aboutsummaryrefslogtreecommitdiff
path: root/vendor/jpeg-decoder/src/arch
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/jpeg-decoder/src/arch')
-rw-r--r--vendor/jpeg-decoder/src/arch/mod.rs46
-rw-r--r--vendor/jpeg-decoder/src/arch/neon.rs221
-rw-r--r--vendor/jpeg-decoder/src/arch/ssse3.rs288
3 files changed, 0 insertions, 555 deletions
diff --git a/vendor/jpeg-decoder/src/arch/mod.rs b/vendor/jpeg-decoder/src/arch/mod.rs
deleted file mode 100644
index 15b46c5..0000000
--- a/vendor/jpeg-decoder/src/arch/mod.rs
+++ /dev/null
@@ -1,46 +0,0 @@
-#![allow(unsafe_code)]
-
-mod neon;
-mod ssse3;
-
-#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
-use std::is_x86_feature_detected;
-
-/// Arch-specific implementation of YCbCr conversion. Returns the number of pixels that were
-/// converted.
-pub fn get_color_convert_line_ycbcr() -> Option<unsafe fn(&[u8], &[u8], &[u8], &mut [u8]) -> usize>
-{
- #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
- #[allow(unsafe_code)]
- {
- if is_x86_feature_detected!("ssse3") {
- return Some(ssse3::color_convert_line_ycbcr);
- }
- }
- // Runtime detection is not needed on aarch64.
- #[cfg(all(feature = "nightly_aarch64_neon", target_arch = "aarch64"))]
- {
- return Some(neon::color_convert_line_ycbcr);
- }
- #[allow(unreachable_code)]
- None
-}
-
-/// Arch-specific implementation of 8x8 IDCT.
-pub fn get_dequantize_and_idct_block_8x8(
-) -> Option<unsafe fn(&[i16; 64], &[u16; 64], usize, &mut [u8])> {
- #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
- #[allow(unsafe_code)]
- {
- if is_x86_feature_detected!("ssse3") {
- return Some(ssse3::dequantize_and_idct_block_8x8);
- }
- }
- // Runtime detection is not needed on aarch64.
- #[cfg(all(feature = "nightly_aarch64_neon", target_arch = "aarch64"))]
- {
- return Some(neon::dequantize_and_idct_block_8x8);
- }
- #[allow(unreachable_code)]
- None
-}
diff --git a/vendor/jpeg-decoder/src/arch/neon.rs b/vendor/jpeg-decoder/src/arch/neon.rs
deleted file mode 100644
index 4843578..0000000
--- a/vendor/jpeg-decoder/src/arch/neon.rs
+++ /dev/null
@@ -1,221 +0,0 @@
-#[cfg(all(feature = "nightly_aarch64_neon", target_arch = "aarch64"))]
-use core::arch::aarch64::*;
-
-#[cfg(all(feature = "nightly_aarch64_neon", target_arch = "aarch64"))]
-#[target_feature(enable = "neon")]
-unsafe fn idct8(data: &mut [int16x8_t; 8]) {
- // The fixed-point constants here are obtained by taking the fractional part of the constants
- // from the non-SIMD implementation and scaling them up by 1<<15. This is because
- // vqrdmulhq_n_s16(a, b) is effectively equivalent to (a*b)>>15 (except for possibly some
- // slight differences in rounding).
-
- // The code here is effectively equivalent to the calls to "kernel" in idct.rs, except that it
- // doesn't apply any further scaling and fixed point constants have a different precision.
