aboutsummaryrefslogtreecommitdiff
path: root/vendor/image/src/codecs/jpeg/encoder.rs
diff options
context:
space:
mode:
authorValentin Popov <valentin@popov.link>2024-07-19 15:37:58 +0300
committerValentin Popov <valentin@popov.link>2024-07-19 15:37:58 +0300
commita990de90fe41456a23e58bd087d2f107d321f3a1 (patch)
tree15afc392522a9e85dc3332235e311b7d39352ea9 /vendor/image/src/codecs/jpeg/encoder.rs
parent3d48cd3f81164bbfc1a755dc1d4a9a02f98c8ddd (diff)
downloadfparkan-a990de90fe41456a23e58bd087d2f107d321f3a1.tar.xz
fparkan-a990de90fe41456a23e58bd087d2f107d321f3a1.zip
Deleted vendor folder
Diffstat (limited to 'vendor/image/src/codecs/jpeg/encoder.rs')
-rw-r--r--vendor/image/src/codecs/jpeg/encoder.rs1074
1 files changed, 0 insertions, 1074 deletions
diff --git a/vendor/image/src/codecs/jpeg/encoder.rs b/vendor/image/src/codecs/jpeg/encoder.rs
deleted file mode 100644
index edb2a05..0000000
--- a/vendor/image/src/codecs/jpeg/encoder.rs
+++ /dev/null
@@ -1,1074 +0,0 @@
-#![allow(clippy::too_many_arguments)]
-
-use std::borrow::Cow;
-use std::convert::TryFrom;
-use std::io::{self, Write};
-
-use crate::error::{
- ImageError, ImageResult, ParameterError, ParameterErrorKind, UnsupportedError,
- UnsupportedErrorKind,
-};
-use crate::image::{ImageEncoder, ImageFormat};
-use crate::utils::clamp;
-use crate::{ColorType, GenericImageView, ImageBuffer, Luma, LumaA, Pixel, Rgb, Rgba};
-
-use super::entropy::build_huff_lut_const;
-use super::transform;
-use crate::traits::PixelWithColorType;
-
-// Markers
-// Baseline DCT
-static SOF0: u8 = 0xC0;
-// Huffman Tables
-static DHT: u8 = 0xC4;
-// Start of Image (standalone)
-static SOI: u8 = 0xD8;
-// End of image (standalone)
-static EOI: u8 = 0xD9;
-// Start of Scan
-static SOS: u8 = 0xDA;
-// Quantization Tables
-static DQT: u8 = 0xDB;
-// Application segments start and end
-static APP0: u8 = 0xE0;
-
-// section K.1
-// table K.1
-#[rustfmt::skip]
-static STD_LUMA_QTABLE: [u8; 64] = [
- 16, 11, 10, 16, 24, 40, 51, 61,
- 12, 12, 14, 19, 26, 58, 60, 55,
- 14, 13, 16, 24, 40, 57, 69, 56,
- 14, 17, 22, 29, 51, 87, 80, 62,
- 18, 22, 37, 56, 68, 109, 103, 77,
- 24, 35, 55, 64, 81, 104, 113, 92,
- 49, 64, 78, 87, 103, 121, 120, 101,
- 72, 92, 95, 98, 112, 100, 103, 99,
-];
-
-// table K.2
-#[rustfmt::skip]
-static STD_CHROMA_QTABLE: [u8; 64] = [
- 17, 18, 24, 47, 99, 99, 99, 99,
- 18, 21, 26, 66, 99, 99, 99, 99,
- 24, 26, 56, 99, 99, 99, 99, 99,
- 47, 66, 99, 99, 99, 99, 99, 99,
- 99, 99, 99, 99, 99, 99, 99, 99,
- 99, 99, 99, 99, 99, 99, 99, 99,
- 99, 99, 99, 99, 99, 99, 99, 99,
- 99, 99, 99, 99, 99, 99, 99, 99,
-];
-
-// section K.3
-// Code lengths and values for table K.3
-static STD_LUMA_DC_CODE_LENGTHS: [u8; 16] = [
- 0x00, 0x01, 0x05, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
-];
-
-static STD_LUMA_DC_VALUES: [u8; 12] = [
- 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B,
-];
-
-static STD_LUMA_DC_HUFF_LUT: [(u8, u16); 256] =
- build_huff_lut_const(&STD_LUMA_DC_CODE_LENGTHS, &STD_LUMA_DC_VALUES);
-
-// Code lengths and values for table K.4
-static STD_CHROMA_DC_CODE_LENGTHS: [u8; 16] = [
- 0x00, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00,
-];
-
-static STD_CHROMA_DC_VALUES: [u8; 12] = [
- 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B,
-];
-
