diff options
Diffstat (limited to 'vendor/image/src/codecs/jpeg/encoder.rs')
-rw-r--r-- | vendor/image/src/codecs/jpeg/encoder.rs | 1074 |
1 files changed, 0 insertions, 1074 deletions
diff --git a/vendor/image/src/codecs/jpeg/encoder.rs b/vendor/image/src/codecs/jpeg/encoder.rs deleted file mode 100644 index edb2a05..0000000 --- a/vendor/image/src/codecs/jpeg/encoder.rs +++ /dev/null @@ -1,1074 +0,0 @@ -#![allow(clippy::too_many_arguments)] - -use std::borrow::Cow; -use std::convert::TryFrom; -use std::io::{self, Write}; - -use crate::error::{ - ImageError, ImageResult, ParameterError, ParameterErrorKind, UnsupportedError, - UnsupportedErrorKind, -}; -use crate::image::{ImageEncoder, ImageFormat}; -use crate::utils::clamp; -use crate::{ColorType, GenericImageView, ImageBuffer, Luma, LumaA, Pixel, Rgb, Rgba}; - -use super::entropy::build_huff_lut_const; -use super::transform; -use crate::traits::PixelWithColorType; - -// Markers -// Baseline DCT -static SOF0: u8 = 0xC0; -// Huffman Tables -static DHT: u8 = 0xC4; -// Start of Image (standalone) -static SOI: u8 = 0xD8; -// End of image (standalone) -static EOI: u8 = 0xD9; -// Start of Scan -static SOS: u8 = 0xDA; -// Quantization Tables -static DQT: u8 = 0xDB; -// Application segments start and end -static APP0: u8 = 0xE0; - -// section K.1 -// table K.1 -#[rustfmt::skip] -static STD_LUMA_QTABLE: [u8; 64] = [ - 16, 11, 10, 16, 24, 40, 51, 61, - 12, 12, 14, 19, 26, 58, 60, 55, - 14, 13, 16, 24, 40, 57, 69, 56, - 14, 17, 22, 29, 51, 87, 80, 62, - 18, 22, 37, 56, 68, 109, 103, 77, - 24, 35, 55, 64, 81, 104, 113, 92, - 49, 64, 78, 87, 103, 121, 120, 101, - 72, 92, 95, 98, 112, 100, 103, 99, -]; - -// table K.2 -#[rustfmt::skip] -static STD_CHROMA_QTABLE: [u8; 64] = [ - 17, 18, 24, 47, 99, 99, 99, 99, - 18, 21, 26, 66, 99, 99, 99, 99, - 24, 26, 56, 99, 99, 99, 99, 99, - 47, 66, 99, 99, 99, 99, 99, 99, - 99, 99, 99, 99, 99, 99, 99, 99, - 99, 99, 99, 99, 99, 99, 99, 99, - 99, 99, 99, 99, 99, 99, 99, 99, - 99, 99, 99, 99, 99, 99, 99, 99, -]; - -// section K.3 -// Code lengths and values for table K.3 -static STD_LUMA_DC_CODE_LENGTHS: [u8; 16] = [ - 0x00, 0x01, 0x05, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, -]; - -static STD_LUMA_DC_VALUES: [u8; 12] = [ - 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, -]; - -static STD_LUMA_DC_HUFF_LUT: [(u8, u16); 256] = - build_huff_lut_const(&STD_LUMA_DC_CODE_LENGTHS, &STD_LUMA_DC_VALUES); - -// Code lengths and values for table K.4 -static STD_CHROMA_DC_CODE_LENGTHS: [u8; 16] = [ - 0x00, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, -]; - -static STD_CHROMA_DC_VALUES: [u8; 12] = [ - 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, -]; - -static STD_CHROMA_DC_HUFF_LUT: [(u8, u16); 256] = - build_huff_lut_const(&STD_CHROMA_DC_CODE_LENGTHS, &STD_CHROMA_DC_VALUES); - -// Code lengths and values for table k.5 -static STD_LUMA_AC_CODE_LENGTHS: [u8; 16] = [ - 0x00, 0x02, 0x01, 0x03, 0x03, 0x02, 0x04, 0x03, 0x05, 0x05, 0x04, 0x04, 0x00, 0x00, 0x01, 0x7D, -]; - -static STD_LUMA_AC_VALUES: [u8; 162] = [ - 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12, 0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07, - 0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xA1, 0x08, 0x23, 0x42, 0xB1, 0xC1, 0x15, 0x52, 0xD1, 0xF0, - 0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0A, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x25, 0x26, 0x27, 0x28, - 0x29, 0x2A, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, - 0x4A, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5A, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, - 