Millimeters per step

#if HAS_JUNCTION_DEVIATION
  float Planner::junction_deviation_mm;         // (mm) M205 J
  #if HAS_LINEAR_E_JERK
    float Planner::max_e_jerk[DISTINCT_E];      // Calculated from junction_deviation_mm
  #endif
#endif

#if HAS_CLASSIC_JERK
  TERN(HAS_LINEAR_E_JERK, xyz_pos_t, xyze_pos_t) Planner::max_jerk;
#endif

#if ENABLED(SD_ABORT_ON_ENDSTOP_HIT)
  bool Planner::abort_on_endstop_hit = false;
#endif

#if ENABLED(DISTINCT_E_FACTORS)
  uint8_t Planner::last_extruder = 0;     // Respond to extruder change
#endif

#if ENABLED(DIRECT_STEPPING)
  uint32_t Planner::last_page_step_rate = 0;
  xyze_bool_t Planner::last_page_dir{0};
#endif

#if EXTRUDERS
  int16_t Planner::flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100); // Extrusion factor for each extruder
  float Planner::e_factor[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0f); // The flow percentage and volumetric multiplier combine to scale E movement
#endif

#if DISABLED(NO_VOLUMETRICS)
  float Planner::filament_size[EXTRUDERS],          // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder
        Planner::volumetric_area_nominal = CIRCLE_AREA(float(DEFAULT_NOMINAL_FILAMENT_DIA) * 0.5f), // Nominal cross-sectional area
        Planner::volumetric_multiplier[EXTRUDERS];  // Reciprocal of cross-sectional area of filament (in mm^2). Pre-calculated to reduce computation in the planner
#endif

#if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  float Planner::volumetric_extruder_limit[EXTRUDERS],          // max mm^3/sec the extruder is able to handle
        Planner::volumetric_extruder_feedrate_limit[EXTRUDERS]; // pre calculated extruder feedrate limit based on volumetric_extruder_limit; pre-calculated to reduce computation in the planner
#endif

#if HAS_LEVELING
  bool Planner::leveling_active = false; // Flag that auto bed leveling is enabled
  #if ABL_PLANAR
    matrix_3x3 Planner::bed_level_matrix; // Transform to compensate for bed level
  #endif
  #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
    float Planner::z_fade_height,      // Initialized by settings.load()
          Planner::inverse_z_fade_height,
          Planner::last_fade_z;
  #endif
#else
  constexpr bool Planner::leveling_active;
#endif

skew_factor_t Planner::skew_factor; // Initialized by settings.load()

#if ENABLED(AUTOTEMP)
  float Planner::autotemp_max = 250,
        Planner::autotemp_min = 210,
        Planner::autotemp_factor = 0.1f;
  bool Planner::autotemp_enabled = false;
#endif

// private:

xyze_long_t Planner::position{0};

uint32_t Planner::cutoff_long;

xyze_float_t Planner::previous_speed;
float Planner::previous_nominal_speed_sqr;

#if ENABLED(DISABLE_INACTIVE_EXTRUDER)
  last_move_t Planner::g_uc_extruder_last_move[EXTRUDERS] = { 0 };
#endif

#ifdef XY_FREQUENCY_LIMIT
  int8_t Planner::xy_freq_limit_hz = XY_FREQUENCY_LIMIT;
  float Planner::xy_freq_min_speed_factor = (XY_FREQUENCY_MIN_PERCENT) * 0.01f;
  int32_t Planner::xy_freq_min_interval_us = LROUND(1000000.0 / (XY_FREQUENCY_LIMIT));
#endif

#if ENABLED(LIN_ADVANCE)
  float Planner::extruder_advance_K[EXTRUDERS]; // Initialized by settings.load()
#endif

#if HAS_POSITION_FLOAT
  xyze_pos_t Planner::position_float; // Needed for accurate maths. Steps cannot be used!
#endif

#if IS_KINEMATIC
  xyze_pos_t Planner::position_cart;
#endif

#if HAS_WIRED_LCD
  volatile uint32_t Planner::block_buffer_runtime_us = 0;
#endif

/**
 * Class and Instance Methods
 */

Planner::Planner() { init(); }

void Planner::init() {
  position.reset();
  TERN_(HAS_POSITION_FLOAT, position_float.reset());
  TERN_(IS_KINEMATIC, position_cart.reset());
  previous_speed.reset();
  previous_nominal_speed_sqr = 0;
  TERN_(ABL_PLANAR, bed_level_matrix.set_to_identity());
  clear_block_buffer();
  delay_before_delivering = 0;
  #if ENABLED(DIRECT_STEPPING)
    last_page_step_rate = 0;
    last_page_dir.reset();
  #endif
}

#if ENABLED(S_CURVE_ACCELERATION)
  #ifdef __AVR__
    /**
     * This routine returns 0x1000000 / d, getting the inverse as fast as possible.
     * A fast-converging iterative Newton-Raphson method can reach full precision in
     * just 1 iteration, and takes 211 cycles (worst case; the mean case is less, up
     * to 30 cycles for small divisors), instead of the 500 cycles a normal division
     * would take.
     *
     * Inspired by the following page:
     *  https://stackoverflow.com/questions/27801397/newton-raphson-division-with-big-integers
     *
     * Suppose we want to calculate  floor(2 ^ k / B)  where B is a positive integer
     * Then, B must be <= 2^k, otherwise, the quotient is 0.
     *
     * The Newton - Raphson iteration for x = B / 2 ^ k yields:
     *  q[n + 1] = q[n] * (2 - q[n] * B / 2 ^ k)
     *
     * This can be rearranged to:
     *  q[n + 1] = q[n] * (2 ^ (k + 1) - q[n] * B) >> k
     *
     * Each iteration requires only integer multiplications and bit shifts.
     * It doesn't necessarily converge to floor(2 ^ k / B) but in the worst case
     * it eventually alternates between floor(2 ^ k / B) and ceil(2 ^ k / B).
     * So it checks for this case and extracts floor(2 ^ k / B).
     *
     * A simple but important optimization for this approach is to truncate
     * multiplications (i.e., calculate only the higher bits of the product) in the
     * early iterations of the Newton - Raphson method. This is done so the results
     * of the early iterations are far from the quotient. Then it doesn't matter if
     * they are done inaccurately.
     * It's important to pick a good starting value for x. Knowing how many
     * digits the divisor has, it can be estimated:
     *
     *   2^k / x = 2 ^ log2(2^k / x)
     *   2^k / x = 2 ^(log2(2^k)-log2(x))
     *   2^k / x = 2 ^(k*log2(2)-log2(x))
     *   2^k / x = 2 ^ (k-log2(x))
     *   2^k / x >= 2 ^ (k-floor(log2(x)))
     *   floor(log2(x)) is simply the index of the most significant bit set.
     *
     * If this estimation can be improved even further the number of iterations can be
     * reduced a lot, saving valuable execution time.
     * The paper "Software Integer Division" by Thomas L.Rodeheffer, Microsoft
     * Research, Silicon Valley,August 26, 2008, available at
     * https://www.microsoft.com/en-us/research/wp-content/uploads/2008/08/tr-2008-141.pdf
     * suggests, for its integer division algorithm, using a table to supply the first
     * 8 bits of precision, then, due to the quadratic convergence nature of the
     * Newton-Raphon iteration, just 2 iterations should be enough to get maximum
     * precision of the division.
     * By precomputing values of inverses for small denominator values, just one
     * Newton-Raphson iteration is enough to reach full precision.
     * This code uses the top 9 bits of the denominator as index.
     *
     * The AVR assembly function implements this C code using the data below:
     *
     *  // For small divisors, it is best to directly retrieve the results
     *  if (d <= 110) return pgm_read_dword(&small_inv_tab[d]);
     *
     *  // Compute initial estimation of 0x1000000/x -
     *  // Get most significant bit set on divider
     *  uint8_t idx = 0;
     *  uint32_t nr = d;
     *  if (!(nr & 0xFF0000)) {
     *    nr <<= 8; idx += 8;
     *    if (!(nr & 0xFF0000)) { nr <<= 8; idx += 8; }
     *  }
     *  if (!(nr & 0xF00000)) { nr <<= 4; idx += 4; }
     *  if (!(nr & 0xC00000)) { nr <<= 2; idx += 2; }
     *  if (!(nr & 0x800000)) { nr <<= 1; idx += 1; }
     *
     *  // Isolate top 9 bits of the denominator, to be used as index into the initial estimation table
     *  uint32_t tidx = nr >> 15,                                       // top 9 bits. bit8 is always set
     *           ie = inv_tab[tidx & 0xFF] + 256,                       // Get the table value. bit9 is always set
     *           x = idx <= 8 ? (ie >> (8 - idx)) : (ie << (idx - 8));  // Position the estimation at the proper place
     *
     *  x = uint32_t((x * uint64_t(_BV(25) - x * d)) >> 24);            // Refine estimation by newton-raphson. 1 iteration is enough
     *  const uint32_t r = _BV(24) - x * d;                             // Estimate remainder
     *  if (r >= d) x++;                                                // Check whether to adjust result
     *  return uint32_t(x);                                             // x holds the proper estimation
     */
    static uint32_t get_period_inverse(uint32_t d) {

      static const uint8_t inv_tab[256] PROGMEM = {
        255,253,252,250,248,246,244,242,240,238,236,234,233,231,229,227,
        225,224,222,220,218,217,215,213,212,210,208,207,205,203,202,200,
        199,197,195,194,192,191,189,188,186,185,183,182,180,179,178,176,
        175,173,172,170,169,168,166,165,164,162,161,160,158,157,156,154,
        153,152,151,149,148,147,146,144,143,142,141,139,138,137,136,135,
        134,132,131,130,129,128,127,126,125,123,122,121,120,119,118,117,
        116,115,114,113,112,111,110,109,108,107,106,105,104,103,102,101,
        100,99,98,97,96,95,94,93,92,91,90,89,88,88,87,86,
        85,84,83,82,81,80,80,79,78,77,76,75,74,74,73,72,
        71,70,70,69,68,67,66,66,65,64,63,62,62,61,60,59,
        59,58,57,56,56,55,54,53,53,52,51,50,50,49,48,48,
        47,46,46,45,44,43,43,42,41,41,40,39,39,38,37,37,
        36,35,35,34,33,33,32,32,31,30,30,29,28,28,27,27,
        26,25,25,24,24,23,22,22,21,21,20,19,19,18,18,17,
        17,16,15,15,14,14,13,13,12,12,11,10,10,9,9,8,
        8,7,7,6,6,5,5,4,4,3,3,2,2,1,0,0
      };

      // For small denominators, it is cheaper to directly store the result.
      //  For bigger ones, just ONE Newton-Raphson iteration is enough to get
      //  maximum precision we need
      static const uint32_t small_inv_tab[111] PROGMEM = {
        16777216,16777216,8388608,5592405,4194304,3355443,2796202,2396745,2097152,1864135,1677721,1525201,1398101,1290555,1198372,1118481,
        1048576,986895,932067,883011,838860,798915,762600,729444,699050,671088,645277,621378,599186,578524,559240,541200,
        524288,508400,493447,479349,466033,453438,441505,430185,419430,409200,399457,390167,381300,372827,364722,356962,
        349525,342392,335544,328965,322638,316551,310689,305040,299593,294337,289262,284359,279620,275036,270600,266305,
        262144,258111,254200,250406,246723,243148,239674,236298,233016,229824,226719,223696,220752,217885,215092,212369,
        209715,207126,204600,202135,199728,197379,195083,192841,190650,188508,186413,184365,182361,180400,178481,176602,
        174762,172960,171196,169466,167772,166111,164482,162885,161319,159783,158275,156796,155344,153919,152520
      };

      // For small divisors, it is best to directly retrieve the results
      if (d <= 110) return pgm_read_dword(&small_inv_tab[d]);

      uint8_t r8 = d & 0xFF,
              r9 = (d >> 8) & 0xFF,
              r10 = (d >> 16) & 0xFF,
              r2,r3,r4,r5,r6,r7,r11,r12,r13,r14,r15,r16,r17,r18;
      const uint8_t* ptab = inv_tab;

      __asm__ __volatile__(
        // %8:%7:%6 = interval
        // r31:r30: MUST be those registers, and they must point to the inv_tab

        A("clr %13")                       // %13 = 0

        // Now we must compute
        // result = 0xFFFFFF / d
        // %8:%7:%6 = interval
        // %16:%15:%14 = nr
        // %13 = 0

        // A plain division of 24x24 bits should take 388 cycles to complete. We will
        // use Newton-Raphson for the calculation, and will strive to get way less cycles
        // for the same result - Using C division, it takes 500cycles to complete .

        A("clr %3")                       // idx = 0
        A("mov %14,%6")
        A("mov %15,%7")
        A("mov %16,%8")                   // nr = interval
        A("tst %16")                      // nr & 0xFF0000 == 0 ?
        A("brne 2f")                      // No, skip this
        A("mov %16,%15")
        A("mov %15,%14")                  // nr <<= 8, %14 not needed
        A("subi %3,-8")                   // idx += 8
        A("tst %16")                      // nr & 0xFF0000 == 0 ?
        A("brne 2f")                      // No, skip this
        A("mov %16,%15")                  // nr <<= 8, %14 not needed
        A("clr %15")                      // We clear %14
        A("subi %3,-8")                   // idx += 8

        // here %16 != 0 and %16:%15 contains at least 9 MSBits, or both %16:%15 are 0
        L("2")
        A("cpi %16,0x10")                 // (nr & 0xF00000) == 0 ?
        A("brcc 3f")                      // No, skip this
        A("swap %15")                     // Swap nibbles
        A("swap %16")                     // Swap nibbles. Low nibble is 0
        A("mov %14, %15")
        A("andi %14,0x0F")                // Isolate low nibble
        A("andi %15,0xF0")                // Keep proper nibble in %15
        A("or %16, %14")                  // %16:%15 <<= 4
        A("subi %3,-4")                   // idx += 4

        L("3")
        A("cpi %16,0x40")                 // (nr & 0xC00000) == 0 ?
        A("brcc 4f")                      // No, skip this
        A("add %15,%15")
        A("adc %16,%16")
        A("add %15,%15")
        A("adc %16,%16")                  // %16:%15 <<= 2
        A("subi %3,-2")                   // idx += 2

        L("4")
        A("cpi %16,0x80")                 // (nr & 0x800000) == 0 ?
        A("brcc 5f")                      // No, skip this
        A("add %15,%15")
        A("adc %16,%16")                  // %16:%15 <<= 1
        A("inc %3")                       // idx += 1

        // Now %16:%15 contains its MSBit set to 1, or %16:%15 is == 0. We are now absolutely sure
        // we have at least 9 MSBits available to enter the initial estimation table
        L("5")
        A("add %15,%15")
        A("adc %16,%16")                  // %16:%15 = tidx = (nr <<= 1), we lose the top MSBit (always set to 1, %16 is the index into the inverse table)
        A("add r30,%16")                  // Only use top 8 bits
        A("adc r31,%13")                  // r31:r30 = inv_tab + (tidx)
        A("lpm %14, Z")                   // %14 = inv_tab[tidx]
        A("ldi %15, 1")                   // %15 = 1  %15:%14 = inv_tab[tidx] + 256

        // We must scale the approximation to the proper place
        A("clr %16")                      // %16 will always be 0 here
        A("subi %3,8")                    // idx == 8 ?
        A("breq 6f")                      // yes, no need to scale
        A("brcs 7f")                      // If C=1, means idx < 8, result was negative!