-static STD_CHROMA_DC_HUFF_LUT: [(u8, u16); 256] =
- build_huff_lut_const(&STD_CHROMA_DC_CODE_LENGTHS, &STD_CHROMA_DC_VALUES);
-
-// Code lengths and values for table k.5
-static STD_LUMA_AC_CODE_LENGTHS: [u8; 16] = [
- 0x00, 0x02, 0x01, 0x03, 0x03, 0x02, 0x04, 0x03, 0x05, 0x05, 0x04, 0x04, 0x00, 0x00, 0x01, 0x7D,
-];
-
-static STD_LUMA_AC_VALUES: [u8; 162] = [
- 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12, 0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,
- 0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xA1, 0x08, 0x23, 0x42, 0xB1, 0xC1, 0x15, 0x52, 0xD1, 0xF0,
- 0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0A, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x25, 0x26, 0x27, 0x28,
- 0x29, 0x2A, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
- 0x4A, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5A, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
- 0x6A, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7A, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
- 0x8A, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9A, 0xA2, 0xA3, 0xA4, 0xA5, 0xA6, 0xA7,
- 0xA8, 0xA9, 0xAA, 0xB2, 0xB3, 0xB4, 0xB5, 0xB6, 0xB7, 0xB8, 0xB9, 0xBA, 0xC2, 0xC3, 0xC4, 0xC5,
- 0xC6, 0xC7, 0xC8, 0xC9, 0xCA, 0xD2, 0xD3, 0xD4, 0xD5, 0xD6, 0xD7, 0xD8, 0xD9, 0xDA, 0xE1, 0xE2,
- 0xE3, 0xE4, 0xE5, 0xE6, 0xE7, 0xE8, 0xE9, 0xEA, 0xF1, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xF7, 0xF8,
- 0xF9, 0xFA,
-];
-
-static STD_LUMA_AC_HUFF_LUT: [(u8, u16); 256] =
- build_huff_lut_const(&STD_LUMA_AC_CODE_LENGTHS, &STD_LUMA_AC_VALUES);
-
-// Code lengths and values for table k.6
-static STD_CHROMA_AC_CODE_LENGTHS: [u8; 16] = [
- 0x00, 0x02, 0x01, 0x02, 0x04, 0x04, 0x03, 0x04, 0x07, 0x05, 0x04, 0x04, 0x00, 0x01, 0x02, 0x77,
-];
-static STD_CHROMA_AC_VALUES: [u8; 162] = [
- 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21, 0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,
- 0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91, 0xA1, 0xB1, 0xC1, 0x09, 0x23, 0x33, 0x52, 0xF0,
- 0x15, 0x62, 0x72, 0xD1, 0x0A, 0x16, 0x24, 0x34, 0xE1, 0x25, 0xF1, 0x17, 0x18, 0x19, 0x1A, 0x26,
- 0x27, 0x28, 0x29, 0x2A, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
- 0x49, 0x4A, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5A, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
- 0x69, 0x6A, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7A, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
- 0x88, 0x89, 0x8A, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9A, 0xA2, 0xA3, 0xA4, 0xA5,
- 0xA6, 0xA7, 0xA8, 0xA9, 0xAA, 0xB2, 0xB3, 0xB4, 0xB5, 0xB6, 0xB7, 0xB8, 0xB9, 0xBA, 0xC2, 0xC3,
- 0xC4, 0xC5, 0xC6, 0xC7, 0xC8, 0xC9, 0xCA, 0xD2, 0xD3, 0xD4, 0xD5, 0xD6, 0xD7, 0xD8, 0xD9, 0xDA,
- 0xE2, 0xE3, 0xE4, 0xE5, 0xE6, 0xE7, 0xE8, 0xE9, 0xEA, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xF7, 0xF8,
- 0xF9, 0xFA,
-];
-
-static STD_CHROMA_AC_HUFF_LUT: [(u8, u16); 256] =
- build_huff_lut_const(&STD_CHROMA_AC_CODE_LENGTHS, &STD_CHROMA_AC_VALUES);
-
-static DCCLASS: u8 = 0;
-static ACCLASS: u8 = 1;
-
-static LUMADESTINATION: u8 = 0;
-static CHROMADESTINATION: u8 = 1;
-
-static LUMAID: u8 = 1;
-static CHROMABLUEID: u8 = 2;
-static CHROMAREDID: u8 = 3;
-
-/// The permutation of dct coefficients.