-
- let p2 = data[2];
- let p3 = data[6];
- let p1 = vqrdmulhq_n_s16(vqaddq_s16(p2, p3), 17734); // 0.5411961
- let t2 = vqsubq_s16(
- vqsubq_s16(p1, p3),
- vqrdmulhq_n_s16(p3, 27779), // 0.847759065
- );
- let t3 = vqaddq_s16(p1, vqrdmulhq_n_s16(p2, 25079)); // 0.765366865
-
- let p2 = data[0];
- let p3 = data[4];
- let t0 = vqaddq_s16(p2, p3);
- let t1 = vqsubq_s16(p2, p3);
-
- let x0 = vqaddq_s16(t0, t3);
- let x3 = vqsubq_s16(t0, t3);
- let x1 = vqaddq_s16(t1, t2);
- let x2 = vqsubq_s16(t1, t2);
-
- let t0 = data[7];
- let t1 = data[5];
- let t2 = data[3];
- let t3 = data[1];
-
- let p3 = vqaddq_s16(t0, t2);
- let p4 = vqaddq_s16(t1, t3);
- let p1 = vqaddq_s16(t0, t3);
- let p2 = vqaddq_s16(t1, t2);
- let p5 = vqaddq_s16(p3, p4);
- let p5 = vqaddq_s16(p5, vqrdmulhq_n_s16(p5, 5763)); // 0.175875602
-
- let t0 = vqrdmulhq_n_s16(t0, 9786); // 0.298631336
- let t1 = vqaddq_s16(
- vqaddq_s16(t1, t1),
- vqrdmulhq_n_s16(t1, 1741), // 0.053119869
- );
- let t2 = vqaddq_s16(
- vqaddq_s16(t2, vqaddq_s16(t2, t2)),
- vqrdmulhq_n_s16(t2, 2383), // 0.072711026
- );
- let t3 = vqaddq_s16(t3, vqrdmulhq_n_s16(t3, 16427)); // 0.501321110
-
- let p1 = vqsubq_s16(p5, vqrdmulhq_n_s16(p1, 29490)); // 0.899976223
- let p2 = vqsubq_s16(
- vqsubq_s16(vqsubq_s16(p5, p2), p2),
- vqrdmulhq_n_s16(p2, 18446), // 0.562915447
- );
-
- let p3 = vqsubq_s16(
- vqrdmulhq_n_s16(p3, -31509), // -0.961570560
- p3,
- );
- let p4 = vqrdmulhq_n_s16(p4, -12785); // -0.390180644
-
- let t3 = vqaddq_s16(vqaddq_s16(p1, p4), t3);
- let t2 = vqaddq_s16(vqaddq_s16(p2, p3), t2);
- let t1 = vqaddq_s16(vqaddq_s16(p2, p4), t1);
- let t0 = vqaddq_s16(vqaddq_s16(p1, p3), t0);
-
- data[0] = vqaddq_s16(x0, t3);
- data[7] = vqsubq_s16(x0, t3);
- data[1] = vqaddq_s16(x1, t2);
- data[6] = vqsubq_s16(x1, t2);
- data[2] = vqaddq_s16(x2, t1);
- data[5] = vqsubq_s16(x2, t1);
- data[3] = vqaddq_s16(x3, t0);
- data[4] = vqsubq_s16(x3, t0);
-}
-
-#[cfg(all(feature = "nightly_aarch64_neon", target_arch = "aarch64"))]
-#[target_feature(enable = "neon")]
-unsafe fn transpose8(data: &mut [int16x8_t; 8]) {
- // Use NEON's 2x2 matrix transposes (vtrn) to do the transposition in each 4x4 block, then
- // combine the 4x4 blocks.
- let a01 = vtrnq_s16(data[0], data[1]);
- let a23 = vtrnq_s16(data[2], data[3]);
-
- let four0 = vtrnq_s32(vreinterpretq_s32_s16(a01.0), vreinterpretq_s32_s16(a23.0));
- let four1 = vtrnq_s32(vreinterpretq_s32_s16(a01.1), vreinterpretq_s32_s16(a23.1));
-
- let a45 = vtrnq_s16(data[4], data[5]);
- let a67 = vtrnq_s16(data[6], data[7]);
-
- let four2 = vtrnq_s32(vreinterpretq_s32_s16(a45.0), vreinterpretq_s32_s16(a67.0));
- let four3 = vtrnq_s32(vreinterpretq_s32_s16(a45.1), vreinterpretq_s32_s16(a67.1));
-
- data[0] = vreinterpretq_s16_s32(vcombine_s32(vget_low_s32(four0.0), vget_low_s32(four2.0)));
- data[1] = vreinterpretq_s16_s32(vcombine_s32(vget_low_s32(four1.0), vget_low_s32(four3.0)));
- data[2] = vreinterpretq_s16_s32(vcombine_s32(vget_low_s32(four0.1), vget_low_s32(four2.1)));
- data[3] = vreinterpretq_s16_s32(vcombine_s32(vget_low_s32(four1.1), vget_low_s32(four3.1)));
- data[4] = vreinterpretq_s16_s32(vcombine_s32(vget_high_s32(four0.0), vget_high_s32(four2.0)));
- data[5] = vreinterpretq_s16_s32(vcombine_s32(vget_high_s32(four1.0), vget_high_s32(four3.0)));
- data[6] = vreinterpretq_s16_s32(vcombine_s32(vget_high_s32(four0.1), vget_high_s32(four2.1)));
- data[7] = vreinterpretq_s16_s32(vcombine_s32(vget_high_s32(four1.1), vget_high_s32(four3.1)));
-}
-
-#[cfg(all(feature = "nightly_aarch64_neon", target_arch = "aarch64"))]
-#[target_feature(enable = "neon")]
-pub unsafe fn dequantize_and_idct_block_8x8(
- coefficients: &[i16; 64],
- quantization_table: &[u16; 64],
- output_linestride: usize,
- output: &mut [u8],
-) {
- // The loop below will write to positions [output_linestride * i, output_linestride * i + 8)
- // for 0<=i<8. Thus, the last accessed position is at an offset of output_linestrade * 7 + 7,
- // and if that position is in-bounds, so are all other accesses.