0x6A, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7A, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, - 0x8A, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9A, 0xA2, 0xA3, 0xA4, 0xA5, 0xA6, 0xA7, - 0xA8, 0xA9, 0xAA, 0xB2, 0xB3, 0xB4, 0xB5, 0xB6, 0xB7, 0xB8, 0xB9, 0xBA, 0xC2, 0xC3, 0xC4, 0xC5, - 0xC6, 0xC7, 0xC8, 0xC9, 0xCA, 0xD2, 0xD3, 0xD4, 0xD5, 0xD6, 0xD7, 0xD8, 0xD9, 0xDA, 0xE1, 0xE2, - 0xE3, 0xE4, 0xE5, 0xE6, 0xE7, 0xE8, 0xE9, 0xEA, 0xF1, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xF7, 0xF8, - 0xF9, 0xFA, -]; - -static STD_LUMA_AC_HUFF_LUT: [(u8, u16); 256] = - build_huff_lut_const(&STD_LUMA_AC_CODE_LENGTHS, &STD_LUMA_AC_VALUES); - -// Code lengths and values for table k.6 -static STD_CHROMA_AC_CODE_LENGTHS: [u8; 16] = [ - 0x00, 0x02, 0x01, 0x02, 0x04, 0x04, 0x03, 0x04, 0x07, 0x05, 0x04, 0x04, 0x00, 0x01, 0x02, 0x77, -]; -static STD_CHROMA_AC_VALUES: [u8; 162] = [ - 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21, 0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71, - 0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91, 0xA1, 0xB1, 0xC1, 0x09, 0x23, 0x33, 0x52, 0xF0, - 0x15, 0x62, 0x72, 0xD1, 0x0A, 0x16, 0x24, 0x34, 0xE1, 0x25, 0xF1, 0x17, 0x18, 0x19, 0x1A, 0x26, - 0x27, 0x28, 0x29, 0x2A, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, - 0x49, 0x4A, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5A, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, - 0x69, 0x6A, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7A, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, - 0x88, 0x89, 0x8A, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9A, 0xA2, 0xA3, 0xA4, 0xA5, - 0xA6, 0xA7, 0xA8, 0xA9, 0xAA, 0xB2, 0xB3, 0xB4, 0xB5, 0xB6, 0xB7, 0xB8, 0xB9, 0xBA, 0xC2, 0xC3, - 0xC4, 0xC5, 0xC6, 0xC7, 0xC8, 0xC9, 0xCA, 0xD2, 0xD3, 0xD4, 0xD5, 0xD6, 0xD7, 0xD8, 0xD9, 0xDA, - 0xE2, 0xE3, 0xE4, 0xE5, 0xE6, 0xE7, 0xE8, 0xE9, 0xEA, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xF7, 0xF8, - 0xF9, 0xFA, -]; - -static STD_CHROMA_AC_HUFF_LUT: [(u8, u16); 256] = - build_huff_lut_const(&STD_CHROMA_AC_CODE_LENGTHS, &STD_CHROMA_AC_VALUES); - -static DCCLASS: u8 = 0; -static ACCLASS: u8 = 1; - -static LUMADESTINATION: u8 = 0; -static CHROMADESTINATION: u8 = 1; - -static LUMAID: u8 = 1; -static CHROMABLUEID: u8 = 2; -static CHROMAREDID: u8 = 3; - -/// The permutation of dct coefficients. -#[rustfmt::skip] -static UNZIGZAG: [u8; 64] = [ - 0, 1, 8, 16, 9, 2, 3, 10, - 17, 24, 32, 25, 18, 11, 4, 5, - 12, 19, 26, 33, 40, 48, 41, 34, - 27, 20, 13, 6, 7, 14, 21, 28, - 35, 42, 49, 56, 57, 50, 43, 36, - 29, 22, 15, 23, 30, 37, 44, 51, - 58, 59, 52, 45, 38, 31, 39, 46, - 53, 60, 61, 54, 47, 55, 62, 63, -]; - -/// A representation of a JPEG component -#[derive(Copy, Clone)] -struct Component { - /// The Component's identifier - id: u8, - - /// Horizontal sampling factor - h: u8, - - /// Vertical sampling factor - v: u8, - - /// The quantization table selector - tq: u8, - - /// Index to the Huffman DC Table - dc_table: u8, - - /// Index to the AC Huffman Table - ac_table: u8, - - /// The dc prediction of the component - _dc_pred: i32, -} - -pub(crate) struct BitWriter<W> { - w: W, - accumulator: u32, - nbits: u8, -} - -impl<W: Write> BitWriter<W> { - fn new(w: W) -> Self { - BitWriter { - w, - accumulator: 0, - nbits: 0, - } - } - - fn write_bits(&mut self, bits: u16, size: u8) -> io::Result<()> { - if size == 0 { - return Ok(()); - } - - self.nbits += size; - self.accumulator |= u32::from(bits) << (32 - self.nbits) as usize; - - while self.nbits >= 8 { - let byte = self.accumulator >> 24; - self.w.write_all(&[byte as u8])?; - - if byte == 0xFF { - self.w.write_all(&[0x00])?; - } - - self.nbits -= 8; - self.accumulator <<= 8; - } - - Ok(()) - } - - fn pad_byte(&mut self) -> io::Result<()> { - self.write_bits(0x7F, 7) - } - - fn huffman_encode(&mut self, val: u8, table: &[(u8, u16); 256]) -> io::Result<()> { - let (size, code) = table[val as usize]; - - if size > 16 { - panic!