        // idx > 8, now %3 = idx - 8. We must perform a left shift. idx range:[1-8]
        A("sbrs %3,0")                    // shift by 1bit position?
        A("rjmp 8f")                      // No
        A("add %14,%14")
        A("adc %15,%15")                  // %15:16 <<= 1
        L("8")
        A("sbrs %3,1")                    // shift by 2bit position?
        A("rjmp 9f")                      // No
        A("add %14,%14")
        A("adc %15,%15")
        A("add %14,%14")
        A("adc %15,%15")                  // %15:16 <<= 1
        L("9")
        A("sbrs %3,2")                    // shift by 4bits position?
        A("rjmp 16f")                     // No
        A("swap %15")                     // Swap nibbles. lo nibble of %15 will always be 0
        A("swap %14")                     // Swap nibbles
        A("mov %12,%14")
        A("andi %12,0x0F")                // isolate low nibble
        A("andi %14,0xF0")                // and clear it
        A("or %15,%12")                   // %15:%16 <<= 4
        L("16")
        A("sbrs %3,3")                    // shift by 8bits position?
        A("rjmp 6f")                      // No, we are done
        A("mov %16,%15")
        A("mov %15,%14")
        A("clr %14")
        A("jmp 6f")

        // idx < 8, now %3 = idx - 8. Get the count of bits
        L("7")
        A("neg %3")                       // %3 = -idx = count of bits to move right. idx range:[1...8]
        A("sbrs %3,0")                    // shift by 1 bit position ?
        A("rjmp 10f")                     // No, skip it
        A("asr %15")                      // (bit7 is always 0 here)
        A("ror %14")
        L("10")
        A("sbrs %3,1")                    // shift by 2 bit position ?
        A("rjmp 11f")                     // No, skip it
        A("asr %15")                      // (bit7 is always 0 here)
        A("ror %14")
        A("asr %15")                      // (bit7 is always 0 here)
        A("ror %14")
        L("11")
        A("sbrs %3,2")                    // shift by 4 bit position ?
        A("rjmp 12f")                     // No, skip it
        A("swap %15")                     // Swap nibbles
        A("andi %14, 0xF0")               // Lose the lowest nibble
        A("swap %14")                     // Swap nibbles. Upper nibble is 0
        A("or %14,%15")                   // Pass nibble from upper byte
        A("andi %15, 0x0F")               // And get rid of that nibble
        L("12")
        A("sbrs %3,3")                    // shift by 8 bit position ?
        A("rjmp 6f")                      // No, skip it
        A("mov %14,%15")
        A("clr %15")
        L("6")                            // %16:%15:%14 = initial estimation of 0x1000000 / d

        // Now, we must refine the estimation present on %16:%15:%14 using 1 iteration
        // of Newton-Raphson. As it has a quadratic convergence, 1 iteration is enough
        // to get more than 18bits of precision (the initial table lookup gives 9 bits of
        // precision to start from). 18bits of precision is all what is needed here for result

        // %8:%7:%6 = d = interval
        // %16:%15:%14 = x = initial estimation of 0x1000000 / d
        // %13 = 0
        // %3:%2:%1:%0 = working accumulator

        // Compute 1<<25 - x*d. Result should never exceed 25 bits and should always be positive
        A("clr %0")
        A("clr %1")
        A("clr %2")
        A("ldi %3,2")                     // %3:%2:%1:%0 = 0x2000000
        A("mul %6,%14")                   // r1:r0 = LO(d) * LO(x)
        A("sub %0,r0")
        A("sbc %1,r1")
        A("sbc %2,%13")
        A("sbc %3,%13")                   // %3:%2:%1:%0 -= LO(d) * LO(x)
        A("mul %7,%14")                   // r1:r0 = MI(d) * LO(x)
        A("sub %1,r0")
        A("sbc %2,r1" )
        A("sbc %3,%13")                   // %3:%2:%1:%0 -= MI(d) * LO(x) << 8
        A("mul %8,%14")                   // r1:r0 = HI(d) * LO(x)
        A("sub %2,r0")
        A("sbc %3,r1")                    // %3:%2:%1:%0 -= MIL(d) * LO(x) << 16
        A("mul %6,%15")                   // r1:r0 = LO(d) * MI(x)
        A("sub %1,r0")
        A("sbc %2,r1")
        A("sbc %3,%13")                   // %3:%2:%1:%0 -= LO(d) * MI(x) << 8
        A("mul %7,%15")                   // r1:r0 = MI(d) * MI(x)
        A("sub %2,r0")
        A("sbc %3,r1")                    // %3:%2:%1:%0 -= MI(d) * MI(x) << 16
        A("mul %8,%15")                   // r1:r0 = HI(d) * MI(x)
        A("sub %3,r0")                    // %3:%2:%1:%0 -= MIL(d) * MI(x) << 24
        A("mul %6,%16")                   // r1:r0 = LO(d) * HI(x)
        A("sub %2,r0")
        A("sbc %3,r1")                    // %3:%2:%1:%0 -= LO(d) * HI(x) << 16
        A("mul %7,%16")                   // r1:r0 = MI(d) * HI(x)
        A("sub %3,r0")                    // %3:%2:%1:%0 -= MI(d) * HI(x) << 24
        // %3:%2:%1:%0 = (1<<25) - x*d     [169]

        // We need to multiply that result by x, and we are only interested in the top 24bits of that multiply

        // %16:%15:%14 = x = initial estimation of 0x1000000 / d
        // %3:%2:%1:%0 = (1<<25) - x*d = acc
        // %13 = 0

        // result = %11:%10:%9:%5:%4
        A("mul %14,%0")                   // r1:r0 = LO(x) * LO(acc)
        A("mov %4,r1")
        A("clr %5")
        A("clr %9")
        A("clr %10")
        A("clr %11")                      // %11:%10:%9:%5:%4 = LO(x) * LO(acc) >> 8
        A("mul %15,%0")                   // r1:r0 = MI(x) * LO(acc)
        A("add %4,r0")
        A("adc %5,r1")
        A("adc %9,%13")
        A("adc %10,%13")
        A("adc %11,%13")                  // %11:%10:%9:%5:%4 += MI(x) * LO(acc)
        A("mul %16,%0")                   // r1:r0 = HI(x) * LO(acc)
        A("add %5,r0")
        A("adc %9,r1")
        A("adc %10,%13")
        A("adc %11,%13")                  // %11:%10:%9:%5:%4 += MI(x) * LO(acc) << 8

        A("mul %14,%1")                   // r1:r0 = LO(x) * MIL(acc)
        A("add %4,r0")
        A("adc %5,r1")
        A("adc %9,%13")
        A("adc %10,%13")
        A("adc %11,%13")                  // %11:%10:%9:%5:%4 = LO(x) * MIL(acc)
        A("mul %15,%1")                   // r1:r0 = MI(x) * MIL(acc)
        A("add %5,r0")
        A("adc %9,r1")
        A("adc %10,%13")
        A("adc %11,%13")                  // %11:%10:%9:%5:%4 += MI(x) * MIL(acc) << 8
        A("mul %16,%1")                   // r1:r0 = HI(x) * MIL(acc)
        A("add %9,r0")
        A("adc %10,r1")
        A("adc %11,%13")                  // %11:%10:%9:%5:%4 += MI(x) * MIL(acc) << 16

        A("mul %14,%2")                   // r1:r0 = LO(x) * MIH(acc)
        A("add %5,r0")
        A("adc %9,r1")
        A("adc %10,%13")
        A("adc %11,%13")                  // %11:%10:%9:%5:%4 = LO(x) * MIH(acc) << 8
        A("mul %15,%2")                   // r1:r0 = MI(x) * MIH(acc)
        A("add %9,r0")
        A("adc %10,r1")
        A("adc %11,%13")                  // %11:%10:%9:%5:%4 += MI(x) * MIH(acc) << 16
        A("mul %16,%2")                   // r1:r0 = HI(x) * MIH(acc)
        A("add %10,r0")
        A("adc %11,r1")                   // %11:%10:%9:%5:%4 += MI(x) * MIH(acc) << 24

        A("mul %14,%3")                   // r1:r0 = LO(x) * HI(acc)
        A("add %9,r0")
        A("adc %10,r1")
        A("adc %11,%13")                  // %11:%10:%9:%5:%4 = LO(x) * HI(acc) << 16
        A("mul %15,%3")                   // r1:r0 = MI(x) * HI(acc)
        A("add %10,r0")
        A("adc %11,r1")                   // %11:%10:%9:%5:%4 += MI(x) * HI(acc) << 24
        A("mul %16,%3")                   // r1:r0 = HI(x) * HI(acc)
        A("add %11,r0")                   // %11:%10:%9:%5:%4 += MI(x) * HI(acc) << 32

        // At this point, %11:%10:%9 contains the new estimation of x.

        // Finally, we must correct the result. Estimate remainder as
        // (1<<24) - x*d
        // %11:%10:%9 = x
        // %8:%7:%6 = d = interval" "\n\t"
        A("ldi %3,1")
        A("clr %2")
        A("clr %1")
        A("clr %0")                       // %3:%2:%1:%0 = 0x1000000
        A("mul %6,%9")                    // r1:r0 = LO(d) * LO(x)
        A("sub %0,r0")
        A("sbc %1,r1")
        A("sbc %2,%13")
        A("sbc %3,%13")                   // %3:%2:%1:%0 -= LO(d) * LO(x)
        A("mul %7,%9")                    // r1:r0 = MI(d) * LO(x)
        A("sub %1,r0")
        A("sbc %2,r1")
        A("sbc %3,%13")                   // %3:%2:%1:%0 -= MI(d) * LO(x) << 8
        A("mul %8,%9")                    // r1:r0 = HI(d) * LO(x)
        A("sub %2,r0")
        A("sbc %3,r1")                    // %3:%2:%1:%0 -= MIL(d) * LO(x) << 16
        A("mul %6,%10")                   // r1:r0 = LO(d) * MI(x)
        A("sub %1,r0")
        A("sbc %2,r1")
        A("sbc %3,%13")                   // %3:%2:%1:%0 -= LO(d) * MI(x) << 8
        A("mul %7,%10")                   // r1:r0 = MI(d) * MI(x)
        A("sub %2,r0")
        A("sbc %3,r1")                    // %3:%2:%1:%0 -= MI(d) * MI(x) << 16
        A("mul %8,%10")                   // r1:r0 = HI(d) * MI(x)
        A("sub %3,r0")                    // %3:%2:%1:%0 -= MIL(d) * MI(x) << 24
        A("mul %6,%11")                   // r1:r0 = LO(d) * HI(x)
        A("sub %2,r0")
        A("sbc %3,r1")                    // %3:%2:%1:%0 -= LO(d) * HI(x) << 16
        A("mul %7,%11")                   // r1:r0 = MI(d) * HI(x)
        A("sub %3,r0")                    // %3:%2:%1:%0 -= MI(d) * HI(x) << 24
        // %3:%2:%1:%0 = r = (1<<24) - x*d
        // %8:%7:%6 = d = interval

        // Perform the final correction
        A("sub %0,%6")
        A("sbc %1,%7")
        A("sbc %2,%8")                    // r -= d
        A("brcs 14f")                     // if ( r >= d)

        // %11:%10:%9 = x
        A("ldi %3,1")
        A("add %9,%3")
        A("adc %10,%13")
        A("adc %11,%13")                  // x++
        L("14")

        // Estimation is done. %11:%10:%9 = x
        A("clr __zero_reg__")              // Make C runtime happy
        // [211 cycles total]
        : "=r" (r2),
          "=r" (r3),
          "=r" (r4),
          "=d" (r5),
          "=r" (r6),
          "=r" (r7),
          "+r" (r8),
          "+r" (r9),
          "+r" (r10),
          "=d" (r11),
          "=r" (r12),
          "=r" (r13),
          "=d" (r14),
          "=d" (r15),
          "=d" (r16),
          "=d" (r17),
          "=d" (r18),
          "+z" (ptab)
        :
        : "r0", "r1", "cc"
      );

      // Return the result
      return r11 | (uint16_t(r12) << 8) | (uint32_t(r13) << 16);
    }
  #else
    // All other 32-bit MPUs can easily do inverse using hardware division,
    // so we don't need to reduce precision or to use assembly language at all.
    // This routine, for all other archs, returns 0x100000000 / d ~= 0xFFFFFFFF / d
    static FORCE_INLINE uint32_t get_period_inverse(const uint32_t d) {
      return d ? 0xFFFFFFFF / d : 0xFFFFFFFF;
    }
  #endif
#endif

#define MINIMAL_STEP_RATE 120

/**
 * Get the current block for processing
 * and mark the block as busy.
 * Return nullptr if the buffer is empty
 * or if there is a first-block delay.
 *
 * WARNING: Called from Stepper ISR context!
 */
block_t* Planner::get_current_block() {
  // Get the number of moves in the planner queue so far
  const uint8_t nr_moves = movesplanned();

  // If there are any moves queued ...
  if (nr_moves) {

    // If there is still delay of delivery of blocks running, decrement it
    if (delay_before_delivering) {
      --delay_before_delivering;
      // If the number of movements queued is less than 3, and there is still time
      //  to wait, do not deliver anything
      if (nr_moves < 3 && delay_before_delivering) return nullptr;
      delay_before_delivering = 0;
    }

    // If we are here, there is no excuse to deliver the block
    block_t * const block = &block_buffer[block_buffer_tail];

    // No trapezoid calculated? Don't execute yet.
    if (TEST(block->flag, BLOCK_BIT_RECALCULATE)) return nullptr;

    // We can't be sure how long an active block will take, so don't count it.
    TERN_(HAS_WIRED_LCD, block_buffer_runtime_us -= block->segment_time_us);

    // As this block is busy, advance the nonbusy block pointer
    block_buffer_nonbusy = next_block_index(block_buffer_tail);

    // Push block_buffer_planned pointer, if encountered.
    if (block_buffer_tail == block_buffer_planned)
      block_buffer_planned = block_buffer_nonbusy;

    // Return the block
    return block;
  }

  // The queue became empty
  TERN_(HAS_WIRED_LCD, clear_block_buffer_runtime()); // paranoia. Buffer is empty now - so reset accumulated time to zero.

  return nullptr;
}

/**
 * Calculate trapezoid parameters, multiplying the entry- and exit-speeds
 * by the provided factors.
 **
 * ############ VERY IMPORTANT ############
 * NOTE that the PRECONDITION to call this function is that the block is
 * NOT BUSY and it is marked as RECALCULATE. That WARRANTIES the Stepper ISR
 * is not and will not use the block while we modify it, so it is safe to
 * alter its values.
 */
void Planner::calculate_trapezoid_for_block(block_t* const block, const float &entry_factor, const float &exit_factor) {

  uint32_t initial_rate = CEIL(block->nominal_rate * entry_factor),
           final_rate = CEIL(block->nominal_rate * exit_factor); // (steps per second)

  // Limit minimal step rate (Otherwise the timer will overflow.)
  NOLESS(initial_rate, uint32_t(MINIMAL_STEP_RATE));
  NOLESS(final_rate, uint32_t(MINIMAL_STEP_RATE));

  #if ENABLED(S_CURVE_ACCELERATION)
    uint32_t cruise_rate = initial_rate;
  #endif

  const int32_t accel = block->acceleration_steps_per_s2;

          // Steps required for acceleration, deceleration to/from nominal rate
  uint32_t accelerate_steps = CEIL(estimate_acceleration_distance(initial_rate, block->nominal_rate, accel)),
           decelerate_steps = FLOOR(estimate_acceleration_distance(block->nominal_rate, final_rate, -accel));
          // Steps between acceleration and deceleration, if any
  int32_t plateau_steps = block->step_event_count - accelerate_steps - decelerate_steps;

  // Does accelerate_steps + decelerate_steps exceed step_event_count?
  // Then we can't possibly reach the nominal rate, there will be no cruising.
  // Use intersection_distance() to calculate accel / braking time in order to
  // reach the final_rate exactly at the end of this block.
  if (plateau_steps < 0) {
    const float accelerate_steps_float = CEIL(intersection_distance(initial_rate, final_rate, accel, block->step_event_count));
    accelerate_steps = _MIN(uint32_t(_MAX(accelerate_steps_float, 0)), block->step_event_count);
    plateau_steps = 0;

    #if ENABLED(S_CURVE_ACCELERATION)
      // We won't reach the cruising rate. Let's calculate the speed we will reach
      cruise_rate = final_speed(initial_rate, accel, accelerate_steps);
    #endif
  }
  #if ENABLED(S_CURVE_ACCELERATION)
    else // We have some plateau time, so the cruise rate will be the nominal rate
      cruise_rate = block->nominal_rate;
  #endif