-#[rustfmt::skip]
-static UNZIGZAG: [u8; 64] = [
- 0, 1, 8, 16, 9, 2, 3, 10,
- 17, 24, 32, 25, 18, 11, 4, 5,
- 12, 19, 26, 33, 40, 48, 41, 34,
- 27, 20, 13, 6, 7, 14, 21, 28,
- 35, 42, 49, 56, 57, 50, 43, 36,
- 29, 22, 15, 23, 30, 37, 44, 51,
- 58, 59, 52, 45, 38, 31, 39, 46,
- 53, 60, 61, 54, 47, 55, 62, 63,
-];
-
-/// A representation of a JPEG component
-#[derive(Copy, Clone)]
-struct Component {
- /// The Component's identifier
- id: u8,
-
- /// Horizontal sampling factor
- h: u8,
-
- /// Vertical sampling factor
- v: u8,
-
- /// The quantization table selector
- tq: u8,
-
- /// Index to the Huffman DC Table
- dc_table: u8,
-
- /// Index to the AC Huffman Table
- ac_table: u8,
-
- /// The dc prediction of the component
- _dc_pred: i32,
-}
-
-pub(crate) struct BitWriter<W> {
- w: W,
- accumulator: u32,
- nbits: u8,
-}
-
-impl<W: Write> BitWriter<W> {
- fn new(w: W) -> Self {
- BitWriter {
- w,
- accumulator: 0,
- nbits: 0,
- }
- }
-
- fn write_bits(&mut self, bits: u16, size: u8) -> io::Result<()> {
- if size == 0 {
- return Ok(());
- }
-
- self.nbits += size;
- self.accumulator |= u32::from(bits) << (32 - self.nbits) as usize;
-
- while self.nbits >= 8 {
- let byte = self.accumulator >> 24;
- self.w.write_all(&[byte as u8])?;
-
- if byte == 0xFF {
- self.w.write_all(&[0x00])?;
- }
-
- self.nbits -= 8;
- self.accumulator <<= 8;
- }
-
- Ok(())
- }
-
- fn pad_byte(&mut self) -> io::Result<()> {
- self.write_bits(0x7F, 7)
- }
-
- fn huffman_encode(&mut self, val: u8, table: &[(u8, u16); 256]) -> io::Result<()> {
- let (size, code) = table[val as usize];
-
- if size > 16 {
- panic!("bad huffman value");
- }
-
- self.write_bits(code, size)
- }
-
- fn write_block(
- &mut self,
- block: &[i32; 64],
- prevdc: i32,
- dctable: &[(u8, u16); 256],
- actable: &[(u8, u16); 256],
- ) -> io::Result<i32> {
- // Differential DC encoding
- let dcval = block[0];
- let diff = dcval - prevdc;
- let (size, value) = encode_coefficient(diff);
-
- self.huffman_encode(size, dctable)?;
- self.write_bits(value, size)?;
-
- // Figure F.2
- let mut zero_run = 0;
-
- for &k in &UNZIGZAG[1..] {
- if block[k as usize] == 0 {
- zero_run += 1;
- } else {
- while zero_run > 15 {
- self.huffman_encode(0xF0, actable)?;
- zero_run -= 16;
- }
-
- let (size, value) = encode_coefficient(block[k as usize]);
- let symbol = (zero_run << 4) | size;
-
- self.huffman_encode(symbol, actable)?;
- self.write_bits(value, size)?;
-
- zero_run = 0;
- }
- }
-
- if block[UNZIGZAG[63] as usize] == 0 {
- self.huffman_encode(0x00, actable)?;
- }
-
- Ok(dcval)
- }
-
- fn write_marker(&mut self, marker: u8) -> io::Result<()> {
- self.w.write_all(&[0xFF, marker])
- }
-
- fn write_segment(&mut self, marker: u8, data: &[u8]) -> io::Result<()> {
- self.w.write_all(&[0xFF, marker])?;
- self.w.write_all(&(data.len() as u16 + 2).to_be_bytes())?;
- self.w.write_all(data)
- }
-}
-
-/// Represents a unit in which the density of an image is measured
-#[derive(Clone, Copy, Debug, Eq, PartialEq)]
-pub enum PixelDensityUnit {
- /// Represents the absence of a unit, the values indicate only a
- /// [pixel aspect ratio](https://en.wikipedia.org/wiki/Pixel_aspect_ratio)
- PixelAspectRatio,
-
- /// Pixels per inch (2.54 cm)
- Inches,
-
- /// Pixels per centimeter
- Centimeters,
-}
-
-/// Represents the pixel density of an image
-///
-/// For example, a 300 DPI image is represented by:
-///
-/// ```rust
-/// use image::codecs::jpeg::*;
-/// let hdpi = PixelDensity::dpi(300);
-/// assert_eq!(hdpi, PixelDensity {density: (300,300), unit: PixelDensityUnit::Inches})
-/// ```
-#[derive(Clone, Copy, Debug, Eq, PartialEq)]
-pub struct PixelDensity {
- /// A couple of values for (Xdensity, Ydensity)
- pub density: (u16, u16),
- /// The unit in which the density is measured
- pub unit: PixelDensityUnit,
-}
-
-impl PixelDensity {
- /// Creates the most common pixel density type:
- /// the horizontal and the vertical density are equal,
- /// and measured in pixels per inch.