("bad huffman value"); - } - - self.write_bits(code, size) - } - - fn write_block( - &mut self, - block: &[i32; 64], - prevdc: i32, - dctable: &[(u8, u16); 256], - actable: &[(u8, u16); 256], - ) -> io::Result<i32> { - // Differential DC encoding - let dcval = block[0]; - let diff = dcval - prevdc; - let (size, value) = encode_coefficient(diff); - - self.huffman_encode(size, dctable)?; - self.write_bits(value, size)?; - - // Figure F.2 - let mut zero_run = 0; - - for &k in &UNZIGZAG[1..] { - if block[k as usize] == 0 { - zero_run += 1; - } else { - while zero_run > 15 { - self.huffman_encode(0xF0, actable)?; - zero_run -= 16; - } - - let (size, value) = encode_coefficient(block[k as usize]); - let symbol = (zero_run << 4) | size; - - self.huffman_encode(symbol, actable)?; - self.write_bits(value, size)?; - - zero_run = 0; - } - } - - if block[UNZIGZAG[63] as usize] == 0 { - self.huffman_encode(0x00, actable)?; - } - - Ok(dcval) - } - - fn write_marker(&mut self, marker: u8) -> io::Result<()> { - self.w.write_all(&[0xFF, marker]) - } - - fn write_segment(&mut self, marker: u8, data: &[u8]) -> io::Result<()> { - self.w.write_all(&[0xFF, marker])?; - self.w.write_all(&(data.len() as u16 + 2).to_be_bytes())?; - self.w.write_all(data) - } -} - -/// Represents a unit in which the density of an image is measured -#[derive(Clone, Copy, Debug, Eq, PartialEq)] -pub enum PixelDensityUnit { - /// Represents the absence of a unit, the values indicate only a - /// [pixel aspect ratio](https://en.wikipedia.org/wiki/Pixel_aspect_ratio) - PixelAspectRatio, - - /// Pixels per inch (2.54 cm) - Inches, - - /// Pixels per centimeter - Centimeters, -} - -/// Represents the pixel density of an image -/// -/// For example, a 300 DPI image is represented by: -/// -/// ```rust -/// use image::codecs::jpeg::*; -/// let hdpi = PixelDensity::dpi(300); -/// assert_eq!(hdpi, PixelDensity {density: (300,300), unit: PixelDensityUnit::Inches}) -/// ``` -#[derive(Clone, Copy, Debug, Eq, PartialEq)] -pub struct PixelDensity { - /// A couple of values for (Xdensity, Ydensity) - pub density: (u16, u16), - /// The unit in which the density is measured - pub unit: PixelDensityUnit, -} - -impl PixelDensity { - /// Creates the most common pixel density type: - /// the horizontal and the vertical density are equal, - /// and measured in pixels per inch. - pub fn dpi(density: u16) -> Self { - PixelDensity { - density: (density, density), - unit: PixelDensityUnit::Inches, - } - } -} - -impl Default for PixelDensity { - /// Returns a pixel density with a pixel aspect ratio of 1 - fn default() -> Self { - PixelDensity { - density: (1, 1), - unit: PixelDensityUnit::PixelAspectRatio, - } - } -} - -/// The representation of a JPEG encoder -pub struct JpegEncoder<W> { - writer: BitWriter<W>, - - components: Vec<Component>, - tables: Vec<[u8; 64]>, - - luma_dctable: Cow<'static, [(u8, u16); 256]>, - luma_actable: Cow<'static, [(u8, u16); 256]>, - chroma_dctable: Cow<'static, [(u8, u16); 256]>, - chroma_actable: Cow<'static, [(u8, u16); 256]>, - - pixel_density: PixelDensity, -} - -impl<W: Write> JpegEncoder<W> { - /// Create a new encoder that writes its output to ```w``` - pub fn new(w: W) -> JpegEncoder<W> { - JpegEncoder::new_with_quality(w, 75) - } - - /// Create a new encoder that writes its output to ```w```, and has - /// the quality parameter ```quality``` with a value in the range 1-100 - /// where 1 is the worst and 100 is the best. - pub fn new_with_quality(w: W, quality: u8) -> JpegEncoder<W> { - let components = vec![ - Component { - id: LUMAID, - h: 1, - v: 1, - tq: LUMADESTINATION, - dc_table: LUMADESTINATION, - ac_table: LUMADESTINATION, - _dc_pred: 0, - }, - Component { - id: CHROMABLUEID, - h: 1, - v: 1, - tq: CHROMADESTINATION, - dc_table: CHROMADESTINATION, - ac_table: CHROMADESTINATION, - _dc_pred: 0, - }, - Component { - id: CHROMAREDID, - h: 1, - v: 1, - tq: CHROMADESTINATION, - dc_table: CHROMADESTINATION, - ac_table: CHROMADESTINATION, - _dc_pred: 0, - }, - ]; - - // Derive our quantization table scaling value using the libjpeg algorithm - let scale = u32::from(clamp(quality, 1, 100)); - let scale = if scale < 50 { - 5000 / scale - } else { - 200 - scale * 2 - }; - - let mut tables = vec![STD_LUMA_QTABLE, STD_CHROMA_QTABLE]; - tables.iter_mut().for_each(|t| { - t.iter_mut().for_each(|v| { - *v = clamp( - (u32::from(*v) * scale + 50) / 100, - 1, - u32::from(u8::max_value()), - ) as u8; - }) - }); - - JpegEncoder { - writer: BitWriter::new(w), - - components, - tables, - - luma_dctable: Cow::Borrowed(&STD_LUMA_DC_HUFF_LUT), - luma_actable: Cow::Borrowed(&STD_LUMA_AC_HUFF_LUT), - chroma_dctable: Cow::Borrowed(&STD_CHROMA_DC_HUFF_LUT), - chroma_actable: Cow::Borrowed(&STD_CHROMA_AC_HUFF_LUT), - - pixel_density: PixelDensity::default(), - } - } - - /// Set the pixel density of the images the encoder will encode. - /// If this method is not called, then a default pixel aspect ratio of 1x1 will be applied, - /// and no DPI information will be stored in the image. - pub fn set_pixel_density(&mut self, pixel_density: PixelDensity) { - self.pixel_density = pixel_density; - } - - /// Encodes the image stored in the raw byte buffer ```image``` - /// that has dimensions ```width``` and ```height``` - /// and ```ColorType``` ```c``` - /// - /// The Image in encoded with subsampling ratio 4:2:2 - pub fn encode( - &mut self, - image: &[u8], - width: u32, - height: u32, - color_type: ColorType, - ) -> ImageResult<()> { - match color_type { - ColorType::L8 => { - let image: ImageBuffer<Luma<_>, _> = - ImageBuffer::from_raw(width, height, image).unwrap(); - self.encode_image(&image) - } - ColorType::La8 => { - let image: ImageBuffer<LumaA<_>, _> = - ImageBuffer::from_raw(width, height, image).unwrap(); - self.encode_image(&image) - } - ColorType::Rgb8 => { - let image: ImageBuffer<Rgb<_>, _> = - ImageBuffer::from_raw(width, height, image).unwrap(); - self.encode_image(&image) - } - ColorType::Rgba8 => { - let image: ImageBuffer<Rgba<_>, _> = - ImageBuffer::from_raw(width, height, image).unwrap(); - self.encode_image(&image) - } - _ => Err(ImageError::Unsupported( - UnsupportedError::from_format_and_kind( - ImageFormat::Jpeg.into(), - UnsupportedErrorKind::Color(color_type.into()), - ), - )), - } - } - - /// Encodes the given image. - /// - /// As a special feature this does not require the whole image to be present in memory at the - /// same time such that it may be computed on the fly, which is why this method exists on this - /// encoder but not on others. Instead the encoder will iterate over 8-by-8 blocks of pixels at - /// a time, inspecting each