  #if ENABLED(S_CURVE_ACCELERATION)
    // Jerk controlled speed requires to express speed versus time, NOT steps
    uint32_t acceleration_time = ((float)(cruise_rate - initial_rate) / accel) * (STEPPER_TIMER_RATE),
             deceleration_time = ((float)(cruise_rate - final_rate) / accel) * (STEPPER_TIMER_RATE),
    // And to offload calculations from the ISR, we also calculate the inverse of those times here
             acceleration_time_inverse = get_period_inverse(acceleration_time),
             deceleration_time_inverse = get_period_inverse(deceleration_time);
  #endif

  // Store new block parameters
  block->accelerate_until = accelerate_steps;
  block->decelerate_after = accelerate_steps + plateau_steps;
  block->initial_rate = initial_rate;
  #if ENABLED(S_CURVE_ACCELERATION)
    block->acceleration_time = acceleration_time;
    block->deceleration_time = deceleration_time;
    block->acceleration_time_inverse = acceleration_time_inverse;
    block->deceleration_time_inverse = deceleration_time_inverse;
    block->cruise_rate = cruise_rate;
  #endif
  block->final_rate = final_rate;

  /**
   * Laser trapezoid calculations
   *
   * Approximate the trapezoid with the laser, incrementing the power every `entry_per` while accelerating
   * and decrementing it every `exit_power_per` while decelerating, thus ensuring power is related to feedrate.
   *
   * LASER_POWER_INLINE_TRAPEZOID_CONT doesn't need this as it continuously approximates
   *
   * Note this may behave unreliably when running with S_CURVE_ACCELERATION
   */
  #if ENABLED(LASER_POWER_INLINE_TRAPEZOID)
    if (block->laser.power > 0) { // No need to care if power == 0
      const uint8_t entry_power = block->laser.power * entry_factor; // Power on block entry
      #if DISABLED(LASER_POWER_INLINE_TRAPEZOID_CONT)
        // Speedup power
        const uint8_t entry_power_diff = block->laser.power - entry_power;
        if (entry_power_diff) {
          block->laser.entry_per = accelerate_steps / entry_power_diff;
          block->laser.power_entry = entry_power;
        }
        else {
          block->laser.entry_per = 0;
          block->laser.power_entry = block->laser.power;
        }
        // Slowdown power
        const uint8_t exit_power = block->laser.power * exit_factor, // Power on block entry
                      exit_power_diff = block->laser.power - exit_power;
        if (exit_power_diff) {
          block->laser.exit_per = (block->step_event_count - block->decelerate_after) / exit_power_diff;
          block->laser.power_exit = exit_power;
        }
        else {
          block->laser.exit_per = 0;
          block->laser.power_exit = block->laser.power;
        }
      #else
        block->laser.power_entry = entry_power;
      #endif
    }
  #endif
}

/*                            PLANNER SPEED DEFINITION
                                     +--------+   <- current->nominal_speed
                                    /          \
         current->entry_speed ->   +            \
                                   |             + <- next->entry_speed (aka exit speed)
                                   +-------------+
                                       time -->

  Recalculates the motion plan according to the following basic guidelines:

    1. Go over every feasible block sequentially in reverse order and calculate the junction speeds
        (i.e. current->entry_speed) such that:
      a. No junction speed exceeds the pre-computed maximum junction speed limit or nominal speeds of
         neighboring blocks.
      b. A block entry speed cannot exceed one reverse-computed from its exit speed (next->entry_speed)
         with a maximum allowable deceleration over the block travel distance.
      c. The last (or newest appended) block is planned from a complete stop (an exit speed of zero).
    2. Go over every block in chronological (forward) order and dial down junction speed values if
      a. The exit speed exceeds the one forward-computed from its entry speed with the maximum allowable
         acceleration over the block travel distance.

  When these stages are complete, the planner will have maximized the velocity profiles throughout the all
  of the planner blocks, where every block is operating at its maximum allowable acceleration limits. In
  other words, for all of the blocks in the planner, the plan is optimal and no further speed improvements
  are possible. If a new block is added to the buffer, the plan is recomputed according to the said
  guidelines for a new optimal plan.

  To increase computational efficiency of these guidelines, a set of planner block pointers have been
  created to indicate stop-compute points for when the planner guidelines cannot logically make any further
  changes or improvements to the plan when in normal operation and new blocks are streamed and added to the
  planner buffer. For example, if a subset of sequential blocks in the planner have been planned and are
  bracketed by junction velocities at their maximums (or by the first planner block as well), no new block
  added to the planner buffer will alter the velocity profiles within them. So we no longer have to compute
  them. Or, if a set of sequential blocks from the first block in the planner (or a optimal stop-compute
  point) are all accelerating, they are all optimal and can not be altered by a new block added to the
  planner buffer, as this will only further increase the plan speed to chronological blocks until a maximum
  junction velocity is reached. However, if the operational conditions of the plan changes from infrequently
  used feed holds or feedrate overrides, the stop-compute pointers will be reset and the entire plan is
  recomputed as stated in the general guidelines.

  Planner buffer index mapping:
  - block_buffer_tail: Points to the beginning of the planner buffer. First to be executed or being executed.
  - block_buffer_head: Points to the buffer block after the last block in the buffer. Used to indicate whether
      the buffer is full or empty. As described for standard ring buffers, this block is always empty.
  - block_buffer_planned: Points to the first buffer block after the last optimally planned block for normal
      streaming operating conditions. Use for planning optimizations by avoiding recomputing parts of the
      planner buffer that don't change with the addition of a new block, as describe above. In addition,
      this block can never be less than block_buffer_tail and will always be pushed forward and maintain
      this requirement when encountered by the Planner::release_current_block() routine during a cycle.

  NOTE: Since the planner only computes on what's in the planner buffer, some motions with lots of short
  line segments, like G2/3 arcs or complex curves, may seem to move slow. This is because there simply isn't
  enough combined distance traveled in the entire buffer to accelerate up to the nominal speed and then
  decelerate to a complete stop at the end of the buffer, as stated by the guidelines. If this happens and
  becomes an annoyance, there are a few simple solutions: (1) Maximize the machine acceleration. The planner
  will be able to compute higher velocity profiles within the same combined distance. (2) Maximize line
  motion(s) distance per block to a desired tolerance. The more combined distance the planner has to use,
  the faster it can go. (3) Maximize the planner buffer size. This also will increase the combined distance
  for the planner to compute over. It also increases the number of computations the planner has to perform
  to compute an optimal plan, so select carefully.
*/

// The kernel called by recalculate() when scanning the plan from last to first entry.
void Planner::reverse_pass_kernel(block_t* const current, const block_t * const next) {
  if (current) {
    // If entry speed is already at the maximum entry speed, and there was no change of speed
    // in the next block, there is no need to recheck. Block is cruising and there is no need to
    // compute anything for this block,
    // If not, block entry speed needs to be recalculated to ensure maximum possible planned speed.
    const float max_entry_speed_sqr = current->max_entry_speed_sqr;

    // Compute maximum entry speed decelerating over the current block from its exit speed.
    // If not at the maximum entry speed, or the previous block entry speed changed
    if (current->entry_speed_sqr != max_entry_speed_sqr || (next && TEST(next->flag, BLOCK_BIT_RECALCULATE))) {

      // If nominal length true, max junction speed is guaranteed to be reached.
      // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
      // the current block and next block junction speeds are guaranteed to always be at their maximum
      // junction speeds in deceleration and acceleration, respectively. This is due to how the current
      // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
      // the reverse and forward planners, the corresponding block junction speed will always be at the
      // the maximum junction speed and may always be ignored for any speed reduction checks.

      const float new_entry_speed_sqr = TEST(current->flag, BLOCK_BIT_NOMINAL_LENGTH)
        ? max_entry_speed_sqr
        : _MIN(max_entry_speed_sqr, max_allowable_speed_sqr(-current->acceleration, next ? next->entry_speed_sqr : sq(float(MINIMUM_PLANNER_SPEED)), current->millimeters));
      if (current->entry_speed_sqr != new_entry_speed_sqr) {

        // Need to recalculate the block speed - Mark it now, so the stepper
        // ISR does not consume the block before being recalculated
        SBI(current->flag, BLOCK_BIT_RECALCULATE);

        // But there is an inherent race condition here, as the block may have
        // become BUSY just before being marked RECALCULATE, so check for that!
        if (stepper.is_block_busy(current)) {
          // Block became busy. Clear the RECALCULATE flag (no point in
          // recalculating BUSY blocks). And don't set its speed, as it can't
          // be updated at this time.
          CBI(current->flag, BLOCK_BIT_RECALCULATE);
        }
        else {
          // Block is not BUSY so this is ahead of the Stepper ISR:
          // Just Set the new entry speed.
          current->entry_speed_sqr = new_entry_speed_sqr;
        }
      }
    }
  }
}

/**
 * recalculate() needs to go over the current plan twice.
 * Once in reverse and once forward. This implements the reverse pass.
 */
void Planner::reverse_pass() {
  // Initialize block index to the last block in the planner buffer.
  uint8_t block_index = prev_block_index(block_buffer_head);

  // Read the index of the last buffer planned block.
  // The ISR may change it so get a stable local copy.
  uint8_t planned_block_index = block_buffer_planned;

  // If there was a race condition and block_buffer_planned was incremented
  //  or was pointing at the head (queue empty) break loop now and avoid
  //  planning already consumed blocks
  if (planned_block_index == block_buffer_head) return;

  // Reverse Pass: Coarsely maximize all possible deceleration curves back-planning from the last
  // block in buffer. Cease planning when the last optimal planned or tail pointer is reached.
  // NOTE: Forward pass will later refine and correct the reverse pass to create an optimal plan.
  const block_t *next = nullptr;
  while (block_index != planned_block_index) {

    // Perform the reverse pass
    block_t *current = &block_buffer[block_index];

    // Only consider non sync and page blocks
    if (!TEST(current->flag, BLOCK_BIT_SYNC_POSITION) && !IS_PAGE(current)) {
      reverse_pass_kernel(current, next);
      next = current;
    }

    // Advance to the next
    block_index = prev_block_index(block_index);

    // The ISR could advance the block_buffer_planned while we were doing the reverse pass.
    // We must try to avoid using an already consumed block as the last one - So follow
    // changes to the pointer and make sure to limit the loop to the currently busy block
    while (planned_block_index != block_buffer_planned) {

      // If we reached the busy block or an already processed block, break the loop now
      if (block_index == planned_block_index) return;

      // Advance the pointer, following the busy block
      planned_block_index = next_block_index(planned_block_index);
    }
  }
}

// The kernel called by recalculate() when scanning the plan from first to last entry.
void Planner::forward_pass_kernel(const block_t* const previous, block_t* const current, const uint8_t block_index) {
  if (previous) {
    // If the previous block is an acceleration block, too short to complete the full speed
    // change, adjust the entry speed accordingly. Entry speeds have already been reset,
    // maximized, and reverse-planned. If nominal length is set, max junction speed is
    // guaranteed to be reached. No need to recheck.
    if (!TEST(previous->flag, BLOCK_BIT_NOMINAL_LENGTH) &&
      previous->entry_speed_sqr < current->entry_speed_sqr) {

      // Compute the maximum allowable speed
      const float new_entry_speed_sqr = max_allowable_speed_sqr(-previous->acceleration, previous->entry_speed_sqr, previous->millimeters);

      // If true, current block is full-acceleration and we can move the planned pointer forward.
      if (new_entry_speed_sqr < current->entry_speed_sqr) {

        // Mark we need to recompute the trapezoidal shape, and do it now,
        // so the stepper ISR does not consume the block before being recalculated
        SBI(current->flag, BLOCK_BIT_RECALCULATE);

        // But there is an inherent race condition here, as the block maybe
        // became BUSY, just before it was marked as RECALCULATE, so check
        // if that is the case!
        if (stepper.is_block_busy(current)) {
          // Block became busy. Clear the RECALCULATE flag (no point in
          //  recalculating BUSY blocks and don't set its speed, as it can't
          //  be updated at this time.
          CBI(current->flag, BLOCK_BIT_RECALCULATE);
        }
        else {
          // Block is not BUSY, we won the race against the Stepper ISR:

          // Always <= max_entry_speed_sqr. Backward pass sets this.
          current->entry_speed_sqr = new_entry_speed_sqr; // Always <= max_entry_speed_sqr. Backward pass sets this.

          // Set optimal plan pointer.
          block_buffer_planned = block_index;
        }
      }
    }

    // Any block set at its maximum entry speed also creates an optimal plan up to this
    // point in the buffer. When the plan is bracketed by either the beginning of the
    // buffer and a maximum entry speed or two maximum entry speeds, every block in between
    // cannot logically be further improved. Hence, we don't have to recompute them anymore.
    if (current->entry_speed_sqr == current->max_entry_speed_sqr)
      block_buffer_planned = block_index;
  }
}

/**
 * recalculate() needs to go over the current plan twice.
 * Once in reverse and once forward. This implements the forward pass.
 */
void Planner::forward_pass() {

  // Forward Pass: Forward plan the acceleration curve from the planned pointer onward.
  // Also scans for optimal plan breakpoints and appropriately updates the planned pointer.

  // Begin at buffer planned pointer. Note that block_buffer_planned can be modified
  //  by the stepper ISR,  so read it ONCE. It it guaranteed that block_buffer_planned
  //  will never lead head, so the loop is safe to execute. Also note that the forward
  //  pass will never modify the values at the tail.
  uint8_t block_index = block_buffer_planned;

  block_t *block;
  const block_t * previous = nullptr;
  while (block_index != block_buffer_head) {

    // Perform the forward pass
    block = &block_buffer[block_index];

    // Skip SYNC and page blocks
    if (!TEST(block->flag, BLOCK_BIT_SYNC_POSITION) && !IS_PAGE(block)) {
      // If there's no previous block or the previous block is not
      // BUSY (thus, modifiable) run the forward_pass_kernel. Otherwise,
      // the previous block became BUSY, so assume the current block's
      // entry speed can't be altered (since that would also require
      // updating the exit speed of the previous block).
      if (!previous || !stepper.is_block_busy(previous))
        forward_pass_kernel(previous, block, block_index);
      previous = block;
    }
    // Advance to the previous
    block_index = next_block_index(block_index);
  }
}

/**
 * Recalculate the trapezoid speed profiles for all blocks in the plan
 * according to the entry_factor for each junction. Must be called by
 * recalculate() after updating the blocks.
 */
void Planner::recalculate_trapezoids() {
  // The tail may be changed by the ISR so get a local copy.
  uint8_t block_index = block_buffer_tail,
          head_block_index = block_buffer_head;
  // Since there could be a sync block in the head of the queue, and the
  // next loop must not recalculate the head block (as it needs to be
  // specially handled), scan backwards to the first non-SYNC block.
  while (head_block_index != block_index) {

    // Go back (head always point to the first free block)
    const uint8_t prev_index = prev_block_index(head_block_index);

    // Get the pointer to the block
    block_t *prev = &block_buffer[prev_index];

    // If not dealing with a sync block, we are done. The last block is not a SYNC block
    if (!TEST(prev->flag, BLOCK_BIT_SYNC_POSITION)) break;

    // Examine the previous block. This and all following are SYNC blocks
    head_block_index = prev_index;
  }

  // Go from the tail (currently executed block) to the first block, without including it)
  block_t *block = nullptr, *next = nullptr;
  float current_entry_speed = 0.0, next_entry_speed = 0.0;
  while (block_index != head_block_index) {

    next = &block_buffer[block_index];

    // Skip sync and page blocks
    if (!TEST(next->flag, BLOCK_BIT_SYNC_POSITION) && !IS_PAGE(next)) {
      next_entry_speed = SQRT(next->entry_speed_sqr);

      if (block) {
        // Recalculate if current block entry or exit junction speed has changed.
        if (TEST(block->flag, BLOCK_BIT_RECALCULATE) || TEST(next->flag, BLOCK_BIT_RECALCULATE)) {

