aboutsummaryrefslogtreecommitdiff
path: root/vendor/jpeg-decoder/src
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/jpeg-decoder/src')
-rw-r--r--vendor/jpeg-decoder/src/arch/mod.rs46
-rw-r--r--vendor/jpeg-decoder/src/arch/neon.rs221
-rw-r--r--vendor/jpeg-decoder/src/arch/ssse3.rs288
-rw-r--r--vendor/jpeg-decoder/src/decoder.rs1493
-rw-r--r--vendor/jpeg-decoder/src/decoder/lossless.rs259
-rw-r--r--vendor/jpeg-decoder/src/error.rs75
-rw-r--r--vendor/jpeg-decoder/src/huffman.rs346
-rw-r--r--vendor/jpeg-decoder/src/idct.rs657
-rw-r--r--vendor/jpeg-decoder/src/lib.rs66
-rw-r--r--vendor/jpeg-decoder/src/marker.rs136
-rw-r--r--vendor/jpeg-decoder/src/parser.rs685
-rw-r--r--vendor/jpeg-decoder/src/upsampler.rs252
-rw-r--r--vendor/jpeg-decoder/src/worker/immediate.rs80
-rw-r--r--vendor/jpeg-decoder/src/worker/mod.rs128
-rw-r--r--vendor/jpeg-decoder/src/worker/multithreaded.rs123
-rw-r--r--vendor/jpeg-decoder/src/worker/rayon.rs221
16 files changed, 0 insertions, 5076 deletions
diff --git a/vendor/jpeg-decoder/src/arch/mod.rs b/vendor/jpeg-decoder/src/arch/mod.rs
deleted file mode 100644
index 15b46c5..0000000
--- a/vendor/jpeg-decoder/src/arch/mod.rs
+++ /dev/null
@@ -1,46 +0,0 @@
-#![allow(unsafe_code)]
-
-mod neon;
-mod ssse3;
-
-#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
-use std::is_x86_feature_detected;
-
-/// Arch-specific implementation of YCbCr conversion. Returns the number of pixels that were
-/// converted.
-pub fn get_color_convert_line_ycbcr() -> Option<unsafe fn(&[u8], &[u8], &[u8], &mut [u8]) -> usize>
-{
- #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
- #[allow(unsafe_code)]
- {
- if is_x86_feature_detected!("ssse3") {
- return Some(ssse3::color_convert_line_ycbcr);
- }
- }
- // Runtime detection is not needed on aarch64.
- #[cfg(all(feature = "nightly_aarch64_neon", target_arch = "aarch64"))]
- {
- return Some(neon::color_convert_line_ycbcr);
- }
- #[allow(unreachable_code)]
- None
-}
-
-/// Arch-specific implementation of 8x8 IDCT.
-pub fn get_dequantize_and_idct_block_8x8(
-) -> Option<unsafe fn(&[i16; 64], &[u16; 64], usize, &mut [u8])> {
- #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
- #[allow(unsafe_code)]
- {
- if is_x86_feature_detected!("ssse3") {
- return Some(ssse3::dequantize_and_idct_block_8x8);
- }
- }
- // Runtime detection is not needed on aarch64.
- #[cfg(all(feature = "nightly_aarch64_neon", target_arch = "aarch64"))]
- {
- return Some(neon::dequantize_and_idct_block_8x8);
- }
- #[allow(unreachable_code)]
- None
-}
diff --git a/vendor/jpeg-decoder/src/arch/neon.rs b/vendor/jpeg-decoder/src/arch/neon.rs
deleted file mode 100644
index 4843578..0000000
--- a/vendor/jpeg-decoder/src/arch/neon.rs
+++ /dev/null
@@ -1,221 +0,0 @@
-#[cfg(all(feature = "nightly_aarch64_neon", target_arch = "aarch64"))]
-use core::arch::aarch64::*;
-
-#[cfg(all(feature = "nightly_aarch64_neon", target_arch = "aarch64"))]
-#[target_feature(enable = "neon")]
-unsafe fn idct8(data: &mut [int16x8_t; 8]) {
- // The fixed-point constants here are obtained by taking the fractional part of the constants
- // from the non-SIMD implementation and scaling them up by 1<<15. This is because
- // vqrdmulhq_n_s16(a, b) is effectively equivalent to (a*b)>>15 (except for possibly some
- // slight differences in rounding).
-
- // The code here is effectively equivalent to the calls to "kernel" in idct.rs, except that it
- // doesn't apply any further scaling and fixed point constants have a different precision.
-
- let p2 = data[2];
- let p3 = data[6];
- let p1 = vqrdmulhq_n_s16(vqaddq_s16(p2, p3), 17734); // 0.5411961
- let t2 = vqsubq_s16(
- vqsubq_s16(p1, p3),
- vqrdmulhq_n_s16(p3, 27779), // 0.847759065
- );
- let t3 = vqaddq_s16(p1, vqrdmulhq_n_s16(p2, 25079)); // 0.765366865
-
- let p2 = data[0];
- let p3 = data[4];
- let t0 = vqaddq_s16(p2, p3);
- let t1 = vqsubq_s16(p2, p3);
-
- let x0 = vqaddq_s16(t0, t3);
- let x3 = vqsubq_s16(t0, t3);
- let x1 = vqaddq_s16(t1, t2);
- let x2 = vqsubq_s16(t1, t2);
-
- let t0 = data[7];
- let t1 = data[5];
- let t2 = data[3];
- let t3 = data[1];
-
- let p3 = vqaddq_s16(t0, t2);
- let p4 = vqaddq_s16(t1, t3);
- let p1 = vqaddq_s16(t0, t3);
- let p2 = vqaddq_s16(t1, t2);
- let p5 = vqaddq_s16(p3, p4);
- let p5 = vqaddq_s16(p5, vqrdmulhq_n_s16(p5, 5763)); // 0.175875602
-
- let t0 = vqrdmulhq_n_s16(t0, 9786); // 0.298631336
- let t1 = vqaddq_s16(
- vqaddq_s16(t1, t1),
- vqrdmulhq_n_s16(t1, 1741), // 0.053119869
- );
- let t2 = vqaddq_s16(
- vqaddq_s16(t2, vqaddq_s16(t2, t2)),
- vqrdmulhq_n_s16(t2, 2383), // 0.072711026
- );
- let t3 = vqaddq_s16(t3, vqrdmulhq_n_s16(t3, 16427)); // 0.501321110
-
- let p1 = vqsubq_s16(p5, vqrdmulhq_n_s16(p1, 29490)); // 0.899976223
- let p2 = vqsubq_s16(
- vqsubq_s16(vqsubq_s16(p5, p2), p2),
- vqrdmulhq_n_s16(p2, 18446), // 0.562915447
- );
-
- let p3 = vqsubq_s16(
- vqrdmulhq_n_s16(p3, -31509), // -0.961570560
- p3,
- );
- let p4 = vqrdmulhq_n_s16(p4, -12785); // -0.390180644
-
- let t3 = vqaddq_s16(vqaddq_s16(p1, p4), t3);
- let t2 = vqaddq_s16(vqaddq_s16(p2, p3), t2);
- let t1 = vqaddq_s16(vqaddq_s16(p2, p4), t1);
- let t0 = vqaddq_s16(vqaddq_s16(p1, p3), t0);
-
- data[0] = vqaddq_s16(x0, t3);
- data[7] = vqsubq_s16(x0, t3);
- data[1] = vqaddq_s16(x1, t2);
- data[6] = vqsubq_s16(x1, t2);
- data[2] = vqaddq_s16(x2, t1);
- data[5] = vqsubq_s16(x2, t1);
- data[3] = vqaddq_s16(x3, t0);
- data[4] = vqsubq_s16(x3, t0);
-}
-
-#[cfg(all(feature = "nightly_aarch64_neon", target_arch = "aarch64"))]
-#[target_feature(enable = "neon")]
-unsafe fn transpose8(data: &mut [int16x8_t; 8]) {
- // Use NEON's 2x2 matrix transposes (vtrn) to do the transposition in each 4x4 block, then
- // combine the 4x4 blocks.