- assert!(
- output.len()
- > output_linestride
- .checked_mul(7)
- .unwrap()
- .checked_add(7)
- .unwrap()
- );
-
- const SHIFT: i32 = 3;
-
- // Read the DCT coefficients, scale them up and dequantize them.
- let mut data = [vdupq_n_s16(0); 8];
- for i in 0..8 {
- data[i] = vshlq_n_s16(
- vmulq_s16(
- vld1q_s16(coefficients.as_ptr().wrapping_add(i * 8)),
- vreinterpretq_s16_u16(vld1q_u16(quantization_table.as_ptr().wrapping_add(i * 8))),
- ),
- SHIFT,
- );
- }
-
- // Usual column IDCT - transpose - column IDCT - transpose approach.
- idct8(&mut data);
- transpose8(&mut data);
- idct8(&mut data);
- transpose8(&mut data);
-
- for i in 0..8 {
- // The two passes of the IDCT algorithm give us a factor of 8, so the shift here is
- // increased by 3.
- // As values will be stored in a u8, they need to be 128-centered and not 0-centered.
- // We add 128 with the appropriate shift for that purpose.
- const OFFSET: i16 = 128 << (SHIFT + 3);
- // We want rounding right shift, so we should add (1/2) << (SHIFT+3) before shifting.
- const ROUNDING_BIAS: i16 = (1 << (SHIFT + 3)) >> 1;
-
- let data_with_offset = vqaddq_s16(data[i], vdupq_n_s16(OFFSET + ROUNDING_BIAS));
-
- vst1_u8(
- output.as_mut_ptr().wrapping_add(output_linestride * i),
- vqshrun_n_s16(data_with_offset, SHIFT + 3),
- );
- }
-}
-
-#[cfg(all(feature = "nightly_aarch64_neon", target_arch = "aarch64"))]
-#[target_feature(enable = "neon")]
-pub unsafe fn color_convert_line_ycbcr(y: &[u8], cb: &[u8], cr: &[u8], output: &mut [u8]) -> usize {
- assert!(output.len() % 3 == 0);
- let num = output.len() / 3;
- assert!(num <= y.len());
- assert!(num <= cb.len());
- assert!(num <= cr.len());
- let num_vecs = num / 8;
-
- for i in 0..num_vecs {
- const SHIFT: i32 = 6;
- // Load.
- let y = vld1_u8(y.as_ptr().wrapping_add(i * 8));
- let cb = vld1_u8(cb.as_ptr().wrapping_add(i * 8));
- let cr = vld1_u8(cr.as_ptr().wrapping_add(i * 8));
-
- // Convert to 16 bit and shift.