          // Mark the current block as RECALCULATE, to protect it from the Stepper ISR running it.
          // Note that due to the above condition, there's a chance the current block isn't marked as
          // RECALCULATE yet, but the next one is. That's the reason for the following line.
          SBI(block->flag, BLOCK_BIT_RECALCULATE);

          // But there is an inherent race condition here, as the block maybe
          // became BUSY, just before it was marked as RECALCULATE, so check
          // if that is the case!
          if (!stepper.is_block_busy(block)) {
            // Block is not BUSY, we won the race against the Stepper ISR:

            // NOTE: Entry and exit factors always > 0 by all previous logic operations.
            const float current_nominal_speed = SQRT(block->nominal_speed_sqr),
                        nomr = 1.0f / current_nominal_speed;
            calculate_trapezoid_for_block(block, current_entry_speed * nomr, next_entry_speed * nomr);
            #if ENABLED(LIN_ADVANCE)
              if (block->use_advance_lead) {
                const float comp = block->e_D_ratio * extruder_advance_K[active_extruder] * settings.axis_steps_per_mm[E_AXIS];
                block->max_adv_steps = current_nominal_speed * comp;
                block->final_adv_steps = next_entry_speed * comp;
              }
            #endif
          }

          // Reset current only to ensure next trapezoid is computed - The
          // stepper is free to use the block from now on.
          CBI(block->flag, BLOCK_BIT_RECALCULATE);
        }
      }

      block = next;
      current_entry_speed = next_entry_speed;
    }

    block_index = next_block_index(block_index);
  }

  // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
  if (next) {

    // Mark the next(last) block as RECALCULATE, to prevent the Stepper ISR running it.
    // As the last block is always recalculated here, there is a chance the block isn't
    // marked as RECALCULATE yet. That's the reason for the following line.
    SBI(next->flag, BLOCK_BIT_RECALCULATE);

    // But there is an inherent race condition here, as the block maybe
    // became BUSY, just before it was marked as RECALCULATE, so check
    // if that is the case!
    if (!stepper.is_block_busy(block)) {
      // Block is not BUSY, we won the race against the Stepper ISR:

      const float next_nominal_speed = SQRT(next->nominal_speed_sqr),
                  nomr = 1.0f / next_nominal_speed;
      calculate_trapezoid_for_block(next, next_entry_speed * nomr, float(MINIMUM_PLANNER_SPEED) * nomr);
      #if ENABLED(LIN_ADVANCE)
        if (next->use_advance_lead) {
          const float comp = next->e_D_ratio * extruder_advance_K[active_extruder] * settings.axis_steps_per_mm[E_AXIS];
          next->max_adv_steps = next_nominal_speed * comp;
          next->final_adv_steps = (MINIMUM_PLANNER_SPEED) * comp;
        }
      #endif
    }

    // Reset next only to ensure its trapezoid is computed - The stepper is free to use
    // the block from now on.
    CBI(next->flag, BLOCK_BIT_RECALCULATE);
  }
}

void Planner::recalculate() {
  // Initialize block index to the last block in the planner buffer.
  const uint8_t block_index = prev_block_index(block_buffer_head);
  // If there is just one block, no planning can be done. Avoid it!
  if (block_index != block_buffer_planned) {
    reverse_pass();
    forward_pass();
  }
  recalculate_trapezoids();
}

#if ENABLED(AUTOTEMP)

  void Planner::getHighESpeed() {
    static float oldt = 0;

    if (!autotemp_enabled) return;
    if (thermalManager.degTargetHotend(0) + 2 < autotemp_min) return; // probably temperature set to zero.

    float high = 0.0;
    for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
      block_t* block = &block_buffer[b];
      if (block->steps.x || block->steps.y || block->steps.z) {
        const float se = (float)block->steps.e / block->step_event_count * SQRT(block->nominal_speed_sqr); // mm/sec;
        NOLESS(high, se);
      }
    }

    float t = autotemp_min + high * autotemp_factor;
    LIMIT(t, autotemp_min, autotemp_max);
    if (t < oldt) t = t * (1 - float(AUTOTEMP_OLDWEIGHT)) + oldt * float(AUTOTEMP_OLDWEIGHT);
    oldt = t;
    thermalManager.setTargetHotend(t, 0);
  }

#endif // AUTOTEMP

/**
 * Maintain fans, paste extruder pressure,
 */
void Planner::check_axes_activity() {

  #if ANY(DISABLE_X, DISABLE_Y, DISABLE_Z, DISABLE_E)
    xyze_bool_t axis_active = { false };
  #endif

  #if HAS_FAN
    uint8_t tail_fan_speed[FAN_COUNT];
  #endif

  #if ENABLED(BARICUDA)
    #if HAS_HEATER_1
      uint8_t tail_valve_pressure;
    #endif
    #if HAS_HEATER_2
      uint8_t tail_e_to_p_pressure;
    #endif
  #endif

  if (has_blocks_queued()) {

    #if HAS_FAN || ENABLED(BARICUDA)
      block_t *block = &block_buffer[block_buffer_tail];
    #endif

    #if HAS_FAN
      FANS_LOOP(i)
        tail_fan_speed[i] = thermalManager.scaledFanSpeed(i, block->fan_speed[i]);
    #endif

    #if ENABLED(BARICUDA)
      TERN_(HAS_HEATER_1, tail_valve_pressure = block->valve_pressure);
      TERN_(HAS_HEATER_2, tail_e_to_p_pressure = block->e_to_p_pressure);
    #endif

    #if ANY(DISABLE_X, DISABLE_Y, DISABLE_Z, DISABLE_E)
      for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
        block_t *block = &block_buffer[b];
        if (ENABLED(DISABLE_X) && block->steps.x) axis_active.x = true;
        if (ENABLED(DISABLE_Y) && block->steps.y) axis_active.y = true;
        if (ENABLED(DISABLE_Z) && block->steps.z) axis_active.z = true;
        if (ENABLED(DISABLE_E) && block->steps.e) axis_active.e = true;
      }
    #endif
  }
  else {

    TERN_(HAS_CUTTER, cutter.refresh());

    #if HAS_FAN
      FANS_LOOP(i)
        tail_fan_speed[i] = thermalManager.scaledFanSpeed(i);
    #endif

    #if ENABLED(BARICUDA)
      TERN_(HAS_HEATER_1, tail_valve_pressure = baricuda_valve_pressure);
      TERN_(HAS_HEATER_2, tail_e_to_p_pressure = baricuda_e_to_p_pressure);
    #endif
  }

  //
  // Disable inactive axes
  //
  if (TERN0(DISABLE_X, !axis_active.x)) DISABLE_AXIS_X();
  if (TERN0(DISABLE_Y, !axis_active.y)) DISABLE_AXIS_Y();
  if (TERN0(DISABLE_Z, !axis_active.z)) DISABLE_AXIS_Z();
  if (TERN0(DISABLE_E, !axis_active.e)) disable_e_steppers();

  //
  // Update Fan speeds
  //
  #if HAS_FAN

    #if FAN_KICKSTART_TIME > 0
      static millis_t fan_kick_end[FAN_COUNT] = { 0 };
      #define KICKSTART_FAN(f)                         \
        if (tail_fan_speed[f]) {                       \
          millis_t ms = millis();                      \
          if (fan_kick_end[f] == 0) {                  \
            fan_kick_end[f] = ms + FAN_KICKSTART_TIME; \
            tail_fan_speed[f] = 255;                   \
          } else if (PENDING(ms, fan_kick_end[f]))     \
            tail_fan_speed[f] = 255;                   \
        } else fan_kick_end[f] = 0
    #else
      #define KICKSTART_FAN(f) NOOP
    #endif

    #if FAN_MIN_PWM != 0 || FAN_MAX_PWM != 255
      #define CALC_FAN_SPEED(f) (tail_fan_speed[f] ? map(tail_fan_speed[f], 1, 255, FAN_MIN_PWM, FAN_MAX_PWM) : FAN_OFF_PWM)
    #else
      #define CALC_FAN_SPEED(f) (tail_fan_speed[f] ?: FAN_OFF_PWM)
    #endif

    #if ENABLED(FAN_SOFT_PWM)
      #define _FAN_SET(F) thermalManager.soft_pwm_amount_fan[F] = CALC_FAN_SPEED(F);
    #elif ENABLED(FAST_PWM_FAN)
      #define _FAN_SET(F) set_pwm_duty(FAN##F##_PIN, CALC_FAN_SPEED(F));
    #else
      #define _FAN_SET(F) analogWrite(pin_t(FAN##F##_PIN), CALC_FAN_SPEED(F));
    #endif
    #define FAN_SET(F) do{ KICKSTART_FAN(F); _FAN_SET(F); }while(0)

    TERN_(HAS_FAN0, FAN_SET(0));
    TERN_(HAS_FAN1, FAN_SET(1));
    TERN_(HAS_FAN2, FAN_SET(2));
    TERN_(HAS_FAN3, FAN_SET(3));
    TERN_(HAS_FAN4, FAN_SET(4));
    TERN_(HAS_FAN5, FAN_SET(5));
    TERN_(HAS_FAN6, FAN_SET(6));
    TERN_(HAS_FAN7, FAN_SET(7));
  #endif // HAS_FAN

  TERN_(AUTOTEMP, getHighESpeed());

  #if ENABLED(BARICUDA)
    TERN_(HAS_HEATER_1, analogWrite(pin_t(HEATER_1_PIN), tail_valve_pressure));
    TERN_(HAS_HEATER_2, analogWrite(pin_t(HEATER_2_PIN), tail_e_to_p_pressure));
  #endif
}

#if DISABLED(NO_VOLUMETRICS)

  /**
   * Get a volumetric multiplier from a filament diameter.
   * This is the reciprocal of the circular cross-section area.
   * Return 1.0 with volumetric off or a diameter of 0.0.
   */
  inline float calculate_volumetric_multiplier(const float &diameter) {
    return (parser.volumetric_enabled && diameter) ? 1.0f / CIRCLE_AREA(diameter * 0.5f) : 1;
  }

  /**
   * Convert the filament sizes into volumetric multipliers.
   * The multiplier converts a given E value into a length.
   */
  void Planner::calculate_volumetric_multipliers() {
    LOOP_L_N(i, COUNT(filament_size)) {
      volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
      refresh_e_factor(i);
    }
    #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
      calculate_volumetric_extruder_limits(); // update volumetric_extruder_limits as well.
    #endif
  }

#endif // !NO_VOLUMETRICS

#if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)

  /**
   * Convert volumetric based limits into pre calculated extruder feedrate limits.
   */
  void Planner::calculate_volumetric_extruder_limit(const uint8_t e) {
    const float &lim = volumetric_extruder_limit[e], &siz = filament_size[e];
    volumetric_extruder_feedrate_limit[e] = (lim && siz) ? lim / CIRCLE_AREA(siz * 0.5f) : 0;
  }
  void Planner::calculate_volumetric_extruder_limits() {
    LOOP_L_N(e, EXTRUDERS) calculate_volumetric_extruder_limit(e);
  }

#endif

#if ENABLED(FILAMENT_WIDTH_SENSOR)
  /**
   * Convert the ratio value given by the filament width sensor
   * into a volumetric multiplier. Conversion differs when using
   * linear extrusion vs volumetric extrusion.
   */
  void Planner::apply_filament_width_sensor(const int8_t encoded_ratio) {
    // Reconstitute the nominal/measured ratio
    const float nom_meas_ratio = 1 + 0.01f * encoded_ratio,
                ratio_2 = sq(nom_meas_ratio);

    volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = parser.volumetric_enabled
      ? ratio_2 / CIRCLE_AREA(filwidth.nominal_mm * 0.5f) // Volumetric uses a true volumetric multiplier
      : ratio_2;                                          // Linear squares the ratio, which scales the volume

    refresh_e_factor(FILAMENT_SENSOR_EXTRUDER_NUM);
  }
#endif

#if HAS_LEVELING

  constexpr xy_pos_t level_fulcrum = {
    TERN(Z_SAFE_HOMING, Z_SAFE_HOMING_X_POINT, X_HOME_POS),
    TERN(Z_SAFE_HOMING, Z_SAFE_HOMING_Y_POINT, Y_HOME_POS)
  };

  /**
   * rx, ry, rz - Cartesian positions in mm
   *              Leveled XYZ on completion
   */
  void Planner::apply_leveling(xyz_pos_t &raw) {
    if (!leveling_active) return;

    #if ABL_PLANAR

      xy_pos_t d = raw - level_fulcrum;
      apply_rotation_xyz(bed_level_matrix, d.x, d.y, raw.z);
      raw = d + level_fulcrum;

    #elif HAS_MESH

      #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
        const float fade_scaling_factor = fade_scaling_factor_for_z(raw.z);
      #elif DISABLED(MESH_BED_LEVELING)
        constexpr float fade_scaling_factor = 1.0;
      #endif

      raw.z += (
        #if ENABLED(MESH_BED_LEVELING)
          mbl.get_z(raw
            #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
              , fade_scaling_factor
            #endif
          )
        #elif ENABLED(AUTO_BED_LEVELING_UBL)
          fade_scaling_factor ? fade_scaling_factor * ubl.get_z_correction(raw) : 0.0
        #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
          fade_scaling_factor ? fade_scaling_factor * bilinear_z_offset(raw) : 0.0
        #endif
      );

    #endif
  }

  void Planner::unapply_leveling(xyz_pos_t &raw) {

    if (leveling_active) {

      #if ABL_PLANAR

        matrix_3x3 inverse = matrix_3x3::transpose(bed_level_matrix);

        xy_pos_t d = raw - level_fulcrum;
        apply_rotation_xyz(inverse, d.x, d.y, raw.z);
        raw = d + level_fulcrum;

      #elif HAS_MESH

        #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
          const float fade_scaling_factor = fade_scaling_factor_for_z(raw.z);
        #elif DISABLED(MESH_BED_LEVELING)
          constexpr float fade_scaling_factor = 1.0;
        #endif

        raw.z -= (
          #if ENABLED(MESH_BED_LEVELING)
            mbl.get_z(raw
              #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
                , fade_scaling_factor
              #endif
            )
          #elif ENABLED(AUTO_BED_LEVELING_UBL)
            fade_scaling_factor ? fade_scaling_factor * ubl.get_z_correction(raw) : 0.0
          #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
            fade_scaling_factor ? fade_scaling_factor * bilinear_z_offset(raw) : 0.0
          #endif
        );

      #endif
    }
  }

#endif // HAS_LEVELING

#if ENABLED(FWRETRACT)
  /**
   * rz, e - Cartesian positions in mm
   */
  void Planner::apply_retract(float &rz, float &e) {
    rz += fwretract.current_hop;
    e -= fwretract.current_retract[active_extruder];
  }

  void Planner::unapply_retract(float &rz, float &e) {
    rz -= fwretract.current_hop;
    e += fwretract.current_retract[active_extruder];
  }

#endif

void Planner::quick_stop() {

  // Remove all the queued blocks. Note that this function is NOT
  // called from the Stepper ISR, so we must consider tail as readonly!
  // that is why we set head to tail - But there is a race condition that
  // must be handled: The tail could change between the read and the assignment
  // so this must be enclosed in a critical section

  const bool was_enabled = stepper.suspend();

  // Drop all queue entries
  block_buffer_nonbusy = block_buffer_planned = block_buffer_head = block_buffer_tail;

  // Restart the block delay for the first movement - As the queue was
  // forced to empty, there's no risk the ISR will touch this.
  delay_before_delivering = BLOCK_DELAY_FOR_1ST_MOVE;

  #if HAS_WIRED_LCD
    // Clear the accumulated runtime
    clear_block_buffer_runtime();
  #endif

  // Make sure to drop any attempt of queuing moves for 1 second
  cleaning_buffer_counter = TEMP_TIMER_FREQUENCY;

  // Reenable Stepper ISR
  if (was_enabled) stepper.wake_up();