- pub fn dpi(density: u16) -> Self {
- PixelDensity {
- density: (density, density),
- unit: PixelDensityUnit::Inches,
- }
- }
-}
-
-impl Default for PixelDensity {
- /// Returns a pixel density with a pixel aspect ratio of 1
- fn default() -> Self {
- PixelDensity {
- density: (1, 1),
- unit: PixelDensityUnit::PixelAspectRatio,
- }
- }
-}
-
-/// The representation of a JPEG encoder
-pub struct JpegEncoder<W> {
- writer: BitWriter<W>,
-
- components: Vec<Component>,
- tables: Vec<[u8; 64]>,
-
- luma_dctable: Cow<'static, [(u8, u16); 256]>,
- luma_actable: Cow<'static, [(u8, u16); 256]>,
- chroma_dctable: Cow<'static, [(u8, u16); 256]>,
- chroma_actable: Cow<'static, [(u8, u16); 256]>,
-
- pixel_density: PixelDensity,
-}
-
-impl<W: Write> JpegEncoder<W> {
- /// Create a new encoder that writes its output to ```w```
- pub fn new(w: W) -> JpegEncoder<W> {
- JpegEncoder::new_with_quality(w, 75)
- }
-
- /// Create a new encoder that writes its output to ```w```, and has
- /// the quality parameter ```quality``` with a value in the range 1-100
- /// where 1 is the worst and 100 is the best.
- pub fn new_with_quality(w: W, quality: u8) -> JpegEncoder<W> {
- let components = vec![
- Component {
- id: LUMAID,
- h: 1,
- v: 1,
- tq: LUMADESTINATION,
- dc_table: LUMADESTINATION,
- ac_table: LUMADESTINATION,
- _dc_pred: 0,
- },
- Component {
- id: CHROMABLUEID,
- h: 1,
- v: 1,
- tq: CHROMADESTINATION,
- dc_table: CHROMADESTINATION,
- ac_table: CHROMADESTINATION,
- _dc_pred: 0,
- },
- Component {
- id: CHROMAREDID,
- h: 1,
- v: 1,
- tq: CHROMADESTINATION,
- dc_table: CHROMADESTINATION,
- ac_table: CHROMADESTINATION,
- _dc_pred: 0,
- },
- ];
-
- // Derive our quantization table scaling value using the libjpeg algorithm
- let scale = u32::from(clamp(quality, 1, 100));
- let scale = if scale < 50 {
- 5000 / scale
- } else {
- 200 - scale * 2
- };
-
- let mut tables = vec![STD_LUMA_QTABLE, STD_CHROMA_QTABLE];
- tables.iter_mut().for_each(|t| {
- t.iter_mut().for_each(|v| {
- *v = clamp(
- (u32::from(*v) * scale + 50) / 100,
- 1,
- u32::from(u8::max_value()),
- ) as u8;
- })
- });
-
- JpegEncoder {
- writer: BitWriter::new(w),
-
- components,
- tables,
-
- luma_dctable: Cow::Borrowed(&STD_LUMA_DC_HUFF_LUT),
- luma_actable: Cow::Borrowed(&STD_LUMA_AC_HUFF_LUT),
- chroma_dctable: Cow::Borrowed(&STD_CHROMA_DC_HUFF_LUT),
- chroma_actable: Cow::Borrowed(&STD_CHROMA_AC_HUFF_LUT),
-
- pixel_density: PixelDensity::default(),
- }
- }
-
- /// Set the pixel density of the images the encoder will encode.
- /// If this method is not called, then a default pixel aspect ratio of 1x1 will be applied,
- /// and no DPI information will be stored in the image.
- pub fn set_pixel_density(&mut self, pixel_density: PixelDensity) {
- self.pixel_density = pixel_density;
- }
-
- /// Encodes the image stored in the raw byte buffer ```image```
- /// that has dimensions ```width``` and ```height```
- /// and ```ColorType``` ```c```
- ///
- /// The Image in encoded with subsampling ratio 4:2:2
- pub fn encode(
- &mut self,
- image: &[u8],
- width: u32,
- height: u32,
- color_type: ColorType,
- ) -> ImageResult<()> {
- match color_type {
- ColorType::L8 => {
- let image: ImageBuffer<Luma<_>, _> =
- ImageBuffer::from_raw(width, height, image).unwrap();
- self.encode_image(&image)
- }
- ColorType::La8 => {
- let image: ImageBuffer<LumaA<_>, _> =
- ImageBuffer::from_raw(width, height, image).unwrap();
- self.encode_image(&image)
- }
- ColorType::Rgb8 => {
- let image: ImageBuffer<Rgb<_>, _> =
- ImageBuffer::from_raw(width, height, image).unwrap();
- self.encode_image(&image)
- }
- ColorType::Rgba8 => {
- let image: ImageBuffer<Rgba<_>, _> =
- ImageBuffer::from_raw(width, height, image).unwrap();
- self.encode_image(&image)
- }
- _ => Err(ImageError::Unsupported(
- UnsupportedError::from_format_and_kind(
- ImageFormat::Jpeg.into(),
- UnsupportedErrorKind::Color(color_type.into()),
- ),
- )),
- }
- }
-
- /// Encodes the given image.