- let y = vreinterpretq_s16_u16(vshll_n_u8(y, SHIFT));
- let cb = vreinterpretq_s16_u16(vshll_n_u8(cb, SHIFT));
- let cr = vreinterpretq_s16_u16(vshll_n_u8(cr, SHIFT));
-
- // Add offsets
- let y = vqaddq_s16(y, vdupq_n_s16((1 << SHIFT) >> 1));
- let c128 = vdupq_n_s16(128 << SHIFT);
- let cb = vqsubq_s16(cb, c128);
- let cr = vqsubq_s16(cr, c128);
-
- // Compute cr * 1.402, cb * 0.34414, cr * 0.71414, cb * 1.772
- let cr_140200 = vqaddq_s16(vqrdmulhq_n_s16(cr, 13173), cr);
- let cb_034414 = vqrdmulhq_n_s16(cb, 11276);
- let cr_071414 = vqrdmulhq_n_s16(cr, 23401);
- let cb_177200 = vqaddq_s16(vqrdmulhq_n_s16(cb, 25297), cb);
-
- // Last conversion step.
- let r = vqaddq_s16(y, cr_140200);
- let g = vqsubq_s16(y, vqaddq_s16(cb_034414, cr_071414));
- let b = vqaddq_s16(y, cb_177200);
-
- // Shift back and convert to u8.
- let r = vqshrun_n_s16(r, SHIFT);
- let g = vqshrun_n_s16(g, SHIFT);
- let b = vqshrun_n_s16(b, SHIFT);
-
- // Shuffle + store.
- vst3_u8(
- output.as_mut_ptr().wrapping_add(24 * i),
- uint8x8x3_t(r, g, b),
- );
- }
-
- num_vecs * 8
-}
diff --git a/vendor/jpeg-decoder/src/arch/ssse3.rs b/vendor/jpeg-decoder/src/arch/ssse3.rs
deleted file mode 100644
index 374a70c..0000000
--- a/vendor/jpeg-decoder/src/arch/ssse3.rs
+++ /dev/null
@@ -1,288 +0,0 @@
-#[cfg(target_arch = "x86")]
-use std::arch::x86::*;
-#[cfg(target_arch = "x86_64")]
-use std::arch::x86_64::*;
-
-#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
-#[target_feature(enable = "ssse3")]
-unsafe fn idct8(data: &mut [__m128i; 8]) {
- // The fixed-point constants here are obtained by taking the fractional part of the constants
- // from the non-SIMD implementation and scaling them up by 1<<15. This is because
- // _mm_mulhrs_epi16(a, b) is effectively equivalent to (a*b)>>15 (except for possibly some
- // slight differences in rounding).
-
- // The code here is effectively equivalent to the calls to "kernel" in idct.rs, except that it
- // doesn't apply any further scaling and fixed point constants have a different precision.
-
- let p2 = data[2];
- let p3 = data[6];
- let p1 = _mm_mulhrs_epi16(_mm_adds_epi16(p2, p3), _mm_set1_epi16(17734)); // 0.5411961
- let t2 = _mm_subs_epi16(
- _mm_subs_epi16(p1, p3),
- _mm_mulhrs_epi16(p3, _mm_set1_epi16(27779)), // 0.847759065
- );
- let t3 = _mm_adds_epi16(p1, _mm_mulhrs_epi16(p2, _mm_set1_epi16(25079))); // 0.765366865
-
- let p2 = data[0];
- let p3 = data[4];
- let t0 = _mm_adds_epi16(p2, p3);
- let t1 = _mm_subs_epi16(p2, p3);
-
- let x0 = _mm_adds_epi16(t0, t3);
- let x3 = _mm_subs_epi16(t0, t3);
- let x1 = _mm_adds_epi16(t1, t2);
- let x2 = _mm_subs_epi16(t1, t2);
-
- let t0 = data[7];
- let t1 = data[5];
- let t2 = data[3];
- let t3 = data[1];
-
- let p3 = _mm_adds_epi16(t0, t2);
- let p4 = _mm_adds_epi16(t1, t3);
- let p1 = _mm_adds_epi16(t0, t3);
- let p2 = _mm_adds_epi16(t1, t2);
- let p5 = _mm_adds_epi16(p3, p4);