  // And stop the stepper ISR
  stepper.quick_stop();
}

void Planner::endstop_triggered(const AxisEnum axis) {
  // Record stepper position and discard the current block
  stepper.endstop_triggered(axis);
}

float Planner::triggered_position_mm(const AxisEnum axis) {
  return stepper.triggered_position(axis) * steps_to_mm[axis];
}

void Planner::finish_and_disable() {
  while (has_blocks_queued() || cleaning_buffer_counter) idle();
  disable_all_steppers();
}

/**
 * Get an axis position according to stepper position(s)
 * For CORE machines apply translation from ABC to XYZ.
 */
float Planner::get_axis_position_mm(const AxisEnum axis) {
  float axis_steps;
  #if IS_CORE

    // Requesting one of the "core" axes?
    if (axis == CORE_AXIS_1 || axis == CORE_AXIS_2) {

      // Protect the access to the position.
      const bool was_enabled = stepper.suspend();

      const int32_t p1 = stepper.position(CORE_AXIS_1),
                    p2 = stepper.position(CORE_AXIS_2);

      if (was_enabled) stepper.wake_up();

      // ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1
      // ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2
      axis_steps = (axis == CORE_AXIS_2 ? CORESIGN(p1 - p2) : p1 + p2) * 0.5f;
    }
    else
      axis_steps = stepper.position(axis);

  #elif ENABLED(MARKFORGED_XY)

    // Requesting one of the joined axes?
    if (axis == CORE_AXIS_1 || axis == CORE_AXIS_2) {
      // Protect the access to the position.
      const bool was_enabled = stepper.suspend();

      const int32_t p1 = stepper.position(CORE_AXIS_1),
                    p2 = stepper.position(CORE_AXIS_2);

      if (was_enabled) stepper.wake_up();

      axis_steps = ((axis == CORE_AXIS_1) ? p1 - p2 : p2);
    }
    else
      axis_steps = stepper.position(axis);

  #else

    axis_steps = stepper.position(axis);

  #endif

  return axis_steps * steps_to_mm[axis];
}

/**
 * Block until all buffered steps are executed / cleaned
 */
void Planner::synchronize() {
  while (has_blocks_queued() || cleaning_buffer_counter
      || TERN0(EXTERNAL_CLOSED_LOOP_CONTROLLER, CLOSED_LOOP_WAITING())
  ) idle();
}

/**
 * Planner::_buffer_steps
 *
 * Add a new linear movement to the planner queue (in terms of steps).
 *
 *  target        - target position in steps units
 *  target_float  - target position in direct (mm, degrees) units. optional
 *  fr_mm_s       - (target) speed of the move
 *  extruder      - target extruder
 *  millimeters   - the length of the movement, if known
 *
 * Returns true if movement was properly queued, false otherwise (if cleaning)
 */
bool Planner::_buffer_steps(const xyze_long_t &target
  #if HAS_POSITION_FLOAT
    , const xyze_pos_t &target_float
  #endif
  #if HAS_DIST_MM_ARG
    , const xyze_float_t &cart_dist_mm
  #endif
  , feedRate_t fr_mm_s, const uint8_t extruder, const float &millimeters
) {

  // If we are cleaning, do not accept queuing of movements
  if (cleaning_buffer_counter) return false;

  // Wait for the next available block
  uint8_t next_buffer_head;
  block_t * const block = get_next_free_block(next_buffer_head);

  // Fill the block with the specified movement
  if (!_populate_block(block, false, target
    #if HAS_POSITION_FLOAT
      , target_float
    #endif
    #if HAS_DIST_MM_ARG
      , cart_dist_mm
    #endif
    , fr_mm_s, extruder, millimeters
  )) {
    // Movement was not queued, probably because it was too short.
    //  Simply accept that as movement queued and done
    return true;
  }

  // If this is the first added movement, reload the delay, otherwise, cancel it.
  if (block_buffer_head == block_buffer_tail) {
    // If it was the first queued block, restart the 1st block delivery delay, to
    // give the planner an opportunity to queue more movements and plan them
    // As there are no queued movements, the Stepper ISR will not touch this
    // variable, so there is no risk setting this here (but it MUST be done
    // before the following line!!)
    delay_before_delivering = BLOCK_DELAY_FOR_1ST_MOVE;
  }

  // Move buffer head
  block_buffer_head = next_buffer_head;

  // Recalculate and optimize trapezoidal speed profiles
  recalculate();

  // Movement successfully queued!
  return true;
}

/**
 * Planner::_populate_block
 *
 * Fills a new linear movement in the block (in terms of steps).
 *
 *  target      - target position in steps units
 *  fr_mm_s     - (target) speed of the move
 *  extruder    - target extruder
 *
 * Returns true if movement is acceptable, false otherwise
 */
bool Planner::_populate_block(block_t * const block, bool split_move,
  const abce_long_t &target
  #if HAS_POSITION_FLOAT
    , const xyze_pos_t &target_float
  #endif
  #if HAS_DIST_MM_ARG
    , const xyze_float_t &cart_dist_mm
  #endif
  , feedRate_t fr_mm_s, const uint8_t extruder, const float &millimeters/*=0.0*/
) {

  const int32_t da = target.a - position.a,
                db = target.b - position.b,
                dc = target.c - position.c;

  #if EXTRUDERS
    int32_t de = target.e - position.e;
  #else
    constexpr int32_t de = 0;
  #endif

  /* <-- add a slash to enable
    SERIAL_ECHOLNPAIR(
      "  _populate_block FR:", fr_mm_s,
      " A:", target.a, " (", da, " steps)"
      " B:", target.b, " (", db, " steps)"
      " C:", target.c, " (", dc, " steps)"
      #if EXTRUDERS
        " E:", target.e, " (", de, " steps)"
      #endif
    );
  //*/

  #if EITHER(PREVENT_COLD_EXTRUSION, PREVENT_LENGTHY_EXTRUDE)
    if (de) {
      #if ENABLED(PREVENT_COLD_EXTRUSION)
        if (thermalManager.tooColdToExtrude(extruder)) {
          position.e = target.e; // Behave as if the move really took place, but ignore E part
          TERN_(HAS_POSITION_FLOAT, position_float.e = target_float.e);
          de = 0; // no difference
          SERIAL_ECHO_MSG(STR_ERR_COLD_EXTRUDE_STOP);
        }
      #endif // PREVENT_COLD_EXTRUSION
      #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
        const float e_steps = ABS(de * e_factor[extruder]);
        const float max_e_steps = settings.axis_steps_per_mm[E_AXIS_N(extruder)] * (EXTRUDE_MAXLENGTH);
        if (e_steps > max_e_steps) {
          #if ENABLED(MIXING_EXTRUDER)
            bool ignore_e = false;
            float collector[MIXING_STEPPERS];
            mixer.refresh_collector(1.0, mixer.get_current_vtool(), collector);
            MIXER_STEPPER_LOOP(e)
              if (e_steps * collector[e] > max_e_steps) { ignore_e = true; break; }
          #else
            constexpr bool ignore_e = true;
          #endif
          if (ignore_e) {
            position.e = target.e; // Behave as if the move really took place, but ignore E part
            TERN_(HAS_POSITION_FLOAT, position_float.e = target_float.e);
            de = 0; // no difference
            SERIAL_ECHO_MSG(STR_ERR_LONG_EXTRUDE_STOP);
          }
        }
      #endif // PREVENT_LENGTHY_EXTRUDE
    }
  #endif // PREVENT_COLD_EXTRUSION || PREVENT_LENGTHY_EXTRUDE

  // Compute direction bit-mask for this block
  uint8_t dm = 0;
  #if CORE_IS_XY
    if (da < 0) SBI(dm, X_HEAD);                // Save the real Extruder (head) direction in X Axis
    if (db < 0) SBI(dm, Y_HEAD);                // ...and Y
    if (dc < 0) SBI(dm, Z_AXIS);
    if (da + db < 0) SBI(dm, A_AXIS);           // Motor A direction
    if (CORESIGN(da - db) < 0) SBI(dm, B_AXIS); // Motor B direction
  #elif CORE_IS_XZ
    if (da < 0) SBI(dm, X_HEAD);                // Save the real Extruder (head) direction in X Axis
    if (db < 0) SBI(dm, Y_AXIS);
    if (dc < 0) SBI(dm, Z_HEAD);                // ...and Z
    if (da + dc < 0) SBI(dm, A_AXIS);           // Motor A direction
    if (CORESIGN(da - dc) < 0) SBI(dm, C_AXIS); // Motor C direction
  #elif CORE_IS_YZ
    if (da < 0) SBI(dm, X_AXIS);
    if (db < 0) SBI(dm, Y_HEAD);                // Save the real Extruder (head) direction in Y Axis
    if (dc < 0) SBI(dm, Z_HEAD);                // ...and Z
    if (db + dc < 0) SBI(dm, B_AXIS);           // Motor B direction
    if (CORESIGN(db - dc) < 0) SBI(dm, C_AXIS); // Motor C direction
  #elif ENABLED(MARKFORGED_XY)
    if (da < 0) SBI(dm, X_HEAD);                // Save the real Extruder (head) direction in X Axis
    if (db < 0) SBI(dm, Y_HEAD);                // ...and Y
    if (dc < 0) SBI(dm, Z_AXIS);
    if (da + db < 0) SBI(dm, A_AXIS);           // Motor A direction
    if (db < 0) SBI(dm, B_AXIS);                // Motor B direction
  #else
    if (da < 0) SBI(dm, X_AXIS);
    if (db < 0) SBI(dm, Y_AXIS);
    if (dc < 0) SBI(dm, Z_AXIS);
  #endif
  if (de < 0) SBI(dm, E_AXIS);

  #if EXTRUDERS
    const float esteps_float = de * e_factor[extruder];
    const uint32_t esteps = ABS(esteps_float) + 0.5f;
  #else
    constexpr uint32_t esteps = 0;
  #endif

  // Clear all flags, including the "busy" bit
  block->flag = 0x00;

  // Set direction bits
  block->direction_bits = dm;

  // Update block laser power
  #if ENABLED(LASER_POWER_INLINE)
    laser_inline.status.isPlanned = true;
    block->laser.status = laser_inline.status;
    block->laser.power = laser_inline.power;
  #endif

  // Number of steps for each axis
  // See https://www.corexy.com/theory.html
  #if CORE_IS_XY
    block->steps.set(ABS(da + db), ABS(da - db), ABS(dc));
  #elif CORE_IS_XZ
    block->steps.set(ABS(da + dc), ABS(db), ABS(da - dc));
  #elif CORE_IS_YZ
    block->steps.set(ABS(da), ABS(db + dc), ABS(db - dc));
  #elif ENABLED(MARKFORGED_XY)
    block->steps.set(ABS(da + db), ABS(db), ABS(dc));
  #elif IS_SCARA
    block->steps.set(ABS(da), ABS(db), ABS(dc));
  #else
    // default non-h-bot planning
    block->steps.set(ABS(da), ABS(db), ABS(dc));
  #endif

  /**
   * This part of the code calculates the total length of the movement.
   * For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
   * But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
   * and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
   * So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
   * Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
   */
  struct DistanceMM : abce_float_t {
    #if EITHER(IS_CORE, MARKFORGED_XY)
      xyz_pos_t head;
    #endif
  } steps_dist_mm;
  #if IS_CORE
    #if CORE_IS_XY
      steps_dist_mm.head.x = da * steps_to_mm[A_AXIS];
      steps_dist_mm.head.y = db * steps_to_mm[B_AXIS];
      steps_dist_mm.z      = dc * steps_to_mm[Z_AXIS];
      steps_dist_mm.a      = (da + db) * steps_to_mm[A_AXIS];
      steps_dist_mm.b      = CORESIGN(da - db) * steps_to_mm[B_AXIS];
    #elif CORE_IS_XZ
      steps_dist_mm.head.x = da * steps_to_mm[A_AXIS];
      steps_dist_mm.y      = db * steps_to_mm[Y_AXIS];
      steps_dist_mm.head.z = dc * steps_to_mm[C_AXIS];
      steps_dist_mm.a      = (da + dc) * steps_to_mm[A_AXIS];
      steps_dist_mm.c      = CORESIGN(da - dc) * steps_to_mm[C_AXIS];
    #elif CORE_IS_YZ
      steps_dist_mm.x      = da * steps_to_mm[X_AXIS];
      steps_dist_mm.head.y = db * steps_to_mm[B_AXIS];
      steps_dist_mm.head.z = dc * steps_to_mm[C_AXIS];
      steps_dist_mm.b      = (db + dc) * steps_to_mm[B_AXIS];
      steps_dist_mm.c      = CORESIGN(db - dc) * steps_to_mm[C_AXIS];
    #endif
  #elif ENABLED(MARKFORGED_XY)
    steps_dist_mm.head.x = da * steps_to_mm[A_AXIS];
    steps_dist_mm.head.y = db * steps_to_mm[B_AXIS];
    steps_dist_mm.z      = dc * steps_to_mm[Z_AXIS];
    steps_dist_mm.a      = (da - db) * steps_to_mm[A_AXIS];
    steps_dist_mm.b      = db * steps_to_mm[B_AXIS];
  #else
    steps_dist_mm.a = da * steps_to_mm[A_AXIS];
    steps_dist_mm.b = db * steps_to_mm[B_AXIS];
    steps_dist_mm.c = dc * steps_to_mm[C_AXIS];
  #endif

  #if EXTRUDERS
    steps_dist_mm.e = esteps_float * steps_to_mm[E_AXIS_N(extruder)];
  #else
    steps_dist_mm.e = 0.0f;
  #endif

  TERN_(LCD_SHOW_E_TOTAL, e_move_accumulator += steps_dist_mm.e);

  if (block->steps.a < MIN_STEPS_PER_SEGMENT && block->steps.b < MIN_STEPS_PER_SEGMENT && block->steps.c < MIN_STEPS_PER_SEGMENT) {
    block->millimeters = (0
      #if EXTRUDERS
        + ABS(steps_dist_mm.e)
      #endif
    );
  }
  else {
    if (millimeters)
      block->millimeters = millimeters;
    else
      block->millimeters = SQRT(
        #if EITHER(CORE_IS_XY, MARKFORGED_XY)
          sq(steps_dist_mm.head.x) + sq(steps_dist_mm.head.y) + sq(steps_dist_mm.z)
        #elif CORE_IS_XZ
          sq(steps_dist_mm.head.x) + sq(steps_dist_mm.y) + sq(steps_dist_mm.head.z)
        #elif CORE_IS_YZ
          sq(steps_dist_mm.x) + sq(steps_dist_mm.head.y) + sq(steps_dist_mm.head.z)
        #else
          sq(steps_dist_mm.x) + sq(steps_dist_mm.y) + sq(steps_dist_mm.z)
        #endif
      );

    /**
     * At this point at least one of the axes has more steps than
     * MIN_STEPS_PER_SEGMENT, ensuring the segment won't get dropped as
     * zero-length. It's important to not apply corrections
     * to blocks that would get dropped!
     *
     * A correction function is permitted to add steps to an axis, it
     * should *never* remove steps!
     */
    TERN_(BACKLASH_COMPENSATION, backlash.add_correction_steps(da, db, dc, dm, block));
  }

  #if EXTRUDERS
    block->steps.e = esteps;
  #endif

  block->step_event_count = _MAX(block->steps.a, block->steps.b, block->steps.c, esteps);

  // Bail if this is a zero-length block
  if (block->step_event_count < MIN_STEPS_PER_SEGMENT) return false;

  #if ENABLED(MIXING_EXTRUDER)
    MIXER_POPULATE_BLOCK();
  #endif

  TERN_(HAS_CUTTER, block->cutter_power = cutter.power);

  #if HAS_FAN
    FANS_LOOP(i) block->fan_speed[i] = thermalManager.fan_speed[i];
  #endif

  #if ENABLED(BARICUDA)
    block->valve_pressure = baricuda_valve_pressure;
    block->e_to_p_pressure = baricuda_e_to_p_pressure;
  #endif

  #if HAS_MULTI_EXTRUDER
    block->extruder = extruder;
  #endif

  #if ENABLED(AUTO_POWER_CONTROL)
    if (block->steps.x || block->steps.y || block->steps.z)
      powerManager.power_on();
  #endif