- let a01 = vtrnq_s16(data[0], data[1]);
- let a23 = vtrnq_s16(data[2], data[3]);
-
- let four0 = vtrnq_s32(vreinterpretq_s32_s16(a01.0), vreinterpretq_s32_s16(a23.0));
- let four1 = vtrnq_s32(vreinterpretq_s32_s16(a01.1), vreinterpretq_s32_s16(a23.1));
-
- let a45 = vtrnq_s16(data[4], data[5]);
- let a67 = vtrnq_s16(data[6], data[7]);
-
- let four2 = vtrnq_s32(vreinterpretq_s32_s16(a45.0), vreinterpretq_s32_s16(a67.0));
- let four3 = vtrnq_s32(vreinterpretq_s32_s16(a45.1), vreinterpretq_s32_s16(a67.1));
-
- data[0] = vreinterpretq_s16_s32(vcombine_s32(vget_low_s32(four0.0), vget_low_s32(four2.0)));
- data[1] = vreinterpretq_s16_s32(vcombine_s32(vget_low_s32(four1.0), vget_low_s32(four3.0)));
- data[2] = vreinterpretq_s16_s32(vcombine_s32(vget_low_s32(four0.1), vget_low_s32(four2.1)));
- data[3] = vreinterpretq_s16_s32(vcombine_s32(vget_low_s32(four1.1), vget_low_s32(four3.1)));
- data[4] = vreinterpretq_s16_s32(vcombine_s32(vget_high_s32(four0.0), vget_high_s32(four2.0)));
- data[5] = vreinterpretq_s16_s32(vcombine_s32(vget_high_s32(four1.0), vget_high_s32(four3.0)));
- data[6] = vreinterpretq_s16_s32(vcombine_s32(vget_high_s32(four0.1), vget_high_s32(four2.1)));
- data[7] = vreinterpretq_s16_s32(vcombine_s32(vget_high_s32(four1.1), vget_high_s32(four3.1)));
-}
-
-#[cfg(all(feature = "nightly_aarch64_neon", target_arch = "aarch64"))]
-#[target_feature(enable = "neon")]
-pub unsafe fn dequantize_and_idct_block_8x8(
- coefficients: &[i16; 64],
- quantization_table: &[u16; 64],
- output_linestride: usize,
- output: &mut [u8],
-) {
- // The loop below will write to positions [output_linestride * i, output_linestride * i + 8)
- // for 0<=i<8. Thus, the last accessed position is at an offset of output_linestrade * 7 + 7,
- // and if that position is in-bounds, so are all other accesses.
- assert!(
- output.len()
- > output_linestride
- .checked_mul(7)
- .unwrap()
- .checked_add(7)
- .unwrap()
- );
-
- const SHIFT: i32 = 3;
-
- // Read the DCT coefficients, scale them up and dequantize them.
- let mut data = [vdupq_n_s16(0); 8];
- for i in 0..8 {
- data[i] = vshlq_n_s16(
- vmulq_s16(
- vld1q_s16(coefficients.as_ptr().wrapping_add(i * 8)),
- vreinterpretq_s16_u16(vld1q_u16(quantization_table.as_ptr().wrapping_add(i * 8))),
- ),
- SHIFT,
- );
- }
-
- // Usual column IDCT - transpose - column IDCT - transpose approach.
- idct8(&mut data);
- transpose8(&mut data);
- idct8(&mut data);
- transpose8(&mut data);
-
- for i in 0..8 {
- // The two passes of the IDCT algorithm give us a factor of 8, so the shift here is
- // increased by 3.
- // As values will be stored in a u8, they need to be 128-centered and not 0-centered.
- // We add 128 with the appropriate shift for that purpose.
- const OFFSET: i16 = 128 << (SHIFT + 3);
- // We want rounding right shift, so we should add (1/2) << (SHIFT+3) before shifting.
- const ROUNDING_BIAS: i16 = (1 << (SHIFT + 3)) >> 1;
-
- let data_with_offset = vqaddq_s16(data[i], vdupq_n_s16(OFFSET + ROUNDING_BIAS));
-
- vst1_u8(
- output.as_mut_ptr().wrapping_add(output_linestride * i),
- vqshrun_n_s16(data_with_offset, SHIFT + 3),
- );
- }
-}
-
-#[cfg(all(feature = "nightly_aarch64_neon", target_arch = "aarch64"))]
-#[target_feature(enable = "neon")]
-pub unsafe fn color_convert_line_ycbcr(y: &[u8], cb: &[u8], cr: &[u8], output: &mut [u8]) -> usize {
- assert!(output.len() % 3 == 0);
- let num = output.len() / 3;
- assert!(num <= y.len());
- assert!(num <= cb.len());
- assert!(num <= cr.len());
- let num_vecs = num / 8;
-
- for i in 0..num_vecs {
- const SHIFT: i32 = 6;
- // Load.
- let y = vld1_u8(y.as_ptr().wrapping_add(i * 8));
- let cb = vld1_u8(cb.as_ptr().wrapping_add(i * 8));
- let cr = vld1_u8(cr.as_ptr().wrapping_add(i * 8));
-
- // Convert to 16 bit and shift.
- let y = vreinterpretq_s16_u16(vshll_n_u8(y, SHIFT));
- let cb = vreinterpretq_s16_u16(vshll_n_u8(cb, SHIFT));
- let cr = vreinterpretq_s16_u16(vshll_n_u8(cr, SHIFT));
-
- // Add offsets
- let y = vqaddq_s16(y, vdupq_n_s16((1 << SHIFT) >> 1));
- let c128 = vdupq_n_s16(128 << SHIFT);
- let cb = vqsubq_s16(cb, c128);
- let cr = vqsubq_s16(cr, c128);
-
- // Compute cr * 1.402, cb * 0.34414, cr * 0.71414, cb * 1.772
- let cr_140200 = vqaddq_s16(vqrdmulhq_n_s16(cr, 13173), cr);
- let cb_034414 = vqrdmulhq_n_s16(cb, 11276);
- let cr_071414 = vqrdmulhq_n_s16(cr, 23401);
- let cb_177200 = vqaddq_s16(vqrdmulhq_n_s16(cb, 25297), cb);
-
- // Last conversion step.
- let r = vqaddq_s16(y, cr_140200);
- let g = vqsubq_s16(y, vqaddq_s16(cb_034414, cr_071414));
- let b = vqaddq_s16(y, cb_177200);
-
- // Shift back and convert to u8.
- let r = vqshrun_n_s16(r, SHIFT);
- let g = vqshrun_n_s16(g, SHIFT);
- let b = vqshrun_n_s16(b, SHIFT);
-
- // Shuffle + store.
- vst3_u8(
- output.as_mut_ptr().wrapping_add(24 * i),
- uint8x8x3_t(r, g, b),
- );
- }
-
- num_vecs * 8
-}
diff --git a/vendor/jpeg-decoder/src/arch/ssse3.rs b/vendor/jpeg-decoder/src/arch/ssse3.rs
deleted file mode 100644
index 374a70c..0000000
--- a/vendor/jpeg-decoder/src/arch/ssse3.rs
+++ /dev/null
@@ -1,288 +0,0 @@
-#[cfg(target_arch = "x86")]
-use std::arch::x86::*;
-#[cfg(target_arch = "x86_64")]
-use std::arch::x86_64::*;
-
-#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
-#[target_feature(enable = "ssse3")]
-unsafe fn idct8(data: &mut [__m128i; 8]) {
- // The fixed-point constants here are obtained by taking the fractional part of the constants
- // from the non-SIMD implementation and scaling them up by 1<<15. This is because
- // _mm_mulhrs_epi16(a, b) is effectively equivalent to (a*b)>>15 (except for possibly some
- // slight differences in rounding).
-
- // The code here is effectively equivalent to the calls to "kernel" in idct.rs, except that it
- // doesn't apply any further scaling and fixed point constants have a different precision.