- let p5 = _mm_adds_epi16(p5, _mm_mulhrs_epi16(p5, _mm_set1_epi16(5763))); // 0.175875602
-
- let t0 = _mm_mulhrs_epi16(t0, _mm_set1_epi16(9786)); // 0.298631336
- let t1 = _mm_adds_epi16(
- _mm_adds_epi16(t1, t1),
- _mm_mulhrs_epi16(t1, _mm_set1_epi16(1741)), // 0.053119869
- );
- let t2 = _mm_adds_epi16(
- _mm_adds_epi16(t2, _mm_adds_epi16(t2, t2)),
- _mm_mulhrs_epi16(t2, _mm_set1_epi16(2383)), // 0.072711026
- );
- let t3 = _mm_adds_epi16(t3, _mm_mulhrs_epi16(t3, _mm_set1_epi16(16427))); // 0.501321110
-
- let p1 = _mm_subs_epi16(p5, _mm_mulhrs_epi16(p1, _mm_set1_epi16(29490))); // 0.899976223
- let p2 = _mm_subs_epi16(
- _mm_subs_epi16(_mm_subs_epi16(p5, p2), p2),
- _mm_mulhrs_epi16(p2, _mm_set1_epi16(18446)), // 0.562915447
- );
-
- let p3 = _mm_subs_epi16(
- _mm_mulhrs_epi16(p3, _mm_set1_epi16(-31509)), // -0.961570560
- p3,
- );
- let p4 = _mm_mulhrs_epi16(p4, _mm_set1_epi16(-12785)); // -0.390180644
-
- let t3 = _mm_adds_epi16(_mm_adds_epi16(p1, p4), t3);
- let t2 = _mm_adds_epi16(_mm_adds_epi16(p2, p3), t2);
- let t1 = _mm_adds_epi16(_mm_adds_epi16(p2, p4), t1);
- let t0 = _mm_adds_epi16(_mm_adds_epi16(p1, p3), t0);
-
- data[0] = _mm_adds_epi16(x0, t3);
- data[7] = _mm_subs_epi16(x0, t3);
- data[1] = _mm_adds_epi16(x1, t2);
- data[6] = _mm_subs_epi16(x1, t2);
- data[2] = _mm_adds_epi16(x2, t1);
- data[5] = _mm_subs_epi16(x2, t1);
- data[3] = _mm_adds_epi16(x3, t0);
- data[4] = _mm_subs_epi16(x3, t0);
-}
-
-#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
-#[target_feature(enable = "ssse3")]
-unsafe fn transpose8(data: &mut [__m128i; 8]) {
- // Transpose a 8x8 matrix with a sequence of interleaving operations.
- // Naming: dABl contains elements from the *l*ower halves of vectors A and B, interleaved, i.e.
- // A0 B0 A1 B1 ...
- // dABCDll contains elements from the lower quarter (ll) of vectors A, B, C, D, interleaved -
- // A0 B0 C0 D0 A1 B1 C1 D1 ...
- let d01l = _mm_unpacklo_epi16(data[0], data[1]);
- let d23l = _mm_unpacklo_epi16(data[2], data[3]);
- let d45l = _mm_unpacklo_epi16(data[4], data[5]);
- let d67l = _mm_unpacklo_epi16(data[6], data[7]);
- let d01h = _mm_unpackhi_epi16(data[0], data[1]);
- let d23h = _mm_unpackhi_epi16(data[2], data[3]);
- let d45h = _mm_unpackhi_epi16(data[4], data[5]);
- let d67h = _mm_unpackhi_epi16(data[6], data[7]);
- // Operating on 32-bits will interleave *consecutive pairs* of 16-bit integers.
- let d0123ll = _mm_unpacklo_epi32(d01l, d23l);
- let d0123lh = _mm_unpackhi_epi32(d01l, d23l);
- let d4567ll = _mm_unpacklo_epi32(d45l, d67l);
- let d4567lh = _mm_unpackhi_epi32(d45l, d67l);
- let d0123hl = _mm_unpacklo_epi32(d01h, d23h);
- let d0123hh = _mm_unpackhi_epi32(d01h, d23h);
- let d4567hl = _mm_unpacklo_epi32(d45h, d67h);
- let d4567hh = _mm_unpackhi_epi32(d45h, d67h);
- // Operating on 64-bits will interleave *consecutive quadruples* of 16-bit integers.