  // Enable active axes
  #if EITHER(CORE_IS_XY, MARKFORGED_XY)
    if (block->steps.a || block->steps.b) {
      ENABLE_AXIS_X();
      ENABLE_AXIS_Y();
    }
    #if DISABLED(Z_LATE_ENABLE)
      if (block->steps.z) ENABLE_AXIS_Z();
    #endif
  #elif CORE_IS_XZ
    if (block->steps.a || block->steps.c) {
      ENABLE_AXIS_X();
      ENABLE_AXIS_Z();
    }
    if (block->steps.y) ENABLE_AXIS_Y();
  #elif CORE_IS_YZ
    if (block->steps.b || block->steps.c) {
      ENABLE_AXIS_Y();
      ENABLE_AXIS_Z();
    }
    if (block->steps.x) ENABLE_AXIS_X();
  #else
    if (block->steps.x) ENABLE_AXIS_X();
    if (block->steps.y) ENABLE_AXIS_Y();
    #if DISABLED(Z_LATE_ENABLE)
      if (block->steps.z) ENABLE_AXIS_Z();
    #endif
  #endif

  // Enable extruder(s)
  #if EXTRUDERS
    if (esteps) {
      TERN_(AUTO_POWER_CONTROL, powerManager.power_on());

      #if ENABLED(DISABLE_INACTIVE_EXTRUDER) // Enable only the selected extruder

        LOOP_L_N(i, EXTRUDERS)
          if (g_uc_extruder_last_move[i]) g_uc_extruder_last_move[i]--;

        #define ENABLE_ONE_E(N) do{ \
          if (extruder == N) { \
            ENABLE_AXIS_E##N(); \
            g_uc_extruder_last_move[N] = (BLOCK_BUFFER_SIZE) * 2; \
            if ((N) == 0 && TERN0(HAS_DUPLICATION_MODE, extruder_duplication_enabled)) \
              ENABLE_AXIS_E1(); \
          } \
          else if (!g_uc_extruder_last_move[N]) { \
            DISABLE_AXIS_E##N(); \
            if ((N) == 0 && TERN0(HAS_DUPLICATION_MODE, extruder_duplication_enabled)) \
              DISABLE_AXIS_E1(); \
          } \
        }while(0);

      #else

        #define ENABLE_ONE_E(N) ENABLE_AXIS_E##N();

      #endif

      REPEAT(EXTRUDERS, ENABLE_ONE_E); // (ENABLE_ONE_E must end with semicolon)
    }
  #endif // EXTRUDERS

  if (esteps)
    NOLESS(fr_mm_s, settings.min_feedrate_mm_s);
  else
    NOLESS(fr_mm_s, settings.min_travel_feedrate_mm_s);

  const float inverse_millimeters = 1.0f / block->millimeters;  // Inverse millimeters to remove multiple divides

  // Calculate inverse time for this move. No divide by zero due to previous checks.
  // Example: At 120mm/s a 60mm move takes 0.5s. So this will give 2.0.
  float inverse_secs = fr_mm_s * inverse_millimeters;

  // Get the number of non busy movements in queue (non busy means that they can be altered)
  const uint8_t moves_queued = nonbusy_movesplanned();

  // Slow down when the buffer starts to empty, rather than wait at the corner for a buffer refill
  #if EITHER(SLOWDOWN, HAS_WIRED_LCD) || defined(XY_FREQUENCY_LIMIT)
    // Segment time im micro seconds
    int32_t segment_time_us = LROUND(1000000.0f / inverse_secs);
  #endif

  #if ENABLED(SLOWDOWN)
    #ifndef SLOWDOWN_DIVISOR
      #define SLOWDOWN_DIVISOR 2
    #endif
    if (WITHIN(moves_queued, 2, (BLOCK_BUFFER_SIZE) / (SLOWDOWN_DIVISOR) - 1)) {
      const int32_t time_diff = settings.min_segment_time_us - segment_time_us;
      if (time_diff > 0) {
        // Buffer is draining so add extra time. The amount of time added increases if the buffer is still emptied more.
        const int32_t nst = segment_time_us + LROUND(2 * time_diff / moves_queued);
        inverse_secs = 1000000.0f / nst;
        #if defined(XY_FREQUENCY_LIMIT) || HAS_WIRED_LCD
          segment_time_us = nst;
        #endif
      }
    }
  #endif

  #if HAS_WIRED_LCD
    // Protect the access to the position.
    const bool was_enabled = stepper.suspend();

    block_buffer_runtime_us += segment_time_us;
    block->segment_time_us = segment_time_us;

    if (was_enabled) stepper.wake_up();
  #endif

  block->nominal_speed_sqr = sq(block->millimeters * inverse_secs);   // (mm/sec)^2 Always > 0
  block->nominal_rate = CEIL(block->step_event_count * inverse_secs); // (step/sec) Always > 0

  #if ENABLED(FILAMENT_WIDTH_SENSOR)
    if (extruder == FILAMENT_SENSOR_EXTRUDER_NUM)   // Only for extruder with filament sensor
      filwidth.advance_e(steps_dist_mm.e);
  #endif

  // Calculate and limit speed in mm/sec

  xyze_float_t current_speed;
  float speed_factor = 1.0f; // factor <1 decreases speed

  // Linear axes first with less logic
  LOOP_XYZ(i) {
    current_speed[i] = steps_dist_mm[i] * inverse_secs;
    const feedRate_t cs = ABS(current_speed[i]),
                 max_fr = settings.max_feedrate_mm_s[i];
    if (cs > max_fr) NOMORE(speed_factor, max_fr / cs);
  }

  // Limit speed on extruders, if any
  #if EXTRUDERS
    {
      current_speed.e = steps_dist_mm.e * inverse_secs;
      #if HAS_MIXER_SYNC_CHANNEL
        // Move all mixing extruders at the specified rate
        if (mixer.get_current_vtool() == MIXER_AUTORETRACT_TOOL)
          current_speed.e *= MIXING_STEPPERS;
      #endif

      const feedRate_t cs = ABS(current_speed.e),
                   max_fr = settings.max_feedrate_mm_s[E_AXIS_N(extruder)]
                            * TERN(HAS_MIXER_SYNC_CHANNEL, MIXING_STEPPERS, 1);

      if (cs > max_fr) NOMORE(speed_factor, max_fr / cs); //respect max feedrate on any movement (doesn't matter if E axes only or not)

      #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
        const feedRate_t max_vfr = volumetric_extruder_feedrate_limit[extruder]
                                   * TERN(HAS_MIXER_SYNC_CHANNEL, MIXING_STEPPERS, 1);

        // TODO: Doesn't work properly for joined segments. Set MIN_STEPS_PER_SEGMENT 1 as workaround.

        if (block->steps.a || block->steps.b || block->steps.c) {

          if (max_vfr > 0 && cs > max_vfr) {
            NOMORE(speed_factor, max_vfr / cs); // respect volumetric extruder limit (if any)
            /* <-- add a slash to enable
            SERIAL_ECHOPAIR("volumetric extruder limit enforced: ", (cs * CIRCLE_AREA(filament_size[extruder] * 0.5f)));
            SERIAL_ECHOPAIR(" mm^3/s (", cs);
            SERIAL_ECHOPAIR(" mm/s) limited to ", (max_vfr * CIRCLE_AREA(filament_size[extruder] * 0.5f)));
            SERIAL_ECHOPAIR(" mm^3/s (", max_vfr);
            SERIAL_ECHOLNPGM(" mm/s)");
            //*/
          }
        }
      #endif
    }
  #endif

  #ifdef XY_FREQUENCY_LIMIT

    static uint8_t old_direction_bits; // = 0

    if (xy_freq_limit_hz) {
      // Check and limit the xy direction change frequency
      const uint8_t direction_change = block->direction_bits ^ old_direction_bits;
      old_direction_bits = block->direction_bits;
      segment_time_us = LROUND(float(segment_time_us) / speed_factor);

      static int32_t xs0, xs1, xs2, ys0, ys1, ys2;
      if (segment_time_us > xy_freq_min_interval_us)
        xs2 = xs1 = ys2 = ys1 = xy_freq_min_interval_us;
      else {
        xs2 = xs1; xs1 = xs0;
        ys2 = ys1; ys1 = ys0;
      }
      xs0 = TEST(direction_change, X_AXIS) ? segment_time_us : xy_freq_min_interval_us;
      ys0 = TEST(direction_change, Y_AXIS) ? segment_time_us : xy_freq_min_interval_us;

      if (segment_time_us < xy_freq_min_interval_us) {
        const int32_t least_xy_segment_time = _MIN(_MAX(xs0, xs1, xs2), _MAX(ys0, ys1, ys2));
        if (least_xy_segment_time < xy_freq_min_interval_us) {
          float freq_xy_feedrate = (speed_factor * least_xy_segment_time) / xy_freq_min_interval_us;
          NOLESS(freq_xy_feedrate, xy_freq_min_speed_factor);
          NOMORE(speed_factor, freq_xy_feedrate);
        }
      }
    }

  #endif // XY_FREQUENCY_LIMIT

  // Correct the speed
  if (speed_factor < 1.0f) {
    current_speed *= speed_factor;
    block->nominal_rate *= speed_factor;
    block->nominal_speed_sqr = block->nominal_speed_sqr * sq(speed_factor);
  }

  // Compute and limit the acceleration rate for the trapezoid generator.
  const float steps_per_mm = block->step_event_count * inverse_millimeters;
  uint32_t accel;
  if (!block->steps.a && !block->steps.b && !block->steps.c) {
    // convert to: acceleration steps/sec^2
    accel = CEIL(settings.retract_acceleration * steps_per_mm);
    TERN_(LIN_ADVANCE, block->use_advance_lead = false);
  }
  else {
    #define LIMIT_ACCEL_LONG(AXIS,INDX) do{ \
      if (block->steps[AXIS] && max_acceleration_steps_per_s2[AXIS+INDX] < accel) { \
        const uint32_t comp = max_acceleration_steps_per_s2[AXIS+INDX] * block->step_event_count; \
        if (accel * block->steps[AXIS] > comp) accel = comp / block->steps[AXIS]; \
      } \
    }while(0)

    #define LIMIT_ACCEL_FLOAT(AXIS,INDX) do{ \
      if (block->steps[AXIS] && max_acceleration_steps_per_s2[AXIS+INDX] < accel) { \
        const float comp = (float)max_acceleration_steps_per_s2[AXIS+INDX] * (float)block->step_event_count; \
        if ((float)accel * (float)block->steps[AXIS] > comp) accel = comp / (float)block->steps[AXIS]; \
      } \
    }while(0)

    // Start with print or travel acceleration
    accel = CEIL((esteps ? settings.acceleration : settings.travel_acceleration) * steps_per_mm);

    #if ENABLED(LIN_ADVANCE)

      #define MAX_E_JERK(N) TERN(HAS_LINEAR_E_JERK, max_e_jerk[E_INDEX_N(N)], max_jerk.e)

      /**
       * Use LIN_ADVANCE for blocks if all these are true:
       *
       * esteps             : This is a print move, because we checked for A, B, C steps before.
       *
       * extruder_advance_K[active_extruder] : There is an advance factor set for this extruder.
       *
       * de > 0             : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
       */
      block->use_advance_lead =  esteps
                              && extruder_advance_K[active_extruder]
                              && de > 0;

      if (block->use_advance_lead) {
        block->e_D_ratio = (target_float.e - position_float.e) /
          #if IS_KINEMATIC
            block->millimeters
          #else
            SQRT(sq(target_float.x - position_float.x)
               + sq(target_float.y - position_float.y)
               + sq(target_float.z - position_float.z))
          #endif
        ;

        // Check for unusual high e_D ratio to detect if a retract move was combined with the last print move due to min. steps per segment. Never execute this with advance!
        // This assumes no one will use a retract length of 0mm < retr_length < ~0.2mm and no one will print 100mm wide lines using 3mm filament or 35mm wide lines using 1.75mm filament.
        if (block->e_D_ratio > 3.0f)
          block->use_advance_lead = false;
        else {
          const uint32_t max_accel_steps_per_s2 = MAX_E_JERK(extruder) / (extruder_advance_K[active_extruder] * block->e_D_ratio) * steps_per_mm;
          if (TERN0(LA_DEBUG, accel > max_accel_steps_per_s2))
            SERIAL_ECHOLNPGM("Acceleration limited.");
          NOMORE(accel, max_accel_steps_per_s2);
        }
      }
    #endif

    // Limit acceleration per axis
    if (block->step_event_count <= cutoff_long) {
      LIMIT_ACCEL_LONG(A_AXIS, 0);
      LIMIT_ACCEL_LONG(B_AXIS, 0);
      LIMIT_ACCEL_LONG(C_AXIS, 0);
      LIMIT_ACCEL_LONG(E_AXIS, E_INDEX_N(extruder));
    }
    else {
      LIMIT_ACCEL_FLOAT(A_AXIS, 0);
      LIMIT_ACCEL_FLOAT(B_AXIS, 0);
      LIMIT_ACCEL_FLOAT(C_AXIS, 0);
      LIMIT_ACCEL_FLOAT(E_AXIS, E_INDEX_N(extruder));
    }
  }
  block->acceleration_steps_per_s2 = accel;
  block->acceleration = accel / steps_per_mm;
  #if DISABLED(S_CURVE_ACCELERATION)
    block->acceleration_rate = (uint32_t)(accel * (4096.0f * 4096.0f / (STEPPER_TIMER_RATE)));
  #endif
  #if ENABLED(LIN_ADVANCE)
    if (block->use_advance_lead) {
      block->advance_speed = (STEPPER_TIMER_RATE) / (extruder_advance_K[active_extruder] * block->e_D_ratio * block->acceleration * settings.axis_steps_per_mm[E_AXIS_N(extruder)]);
      #if ENABLED(LA_DEBUG)
        if (extruder_advance_K[active_extruder] * block->e_D_ratio * block->acceleration * 2 < SQRT(block->nominal_speed_sqr) * block->e_D_ratio)
          SERIAL_ECHOLNPGM("More than 2 steps per eISR loop executed.");
        if (block->advance_speed < 200)
          SERIAL_ECHOLNPGM("eISR running at > 10kHz.");
      #endif
    }
  #endif

  float vmax_junction_sqr; // Initial limit on the segment entry velocity (mm/s)^2

  #if HAS_JUNCTION_DEVIATION
    /**
     * Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
     * Let a circle be tangent to both previous and current path line segments, where the junction
     * deviation is defined as the distance from the junction to the closest edge of the circle,
     * colinear with the circle center. The circular segment joining the two paths represents the
     * path of centripetal acceleration. Solve for max velocity based on max acceleration about the
     * radius of the circle, defined indirectly by junction deviation. This may be also viewed as
     * path width or max_jerk in the previous Grbl version. This approach does not actually deviate
     * from path, but used as a robust way to compute cornering speeds, as it takes into account the
     * nonlinearities of both the junction angle and junction velocity.
     *
     * NOTE: If the junction deviation value is finite, Grbl executes the motions in an exact path
     * mode (G61). If the junction deviation value is zero, Grbl will execute the motion in an exact
     * stop mode (G61.1) manner. In the future, if continuous mode (G64) is desired, the math here
     * is exactly the same. Instead of motioning all the way to junction point, the machine will
     * just follow the arc circle defined here. The Arduino doesn't have the CPU cycles to perform
     * a continuous mode path, but ARM-based microcontrollers most certainly do.
     *
     * NOTE: The max junction speed is a fixed value, since machine acceleration limits cannot be
     * changed dynamically during operation nor can the line move geometry. This must be kept in
     * memory in the event of a feedrate override changing the nominal speeds of blocks, which can
     * change the overall maximum entry speed conditions of all blocks.
     *
     * #######
     * https://github.com/MarlinFirmware/Marlin/issues/10341#issuecomment-388191754
     *
     * hoffbaked: on May 10 2018 tuned and improved the GRBL algorithm for Marlin:
          Okay! It seems to be working good. I somewhat arbitrarily cut it off at 1mm
          on then on anything with less sides than an octagon. With this, and the
          reverse pass actually recalculating things, a corner acceleration value
          of 1000 junction deviation of .05 are pretty reasonable. If the cycles
          can be spared, a better acos could be used. For all I know, it may be
          already calculated in a different place. */

    // Unit vector of previous path line segment
    static xyze_float_t prev_unit_vec;

    xyze_float_t unit_vec =
      #if HAS_DIST_MM_ARG
        cart_dist_mm
      #else
        { steps_dist_mm.x, steps_dist_mm.y, steps_dist_mm.z, steps_dist_mm.e }
      #endif
    ;

    /**
     * On CoreXY the length of the vector [A,B] is SQRT(2) times the length of the head movement vector [X,Y].
     * So taking Z and E into account, we cannot scale to a unit vector with "inverse_millimeters".
     * => normalize the complete junction vector.
     * Elsewise, when needed JD will factor-in the E component
     */
    if (EITHER(IS_CORE, MARKFORGED_XY) || esteps > 0)
      normalize_junction_vector(unit_vec);  // Normalize with XYZE components
    else
      unit_vec *= inverse_millimeters;      // Use pre-calculated (1 / SQRT(x^2 + y^2 + z^2))

    // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
    if (moves_queued && !UNEAR_ZERO(previous_nominal_speed_sqr)) {
      // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
      // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
      float junction_cos_theta = (-prev_unit_vec.x * unit_vec.x) + (-prev_unit_vec.y * unit_vec.y)
                               + (-prev_unit_vec.z * unit_vec.z) + (-prev_unit_vec.e * unit_vec.e);

      // NOTE: Computed without any expensive trig, sin() or acos(), by trig half angle identity of cos(theta).
      if (junction_cos_theta > 0.999999f) {
        // For a 0 degree acute junction, just set minimum junction speed.
        vmax_junction_sqr = sq(float(MINIMUM_PLANNER_SPEED));
      }
      else {
        NOLESS(junction_cos_theta, -0.999999f); // Check for numerical round-off to avoid divide by zero.