- ///
- /// As a special feature this does not require the whole image to be present in memory at the
- /// same time such that it may be computed on the fly, which is why this method exists on this
- /// encoder but not on others. Instead the encoder will iterate over 8-by-8 blocks of pixels at
- /// a time, inspecting each pixel exactly once. You can rely on this behaviour when calling
- /// this method.
- ///
- /// The Image in encoded with subsampling ratio 4:2:2
- pub fn encode_image<I: GenericImageView>(&mut self, image: &I) -> ImageResult<()>
- where
- I::Pixel: PixelWithColorType,
- {
- let n = I::Pixel::CHANNEL_COUNT;
- let color_type = I::Pixel::COLOR_TYPE;
- let num_components = if n == 1 || n == 2 { 1 } else { 3 };
-
- self.writer.write_marker(SOI)?;
-
- let mut buf = Vec::new();
-
- build_jfif_header(&mut buf, self.pixel_density);
- self.writer.write_segment(APP0, &buf)?;
-
- build_frame_header(
- &mut buf,
- 8,
- // TODO: not idiomatic yet. Should be an EncodingError and mention jpg. Further it
- // should check dimensions prior to writing.
- u16::try_from(image.width()).map_err(|_| {
- ImageError::Parameter(ParameterError::from_kind(
- ParameterErrorKind::DimensionMismatch,
- ))
- })?,
- u16::try_from(image.height()).map_err(|_| {
- ImageError::Parameter(ParameterError::from_kind(
- ParameterErrorKind::DimensionMismatch,
- ))
- })?,
- &self.components[..num_components],
- );
- self.writer.write_segment(SOF0, &buf)?;
-
- assert_eq!(self.tables.len(), 2);
- let numtables = if num_components == 1 { 1 } else { 2 };
-
- for (i, table) in self.tables[..numtables].iter().enumerate() {
- build_quantization_segment(&mut buf, 8, i as u8, table);
- self.writer.write_segment(DQT, &buf)?;
- }
-
- build_huffman_segment(
- &mut buf,
- DCCLASS,
- LUMADESTINATION,
- &STD_LUMA_DC_CODE_LENGTHS,
- &STD_LUMA_DC_VALUES,
- );
- self.writer.write_segment(DHT, &buf)?;
-
- build_huffman_segment(
- &mut buf,
- ACCLASS,
- LUMADESTINATION,
- &STD_LUMA_AC_CODE_LENGTHS,
- &STD_LUMA_AC_VALUES,
- );
- self.writer.write_segment(DHT, &buf)?;
-
- if num_components == 3 {
- build_huffman_segment(
- &mut buf,
- DCCLASS,
- CHROMADESTINATION,
- &STD_CHROMA_DC_CODE_LENGTHS,
- &STD_CHROMA_DC_VALUES,
- );
- self.writer.write_segment(DHT, &buf)?;
-
- build_huffman_segment(
- &mut buf,
- ACCLASS,
- CHROMADESTINATION,
- &STD_CHROMA_AC_CODE_LENGTHS,
- &STD_CHROMA_AC_VALUES,
- );
- self.writer.write_segment(DHT, &buf)?;
- }
-
- build_scan_header(&mut buf, &self.components[..num_components]);
- self.writer.write_segment(SOS, &buf)?;
-
- if color_type.has_color() {
- self.encode_rgb(image)
- } else {
- self.encode_gray(image)
- }?;
-
- self.writer.pad_byte()?;
- self.writer.write_marker(EOI)?;
- Ok(())
- }
-
- fn encode_gray<I: GenericImageView>(&mut self, image: &I) -> io::Result<()> {
- let mut yblock = [0u8; 64];
- let mut y_dcprev = 0;
- let mut dct_yblock = [0i32; 64];
-
- for y in (0..image.height()).step_by(8) {
- for x in (0..image.width()).step_by(8) {
- copy_blocks_gray(image, x, y, &mut yblock);
-
- // Level shift and fdct
- // Coeffs are scaled by 8
- transform::fdct(&yblock, &mut dct_yblock);
-
- // Quantization
- for (i, dct) in dct_yblock.iter_mut().enumerate() {
- *dct = ((*dct / 8) as f32 / f32::from(self.tables[0][i])).round() as i32;
- }
-
- let la = &*self.luma_actable;
- let ld = &*self.luma_dctable;
-
- y_dcprev = self.writer.write_block(&dct_yblock, y_dcprev, ld, la)?;
- }
- }
-
- Ok(())
- }
-
- fn encode_rgb<I: GenericImageView>(&mut self, image: &I) -> io::Result<()> {
- let mut y_dcprev = 0;
- let mut cb_dcprev = 0;
- let mut cr_dcprev = 0;
-
- let mut dct_yblock = [0i32; 64];
- let mut dct_cb_block = [0i32; 64];
- let mut dct_cr_block = [0i32; 64];
-
- let mut yblock = [0u8; 64];
- let mut cb_block = [0u8; 64];
- let mut cr_block = [0u8; 64];
-
- for y in (0..image.height()).step_by(8) {
- for x in (0..image.width()).step_by(8) {
- // RGB -> YCbCr