-
- let p2 = data[2];
- let p3 = data[6];
- let p1 = _mm_mulhrs_epi16(_mm_adds_epi16(p2, p3), _mm_set1_epi16(17734)); // 0.5411961
- let t2 = _mm_subs_epi16(
- _mm_subs_epi16(p1, p3),
- _mm_mulhrs_epi16(p3, _mm_set1_epi16(27779)), // 0.847759065
- );
- let t3 = _mm_adds_epi16(p1, _mm_mulhrs_epi16(p2, _mm_set1_epi16(25079))); // 0.765366865
-
- let p2 = data[0];
- let p3 = data[4];
- let t0 = _mm_adds_epi16(p2, p3);
- let t1 = _mm_subs_epi16(p2, p3);
-
- let x0 = _mm_adds_epi16(t0, t3);
- let x3 = _mm_subs_epi16(t0, t3);
- let x1 = _mm_adds_epi16(t1, t2);
- let x2 = _mm_subs_epi16(t1, t2);
-
- let t0 = data[7];
- let t1 = data[5];
- let t2 = data[3];
- let t3 = data[1];
-
- let p3 = _mm_adds_epi16(t0, t2);
- let p4 = _mm_adds_epi16(t1, t3);
- let p1 = _mm_adds_epi16(t0, t3);
- let p2 = _mm_adds_epi16(t1, t2);
- let p5 = _mm_adds_epi16(p3, p4);
- let p5 = _mm_adds_epi16(p5, _mm_mulhrs_epi16(p5, _mm_set1_epi16(5763))); // 0.175875602
-
- let t0 = _mm_mulhrs_epi16(t0, _mm_set1_epi16(9786)); // 0.298631336
- let t1 = _mm_adds_epi16(
- _mm_adds_epi16(t1, t1),
- _mm_mulhrs_epi16(t1, _mm_set1_epi16(1741)), // 0.053119869
- );
- let t2 = _mm_adds_epi16(
- _mm_adds_epi16(t2, _mm_adds_epi16(t2, t2)),
- _mm_mulhrs_epi16(t2, _mm_set1_epi16(2383)), // 0.072711026
- );
- let t3 = _mm_adds_epi16(t3, _mm_mulhrs_epi16(t3, _mm_set1_epi16(16427))); // 0.501321110
-
- let p1 = _mm_subs_epi16(p5, _mm_mulhrs_epi16(p1, _mm_set1_epi16(29490))); // 0.899976223
- let p2 = _mm_subs_epi16(
- _mm_subs_epi16(_mm_subs_epi16(p5, p2), p2),
- _mm_mulhrs_epi16(p2, _mm_set1_epi16(18446)), // 0.562915447
- );
-
- let p3 = _mm_subs_epi16(
- _mm_mulhrs_epi16(p3, _mm_set1_epi16(-31509)), // -0.961570560
- p3,
- );
- let p4 = _mm_mulhrs_epi16(p4, _mm_set1_epi16(-12785)); // -0.390180644
-
- let t3 = _mm_adds_epi16(_mm_adds_epi16(p1, p4), t3);
- let t2 = _mm_adds_epi16(_mm_adds_epi16(p2, p3), t2);
- let t1 = _mm_adds_epi16(_mm_adds_epi16(p2, p4), t1);
- let t0 = _mm_adds_epi16(_mm_adds_epi16(p1, p3), t0);
-
- data[0] = _mm_adds_epi16(x0, t3);
- data[7] = _mm_subs_epi16(x0, t3);
- data[1] = _mm_adds_epi16(x1, t2);
- data[6] = _mm_subs_epi16(x1, t2);
- data[2] = _mm_adds_epi16(x2, t1);
- data[5] = _mm_subs_epi16(x2, t1);
- data[3] = _mm_adds_epi16(x3, t0);
- data[4] = _mm_subs_epi16(x3, t0);
-}
-
-#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
-#[target_feature(enable = "ssse3")]
-unsafe fn transpose8(data: &mut [__m128i; 8]) {
- // Transpose a 8x8 matrix with a sequence of interleaving operations.
- // Naming: dABl contains elements from the *l*ower halves of vectors A and B, interleaved, i.e.
- // A0 B0 A1 B1 ...
- // dABCDll contains elements from the lower quarter (ll) of vectors A, B, C, D, interleaved -
- // A0 B0 C0 D0 A1 B1 C1 D1 ...
- let d01l = _mm_unpacklo_epi16(data[0], data[1]);
- let d23l = _mm_unpacklo_epi16(data[2], data[3]);
- let d45l = _mm_unpacklo_epi16(data[4], data[5]);
- let d67l = _mm_unpacklo_epi16(data[6], data[7]);
- let d01h = _mm_unpackhi_epi16(data[0], data[1]);
- let d23h = _mm_unpackhi_epi16(data[2], data[3]);
- let d45h = _mm_unpackhi_epi16(data[4], data[5]);
- let d67h = _mm_unpackhi_epi16(data[6], data[7]);
- // Operating on 32-bits will interleave *consecutive pairs* of 16-bit integers.
- let d0123ll = _mm_unpacklo_epi32(d01l, d23l);
- let d0123lh = _mm_unpackhi_epi32(d01l, d23l);
- let d4567ll = _mm_unpacklo_epi32(d45l, d67l);
- let d4567lh = _mm_unpackhi_epi32(d45l, d67l);
- let d0123hl = _mm_unpacklo_epi32(d01h, d23h);
- let d0123hh = _mm_unpackhi_epi32(d01h, d23h);
- let d4567hl = _mm_unpacklo_epi32(d45h, d67h);
- let d4567hh = _mm_unpackhi_epi32(d45h, d67h);
- // Operating on 64-bits will interleave *consecutive quadruples* of 16-bit integers.
- data[0] = _mm_unpacklo_epi64(d0123ll, d4567ll);
- data[1] = _mm_unpackhi_epi64(d0123ll, d4567ll);
- data[2] = _mm_unpacklo_epi64(d0123lh, d4567lh);
- data[3] = _mm_unpackhi_epi64(d0123lh, d4567lh);
- data[4] = _mm_unpacklo_epi64(d0123hl, d4567hl);
- data[5] = _mm_unpackhi_epi64(d0123hl, d4567hl);
- data[6] = _mm_unpacklo_epi64(d0123hh, d4567hh);
- data[7] = _mm_unpackhi_epi64(d0123hh, d4567hh);
-}
-
-#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
-#[target_feature(enable = "ssse3")]
-pub unsafe fn dequantize_and_idct_block_8x8(
- coefficients: &[i16; 64],
- quantization_table: &[u16; 64],
- output_linestride: usize,
- output: &mut [u8],
-) {
- // The loop below will write to positions [output_linestride * i, output_linestride * i + 8)
- // for 0<=i<8. Thus, the last accessed position is at an offset of output_linestrade * 7 + 7,
- // and if that position is in-bounds, so are all other accesses.
- assert!(
- output.len()
- > output_linestride
- .checked_mul(7)
- .unwrap()
- .checked_add(7)
- .unwrap()
- );
-
- #[cfg(target_arch = "x86")]
- use std::arch::x86::*;
- #[cfg(target_arch = "x86_64")]
- use std::arch::x86_64::*;
-
- const SHIFT: i32 = 3;
-
- // Read the DCT coefficients, scale them up and dequantize them.
- let mut data = [_mm_setzero_si128(); 8];
- for i in 0..8 {
- data[i] = _mm_slli_epi16(
- _mm_mullo_epi16(
- _mm_loadu_si128(coefficients.as_ptr().wrapping_add(i * 8) as *const _),
- _mm_loadu_si128(quantization_table.as_ptr().wrapping_add(i * 8) as *const _),
- ),
- SHIFT,
- );
- }
-
- // Usual column IDCT - transpose - column IDCT - transpose approach.
- idct8(&mut data);
- transpose8(&mut data);
- idct8(&mut data);
- transpose8(&mut data);
-
- for i in 0..8 {
- let mut buf = [0u8; 16];
- // The two passes of the IDCT algorithm give us a factor of 8, so the shift here is
- // increased by 3.
- // As values will be stored in a u8, they need to be 128-centered and not 0-centered.
- // We add 128 with the appropriate shift for that purpose.
- const OFFSET: i16 = 128 << (SHIFT + 3);
- // We want rounding right shift, so we should add (1/2) << (SHIFT+3) before shifting.
- const ROUNDING_BIAS: i16 = (1 << (SHIFT + 3)) >> 1;
-
- let data_with_offset = _mm_adds_epi16(data[i], _mm_set1_epi16(OFFSET + ROUNDING_BIAS));
-
- _mm_storeu_si128(
- buf.as_mut_ptr() as *mut _,
- _mm_packus_epi16(
- _mm_srai_epi16(data_with_offset, SHIFT + 3),
- _mm_setzero_si128(),
- ),
- );
- std::ptr::copy_nonoverlapping::<u8>(
- buf.as_ptr(),
- output.as_mut_ptr().wrapping_add(output_linestride * i) as *mut _,
- 8,
- );
- }
-}
-
-#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
-#[target_feature(enable = "ssse3")]
-pub unsafe fn color_convert_line_ycbcr(y: &[u8], cb: &[u8], cr: &[u8], output: &mut [u8]) -> usize {
- assert!(output.len() % 3 == 0);
- let num = output.len() / 3;
- assert!(num <= y.len());
- assert!(num <= cb.len());
- assert!(num <= cr.len());
- // _mm_loadu_si64 generates incorrect code for Rust <1.58. To circumvent this, we use a full
- // 128-bit load, but that requires leaving an extra vector of border to the scalar code.
- // From Rust 1.58 on, the _mm_loadu_si128 can be replaced with _mm_loadu_si64 and this
- // .saturating_sub() can be removed.
- let num_vecs = (num / 8).saturating_sub(1);
-
- for i in 0..num_vecs {
- const SHIFT: i32 = 6;
- // Load.
- let y = _mm_loadu_si128(y.as_ptr().wrapping_add(i * 8) as *const _);
- let cb = _mm_loadu_si128(cb.as_ptr().wrapping_add(i * 8) as *const _);
- let cr = _mm_loadu_si128(cr.as_ptr().wrapping_add(i * 8) as *const _);
-
- // Convert to 16 bit.