        // Convert delta vector to unit vector
        xyze_float_t junction_unit_vec = unit_vec - prev_unit_vec;
        normalize_junction_vector(junction_unit_vec);

        const float junction_acceleration = limit_value_by_axis_maximum(block->acceleration, junction_unit_vec),
                    sin_theta_d2 = SQRT(0.5f * (1.0f - junction_cos_theta)); // Trig half angle identity. Always positive.

        vmax_junction_sqr = junction_acceleration * junction_deviation_mm * sin_theta_d2 / (1.0f - sin_theta_d2);

        #if ENABLED(JD_HANDLE_SMALL_SEGMENTS)

          // For small moves with >135° junction (octagon) find speed for approximate arc
          if (block->millimeters < 1 && junction_cos_theta < -0.7071067812f) {

            #if ENABLED(JD_USE_MATH_ACOS)

              #error "TODO: Inline maths with the MCU / FPU."

            #elif ENABLED(JD_USE_LOOKUP_TABLE)

              // Fast acos approximation (max. error +-0.01 rads)
              // Based on LUT table and linear interpolation

              /**
               *  // Generate the JD Lookup Table
               *  constexpr float c = 1.00751495f; // Correction factor to center error around 0
               *  for (int i = 0; i < jd_lut_count - 1; ++i) {
               *    const float x0 = (sq(i) - 1) / sq(i),
               *                y0 = acos(x0) * (i == 0 ? 1 : c),
               *                x1 = i < jd_lut_count - 1 ?  0.5 * x0 + 0.5 : 0.999999f,
               *                y1 = acos(x1) * (i < jd_lut_count - 1 ? c : 1);
               *    jd_lut_k[i] = (y0 - y1) / (x0 - x1);
               *    jd_lut_b[i] = (y1 * x0 - y0 * x1) / (x0 - x1);
               *  }
               *
               *  // Compute correction factor (Set c to 1.0f first!)
               *  float min = INFINITY, max = -min;
               *  for (float t = 0; t <= 1; t += 0.0003f) {
               *    const float e = acos(t) / approx(t);
               *    if (isfinite(e)) {
               *      if (e < min) min = e;
               *      if (e > max) max = e;
               *    }
               *  }
               *  fprintf(stderr, "%.9gf, ", (min + max) / 2);
               */
              static constexpr int16_t  jd_lut_count = 16;
              static constexpr uint16_t jd_lut_tll   = _BV(jd_lut_count - 1);
              static constexpr int16_t  jd_lut_tll0  = __builtin_clz(jd_lut_tll) + 1; // i.e., 16 - jd_lut_count + 1
              static constexpr float jd_lut_k[jd_lut_count] PROGMEM = {
                -1.03145837f, -1.30760646f, -1.75205851f, -2.41705704f,
                -3.37769222f, -4.74888992f, -6.69649887f, -9.45661736f,
                -13.3640480f, -18.8928222f, -26.7136841f, -37.7754593f,
                -53.4201813f, -75.5458374f, -106.836761f, -218.532821f };
              static constexpr float jd_lut_b[jd_lut_count] PROGMEM = {
                 1.57079637f,  1.70887053f,  2.04220939f,  2.62408352f,
                 3.52467871f,  4.85302639f,  6.77020454f,  9.50875854f,
                 13.4009285f,  18.9188995f,  26.7321243f,  37.7885055f,
                 53.4293975f,  75.5523529f,  106.841369f,  218.534011f };

              const float neg = junction_cos_theta < 0 ? -1 : 1,
                          t = neg * junction_cos_theta;

              const int16_t idx = (t < 0.00000003f) ? 0 : __builtin_clz(uint16_t((1.0f - t) * jd_lut_tll)) - jd_lut_tll0;

              float junction_theta = t * pgm_read_float(&jd_lut_k[idx]) + pgm_read_float(&jd_lut_b[idx]);
              if (neg > 0) junction_theta = RADIANS(180) - junction_theta; // acos(-t)

            #else

              // Fast acos(-t) approximation (max. error +-0.033rad = 1.89°)
              // Based on MinMax polynomial published by W. Randolph Franklin, see
              // https://wrf.ecse.rpi.edu/Research/Short_Notes/arcsin/onlyelem.html
              //  acos( t) = pi / 2 - asin(x)
              //  acos(-t) = pi - acos(t) ... pi / 2 + asin(x)

              const float neg = junction_cos_theta < 0 ? -1 : 1,
                          t = neg * junction_cos_theta,
                          asinx =       0.032843707f
                                + t * (-1.451838349f
                                + t * ( 29.66153956f
                                + t * (-131.1123477f
                                + t * ( 262.8130562f
                                + t * (-242.7199627f
                                + t * ( 84.31466202f ) ))))),
                          junction_theta = RADIANS(90) + neg * asinx; // acos(-t)

              // NOTE: junction_theta bottoms out at 0.033 which avoids divide by 0.

            #endif

            const float limit_sqr = (block->millimeters * junction_acceleration) / junction_theta;
            NOMORE(vmax_junction_sqr, limit_sqr);
          }

        #endif // JD_HANDLE_SMALL_SEGMENTS
      }

      // Get the lowest speed
      vmax_junction_sqr = _MIN(vmax_junction_sqr, block->nominal_speed_sqr, previous_nominal_speed_sqr);
    }
    else // Init entry speed to zero. Assume it starts from rest. Planner will correct this later.
      vmax_junction_sqr = 0;

    prev_unit_vec = unit_vec;

  #endif

  #ifdef USE_CACHED_SQRT
    #define CACHED_SQRT(N, V) \
      static float saved_V, N; \
      if (V != saved_V) { N = SQRT(V); saved_V = V; }
  #else
    #define CACHED_SQRT(N, V) const float N = SQRT(V)
  #endif

  #if HAS_CLASSIC_JERK

    /**
     * Adapted from Průša MKS firmware
     * https://github.com/prusa3d/Prusa-Firmware
     */
    CACHED_SQRT(nominal_speed, block->nominal_speed_sqr);

    // Exit speed limited by a jerk to full halt of a previous last segment
    static float previous_safe_speed;

    // Start with a safe speed (from which the machine may halt to stop immediately).
    float safe_speed = nominal_speed;

    #ifndef TRAVEL_EXTRA_XYJERK
      #define TRAVEL_EXTRA_XYJERK 0
    #endif
    const float extra_xyjerk = (de <= 0) ? TRAVEL_EXTRA_XYJERK : 0;

    uint8_t limited = 0;
    TERN(HAS_LINEAR_E_JERK, LOOP_XYZ, LOOP_XYZE)(i) {
      const float jerk = ABS(current_speed[i]),   // cs : Starting from zero, change in speed for this axis
                  maxj = (max_jerk[i] + (i == X_AXIS || i == Y_AXIS ? extra_xyjerk : 0.0f)); // mj : The max jerk setting for this axis
      if (jerk > maxj) {                          // cs > mj : New current speed too fast?
        if (limited) {                            // limited already?
          const float mjerk = nominal_speed * maxj; // ns*mj
          if (jerk * safe_speed > mjerk) safe_speed = mjerk / jerk; // ns*mj/cs
        }
        else {
          safe_speed *= maxj / jerk;              // Initial limit: ns*mj/cs
          ++limited;                              // Initially limited
        }
      }
    }

    float vmax_junction;
    if (moves_queued && !UNEAR_ZERO(previous_nominal_speed_sqr)) {
      // Estimate a maximum velocity allowed at a joint of two successive segments.
      // If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
      // then the machine is not coasting anymore and the safe entry / exit velocities shall be used.

      // Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
      float v_factor = 1;
      limited = 0;

      // The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum.
      // Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
      CACHED_SQRT(previous_nominal_speed, previous_nominal_speed_sqr);

      float smaller_speed_factor = 1.0f;
      if (nominal_speed < previous_nominal_speed) {
        vmax_junction = nominal_speed;
        smaller_speed_factor = vmax_junction / previous_nominal_speed;
      }
      else
        vmax_junction = previous_nominal_speed;

      // Now limit the jerk in all axes.
      TERN(HAS_LINEAR_E_JERK, LOOP_XYZ, LOOP_XYZE)(axis) {
        // Limit an axis. We have to differentiate: coasting, reversal of an axis, full stop.
        float v_exit = previous_speed[axis] * smaller_speed_factor,
              v_entry = current_speed[axis];
        if (limited) {
          v_exit *= v_factor;
          v_entry *= v_factor;
        }

        // Calculate jerk depending on whether the axis is coasting in the same direction or reversing.
        const float jerk = (v_exit > v_entry)
            ? //                                  coasting             axis reversal
              ( (v_entry > 0 || v_exit < 0) ? (v_exit - v_entry) : _MAX(v_exit, -v_entry) )
            : // v_exit <= v_entry                coasting             axis reversal
              ( (v_entry < 0 || v_exit > 0) ? (v_entry - v_exit) : _MAX(-v_exit, v_entry) );

        const float maxj = (max_jerk[axis] + (axis == X_AXIS || axis == Y_AXIS ? extra_xyjerk : 0.0f));

        if (jerk > maxj) {
          v_factor *= maxj / jerk;
          ++limited;
        }
      }
      if (limited) vmax_junction *= v_factor;
      // Now the transition velocity is known, which maximizes the shared exit / entry velocity while
      // respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints.
      const float vmax_junction_threshold = vmax_junction * 0.99f;
      if (previous_safe_speed > vmax_junction_threshold && safe_speed > vmax_junction_threshold)
        vmax_junction = safe_speed;
    }
    else
      vmax_junction = safe_speed;

    previous_safe_speed = safe_speed;

    #if HAS_JUNCTION_DEVIATION
      NOMORE(vmax_junction_sqr, sq(vmax_junction));   // Throttle down to max speed
    #else
      vmax_junction_sqr = sq(vmax_junction);          // Go up or down to the new speed
    #endif

  #endif // Classic Jerk Limiting

  // Max entry speed of this block equals the max exit speed of the previous block.
  block->max_entry_speed_sqr = vmax_junction_sqr;

  // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
  const float v_allowable_sqr = max_allowable_speed_sqr(-block->acceleration, sq(float(MINIMUM_PLANNER_SPEED)), block->millimeters);

  // If we are trying to add a split block, start with the
  // max. allowed speed to avoid an interrupted first move.
  block->entry_speed_sqr = !split_move ? sq(float(MINIMUM_PLANNER_SPEED)) : _MIN(vmax_junction_sqr, v_allowable_sqr);

  // Initialize planner efficiency flags
  // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  // the current block and next block junction speeds are guaranteed to always be at their maximum
  // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  // the reverse and forward planners, the corresponding block junction speed will always be at the
  // the maximum junction speed and may always be ignored for any speed reduction checks.
  block->flag |= block->nominal_speed_sqr <= v_allowable_sqr ? BLOCK_FLAG_RECALCULATE | BLOCK_FLAG_NOMINAL_LENGTH : BLOCK_FLAG_RECALCULATE;

  // Update previous path unit_vector and nominal speed
  previous_speed = current_speed;
  previous_nominal_speed_sqr = block->nominal_speed_sqr;

  position = target;  // Update the position

  TERN_(HAS_POSITION_FLOAT, position_float = target_float);
  TERN_(GRADIENT_MIX, mixer.gradient_control(target_float.z));
  TERN_(POWER_LOSS_RECOVERY, block->sdpos = recovery.command_sdpos());

  return true;        // Movement was accepted

} // _populate_block()

/**
 * Planner::buffer_sync_block
 * Add a block to the buffer that just updates the position
 */
void Planner::buffer_sync_block() {
  // Wait for the next available block
  uint8_t next_buffer_head;
  block_t * const block = get_next_free_block(next_buffer_head);

  // Clear block
  memset(block, 0, sizeof(block_t));

  block->flag = BLOCK_FLAG_SYNC_POSITION;

  block->position = position;

  // If this is the first added movement, reload the delay, otherwise, cancel it.
  if (block_buffer_head == block_buffer_tail) {
    // If it was the first queued block, restart the 1st block delivery delay, to
    // give the planner an opportunity to queue more movements and plan them
    // As there are no queued movements, the Stepper ISR will not touch this
    // variable, so there is no risk setting this here (but it MUST be done
    // before the following line!!)
    delay_before_delivering = BLOCK_DELAY_FOR_1ST_MOVE;
  }

  block_buffer_head = next_buffer_head;

  stepper.wake_up();
} // buffer_sync_block()

/**
 * Planner::buffer_segment
 *
 * Add a new linear movement to the buffer in axis units.
 *
 * Leveling and kinematics should be applied ahead of calling this.
 *
 *  a,b,c,e     - target positions in mm and/or degrees
 *  fr_mm_s     - (target) speed of the move
 *  extruder    - target extruder
 *  millimeters - the length of the movement, if known
 *
 * Return 'false' if no segment was queued due to cleaning, cold extrusion, full queue, etc.
 */
bool Planner::buffer_segment(const float &a, const float &b, const float &c, const float &e
  #if HAS_DIST_MM_ARG
    , const xyze_float_t &cart_dist_mm
  #endif
  , const feedRate_t &fr_mm_s, const uint8_t extruder, const float &millimeters/*=0.0*/
) {

  // If we are cleaning, do not accept queuing of movements
  if (cleaning_buffer_counter) return false;

  // When changing extruders recalculate steps corresponding to the E position
  #if ENABLED(DISTINCT_E_FACTORS)
    if (last_extruder != extruder && settings.axis_steps_per_mm[E_AXIS_N(extruder)] != settings.axis_steps_per_mm[E_AXIS_N(last_extruder)]) {
      position.e = LROUND(position.e * settings.axis_steps_per_mm[E_AXIS_N(extruder)] * steps_to_mm[E_AXIS_N(last_extruder)]);
      last_extruder = extruder;
    }
  #endif

  // The target position of the tool in absolute steps
  // Calculate target position in absolute steps
  const abce_long_t target = {
    int32_t(LROUND(a * settings.axis_steps_per_mm[A_AXIS])),
    int32_t(LROUND(b * settings.axis_steps_per_mm[B_AXIS])),
    int32_t(LROUND(c * settings.axis_steps_per_mm[C_AXIS])),
    int32_t(LROUND(e * settings.axis_steps_per_mm[E_AXIS_N(extruder)]))
  };