- copy_blocks_ycbcr(image, x, y, &mut yblock, &mut cb_block, &mut cr_block);
-
- // Level shift and fdct
- // Coeffs are scaled by 8
- transform::fdct(&yblock, &mut dct_yblock);
- transform::fdct(&cb_block, &mut dct_cb_block);
- transform::fdct(&cr_block, &mut dct_cr_block);
-
- // Quantization
- for i in 0usize..64 {
- dct_yblock[i] =
- ((dct_yblock[i] / 8) as f32 / f32::from(self.tables[0][i])).round() as i32;
- dct_cb_block[i] = ((dct_cb_block[i] / 8) as f32 / f32::from(self.tables[1][i]))
- .round() as i32;
- dct_cr_block[i] = ((dct_cr_block[i] / 8) as f32 / f32::from(self.tables[1][i]))
- .round() as i32;
- }
-
- let la = &*self.luma_actable;
- let ld = &*self.luma_dctable;
- let cd = &*self.chroma_dctable;
- let ca = &*self.chroma_actable;
-
- y_dcprev = self.writer.write_block(&dct_yblock, y_dcprev, ld, la)?;
- cb_dcprev = self.writer.write_block(&dct_cb_block, cb_dcprev, cd, ca)?;
- cr_dcprev = self.writer.write_block(&dct_cr_block, cr_dcprev, cd, ca)?;
- }
- }
-
- Ok(())
- }
-}
-
-impl<W: Write> ImageEncoder for JpegEncoder<W> {
- fn write_image(
- mut self,
- buf: &[u8],
- width: u32,
- height: u32,
- color_type: ColorType,
- ) -> ImageResult<()> {
- self.encode(buf, width, height, color_type)
- }
-}
-
-fn build_jfif_header(m: &mut Vec<u8>, density: PixelDensity) {
- m.clear();
- m.extend_from_slice(b"JFIF");
- m.extend_from_slice(&[
- 0,
- 0x01,
- 0x02,
- match density.unit {
- PixelDensityUnit::PixelAspectRatio => 0x00,
- PixelDensityUnit::Inches => 0x01,
- PixelDensityUnit::Centimeters => 0x02,
- },
- ]);
- m.extend_from_slice(&density.density.0.to_be_bytes());
- m.extend_from_slice(&density.density.1.to_be_bytes());
- m.extend_from_slice(&[0, 0]);
-}
-
-fn build_frame_header(
- m: &mut Vec<u8>,
- precision: u8,
- width: u16,
- height: u16,
- components: &[Component],
-) {
- m.clear();
-
- m.push(precision);
- m.extend_from_slice(&height.to_be_bytes());
- m.extend_from_slice(&width.to_be_bytes());
- m.push(components.len() as u8);
-
- for &comp in components.iter() {
- let hv = (comp.h << 4) | comp.v;
- m.extend_from_slice(&[comp.id, hv, comp.tq]);
- }
-}
-
-fn build_scan_header(m: &mut Vec<u8>, components: &[Component]) {
- m.clear();
-
- m.push(components.len() as u8);
-
- for &comp in components.iter() {
- let tables = (comp.dc_table << 4) | comp.ac_table;
- m.extend_from_slice(&[comp.id, tables]);
- }
-
- // spectral start and end, approx. high and low
- m.extend_from_slice(&[0, 63, 0]);
-}
-
-fn build_huffman_segment(
- m: &mut Vec<u8>,
- class: u8,
- destination: u8,
- numcodes: &[u8; 16],
- values: &[u8],
-) {
- m.clear();
-
- let tcth = (class << 4) | destination;
- m.push(tcth);
-
- m.extend_from_slice(numcodes);
-
- let sum: usize = numcodes.iter().map(|&x| x as usize).sum();
-
- assert_eq!(sum, values.len());
-
- m.extend_from_slice(values);
-}
-
-fn build_quantization_segment(m: &mut Vec<u8>, precision: u8, identifier: u8, qtable: &[u8; 64]) {
- m.clear();
-
- let p = if precision == 8 { 0 } else { 1 };
-
- let pqtq = (p << 4) | identifier;
- m.push(pqtq);
-
- for &i in &UNZIGZAG[..] {
- m.push(qtable[i as usize]);
- }
-}
-
-fn encode_coefficient(coefficient: i32) -> (u8, u16) {
- let mut magnitude = coefficient.unsigned_abs() as u16;
- let mut num_bits = 0u8;
-
- while magnitude > 0 {
- magnitude >>= 1;
- num_bits += 1;
- }
-
- let mask = (1 << num_bits as usize) - 1;
-
- let val = if coefficient < 0 {
- (coefficient - 1) as u16 & mask
- } else {
- coefficient as u16 & mask
- };
-
- (num_bits, val)
-}
-
-#[inline]
-fn rgb_to_ycbcr<P: Pixel>(pixel: P) -> (u8, u8, u8) {
- use crate::traits::Primitive;
- use num_traits::cast::ToPrimitive;
-
- let [r, g, b] = pixel.to_rgb().0;
- let max: f32 = P::Subpixel::DEFAULT_MAX_VALUE.to_f32().unwrap();
- let r: f32 = r.to_f32().unwrap();
- let g: f32 = g.to_f32().unwrap();
- let b: f32 = b.to_f32().unwrap();
-
- // Coefficients from JPEG File Interchange Format (Version 1.02), multiplied for 255 maximum.