- let shuf16 = _mm_setr_epi8(
- 0, -0x7F, 1, -0x7F, 2, -0x7F, 3, -0x7F, 4, -0x7F, 5, -0x7F, 6, -0x7F, 7, -0x7F,
- );
- let y = _mm_slli_epi16(_mm_shuffle_epi8(y, shuf16), SHIFT);
- let cb = _mm_slli_epi16(_mm_shuffle_epi8(cb, shuf16), SHIFT);
- let cr = _mm_slli_epi16(_mm_shuffle_epi8(cr, shuf16), SHIFT);
-
- // Add offsets
- let c128 = _mm_set1_epi16(128 << SHIFT);
- let y = _mm_adds_epi16(y, _mm_set1_epi16((1 << SHIFT) >> 1));
- let cb = _mm_subs_epi16(cb, c128);
- let cr = _mm_subs_epi16(cr, c128);
-
- // Compute cr * 1.402, cb * 0.34414, cr * 0.71414, cb * 1.772
- let cr_140200 = _mm_adds_epi16(_mm_mulhrs_epi16(cr, _mm_set1_epi16(13173)), cr);
- let cb_034414 = _mm_mulhrs_epi16(cb, _mm_set1_epi16(11276));
- let cr_071414 = _mm_mulhrs_epi16(cr, _mm_set1_epi16(23401));
- let cb_177200 = _mm_adds_epi16(_mm_mulhrs_epi16(cb, _mm_set1_epi16(25297)), cb);
-
- // Last conversion step.
- let r = _mm_adds_epi16(y, cr_140200);
- let g = _mm_subs_epi16(y, _mm_adds_epi16(cb_034414, cr_071414));
- let b = _mm_adds_epi16(y, cb_177200);
-
- // Shift back and convert to u8.
- let zero = _mm_setzero_si128();
- let r = _mm_packus_epi16(_mm_srai_epi16(r, SHIFT), zero);
- let g = _mm_packus_epi16(_mm_srai_epi16(g, SHIFT), zero);
- let b = _mm_packus_epi16(_mm_srai_epi16(b, SHIFT), zero);
-
- // Shuffle rrrrrrrrggggggggbbbbbbbb to rgbrgbrgb...
-
- // Control vectors for _mm_shuffle_epi8. -0x7F is selected so that the resulting position
- // after _mm_shuffle_epi8 will be filled with 0, so that the r, g, and b vectors can then
- // be OR-ed together.
- let shufr = _mm_setr_epi8(
- 0, -0x7F, -0x7F, 1, -0x7F, -0x7F, 2, -0x7F, -0x7F, 3, -0x7F, -0x7F, 4, -0x7F, -0x7F, 5,
- );
- let shufg = _mm_setr_epi8(
- -0x7F, 0, -0x7F, -0x7F, 1, -0x7F, -0x7F, 2, -0x7F, -0x7F, 3, -0x7F, -0x7F, 4, -0x7F,
- -0x7F,
- );
- let shufb = _mm_alignr_epi8(shufg, shufg, 15);
-
- let rgb_low = _mm_or_si128(
- _mm_shuffle_epi8(r, shufr),
- _mm_or_si128(_mm_shuffle_epi8(g, shufg), _mm_shuffle_epi8(b, shufb)),
- );
-
- // For the next part of the rgb vectors, we need to select R values from 6 up, G and B from
- // 5 up. The highest bit of -0x7F + 6 is still set, so the corresponding location will
- // still be 0.
- let shufr1 = _mm_add_epi8(shufb, _mm_set1_epi8(6));
- let shufg1 = _mm_add_epi8(shufr, _mm_set1_epi8(5));
- let shufb1 = _mm_add_epi8(shufg, _mm_set1_epi8(5));
-
- let rgb_hi = _mm_or_si128(
- _mm_shuffle_epi8(r, shufr1),
- _mm_or_si128(_mm_shuffle_epi8(g, shufg1), _mm_shuffle_epi8(b, shufb1)),
- );
-
- let mut data = [0u8; 32];
- _mm_storeu_si128(data.as_mut_ptr() as *mut _, rgb_low);
- _mm_storeu_si128(data.as_mut_ptr().wrapping_add(16) as *mut _, rgb_hi);
- std::ptr::copy_nonoverlapping::<u8>(
- data.as_ptr(),
- output.as_mut_ptr().wrapping_add(24 * i),
- 24,
- );
- }
-
- num_vecs * 8
-}
diff --git a/vendor/jpeg-decoder/src/decoder.rs b/vendor/jpeg-decoder/src/decoder.rs
deleted file mode 100644
index 795ad1e..0000000
--- a/vendor/jpeg-decoder/src/decoder.rs
+++ /dev/null
@@ -1,1493 +0,0 @@
-use crate::error::{Error, Result, UnsupportedFeature};
-use crate::huffman::{fill_default_mjpeg_tables, HuffmanDecoder, HuffmanTable};
-use crate::marker::Marker;
-use crate::parser::{
- parse_app, parse_com, parse_dht, parse_dqt, parse_dri, parse_sof, parse_sos,
- AdobeColorTransform, AppData, CodingProcess, Component, Dimensions, EntropyCoding, FrameInfo,
- IccChunk, ScanInfo,
-};
-use crate::read_u8;
-use crate::upsampler::Upsampler;
-use crate::worker::{compute_image_parallel, PreferWorkerKind, RowData, Worker, WorkerScope};
-use alloc::borrow::ToOwned;
-use alloc::sync::Arc;
-use alloc::vec::Vec;
-use alloc::{format, vec};
-use core::cmp;
-use core::mem;
-use core::ops::Range;
-use std::convert::TryInto;
-use std::io::Read;
-
-pub const MAX_COMPONENTS: usize = 4;
-
-mod lossless;
-use self::lossless::compute_image_lossless;
-
-#[cfg_attr(rustfmt, rustfmt_skip)]
-static UNZIGZAG: [u8; 64] = [
- 0, 1, 8, 16, 9, 2, 3, 10,
- 17, 24, 32, 25, 18, 11, 4, 5,
- 12, 19, 26, 33, 40, 48, 41, 34,
- 27, 20, 13, 6, 7, 14, 21, 28,
- 35, 42, 49, 56, 57, 50, 43, 36,
- 29, 22, 15, 23, 30, 37, 44, 51,
- 58, 59, 52, 45, 38, 31, 39, 46,
- 53, 60, 61, 54, 47, 55, 62, 63,
-];
-
-/// An enumeration over combinations of color spaces and bit depths a pixel can have.
-#[derive(Clone, Copy, Debug, PartialEq)]
-pub enum PixelFormat {
- /// Luminance (grayscale), 8 bits
- L8,
- /// Luminance (grayscale), 16 bits
- L16,
- /// RGB, 8 bits per channel
- RGB24,
- /// CMYK, 8 bits per channel
- CMYK32,
-}
-
-impl PixelFormat {
- /// Determine the size in bytes of each pixel in this format
- pub fn pixel_bytes(&self) -> usize {
- match self {
- PixelFormat::L8 => 1,
- PixelFormat::L16 => 2,
- PixelFormat::RGB24 => 3,
- PixelFormat::CMYK32 => 4,
- }
- }
-}
-
-/// Represents metadata of an image.
-#[derive(Clone, Copy, Debug, PartialEq)]
-pub struct ImageInfo {
- /// The width of the image, in pixels.
- pub width: u16,
- /// The height of the image, in pixels.
- pub height: u16,
- /// The pixel format of the image.
- pub pixel_format: PixelFormat,
- /// The coding process of the image.
- pub coding_process: CodingProcess,
-}
-
-/// Describes the colour transform to apply before binary data is returned
-#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
-#[non_exhaustive]
-pub enum ColorTransform {
- /// No transform should be applied and the data is returned as-is.
- None,
- /// Unknown colour transformation
- Unknown,
- /// Grayscale transform should be applied (expects 1 channel)
- Grayscale,
- /// RGB transform should be applied.
- RGB,
- /// YCbCr transform should be applied.
- YCbCr,
- /// CMYK transform should be applied.
- CMYK,
- /// YCCK transform should be applied.