pixel exactly once. You can rely on this behaviour when calling - /// this method. - /// - /// The Image in encoded with subsampling ratio 4:2:2 - pub fn encode_image<I: GenericImageView>(&mut self, image: &I) -> ImageResult<()> - where - I::Pixel: PixelWithColorType, - { - let n = I::Pixel::CHANNEL_COUNT; - let color_type = I::Pixel::COLOR_TYPE; - let num_components = if n == 1 || n == 2 { 1 } else { 3 }; - - self.writer.write_marker(SOI)?; - - let mut buf = Vec::new(); - - build_jfif_header(&mut buf, self.pixel_density); - self.writer.write_segment(APP0, &buf)?; - - build_frame_header( - &mut buf, - 8, - // TODO: not idiomatic yet. Should be an EncodingError and mention jpg. Further it - // should check dimensions prior to writing. - u16::try_from(image.width()).map_err(|_| { - ImageError::Parameter(ParameterError::from_kind( - ParameterErrorKind::DimensionMismatch, - )) - })?, - u16::try_from(image.height()).map_err(|_| { - ImageError::Parameter(ParameterError::from_kind( - ParameterErrorKind::DimensionMismatch, - )) - })?, - &self.components[..num_components], - ); - self.writer.write_segment(SOF0, &buf)?; - - assert_eq!(self.tables.len(), 2); - let numtables = if num_components == 1 { 1 } else { 2 }; - - for (i, table) in self.tables[..numtables].iter().enumerate() { - build_quantization_segment(&mut buf, 8, i as u8, table); - self.writer.write_segment(DQT, &buf)?; - } - - build_huffman_segment( - &mut buf, - DCCLASS, - LUMADESTINATION, - &STD_LUMA_DC_CODE_LENGTHS, - &STD_LUMA_DC_VALUES, - ); - self.writer.write_segment(DHT, &buf)?; - - build_huffman_segment( - &mut buf, - ACCLASS, - LUMADESTINATION, - &STD_LUMA_AC_CODE_LENGTHS, - &STD_LUMA_AC_VALUES, - ); - self.writer.write_segment(DHT, &buf)?; - - if num_components == 3 { - build_huffman_segment( - &mut buf, - DCCLASS, - CHROMADESTINATION, - &STD_CHROMA_DC_CODE_LENGTHS, - &STD_CHROMA_DC_VALUES, - ); - self.writer.write_segment(DHT, &buf)?; - - build_huffman_segment( - &mut buf, - ACCLASS, - CHROMADESTINATION, - &STD_CHROMA_AC_CODE_LENGTHS, - &STD_CHROMA_AC_VALUES, - ); - self.writer.write_segment(DHT, &buf)?; - } - - build_scan_header(&mut buf, &self.components[..num_components]); - self.writer.write_segment(SOS, &buf)?; - - if color_type.has_color() { - self.encode_rgb(image) - } else { - self.encode_gray(image) - }?; - - self.writer.pad_byte()?; - self.writer.write_marker(EOI)?; - Ok(()) - } - - fn encode_gray<I: GenericImageView>(&mut self, image: &I) -> io::Result<()> { - let mut yblock = [0u8; 64]; - let mut y_dcprev = 0; - let mut dct_yblock = [0i32; 64]; - - for y in (0..image.height()).step_by(8) { - for x in (0..image.width()).step_by(8) { - copy_blocks_gray(image, x, y, &mut yblock); - - // Level shift and fdct - // Coeffs are scaled by 8 - transform::fdct(&yblock, &mut dct_yblock); - - // Quantization - for (i, dct) in dct_yblock.iter_mut().enumerate() { - *dct = ((*dct / 8) as f32 / f32::from(self.tables[0][i])).round() as i32; - } - - let la = &*self.luma_actable; - let ld = &*self.luma_dctable; - - y_dcprev = self.writer.write_block(&dct_yblock, y_dcprev, ld, la)?; - } - } - - Ok(()) - } - - fn encode_rgb<I: GenericImageView>(&mut self, image: &I) -> io::Result<()> { - let mut y_dcprev = 0; - let mut cb_dcprev = 0; - let mut cr_dcprev = 0; - - let mut dct_yblock = [0i32; 64]; - let mut dct_cb_block = [0i32; 64]; - let mut dct_cr_block = [0i32; 64]; - - let mut yblock = [0u8; 64]; - let mut cb_block = [0u8; 64]; - let mut cr_block = [0u8; 64]; - - for y in (0..image.height()).step_by(8) { - for x in (0..image.width()).step_by(8) { - // RGB -> YCbCr - copy_blocks_ycbcr(image, x, y, &mut yblock, &mut cb_block, &mut cr_block); - - // Level shift and fdct - // Coeffs are scaled by 8 - transform::fdct(&yblock, &mut dct_yblock); - transform::fdct(&cb_block, &mut dct_cb_block); - transform::fdct(&cr_block, &mut dct_cr_block); - - // Quantization - for i in 0usize..64 { - dct_yblock[i] = - ((dct_yblock[i] / 8) as f32 / f32::from(self.tables[0][i])).round() as i32; - dct_cb_block[i] = ((dct_cb_block[i] / 8) as f32 / f32::from(self.tables[1][i])) - .round() as i32; - dct_cr_block[i] = ((dct_cr_block[i] / 8) as f32 / f32::from(self.tables[1][i])) - .round() as i32; - } - - let la = &*self.luma_actable; - let ld = &*self.luma_dctable; - let cd = &*self.chroma_dctable; - let ca = &*self.chroma_actable; - - y_dcprev = self.writer.write_block(&dct_yblock, y_dcprev, ld, la)?; - cb_dcprev = self.writer.write_block(&dct_cb_block, cb_dcprev, cd, ca)?; - cr_dcprev = self.writer.write_block(&dct_cr_block, cr_dcprev, cd, ca)?; - } - } - - Ok(()) - } -} - -impl<W: Write> ImageEncoder for JpegEncoder<W> { - fn write_image( - mut self, - buf: &[u8], - width: u32, - height: u32, - color_type: ColorType, - ) -> ImageResult<()> { - self.encode(buf, width, height, color_type) - } -} - -fn build_jfif_header(m: &mut Vec<u8>, density: PixelDensity) { - m.clear(); - m.extend_from_slice(b"JFIF"); - m.extend_from_slice(&[ - 0, - 0x01, - 0x02, - match density.unit { - PixelDensityUnit::PixelAspectRatio => 0x00, - PixelDensityUnit::Inches => 0x01, - PixelDensityUnit::Centimeters => 0x02, - }, - ]); - m.extend_from_slice(&density.density.0.to_be_bytes()); - m.extend_from_slice(&density.density.1.to_be_bytes()); - m.extend_from_slice(&[0, 0]); -} - -fn build_frame_header( - m: &mut Vec<u8>, - precision: u8, - width: u16, - height: u16, - components: &[Component], -) { - m.clear(); - - m.push(precision); - m.extend_from_slice(&height.to_be_bytes()); - m.extend_from_slice(&width.to_be_bytes()); - m.push(components.len() as u8); - - for &comp in components.iter() { - let hv = (comp.h << 4) | comp.v; - m.extend_from_slice(&[comp.id, hv, comp.tq]); - } -} - -fn build_scan_header(m: &mut Vec<u8>, components: &[Component]) { - m.clear(); - - m.push(components.len() as u8); - - for &comp in components.iter() { - let tables = (comp.dc_table << 4) | comp.ac_table; - m.extend_from_slice(&[comp.id, tables]); - } - - // spectral start and end, approx. high and low - m.extend_from_slice(&[0, 63, 0]); -} - -fn build_huffman_segment( - m: &mut Vec<u8>, - class: u8, - destination: u8, - numcodes: &[u8; 16], - values: &[u8], -) { - m.clear(); - - let tcth = (class << 4) | destination; - m.push(tcth); - - m.extend_from_slice(numcodes); - - let sum: usize = numcodes.iter().map(|&x| x as usize).sum(); - - assert_eq!(sum, values.len()); - - m.extend_from_slice(values); -} - -fn build_quantization_segment(m: &mut Vec<u8>, precision: u8, identifier: u8, qtable: &[u8; 64]) { - m.clear(); - - let p = if precision == 8 { 0 } else { 1 }; - - let pqtq = (p << 4) | identifier; - m.push(pqtq); - - for &i in &UNZIGZAG[..] { - m.push(qtable[i as usize]); - } -} - -fn encode_coefficient(coefficient: i32) -> (u8, u16) { - let mut magnitude = coefficient.unsigned_abs() as u16; - let mut num_bits = 0u8; - - while magnitude > 0 { - magnitude >>= 1; - num_bits += 1; - } - - let mask = (1 << num_bits as usize) - 1; - - let val = if coefficient < 0 { - (coefficient - 1) as u16 & mask - } else { - coefficient as u16 & mask - }; - - (num_bits, val) -} - -#[inline] -fn rgb_to_ycbcr<P: Pixel>(pixel: P) -> (u8, u8, u8) { - use crate::traits::Primitive; - use num_traits::cast::ToPrimitive; - - let [r, g, b] = pixel.to_rgb().0; - let max: f32 = P::Subpixel::DEFAULT_MAX_VALUE.to_f32().unwrap(); - let r: f32 = r.to_f32().unwrap(); - let g: f32 = g.to_f32().unwrap(); - let b: f32 = b.to_f32().unwrap(); - - // Coefficients from JPEG File Interchange Format (Version 1.02), multiplied for 255 maximum. - let y = 76.245 / max * r + 149.685 / max * g + 29.07 / max * b; - let cb = -43.0185 / max * r - 84.4815 / max * g + 127.5 / max * b + 128.; - let cr = 127.5 / max * r - 106.7685 / max * g - 20.7315 / max * b + 128.; - - (y as u8, cb as u8, cr as u8) -} - -/// Returns the pixel at (x,y) if (x,y) is in the image, -/// otherwise the closest pixel in the image -#[inline] -fn pixel_at_or_near<I: GenericImageView>(source: &I, x: u32, y: u32) -> I::Pixel { - if source.in_bounds(x, y) { - source.get_pixel(x, y) - } else { - source.get_pixel(x.min(source.width() - 1), y.min(source.height() - 1)) - } -} - -fn copy_blocks_ycbcr<I: GenericImageView>( - source: &I, - x0: u32, - y0: u32, - yb: &mut [u8; 64], - cbb: &mut [u8; 64], - crb: &mut [u8; 64], -) { - for y in 0..8 { - for x in 0..8 { - let pixel = pixel_at_or_near(source, x + x0, y + y0); - let (yc, cb, cr) = rgb_to_ycbcr(pixel); - - yb[(y * 8 + x) as usize] = yc; - cbb[(y * 8 + x) as usize] = cb; - crb[(y * 8 + x) as usize] = cr; - } - } -} - -fn copy_blocks_gray<I: GenericImageView>(source: &I, x0: u32, y0: u32, gb: &mut [u8; 64]) { - use num_traits::cast::ToPrimitive; - for y in 0..8 { - for x in 0..8 { - let pixel = pixel_at_or_near(source, x0 + x, y0 + y); - let [luma] = pixel.to_luma().0; - gb[(y * 8 + x) as usize] = luma.to_u8().unwrap(); - } - } -} - -#[cfg(test)] -mod tests { - use std::io::Cursor; - - #[cfg(feature = "benchmarks")] - extern crate test; - #[cfg(feature = "benchmarks")] - use test::Bencher; - - use crate::color::ColorType; - use crate::error::ParameterErrorKind::DimensionMismatch; - use crate::image::ImageDecoder; - use crate::{ImageEncoder, ImageError}; - - use super::super::JpegDecoder; - use super::{ - build_frame_header, build_huffman_segment, build_jfif_header, build_quantization_segment, - build_scan_header, Component, JpegEncoder, PixelDensity, DCCLASS, LUMADESTINATION, - STD_LUMA_DC_CODE_LENGTHS, STD_LUMA_DC_VALUES, - }; - - fn decode(encoded: &[u8]) -> Vec<u8> { - let decoder = JpegDecoder::new(Cursor::new(encoded)).expect("Could not decode image"); - - let mut decoded = vec![0; decoder.total_bytes() as usize]; - decoder - .read_image(&mut decoded) - .expect("Could not decode image"); - decoded - } - - #[test] - fn roundtrip_sanity_check() { - // create a 1x1 8-bit image buffer containing a single red pixel - let img = [255u8, 0, 0]; - - // encode it into a memory buffer - let mut encoded_img = Vec::new(); - { - let encoder = JpegEncoder::new_with_quality(&mut encoded_img, 100); - encoder - .write_image(&img, 1, 1, ColorType::Rgb8) - .expect("Could not encode image"); - } - - // decode it from the memory buffer - { - let decoded = decode(&encoded_img); - // note that, even with the encode quality set to 100, we do not get the same image - // back. Therefore, we're going to assert that it's at least red-ish: - assert_eq!(3, decoded.len()); - assert!(decoded[0] > 0x80); - assert!(decoded[1] < 0x80); - assert!