  #if HAS_POSITION_FLOAT
    const xyze_pos_t target_float = { a, b, c, e };
  #endif

  // DRYRUN prevents E moves from taking place
  if (DEBUGGING(DRYRUN) || TERN0(CANCEL_OBJECTS, cancelable.skipping)) {
    position.e = target.e;
    TERN_(HAS_POSITION_FLOAT, position_float.e = e);
  }

  /* <-- add a slash to enable
    SERIAL_ECHOPAIR("  buffer_segment FR:", fr_mm_s);
    #if IS_KINEMATIC
      SERIAL_ECHOPAIR(" A:", a);
      SERIAL_ECHOPAIR(" (", position.a);
      SERIAL_ECHOPAIR("->", target.a);
      SERIAL_ECHOPAIR(") B:", b);
    #else
      SERIAL_ECHOPAIR_P(SP_X_LBL, a);
      SERIAL_ECHOPAIR(" (", position.x);
      SERIAL_ECHOPAIR("->", target.x);
      SERIAL_CHAR(')');
      SERIAL_ECHOPAIR_P(SP_Y_LBL, b);
    #endif
    SERIAL_ECHOPAIR(" (", position.y);
    SERIAL_ECHOPAIR("->", target.y);
    #if ENABLED(DELTA)
      SERIAL_ECHOPAIR(") C:", c);
    #else
      SERIAL_CHAR(')');
      SERIAL_ECHOPAIR_P(SP_Z_LBL, c);
    #endif
    SERIAL_ECHOPAIR(" (", position.z);
    SERIAL_ECHOPAIR("->", target.z);
    SERIAL_CHAR(')');
    SERIAL_ECHOPAIR_P(SP_E_LBL, e);
    SERIAL_ECHOPAIR(" (", position.e);
    SERIAL_ECHOPAIR("->", target.e);
    SERIAL_ECHOLNPGM(")");
  //*/

  // Queue the movement. Return 'false' if the move was not queued.
  if (!_buffer_steps(target
      #if HAS_POSITION_FLOAT
        , target_float
      #endif
      #if HAS_DIST_MM_ARG
        , cart_dist_mm
      #endif
      , fr_mm_s, extruder, millimeters)
  ) return false;

  stepper.wake_up();
  return true;
} // buffer_segment()

/**
 * Add a new linear movement to the buffer.
 * The target is cartesian. It's translated to
 * delta/scara if needed.
 *
 *  rx,ry,rz,e   - target position in mm or degrees
 *  fr_mm_s      - (target) speed of the move (mm/s)
 *  extruder     - target extruder
 *  millimeters  - the length of the movement, if known
 *  inv_duration - the reciprocal if the duration of the movement, if known (kinematic only if feeedrate scaling is enabled)
 */
bool Planner::buffer_line(const float &rx, const float &ry, const float &rz, const float &e, const feedRate_t &fr_mm_s, const uint8_t extruder, const float millimeters
  #if ENABLED(SCARA_FEEDRATE_SCALING)
    , const float &inv_duration
  #endif
) {
  xyze_pos_t machine = { rx, ry, rz, e };
  TERN_(HAS_POSITION_MODIFIERS, apply_modifiers(machine));

  #if IS_KINEMATIC

    #if HAS_JUNCTION_DEVIATION
      const xyze_pos_t cart_dist_mm = {
        rx - position_cart.x, ry - position_cart.y,
        rz - position_cart.z, e  - position_cart.e
      };
    #else
      const xyz_pos_t cart_dist_mm = { rx - position_cart.x, ry - position_cart.y, rz - position_cart.z };
    #endif

    float mm = millimeters;
    if (mm == 0.0)
      mm = (cart_dist_mm.x != 0.0 || cart_dist_mm.y != 0.0) ? cart_dist_mm.magnitude() : ABS(cart_dist_mm.z);

    // Cartesian XYZ to kinematic ABC, stored in global 'delta'
    inverse_kinematics(machine);

    #if ENABLED(SCARA_FEEDRATE_SCALING)
      // For SCARA scale the feed rate from mm/s to degrees/s
      // i.e., Complete the angular vector in the given time.
      const float duration_recip = inv_duration ?: fr_mm_s / mm;
      const xyz_pos_t diff = delta - position_float;
      const feedRate_t feedrate = diff.magnitude() * duration_recip;
    #else
      const feedRate_t feedrate = fr_mm_s;
    #endif
    if (buffer_segment(delta.a, delta.b, delta.c, machine.e
      #if HAS_JUNCTION_DEVIATION
        , cart_dist_mm
      #endif
      , feedrate, extruder, mm
    )) {
      position_cart.set(rx, ry, rz, e);
      return true;
    }
    else
      return false;
  #else
    return buffer_segment(machine, fr_mm_s, extruder, millimeters);
  #endif
} // buffer_line()

#if ENABLED(DIRECT_STEPPING)

  void Planner::buffer_page(const page_idx_t page_idx, const uint8_t extruder, const uint16_t num_steps) {
    if (!last_page_step_rate) {
      kill(GET_TEXT(MSG_BAD_PAGE_SPEED));
      return;
    }

    uint8_t next_buffer_head;
    block_t * const block = get_next_free_block(next_buffer_head);

    block->flag = BLOCK_FLAG_IS_PAGE;

    #if FAN_COUNT > 0
      FANS_LOOP(i) block->fan_speed[i] = thermalManager.fan_speed[i];
    #endif

    #if HAS_MULTI_EXTRUDER
      block->extruder = extruder;
    #endif

    block->page_idx = page_idx;

    block->step_event_count = num_steps;
    block->initial_rate =
      block->final_rate =
      block->nominal_rate = last_page_step_rate; // steps/s

    block->accelerate_until = 0;
    block->decelerate_after = block->step_event_count;

    // Will be set to last direction later if directional format.
    block->direction_bits = 0;

    #define PAGE_UPDATE_DIR(AXIS) \
      if (!last_page_dir[_AXIS(AXIS)]) SBI(block->direction_bits, _AXIS(AXIS));

    if (!DirectStepping::Config::DIRECTIONAL) {
      PAGE_UPDATE_DIR(X);
      PAGE_UPDATE_DIR(Y);
      PAGE_UPDATE_DIR(Z);
      PAGE_UPDATE_DIR(E);
    }

    // If this is the first added movement, reload the delay, otherwise, cancel it.
    if (block_buffer_head == block_buffer_tail) {
      // If it was the first queued block, restart the 1st block delivery delay, to
      // give the planner an opportunity to queue more movements and plan them
      // As there are no queued movements, the Stepper ISR will not touch this
      // variable, so there is no risk setting this here (but it MUST be done
      // before the following line!!)
      delay_before_delivering = BLOCK_DELAY_FOR_1ST_MOVE;
    }

    // Move buffer head
    block_buffer_head = next_buffer_head;

    enable_all_steppers();
    stepper.wake_up();
  }

#endif // DIRECT_STEPPING

/**
 * Directly set the planner ABC position (and stepper positions)
 * converting mm (or angles for SCARA) into steps.
 *
 * The provided ABC position is in machine units.
 */

void Planner::set_machine_position_mm(const float &a, const float &b, const float &c, const float &e) {
  TERN_(DISTINCT_E_FACTORS, last_extruder = active_extruder);
  TERN_(HAS_POSITION_FLOAT, position_float.set(a, b, c, e));
  position.set(LROUND(a * settings.axis_steps_per_mm[A_AXIS]),
               LROUND(b * settings.axis_steps_per_mm[B_AXIS]),
               LROUND(c * settings.axis_steps_per_mm[C_AXIS]),
               LROUND(e * settings.axis_steps_per_mm[E_AXIS_N(active_extruder)]));
  if (has_blocks_queued()) {
    //previous_nominal_speed_sqr = 0.0; // Reset planner junction speeds. Assume start from rest.
    //previous_speed.reset();
    buffer_sync_block();
  }
  else
    stepper.set_position(position);
}

void Planner::set_position_mm(const float &rx, const float &ry, const float &rz, const float &e) {
  xyze_pos_t machine = { rx, ry, rz, e };
  #if HAS_POSITION_MODIFIERS
    apply_modifiers(machine, true);
  #endif
  #if IS_KINEMATIC
    position_cart.set(rx, ry, rz, e);
    inverse_kinematics(machine);
    set_machine_position_mm(delta.a, delta.b, delta.c, machine.e);
  #else
    set_machine_position_mm(machine);
  #endif
}

/**
 * Setters for planner position (also setting stepper position).
 */
void Planner::set_e_position_mm(const float &e) {
  const uint8_t axis_index = E_AXIS_N(active_extruder);
  TERN_(DISTINCT_E_FACTORS, last_extruder = active_extruder);

  const float e_new = e - TERN0(FWRETRACT, fwretract.current_retract[active_extruder]);
  position.e = LROUND(settings.axis_steps_per_mm[axis_index] * e_new);
  TERN_(HAS_POSITION_FLOAT, position_float.e = e_new);
  TERN_(IS_KINEMATIC, position_cart.e = e);

  if (has_blocks_queued())
    buffer_sync_block();
  else
    stepper.set_axis_position(E_AXIS, position.e);
}

// Recalculate the steps/s^2 acceleration rates, based on the mm/s^2
void Planner::reset_acceleration_rates() {
  #if ENABLED(DISTINCT_E_FACTORS)
    #define AXIS_CONDITION (i < E_AXIS || i == E_AXIS_N(active_extruder))
  #else
    #define AXIS_CONDITION true
  #endif
  uint32_t highest_rate = 1;
  LOOP_XYZE_N(i) {
    max_acceleration_steps_per_s2[i] = settings.max_acceleration_mm_per_s2[i] * settings.axis_steps_per_mm[i];
    if (AXIS_CONDITION) NOLESS(highest_rate, max_acceleration_steps_per_s2[i]);
  }
  cutoff_long = 4294967295UL / highest_rate; // 0xFFFFFFFFUL
  TERN_(HAS_LINEAR_E_JERK, recalculate_max_e_jerk());
}

// Recalculate position, steps_to_mm if settings.axis_steps_per_mm changes!
void Planner::refresh_positioning() {
  LOOP_XYZE_N(i) steps_to_mm[i] = 1.0f / settings.axis_steps_per_mm[i];
  set_position_mm(current_position);
  reset_acceleration_rates();
}

inline void limit_and_warn(float &val, const uint8_t axis, PGM_P const setting_name, const xyze_float_t &max_limit) {
  const uint8_t lim_axis = axis > E_AXIS ? E_AXIS : axis;
  const float before = val;
  LIMIT(val, 0.1, max_limit[lim_axis]);
  if (before != val) {
    SERIAL_CHAR(axis_codes[lim_axis]);
    SERIAL_ECHOPGM(" Max ");
    serialprintPGM(setting_name);
    SERIAL_ECHOLNPAIR(" limited to ", val);
  }
}

void Planner::set_max_acceleration(const uint8_t axis, float targetValue) {
  #if ENABLED(LIMITED_MAX_ACCEL_EDITING)
    #ifdef MAX_ACCEL_EDIT_VALUES
      constexpr xyze_float_t max_accel_edit = MAX_ACCEL_EDIT_VALUES;
      const xyze_float_t &max_acc_edit_scaled = max_accel_edit;
    #else
      constexpr xyze_float_t max_accel_edit = DEFAULT_MAX_ACCELERATION;
      const xyze_float_t max_acc_edit_scaled = max_accel_edit * 2;
    #endif
    limit_and_warn(targetValue, axis, PSTR("Acceleration"), max_acc_edit_scaled);
  #endif
  settings.max_acceleration_mm_per_s2[axis] = targetValue;

  // Update steps per s2 to agree with the units per s2 (since they are used in the planner)
  reset_acceleration_rates();
}

void Planner::set_max_feedrate(const uint8_t axis, float targetValue) {
  #if ENABLED(LIMITED_MAX_FR_EDITING)
    #ifdef MAX_FEEDRATE_EDIT_VALUES
      constexpr xyze_float_t max_fr_edit = MAX_FEEDRATE_EDIT_VALUES;
      const xyze_float_t &max_fr_edit_scaled = max_fr_edit;
    #else
      constexpr xyze_float_t max_fr_edit = DEFAULT_MAX_FEEDRATE;
      const xyze_float_t max_fr_edit_scaled = max_fr_edit * 2;
    #endif
    limit_and_warn(targetValue, axis, PSTR("Feedrate"), max_fr_edit_scaled);
  #endif
  settings.max_feedrate_mm_s[axis] = targetValue;
}

void Planner::set_max_jerk(const AxisEnum axis, float targetValue) {
  #if HAS_CLASSIC_JERK
    #if ENABLED(LIMITED_JERK_EDITING)
      constexpr xyze_float_t max_jerk_edit =
        #ifdef MAX_JERK_EDIT_VALUES
          MAX_JERK_EDIT_VALUES
        #else
          { (DEFAULT_XJERK) * 2, (DEFAULT_YJERK) * 2,
            (DEFAULT_ZJERK) * 2, (DEFAULT_EJERK) * 2 }
        #endif
      ;
      limit_and_warn(targetValue, axis, PSTR("Jerk"), max_jerk_edit);
    #endif
    max_jerk[axis] = targetValue;
  #else
    UNUSED(axis); UNUSED(targetValue);
  #endif
}

#if HAS_WIRED_LCD

  uint16_t Planner::block_buffer_runtime() {
    #ifdef __AVR__
      // Protect the access to the variable. Only required for AVR, as
      //  any 32bit CPU offers atomic access to 32bit variables
      const bool was_enabled = stepper.suspend();
    #endif

    uint32_t bbru = block_buffer_runtime_us;

    #ifdef __AVR__
      // Reenable Stepper ISR
      if (was_enabled) stepper.wake_up();
    #endif

    // To translate µs to ms a division by 1000 would be required.
    // We introduce 2.4% error here by dividing by 1024.
    // Doesn't matter because block_buffer_runtime_us is already too small an estimation.
    bbru >>= 10;
    // limit to about a minute.
    NOMORE(bbru, 0x0000FFFFUL);
    return bbru;
  }

  void Planner::clear_block_buffer_runtime() {
    #ifdef __AVR__
      // Protect the access to the variable. Only required for AVR, as
      //  any 32bit CPU offers atomic access to 32bit variables
      const bool was_enabled = stepper.suspend();
    #endif

    block_buffer_runtime_us = 0;

    #ifdef __AVR__
      // Reenable Stepper ISR
      if (was_enabled) stepper.wake_up();
    #endif
  }

#endif

#if ENABLED(AUTOTEMP)

void Planner::autotemp_update() {
  #if ENABLED(AUTOTEMP_PROPORTIONAL)
    const int16_t target = thermalManager.degTargetHotend(active_extruder);
    autotemp_min = target + AUTOTEMP_MIN_P;
    autotemp_max = target + AUTOTEMP_MAX_P;
  #endif
  autotemp_factor = TERN(AUTOTEMP_PROPORTIONAL, AUTOTEMP_FACTOR_P, 0);
  autotemp_enabled = autotemp_factor != 0;
}

  void Planner::autotemp_M104_M109() {

    #if ENABLED(AUTOTEMP_PROPORTIONAL)
      const int16_t target = thermalManager.degTargetHotend(active_extruder);
      autotemp_min = target + AUTOTEMP_MIN_P;
      autotemp_max = target + AUTOTEMP_MAX_P;
    #endif

    if (parser.seenval('S')) autotemp_min = parser.value_celsius();
    if (parser.seenval('B')) autotemp_max = parser.value_celsius();

    // When AUTOTEMP_PROPORTIONAL is enabled, F0 disables autotemp.
    // Normally, leaving off F also disables autotemp.
    autotemp_factor = parser.seen('F') ? parser.value_float() : TERN(AUTOTEMP_PROPORTIONAL, AUTOTEMP_FACTOR_P, 0);
    autotemp_enabled = autotemp_factor != 0;
  }
#endif