- data[0] = _mm_unpacklo_epi64(d0123ll, d4567ll);
- data[1] = _mm_unpackhi_epi64(d0123ll, d4567ll);
- data[2] = _mm_unpacklo_epi64(d0123lh, d4567lh);
- data[3] = _mm_unpackhi_epi64(d0123lh, d4567lh);
- data[4] = _mm_unpacklo_epi64(d0123hl, d4567hl);
- data[5] = _mm_unpackhi_epi64(d0123hl, d4567hl);
- data[6] = _mm_unpacklo_epi64(d0123hh, d4567hh);
- data[7] = _mm_unpackhi_epi64(d0123hh, d4567hh);
-}
-
-#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
-#[target_feature(enable = "ssse3")]
-pub unsafe fn dequantize_and_idct_block_8x8(
- coefficients: &[i16; 64],
- quantization_table: &[u16; 64],
- output_linestride: usize,
- output: &mut [u8],
-) {
- // The loop below will write to positions [output_linestride * i, output_linestride * i + 8)
- // for 0<=i<8. Thus, the last accessed position is at an offset of output_linestrade * 7 + 7,
- // and if that position is in-bounds, so are all other accesses.
- assert!(
- output.len()
- > output_linestride
- .checked_mul(7)
- .unwrap()
- .checked_add(7)
- .unwrap()
- );
-
- #[cfg(target_arch = "x86")]
- use std::arch::x86::*;
- #[cfg(target_arch = "x86_64")]
- use std::arch::x86_64::*;
-
- const SHIFT: i32 = 3;
-
- // Read the DCT coefficients, scale them up and dequantize them.
- let mut data = [_mm_setzero_si128(); 8];
- for i in 0..8 {
- data[i] = _mm_slli_epi16(
- _mm_mullo_epi16(
- _mm_loadu_si128(coefficients.as_ptr().wrapping_add(i * 8) as *const _),
- _mm_loadu_si128(quantization_table.as_ptr().wrapping_add(i * 8) as *const _),
- ),
- SHIFT,
- );
- }
-
- // Usual column IDCT - transpose - column IDCT - transpose approach.
- idct8(&mut data);
- transpose8(&mut data);
- idct8(&mut data);
- transpose8(&mut data);
-
- for i in 0..8 {
- let mut buf = [0u8; 16];
- // The two passes of the IDCT algorithm give us a factor of 8, so the shift here is
- // increased by 3.
- // As values will be stored in a u8, they need to be 128-centered and not 0-centered.
- // We add 128 with the appropriate shift for that purpose.
- const OFFSET: i16 = 128 << (SHIFT + 3);
- // We want rounding right shift, so we should add (1/2) << (SHIFT+3) before shifting.
- const ROUNDING_BIAS: i16 = (1 << (SHIFT + 3)) >> 1;
-
- let data_with_offset = _mm_adds_epi16(data[i], _mm_set1_epi16(OFFSET + ROUNDING_BIAS));
-
- _mm_storeu_si128(
- buf.as_mut_ptr() as *mut _,
- _mm_packus_epi16(
- _mm_srai_epi16(data_with_offset, SHIFT + 3),
- _mm_setzero_si128(),
- ),
- );
- std::ptr::copy_nonoverlapping::<u8>(
- buf.as_ptr(),
- output.as_mut_ptr().wrapping_add(output_linestride * i) as *mut _,
- 8,
- );
- }
-}
-
-#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
-#[target_feature(enable = "ssse3")]
-pub unsafe fn color_convert_line_ycbcr(y: &[u8], cb: &[u8], cr: &[u8], output: &mut [u8]) -> usize {
- assert!(output.len() % 3 == 0);
- let num = output.len() / 3;
- assert!(num <= y.len());
- assert!(num <= cb.len());
- assert!(num <= cr.len());
- // _mm_loadu_si64 generates incorrect code for Rust <1.58. To circumvent this, we use a full
- // 128-bit load, but that requires leaving an extra vector of border to the scalar code.
- // From Rust 1.58 on, the _mm_loadu_si128 can be replaced with _mm_loadu_si64 and this
- // .saturating_sub() can be removed.
- let num_vecs = (num / 8).saturating_sub(1);
-
- for i in 0..num_vecs {
- const SHIFT: i32 = 6;
- // Load.
- let y = _mm_loadu_si128(y.as_ptr().wrapping_add(i * 8) as *const _);
- let cb = _mm_loadu_si128(cb.as_ptr().wrapping_add(i * 8) as *const _);
- let cr = _mm_loadu_si128(cr.as_ptr().wrapping_add(i * 8) as *const _);
-
- // Convert to 16 bit.