(decoded[2] < 0x80); - } - } - - #[test] - fn grayscale_roundtrip_sanity_check() { - // create a 2x2 8-bit image buffer containing a white diagonal - let img = [255u8, 0, 0, 255]; - - // encode it into a memory buffer - let mut encoded_img = Vec::new(); - { - let encoder = JpegEncoder::new_with_quality(&mut encoded_img, 100); - encoder - .write_image(&img[..], 2, 2, ColorType::L8) - .expect("Could not encode image"); - } - - // decode it from the memory buffer - { - let decoded = decode(&encoded_img); - // note that, even with the encode quality set to 100, we do not get the same image - // back. Therefore, we're going to assert that the diagonal is at least white-ish: - assert_eq!(4, decoded.len()); - assert!(decoded[0] > 0x80); - assert!(decoded[1] < 0x80); - assert!(decoded[2] < 0x80); - assert!(decoded[3] > 0x80); - } - } - - #[test] - fn jfif_header_density_check() { - let mut buffer = Vec::new(); - build_jfif_header(&mut buffer, PixelDensity::dpi(300)); - assert_eq!( - buffer, - vec![ - b'J', - b'F', - b'I', - b'F', - 0, - 1, - 2, // JFIF version 1.2 - 1, // density is in dpi - 300u16.to_be_bytes()[0], - 300u16.to_be_bytes()[1], - 300u16.to_be_bytes()[0], - 300u16.to_be_bytes()[1], - 0, - 0, // No thumbnail - ] - ); - } - - #[test] - fn test_image_too_large() { - // JPEG cannot encode images larger than 65,535×65,535 - // create a 65,536×1 8-bit black image buffer - let img = [0; 65_536]; - // Try to encode an image that is too large - let mut encoded = Vec::new(); - let encoder = JpegEncoder::new_with_quality(&mut encoded, 100); - let result = encoder.write_image(&img, 65_536, 1, ColorType::L8); - match result { - Err(ImageError::Parameter(err)) => { - assert_eq!(err.kind(), DimensionMismatch) - } - other => { - assert!( - false, - "Encoding an image that is too large should return a DimensionError \ - it returned {:?} instead", - other - ) - } - } - } - - #[test] - fn test_build_jfif_header() { - let mut buf = vec![]; - let density = PixelDensity::dpi(100); - build_jfif_header(&mut buf, density); - assert_eq!( - buf, - [0x4A, 0x46, 0x49, 0x46, 0x00, 0x01, 0x02, 0x01, 0, 100, 0, 100, 0, 0] - ); - } - - #[test] - fn test_build_frame_header() { - let mut buf = vec![]; - let components = vec![ - Component { - id: 1, - h: 1, - v: 1, - tq: 5, - dc_table: 5, - ac_table: 5, - _dc_pred: 0, - }, - Component { - id: 2, - h: 1, - v: 1, - tq: 4, - dc_table: 4, - ac_table: 4, - _dc_pred: 0, - }, - ]; - build_frame_header(&mut buf, 5, 100, 150, &components); - assert_eq!( - buf, - [5, 0, 150, 0, 100, 2, 1, 1 << 4 | 1, 5, 2, 1 << 4 | 1, 4] - ); - } - - #[test] - fn test_build_scan_header() { - let mut buf = vec![]; - let components = vec![ - Component { - id: 1, - h: 1, - v: 1, - tq: 5, - dc_table: 5, - ac_table: 5, - _dc_pred: 0, - }, - Component { - id: 2, - h: 1, - v: 1, - tq: 4, - dc_table: 4, - ac_table: 4, - _dc_pred: 0, - }, - ]; - build_scan_header(&mut buf, &components); - assert_eq!(buf, [2, 1, 5 << 4 | 5, 2, 4 << 4 | 4, 0, 63, 0]); - } - - #[test] - fn test_build_huffman_segment() { - let mut buf = vec![]; - build_huffman_segment( - &mut buf, - DCCLASS, - LUMADESTINATION, - &STD_LUMA_DC_CODE_LENGTHS, - &STD_LUMA_DC_VALUES, - ); - assert_eq!( - buf, - vec![ - 0, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, - 10, 11 - ] - ); - } - - #[test] - fn test_build_quantization_segment() { - let mut buf = vec![]; - let qtable = [0u8; 64]; - build_quantization_segment(&mut buf, 8, 1, &qtable); - let mut expected = vec![]; - expected.push(0 << 4 | 1); - expected.extend_from_slice(&[0; 64]); - assert_eq!(buf, expected) - } - - #[cfg(feature = "benchmarks")] - #[bench] - fn bench_jpeg_encoder_new(b: &mut Bencher) { - b.iter(|| { - let mut y = vec![]; - let x = JpegEncoder::new(&mut y); - }) - } -} |