- YCCK,
- /// big gamut Y/Cb/Cr, bg-sYCC
- JcsBgYcc,
- /// big gamut red/green/blue, bg-sRGB
- JcsBgRgb,
-}
-
-/// JPEG decoder
-pub struct Decoder<R> {
- reader: R,
-
- frame: Option<FrameInfo>,
- dc_huffman_tables: Vec<Option<HuffmanTable>>,
- ac_huffman_tables: Vec<Option<HuffmanTable>>,
- quantization_tables: [Option<Arc<[u16; 64]>>; 4],
-
- restart_interval: u16,
-
- adobe_color_transform: Option<AdobeColorTransform>,
- color_transform: Option<ColorTransform>,
-
- is_jfif: bool,
- is_mjpeg: bool,
-
- icc_markers: Vec<IccChunk>,
-
- exif_data: Option<Vec<u8>>,
-
- // Used for progressive JPEGs.
- coefficients: Vec<Vec<i16>>,
- // Bitmask of which coefficients has been completely decoded.
- coefficients_finished: [u64; MAX_COMPONENTS],
-
- // Maximum allowed size of decoded image buffer
- decoding_buffer_size_limit: usize,
-}
-
-impl<R: Read> Decoder<R> {
- /// Creates a new `Decoder` using the reader `reader`.
- pub fn new(reader: R) -> Decoder<R> {
- Decoder {
- reader,
- frame: None,
- dc_huffman_tables: vec![None, None, None, None],
- ac_huffman_tables: vec![None, None, None, None],
- quantization_tables: [None, None, None, None],
- restart_interval: 0,
- adobe_color_transform: None,
- color_transform: None,
- is_jfif: false,
- is_mjpeg: false,
- icc_markers: Vec::new(),
- exif_data: None,
- coefficients: Vec::new(),
- coefficients_finished: [0; MAX_COMPONENTS],
- decoding_buffer_size_limit: usize::MAX,
- }
- }
-
- /// Colour transform to use when decoding the image. App segments relating to colour transforms
- /// will be ignored.
- pub fn set_color_transform(&mut self, transform: ColorTransform) {
- self.color_transform = Some(transform);
- }
-
- /// Set maximum buffer size allowed for decoded images
- pub fn set_max_decoding_buffer_size(&mut self, max: usize) {
- self.decoding_buffer_size_limit = max;
- }
-
- /// Returns metadata about the image.
- ///
- /// The returned value will be `None` until a call to either `read_info` or `decode` has
- /// returned `Ok`.
- pub fn info(&self) -> Option<ImageInfo> {
- match self.frame {
- Some(ref frame) => {
- let pixel_format = match frame.components.len() {
- 1 => match frame.precision {
- 8 => PixelFormat::L8,
- 16 => PixelFormat::L16,
- _ => panic!(),
- },
- 3 => PixelFormat::RGB24,
- 4 => PixelFormat::CMYK32,
- _ => panic!(),
- };
-
- Some(ImageInfo {
- width: frame.output_size.width,
- height: frame.output_size.height,
- pixel_format,
- coding_process: frame.coding_process,
- })
- }
- None => None,
- }
- }
-
- /// Returns raw exif data, starting at the TIFF header, if the image contains any.
- ///
- /// The returned value will be `None` until a call to `decode` has returned `Ok`.
- pub fn exif_data(&self) -> Option<&[u8]> {
- self.exif_data.as_deref()
- }
-
- /// Returns the embeded icc profile if the image contains one.
- pub fn icc_profile(&self) -> Option<Vec<u8>> {
- let mut marker_present: [Option<&IccChunk>; 256] = [None; 256];
- let num_markers = self.icc_markers.len();
- if num_markers == 0 || num_markers >= 255 {
- return None;
- }
- // check the validity of the markers
- for chunk in &self.icc_markers {
- if usize::from(chunk.num_markers) != num_markers {
- // all the lengths must match
- return None;
- }
- if chunk.seq_no == 0 {
- return None;
- }
- if marker_present[usize::from(chunk.seq_no)].is_some() {
- // duplicate seq_no
- return None;
- } else {
- marker_present[usize::from(chunk.seq_no)] = Some(chunk);
- }
- }
-
- // assemble them together by seq_no failing if any are missing
- let mut data = Vec::new();
- // seq_no's start at 1
- for &chunk in marker_present.get(1..=num_markers)? {
- data.extend_from_slice(&chunk?.data);
- }
- Some(data)
- }
-
- /// Heuristic to avoid starting thread, synchronization if we expect a small amount of
- /// parallelism to be utilized.
- fn select_worker(frame: &FrameInfo, worker_preference: PreferWorkerKind) -> PreferWorkerKind {
- const PARALLELISM_THRESHOLD: u64 = 128 * 128;
-
- match worker_preference {
- PreferWorkerKind::Immediate => PreferWorkerKind::Immediate,
- PreferWorkerKind::Multithreaded => {
- let width: u64 = frame.output_size.width.into();
- let height: u64 = frame.output_size.width.into();
- if width * height > PARALLELISM_THRESHOLD {
- PreferWorkerKind::Multithreaded
- } else {
- PreferWorkerKind::Immediate
- }
- }
- }
- }
-
- /// Tries to read metadata from the image without decoding it.
- ///
- /// If successful, the metadata can be obtained using the `info` method.
- pub fn read_info(&mut self) -> Result<()> {
- WorkerScope::with(|worker| self.decode_internal(true, worker)).map(|_| ())
- }
-
- /// Configure the decoder to scale the image during decoding.
- ///
- /// This efficiently scales the image by the smallest supported scale
- /// factor that produces an image larger than or equal to the requested
- /// size in at least one axis. The currently implemented scale factors
- /// are 1/8, 1/4, 1/2 and 1.
- ///
- /// To generate a thumbnail of an exact size, pass the desired size and
- /// then scale to the final size using a traditional resampling algorithm.
- pub fn scale(&mut self, requested_width: u16, requested_height: u16) -> Result<(u16, u16)> {
- self.read_info()?;
- let frame = self.frame.as_mut().unwrap();
- let idct_size = crate::idct::choose_idct_size(
- frame.image_size,
- Dimensions {
- width: requested_width,
- height: requested_height,
- },
- );
- frame.update_idct_size(idct_size)?;
- Ok((frame.output_size.width, frame.output_size.height))
- }
-
- /// Decodes the image and returns the decoded pixels if successful.
- pub fn decode(&mut self) -> Result<Vec<u8>> {
- WorkerScope::with(|worker| self.decode_internal(false, worker))
- }
-
- fn decode_internal(
- &mut self,
- stop_after_metadata: bool,
- worker_scope: &WorkerScope,
- ) -> Result<Vec<u8>> {
- if stop_after_metadata && self.frame.is_some() {
- // The metadata has already been read.
- return Ok(Vec::new());
- } else if self.frame.is_none()
- && (read_u8(&mut self.reader)? != 0xFF
- || Marker::from_u8(read_u8(&mut self.reader)?) != Some(Marker::SOI))
- {
- return Err(Error::Format(
- "first two bytes are not an SOI marker".to_owned(),
- ));
- }
-
- let mut previous_marker = Marker::SOI;
- let mut pending_marker = None;
- let mut scans_processed = 0;
- let mut planes = vec![
- Vec::<u8>::new();
- self.frame
- .as_ref()
- .map_or(0, |frame| frame.components.len())
- ];
- let mut planes_u16 = vec![
- Vec::<u16>::new();
- self.frame
- .as_ref()
- .map_or(0, |frame| frame.components.len())
- ];
-
- loop {
- let marker = match pending_marker.take() {
- Some(m) => m,
- None => self.read_marker()?,
- };
-
- match marker {
- // Frame header
- Marker::SOF(..) => {
- // Section 4.10
- // "An image contains only one frame in the cases of sequential and
- // progressive coding processes; an image contains multiple frames for the
- // hierarchical mode."
- if self.frame.is_some() {
- return Err(Error::Unsupported(UnsupportedFeature::Hierarchical));
- }
-
- let frame = parse_sof(&mut self.reader, marker)?;
- let component_count = frame.components.len();
-
- if frame.is_differential {
- return Err(Error::Unsupported(UnsupportedFeature::Hierarchical));
- }
- if frame.entropy_coding == EntropyCoding::Arithmetic {
- return Err(Error::Unsupported(
- UnsupportedFeature::ArithmeticEntropyCoding,
- ));
- }
- if frame.precision != 8 && frame.coding_process != CodingProcess::Lossless {
- return Err(Error::Unsupported(UnsupportedFeature::SamplePrecision(
- frame.precision,
- )));
- }
- if frame.precision != 8 && frame.precision != 16 {
- return Err(Error::Unsupported(UnsupportedFeature::SamplePrecision(
- frame.precision,
- )));
- }
- if component_count != 1 && component_count != 3 && component_count != 4 {
- return Err(Error::Unsupported(UnsupportedFeature::ComponentCount(
- component_count as u8,
- )));
- }
-
- // Make sure we support the subsampling ratios used.