- let y = 76.245 / max * r + 149.685 / max * g + 29.07 / max * b;
- let cb = -43.0185 / max * r - 84.4815 / max * g + 127.5 / max * b + 128.;
- let cr = 127.5 / max * r - 106.7685 / max * g - 20.7315 / max * b + 128.;
-
- (y as u8, cb as u8, cr as u8)
-}
-
-/// Returns the pixel at (x,y) if (x,y) is in the image,
-/// otherwise the closest pixel in the image
-#[inline]
-fn pixel_at_or_near<I: GenericImageView>(source: &I, x: u32, y: u32) -> I::Pixel {
- if source.in_bounds(x, y) {
- source.get_pixel(x, y)
- } else {
- source.get_pixel(x.min(source.width() - 1), y.min(source.height() - 1))
- }
-}
-
-fn copy_blocks_ycbcr<I: GenericImageView>(
- source: &I,
- x0: u32,
- y0: u32,
- yb: &mut [u8; 64],
- cbb: &mut [u8; 64],
- crb: &mut [u8; 64],
-) {
- for y in 0..8 {
- for x in 0..8 {
- let pixel = pixel_at_or_near(source, x + x0, y + y0);
- let (yc, cb, cr) = rgb_to_ycbcr(pixel);
-
- yb[(y * 8 + x) as usize] = yc;
- cbb[(y * 8 + x) as usize] = cb;
- crb[(y * 8 + x) as usize] = cr;
- }
- }
-}
-
-fn copy_blocks_gray<I: GenericImageView>(source: &I, x0: u32, y0: u32, gb: &mut [u8; 64]) {
- use num_traits::cast::ToPrimitive;
- for y in 0..8 {
- for x in 0..8 {
- let pixel = pixel_at_or_near(source, x0 + x, y0 + y);
- let [luma] = pixel.to_luma().0;
- gb[(y * 8 + x) as usize] = luma.to_u8().unwrap();
- }
- }
-}
-
-#[cfg(test)]
-mod tests {
- use std::io::Cursor;
-
- #[cfg(feature = "benchmarks")]
- extern crate test;
- #[cfg(feature = "benchmarks")]
- use test::Bencher;
-
- use crate::color::ColorType;
- use crate::error::ParameterErrorKind::DimensionMismatch;
- use crate::image::ImageDecoder;
- use crate::{ImageEncoder, ImageError};
-
- use super::super::JpegDecoder;
- use super::{
- build_frame_header, build_huffman_segment, build_jfif_header, build_quantization_segment,
- build_scan_header, Component, JpegEncoder, PixelDensity, DCCLASS, LUMADESTINATION,
- STD_LUMA_DC_CODE_LENGTHS, STD_LUMA_DC_VALUES,
- };
-
- fn decode(encoded: &[u8]) -> Vec<u8> {
- let decoder = JpegDecoder::new(Cursor::new(encoded)).expect("Could not decode image");
-
- let mut decoded = vec![0; decoder.total_bytes() as usize];
- decoder
- .read_image(&mut decoded)
- .expect("Could not decode image");
- decoded
- }
-
- #[test]
- fn roundtrip_sanity_check() {
- // create a 1x1 8-bit image buffer containing a single red pixel
- let img = [255u8, 0, 0];
-
- // encode it into a memory buffer
- let mut encoded_img = Vec::new();
- {
- let encoder = JpegEncoder::new_with_quality(&mut encoded_img, 100);
- encoder
- .write_image(&img, 1, 1, ColorType::Rgb8)
- .expect("Could not encode image");
- }
-
- // decode it from the memory buffer
- {
- let decoded = decode(&encoded_img);
- // note that, even with the encode quality set to 100, we do not get the same image
- // back. Therefore, we're going to assert that it's at least red-ish:
- assert_eq!(3, decoded.len());
- assert!(decoded[0] > 0x80);
- assert!(decoded[1] < 0x80);
- assert!(decoded[2] < 0x80);
- }
- }
-
- #[test]
- fn grayscale_roundtrip_sanity_check() {
- // create a 2x2 8-bit image buffer containing a white diagonal
- let img = [255u8, 0, 0, 255];
-
- // encode it into a memory buffer
- let mut encoded_img = Vec::new();
- {
- let encoder = JpegEncoder::new_with_quality(&mut encoded_img, 100);
- encoder
- .write_image(&img[..], 2, 2, ColorType::L8)
- .expect("Could not encode image");