- let shuf16 = _mm_setr_epi8(
- 0, -0x7F, 1, -0x7F, 2, -0x7F, 3, -0x7F, 4, -0x7F, 5, -0x7F, 6, -0x7F, 7, -0x7F,
- );
- let y = _mm_slli_epi16(_mm_shuffle_epi8(y, shuf16), SHIFT);
- let cb = _mm_slli_epi16(_mm_shuffle_epi8(cb, shuf16), SHIFT);
- let cr = _mm_slli_epi16(_mm_shuffle_epi8(cr, shuf16), SHIFT);
-
- // Add offsets
- let c128 = _mm_set1_epi16(128 << SHIFT);
- let y = _mm_adds_epi16(y, _mm_set1_epi16((1 << SHIFT) >> 1));
- let cb = _mm_subs_epi16(cb, c128);
- let cr = _mm_subs_epi16(cr, c128);
-
- // Compute cr * 1.402, cb * 0.34414, cr * 0.71414, cb * 1.772
- let cr_140200 = _mm_adds_epi16(_mm_mulhrs_epi16(cr, _mm_set1_epi16(13173)), cr);
- let cb_034414 = _mm_mulhrs_epi16(cb, _mm_set1_epi16(11276));
- let cr_071414 = _mm_mulhrs_epi16(cr, _mm_set1_epi16(23401));
- let cb_177200 = _mm_adds_epi16(_mm_mulhrs_epi16(cb, _mm_set1_epi16(25297)), cb);
-
- // Last conversion step.
- let r = _mm_adds_epi16(y, cr_140200);
- let g = _mm_subs_epi16(y, _mm_adds_epi16(cb_034414, cr_071414));
- let b = _mm_adds_epi16(y, cb_177200);
-
- // Shift back and convert to u8.
- let zero = _mm_setzero_si128();
- let r = _mm_packus_epi16(_mm_srai_epi16(r, SHIFT), zero);
- let g = _mm_packus_epi16(_mm_srai_epi16(g, SHIFT), zero);
- let b = _mm_packus_epi16(_mm_srai_epi16(b, SHIFT), zero);
-
- // Shuffle rrrrrrrrggggggggbbbbbbbb to rgbrgbrgb...
-
- // Control vectors for _mm_shuffle_epi8. -0x7F is selected so that the resulting position
- // after _mm_shuffle_epi8 will be filled with 0, so that the r, g, and b vectors can then
- // be OR-ed together.
- let shufr = _mm_setr_epi8(
- 0, -0x7F, -0x7F, 1, -0x7F, -0x7F, 2, -0x7F, -0x7F, 3, -0x7F, -0x7F, 4, -0x7F, -0x7F, 5,
- );
- let shufg = _mm_setr_epi8(
- -0x7F, 0, -0x7F, -0x7F, 1, -0x7F, -0x7F, 2, -0x7F, -0x7F, 3, -0x7F, -0x7F, 4, -0x7F,
- -0x7F,
- );
- let shufb = _mm_alignr_epi8(shufg, shufg, 15);
-
- let rgb_low = _mm_or_si128(
- _mm_shuffle_epi8(r, shufr),
- _mm_or_si128(_mm_shuffle_epi8(g, shufg), _mm_shuffle_epi8(b, shufb)),
- );
-
- // For the next part of the rgb vectors, we need to select R values from 6 up, G and B from
- // 5 up. The highest bit of -0x7F + 6 is still set, so the corresponding location will
- // still be 0.
- let shufr1 = _mm_add_epi8(shufb, _mm_set1_epi8(6));
- let shufg1 = _mm_add_epi8(shufr, _mm_set1_epi8(5));
- let shufb1 = _mm_add_epi8(shufg, _mm_set1_epi8(5));
-
- let rgb_hi = _mm_or_si128(
- _mm_shuffle_epi8(r, shufr1),
- _mm_or_si128(_mm_shuffle_epi8(g, shufg1), _mm_shuffle_epi8(b, shufb1)),
- );
-
- let mut data = [0u8; 32];
- _mm_storeu_si128(data.as_mut_ptr() as *mut _, rgb_low);
- _mm_storeu_si128(data.as_mut_ptr().wrapping_add(16) as *mut _, rgb_hi);
- std::ptr::copy_nonoverlapping::<u8>(
- data.as_ptr(),
- output.as_mut_ptr().wrapping_add(24 * i),
- 24,
- );
- }
-
- num_vecs * 8
-}