- let _ = Upsampler::new(
- &frame.components,
- frame.image_size.width,
- frame.image_size.height,
- )?;
-
- self.frame = Some(frame);
-
- if stop_after_metadata {
- return Ok(Vec::new());
- }
-
- planes = vec![Vec::new(); component_count];
- planes_u16 = vec![Vec::new(); component_count];
- }
-
- // Scan header
- Marker::SOS => {
- if self.frame.is_none() {
- return Err(Error::Format("scan encountered before frame".to_owned()));
- }
-
- let frame = self.frame.clone().unwrap();
- let scan = parse_sos(&mut self.reader, &frame)?;
-
- if frame.coding_process == CodingProcess::DctProgressive
- && self.coefficients.is_empty()
- {
- self.coefficients = frame
- .components
- .iter()
- .map(|c| {
- let block_count =
- c.block_size.width as usize * c.block_size.height as usize;
- vec![0; block_count * 64]
- })
- .collect();
- }
-
- if frame.coding_process == CodingProcess::Lossless {
- let (marker, data) = self.decode_scan_lossless(&frame, &scan)?;
-
- for (i, plane) in data
- .into_iter()
- .enumerate()
- .filter(|&(_, ref plane)| !plane.is_empty())
- {
- planes_u16[i] = plane;
- }
- pending_marker = marker;
- } else {
- // This was previously buggy, so let's explain the log here a bit. When a
- // progressive frame is encoded then the coefficients (DC, AC) of each
- // component (=color plane) can be split amongst scans. In particular it can
- // happen or at least occurs in the wild that a scan contains coefficient 0 of
- // all components. If now one but not all components had all other coefficients
- // delivered in previous scans then such a scan contains all components but
- // completes only some of them! (This is technically NOT permitted for all
- // other coefficients as the standard dictates that scans with coefficients
- // other than the 0th must only contain ONE component so we would either
- // complete it or not. We may want to detect and error in case more component
- // are part of a scan than allowed.) What a weird edge case.
- //
- // But this means we track precisely which components get completed here.
- let mut finished = [false; MAX_COMPONENTS];
-
- if scan.successive_approximation_low == 0 {
- for (&i, component_finished) in
- scan.component_indices.iter().zip(&mut finished)
- {
- if self.coefficients_finished[i] == !0 {
- continue;
- }
- for j in scan.spectral_selection.clone() {
- self.coefficients_finished[i] |= 1 << j;
- }
- if self.coefficients_finished[i] == !0 {
- *component_finished = true;
- }
- }
- }
-
- let preference =
- Self::select_worker(&frame, PreferWorkerKind::Multithreaded);
-
- let (marker, data) = worker_scope
- .get_or_init_worker(preference, |worker| {
- self.decode_scan(&frame, &scan, worker, &finished)
- })?;
-
- if let Some(data) = data {
- for (i, plane) in data
- .into_iter()
- .enumerate()
- .filter(|&(_, ref plane)| !plane.is_empty())
- {
- if self.coefficients_finished[i] == !0 {
- planes[i] = plane;
- }
- }
- }
-
- pending_marker = marker;
- }
-
- scans_processed += 1;
- }
-
- // Table-specification and miscellaneous markers
- // Quantization table-specification
- Marker::DQT => {
- let tables = parse_dqt(&mut self.reader)?;
-
- for (i, &table) in tables.iter().enumerate() {
- if let Some(table) = table {
- let mut unzigzagged_table = [0u16; 64];
-
- for j in 0..64 {
- unzigzagged_table[UNZIGZAG[j] as usize] = table[j];
- }
-
- self.quantization_tables[i] = Some(Arc::new(unzigzagged_table));
- }
- }
- }
- // Huffman table-specification
- Marker::DHT => {
- let is_baseline = self.frame.as_ref().map(|frame| frame.is_baseline);
- let (dc_tables, ac_tables) = parse_dht(&mut self.reader, is_baseline)?;
-
- let current_dc_tables = mem::take(&mut self.dc_huffman_tables);
- self.dc_huffman_tables = dc_tables
- .into_iter()
- .zip(current_dc_tables.into_iter())
- .map(|(a, b)| a.or(b))
- .collect();
-
- let current_ac_tables = mem::take(&mut self.ac_huffman_tables);
- self.ac_huffman_tables = ac_tables
- .into_iter()
- .zip(current_ac_tables.into_iter())
- .map(|(a, b)| a.or(b))
- .collect();
- }
- // Arithmetic conditioning table-specification
- Marker::DAC => {
- return Err(Error::Unsupported(
- UnsupportedFeature::ArithmeticEntropyCoding,
- ))
- }
- // Restart interval definition
- Marker::DRI => self.restart_interval = parse_dri(&mut self.reader)?,
- // Comment
- Marker::COM => {
- let _comment = parse_com(&mut self.reader)?;
- }
- // Application data
- Marker::APP(..) => {
- if let Some(data) = parse_app(&mut self.reader, marker)? {
- match data {
- AppData::Adobe(color_transform) => {
- self.adobe_color_transform = Some(color_transform)
- }
- AppData::Jfif => {
- // From the JFIF spec:
- // "The APP0 marker is used to identify a JPEG FIF file.
- // The JPEG FIF APP0 marker is mandatory right after the SOI marker."
- // Some JPEGs in the wild does not follow this though, so we allow
- // JFIF headers anywhere APP0 markers are allowed.
- /*
- if previous_marker != Marker::SOI {
- return Err(Error::Format("the JFIF APP0 marker must come right after the SOI marker".to_owned()));
- }
- */
-
- self.is_jfif = true;
- }
- AppData::Avi1 => self.is_mjpeg = true,
- AppData::Icc(icc) => self.icc_markers.push(icc),
- AppData::Exif(data) => self.exif_data = Some(data),
- }
- }
- }
- // Restart
- Marker::RST(..) => {
- // Some encoders emit a final RST marker after entropy-coded data, which
- // decode_scan does not take care of. So if we encounter one, we ignore it.
- if previous_marker != Marker::SOS {
- return Err(Error::Format(
- "RST found outside of entropy-coded data".to_owned(),
- ));
- }
- }
-
- // Define number of lines
- Marker::DNL => {
- // Section B.2.1
- // "If a DNL segment (see B.2.5) is present, it shall immediately follow the first scan."
- if previous_marker != Marker::SOS || scans_processed != 1 {
- return Err(Error::Format(
- "DNL is only allowed immediately after the first scan".to_owned(),
- ));
- }
-
- return Err(Error::Unsupported(UnsupportedFeature::DNL));
- }
-
- // Hierarchical mode markers
- Marker::DHP | Marker::EXP => {
- return Err(Error::Unsupported(UnsupportedFeature::Hierarchical))
- }
-
- // End of image
- Marker::EOI => break,
-
- _ => {
- return Err(Error::Format(format!(
- "{:?} marker found where not allowed",
- marker
- )))
- }
- }
-
- previous_marker = marker;
- }
-
- if self.frame.is_none() {
- return Err(Error::Format(
- "end of image encountered before frame".to_owned(),
- ));
- }
-
- let frame = self.frame.as_ref().unwrap();
- let preference = Self::select_worker(&frame, PreferWorkerKind::Multithreaded);
-
- worker_scope.get_or_init_worker(preference, |worker| {
- self.decode_planes(worker, planes, planes_u16)
- })
- }
-
- fn decode_planes(
- &mut self,
- worker: &mut dyn Worker,
- mut planes: Vec<Vec<u8>>,
- planes_u16: Vec<Vec<u16>>,
- ) -> Result<Vec<u8>> {
- if self.frame.is_none() {
- return Err(Error::Format(
- "end of image encountered before frame".to_owned(),
- ));
- }
-
- let frame = self.frame.as_ref().unwrap();
-
- if {
- let required_mem = frame
- .components
- .len()
- .checked_mul(frame.output_size.width.into())
- .and_then(|m| m.checked_mul(frame.output_size.height.into()));
- required_mem.map_or(true, |m| self.decoding_buffer_size_limit < m)
- } {
- return Err(Error::Format(
- "size of decoded image exceeds maximum allowed size".to_owned(),
- ));
- }
-
- // If we're decoding a progressive jpeg and a component is unfinished, render what we've got
- if frame.coding_process == CodingProcess::DctProgressive
- && self.coefficients.len() == frame.components.len()
- {
- for (i, component) in frame.components.iter().enumerate() {
- // Only dealing with unfinished components
- if self.coefficients_finished[i] == !0 {
- continue;
- }
-
- let quantization_table =
- match self.quantization_tables[component.quantization_table_index].clone() {
- Some(quantization_table) => quantization_table,
- None => continue,
- };
-
- // Get the worker prepared
- let row_data = RowData {
- index: i,
- component: component.clone(),
- quantization_table,
- };
- worker.start(row_data)?;
-
- // Send the rows over to the worker and collect the result
- let coefficients_per_mcu_row = usize::from(component.block_size.width)
- * usize::from(component.vertical_sampling_factor)
- * 64;
-
- let mut tasks = (0..frame.mcu_size.height).map(|mcu_y| {
- let offset = usize::from(mcu_y) * coefficients_per_mcu_row;
- let row_coefficients =
- self.coefficients[i][offset..offset + coefficients_per_mcu_row].to_vec();
- (i, row_coefficients)
- });
-
- // FIXME: additional potential work stealing opportunities for rayon case if we
- // also internally can parallelize over components.