- }
-
- // decode it from the memory buffer
- {
- let decoded = decode(&encoded_img);
- // note that, even with the encode quality set to 100, we do not get the same image
- // back. Therefore, we're going to assert that the diagonal is at least white-ish:
- assert_eq!(4, decoded.len());
- assert!(decoded[0] > 0x80);
- assert!(decoded[1] < 0x80);
- assert!(decoded[2] < 0x80);
- assert!(decoded[3] > 0x80);
- }
- }
-
- #[test]
- fn jfif_header_density_check() {
- let mut buffer = Vec::new();
- build_jfif_header(&mut buffer, PixelDensity::dpi(300));
- assert_eq!(
- buffer,
- vec![
- b'J',
- b'F',
- b'I',
- b'F',
- 0,
- 1,
- 2, // JFIF version 1.2
- 1, // density is in dpi
- 300u16.to_be_bytes()[0],
- 300u16.to_be_bytes()[1],
- 300u16.to_be_bytes()[0],
- 300u16.to_be_bytes()[1],
- 0,
- 0, // No thumbnail
- ]
- );
- }
-
- #[test]
- fn test_image_too_large() {
- // JPEG cannot encode images larger than 65,535×65,535
- // create a 65,536×1 8-bit black image buffer
- let img = [0; 65_536];
- // Try to encode an image that is too large
- let mut encoded = Vec::new();
- let encoder = JpegEncoder::new_with_quality(&mut encoded, 100);
- let result = encoder.write_image(&img, 65_536, 1, ColorType::L8);
- match result {
- Err(ImageError::Parameter(err)) => {
- assert_eq!(err.kind(), DimensionMismatch)
- }
- other => {
- assert!(
- false,
- "Encoding an image that is too large should return a DimensionError \
- it returned {:?} instead",
- other
- )
- }
- }
- }
-
- #[test]
- fn test_build_jfif_header() {
- let mut buf = vec![];
- let density = PixelDensity::dpi(100);
- build_jfif_header(&mut buf, density);
- assert_eq!(
- buf,
- [0x4A, 0x46, 0x49, 0x46, 0x00, 0x01, 0x02, 0x01, 0, 100, 0, 100, 0, 0]
- );
- }
-
- #[test]
- fn test_build_frame_header() {
- let mut buf = vec![];
- let components = vec![
- Component {
- id: 1,
- h: 1,
- v: 1,
- tq: 5,
- dc_table: 5,
- ac_table: 5,
- _dc_pred: 0,
- },
- Component {
- id: 2,
- h: 1,
- v: 1,
- tq: 4,
- dc_table: 4,
- ac_table: 4,
- _dc_pred: 0,
- },
- ];
- build_frame_header(&mut buf, 5, 100, 150, &components);
- assert_eq!(
- buf,
- [5, 0, 150, 0, 100, 2, 1, 1 << 4 | 1, 5, 2, 1 << 4 | 1, 4]
- );
- }
-
- #[test]
- fn test_build_scan_header() {
- let mut buf = vec![];
- let components = vec![
- Component {
- id: 1,
- h: 1,
- v: 1,
- tq: 5,
- dc_table: 5,
- ac_table: 5,
- _dc_pred: 0,
- },
- Component {
- id: 2,
- h: 1,
- v: 1,
- tq: 4,
- dc_table: 4,
- ac_table: 4,
- _dc_pred: 0,
- },
- ];
- build_scan_header(&mut buf, &components);
- assert_eq!(buf, [2, 1, 5 << 4 | 5, 2, 4 << 4 | 4, 0, 63, 0]);
- }
-
- #[test]
- fn test_build_huffman_segment() {
- let mut buf = vec![];
- build_huffman_segment(
- &mut buf,
- DCCLASS,
- LUMADESTINATION,
- &STD_LUMA_DC_CODE_LENGTHS,
- &STD_LUMA_DC_VALUES,
- );
- assert_eq!(
- buf,
- vec![
- 0, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
- 10, 11
- ]
- );
- }
-
- #[test]
- fn test_build_quantization_segment() {
- let mut buf = vec![];
- let qtable = [0u8; 64];
- build_quantization_segment(&mut buf, 8, 1, &qtable);
- let mut expected = vec![];
- expected.push(0 << 4 | 1);
- expected.extend_from_slice(&[0; 64]);
- assert_eq!(buf, expected)
- }
-
- #[cfg(feature = "benchmarks")]
- #[bench]
- fn bench_jpeg_encoder_new(b: &mut Bencher) {
- b.iter(|| {
- let mut y = vec![];
- let x = JpegEncoder::new(&mut y);
- })
- }
-}