- worker.append_rows(&mut tasks)?;
- planes[i] = worker.get_result(i)?;
- }
- }
-
- if frame.coding_process == CodingProcess::Lossless {
- compute_image_lossless(frame, planes_u16)
- } else {
- compute_image(
- &frame.components,
- planes,
- frame.output_size,
- self.determine_color_transform(),
- )
- }
- }
-
- fn determine_color_transform(&self) -> ColorTransform {
- if let Some(color_transform) = self.color_transform {
- return color_transform;
- }
-
- let frame = self.frame.as_ref().unwrap();
-
- if frame.components.len() == 1 {
- return ColorTransform::Grayscale;
- }
-
- // Using logic for determining colour as described here: https://entropymine.wordpress.com/2018/10/22/how-is-a-jpeg-images-color-type-determined/
-
- if frame.components.len() == 3 {
- match (
- frame.components[0].identifier,
- frame.components[1].identifier,
- frame.components[2].identifier,
- ) {
- (1, 2, 3) => {
- return ColorTransform::YCbCr;
- }
- (1, 34, 35) => {
- return ColorTransform::JcsBgYcc;
- }
- (82, 71, 66) => {
- return ColorTransform::RGB;
- }
- (114, 103, 98) => {
- return ColorTransform::JcsBgRgb;
- }
- _ => {}
- }
-
- if self.is_jfif {
- return ColorTransform::YCbCr;
- }
- }
-
- if let Some(colour_transform) = self.adobe_color_transform {
- match colour_transform {
- AdobeColorTransform::Unknown => {
- if frame.components.len() == 3 {
- return ColorTransform::RGB;
- } else if frame.components.len() == 4 {
- return ColorTransform::CMYK;
- }
- }
- AdobeColorTransform::YCbCr => {
- return ColorTransform::YCbCr;
- }
- AdobeColorTransform::YCCK => {
- return ColorTransform::YCCK;
- }
- }
- } else if frame.components.len() == 4 {
- return ColorTransform::CMYK;
- }
-
- if frame.components.len() == 4 {
- ColorTransform::YCCK
- } else if frame.components.len() == 3 {
- ColorTransform::YCbCr
- } else {
- ColorTransform::Unknown
- }
- }
-
- fn read_marker(&mut self) -> Result<Marker> {
- loop {
- // This should be an error as the JPEG spec doesn't allow extraneous data between marker segments.
- // libjpeg allows this though and there are images in the wild utilising it, so we are
- // forced to support this behavior.
- // Sony Ericsson P990i is an example of a device which produce this sort of JPEGs.
- while read_u8(&mut self.reader)? != 0xFF {}
-
- // Section B.1.1.2
- // All markers are assigned two-byte codes: an X’FF’ byte followed by a
- // byte which is not equal to 0 or X’FF’ (see Table B.1). Any marker may
- // optionally be preceded by any number of fill bytes, which are bytes
- // assigned code X’FF’.
- let mut byte = read_u8(&mut self.reader)?;
-
- // Section B.1.1.2
- // "Any marker may optionally be preceded by any number of fill bytes, which are bytes assigned code X’FF’."
- while byte == 0xFF {
- byte = read_u8(&mut self.reader)?;
- }
-
- if byte != 0x00 && byte != 0xFF {
- return Ok(Marker::from_u8(byte).unwrap());
- }
- }
- }
-
- fn decode_scan(
- &mut self,
- frame: &FrameInfo,
- scan: &ScanInfo,
- worker: &mut dyn Worker,
- finished: &[bool; MAX_COMPONENTS],
- ) -> Result<(Option<Marker>, Option<Vec<Vec<u8>>>)> {
- assert!(scan.component_indices.len() <= MAX_COMPONENTS);
-
- let components: Vec<Component> = scan
- .component_indices
- .iter()
- .map(|&i| frame.components[i].clone())
- .collect();
-
- // Verify that all required quantization tables has been set.
- if components
- .iter()
- .any(|component| self.quantization_tables[component.quantization_table_index].is_none())
- {
- return Err(Error::Format("use of unset quantization table".to_owned()));
- }
-
- if self.is_mjpeg {
- fill_default_mjpeg_tables(
- scan,
- &mut self.dc_huffman_tables,
- &mut self.ac_huffman_tables,
- );
- }
-
- // Verify that all required huffman tables has been set.
- if scan.spectral_selection.start == 0
- && scan
- .dc_table_indices
- .iter()
- .any(|&i| self.dc_huffman_tables[i].is_none())
- {
- return Err(Error::Format(
- "scan makes use of unset dc huffman table".to_owned(),
- ));
- }
- if scan.spectral_selection.end > 1
- && scan
- .ac_table_indices
- .iter()
- .any(|&i| self.ac_huffman_tables[i].is_none())
- {
- return Err(Error::Format(
- "scan makes use of unset ac huffman table".to_owned(),
- ));
- }
-
- // Prepare the worker thread for the work to come.
- for (i, component) in components.iter().enumerate() {
- if finished[i] {
- let row_data = RowData {
- index: i,
- component: component.clone(),
- quantization_table: self.quantization_tables
- [component.quantization_table_index]
- .clone()
- .unwrap(),
- };
-
- worker.start(row_data)?;
- }
- }
-
- let is_progressive = frame.coding_process == CodingProcess::DctProgressive;
- let is_interleaved = components.len() > 1;
- let mut dummy_block = [0i16; 64];
- let mut huffman = HuffmanDecoder::new();
- let mut dc_predictors = [0i16; MAX_COMPONENTS];
- let mut mcus_left_until_restart = self.restart_interval;
- let mut expected_rst_num = 0;
- let mut eob_run = 0;
- let mut mcu_row_coefficients = vec![vec![]; components.len()];
-
- if !is_progressive {
- for (i, component) in components.iter().enumerate().filter(|&(i, _)| finished[i]) {
- let coefficients_per_mcu_row = component.block_size.width as usize
- * component.vertical_sampling_factor as usize
- * 64;
- mcu_row_coefficients[i] = vec![0i16; coefficients_per_mcu_row];
- }
- }
-
- // 4.8.2
- // When reading from the stream, if the data is non-interleaved then an MCU consists of
- // exactly one block (effectively a 1x1 sample).
- let (mcu_horizontal_samples, mcu_vertical_samples) = if is_interleaved {
- let horizontal = components
- .iter()
- .map(|component| component.horizontal_sampling_factor as u16)
- .collect::<Vec<_>>();
- let vertical = components
- .iter()
- .map(|component| component.vertical_sampling_factor as u16)
- .collect::<Vec<_>>();
- (horizontal, vertical)
- } else {
- (vec![1], vec![1])
- };
-
- // This also affects how many MCU values we read from stream. If it's a non-interleaved stream,
- // the MCUs will be exactly the block count.
- let (max_mcu_x, max_mcu_y) = if is_interleaved {
- (frame.mcu_size.width, frame.mcu_size.height)
- } else {
- (
- components[0].block_size.width,
- components[0].block_size.height,
- )
- };
-
- for mcu_y in 0..max_mcu_y {
- if mcu_y * 8 >= frame.image_size.height {
- break;
- }
-
- for mcu_x in 0..max_mcu_x {
- if mcu_x * 8 >= frame.image_size.width {
- break;
- }
-
- if self.restart_interval > 0 {
- if mcus_left_until_restart == 0 {
- match huffman.take_marker(&mut self.reader)? {
- Some(Marker::RST(n)) => {
- if n != expected_rst_num {
- return Err(Error::Format(format!(
- "found RST{} where RST{} was expected",
- n, expected_rst_num
- )));
- }
-
- huffman.reset();
- // Section F.2.1.3.1
- dc_predictors = [0i16; MAX_COMPONENTS];
- // Section G.1.2.2
- eob_run = 0;
-
- expected_rst_num = (expected_rst_num + 1) % 8;
- mcus_left_until_restart = self.restart_interval;
- }
- Some(marker) => {
- return Err(Error::Format(format!(
- "found marker {:?} inside scan where RST{} was expected",
- marker, expected_rst_num
- )))
- }
- None => {
- return Err(Error::Format(format!(
- "no marker found where RST{} was expected",
- expected_rst_num
- )))
- }
- }
- }
-
- mcus_left_until_restart -= 1;
- }
-
- for (i, component) in components.iter().enumerate() {
- for v_pos in 0..mcu_vertical_samples[i] {
- for h_pos in 0..mcu_horizontal_samples[i] {
- let coefficients = if is_progressive {
- let block_y = (mcu_y * mcu_vertical_samples[i] + v_pos) as usize;
- let block_x = (mcu_x * mcu_horizontal_samples[i] + h_pos) as usize;
- let block_offset =
- (block_y * component.block_size.width as usize + block_x) * 64;
- &mut self.coefficients[scan.component_indices[i]]
- [block_offset..block_offset + 64]
- } else if finished[i] {
- // Because the worker thread operates in batches as if we were always interleaved, we
- // need to distinguish between a single-shot buffer and one that's currently in process
- // (for a non-interleaved) stream
- let mcu_batch_current_row = if is_interleaved {
- 0
- } else {
- mcu_y % component.vertical_sampling_factor as u16
- };
-
- let block_y = (mcu_batch_current_row * mcu_vertical_samples[i]
- + v_pos) as usize;
- let block_x = (mcu_x * mcu_horizontal_samples[i] + h_pos) as usize;
- let block_offset =
- (block_y * component.block_size.width as usize + block_x) * 64;
- &mut mcu_row_coefficients[i][block_offset..block_offset + 64]
- } else {
- &mut dummy_block[..64]
- }
- .try_into()
- .unwrap();
-
- if scan.successive_approximation_high == 0 {
- decode_block(
- &mut self.reader,
- coefficients,
- &mut huffman,
- self.dc_huffman_tables[scan.dc_table_indices[i]].as_ref(),
- self.ac_huffman_tables[scan.ac_table_indices[i]].as_ref(),
- scan.spectral_selection.clone(),
- scan.successive_approximation_low,
- &mut eob_run,
- &mut dc_predictors[i],
- )?;
- } else {
- decode_block_successive_approximation(
- &mut self.reader,
- coefficients,
- &mut huffman,
- self.ac_huffman_tables[scan.ac_table_indices[i]].as_ref(),
- scan.spectral_selection.clone(),
- scan.successive_approximation_low,
- &mut eob_run,
- )?;
- }
- }
- }
- }
- }
-
- // Send the coefficients from this MCU row to the worker thread for dequantization and idct.
- for (i, component) in components.iter().enumerate() {
- if finished[i] {
- // In the event of non-interleaved streams, if we're still building the buffer out,
- // keep going; don't send it yet. We also need to ensure we don't skip over the last
- // row(s) of the image.
- if !is_interleaved && (mcu_y + 1) * 8 < frame.image_size.height {
- if (mcu_y + 1) % component.vertical_sampling_factor as u16 > 0 {
- continue;
- }
- }
-
- let coefficients_per_mcu_row = component.block_size.width as usize
- * component.vertical_sampling_factor as usize
- * 64;
-
- let row_coefficients = if is_progressive {
- // Because non-interleaved streams will have multiple MCU rows concatenated together,
- // the row for calculating the offset is different.
- let worker_mcu_y = if is_interleaved {
- mcu_y
- } else {
- // Explicitly doing floor-division here
- mcu_y / component.vertical_sampling_factor as u16
- };
-
- let offset = worker_mcu_y as usize * coefficients_per_mcu_row;
- self.coefficients[scan.component_indices[i]]
- [offset..offset + coefficients_per_mcu_row]
- .to_vec()
- } else {
- mem::replace(
- &mut mcu_row_coefficients[i],
- vec![0i16; coefficients_per_mcu_row],
- )
- };
-
- // FIXME: additional potential work stealing opportunities for rayon case if we
- // also internally can parallelize over components.
- worker.append_row((i, row_coefficients))?;
- }
- }
- }
-
- let mut marker = huffman.take_marker(&mut self.reader)?;
- while let Some(Marker::RST(_)) = marker {
- marker = self.read_marker().ok();
- }
-
- if finished.iter().any(|&c| c) {
- // Retrieve all the data from the worker thread.
- let mut data = vec![Vec::new(); frame.components.len()];
-
- for (i, &component_index) in scan.component_indices.iter().enumerate() {
- if finished[i] {
- data[component_index] = worker.get_result(i)?;
- }
- }
-
- Ok((marker, Some(data)))
- } else {
- Ok((marker, None))
- }
- }
-}
-
-fn decode_block<R: Read>(
- reader: &mut R,
- coefficients: &mut [i16; 64],
- huffman: &mut HuffmanDecoder,
- dc_table: Option<&HuffmanTable>,
- ac_table: Option<&HuffmanTable>,
- spectral_selection: Range<u8>,
- successive_approximation_low: u8,
- eob_run: &mut u16,
- dc_predictor: &mut i16,
-) -> Result<()> {
- debug_assert_eq!(coefficients.len(), 64);
-
- if spectral_selection.start == 0 {
- // Section F.2.2.1
- // Figure F.12
- let value = huffman.decode(reader, dc_table.unwrap())?;
- let diff = match value {
- 0 => 0,
- 1..=11 => huffman.receive_extend(reader, value)?,
- _ => {
- // Section F.1.2.1.1
- // Table F.1
- return Err(Error::Format(
- "invalid DC difference magnitude category".to_owned(),
- ));
- }
- };
-
- // Malicious JPEG files can cause this add to overflow, therefore we use wrapping_add.
- // One example of such a file is tests/crashtest/images/dc-predictor-overflow.jpg
- *dc_predictor = dc_predictor.wrapping_add(diff);
- coefficients[0] = *dc_predictor << successive_approximation_low;
- }
-
- let mut index = cmp::max(spectral_selection.start, 1);
-
- if index < spectral_selection.end && *eob_run > 0 {
- *eob_run -= 1;
- return Ok(());
- }
-
- // Section F.1.2.2.1
- while index < spectral_selection.end {
- if let Some((value, run)) = huffman.decode_fast_ac(reader, ac_table.unwrap())? {
- index += run;
-
- if index >= spectral_selection.end {
- break;
- }
-
- coefficients[UNZIGZAG[index as usize] as usize] = value << successive_approximation_low;
- index += 1;
- } else {
- let byte = huffman.decode(reader, ac_table.unwrap())?;
- let r = byte >> 4;
- let s = byte & 0x0f;
-
- if s == 0 {
- match r {
- 15 => index += 16, // Run length of 16 zero coefficients.
- _ => {
- *eob_run = (1 << r) - 1;
-
- if r > 0 {
- *eob_run += huffman.get_bits(reader, r)?;
- }
-
- break;
- }
- }
- } else {
- index += r;
-
- if index >= spectral_selection.end {
- break;
- }
-
- coefficients[UNZIGZAG[index as usize] as usize] =
- huffman.receive_extend(reader, s)? << successive_approximation_low;
- index += 1;
- }
- }
- }
-
- Ok(())
-}
-
-fn decode_block_successive_approximation<R: Read>(
- reader: &mut R,
- coefficients: &mut [i16; 64],
- huffman: &mut HuffmanDecoder,
- ac_table: Option<&HuffmanTable>,
- spectral_selection: Range<u8>,
- successive_approximation_low: u8,
- eob_run: &mut u16,
-) -> Result<()> {
- debug_assert_eq!(coefficients.len(), 64);
-
- let bit = 1 << successive_approximation_low;
-
- if spectral_selection.start == 0 {
- // Section G.1.2.1
-
- if huffman.get_bits(reader, 1)? == 1 {
- coefficients[0] |= bit;
- }
- } else {
- // Section G.1.2.3
-
- if *eob_run > 0 {
- *eob_run -= 1;
- refine_non_zeroes(reader, coefficients, huffman, spectral_selection, 64, bit)?;
- return Ok(());
- }
-
- let mut index = spectral_selection.start;
-
- while index < spectral_selection.end {
- let byte = huffman.decode(reader, ac_table.unwrap())?;
- let r = byte >> 4;
- let s = byte & 0x0f;
-
- let mut zero_run_length = r;
- let mut value = 0;
-
- match s {
- 0 => {
- match r {
- 15 => {
- // Run length of 16 zero coefficients.
- // We don't need to do anything special here, zero_run_length is 15
- // and then value (which is zero) gets written, resulting in 16
- // zero coefficients.
- }
- _ => {
- *eob_run = (1 << r) - 1;
-
- if r > 0 {
- *eob_run += huffman.get_bits(reader, r)?;
- }
-
- // Force end of block.
- zero_run_length = 64;
- }
- }
- }
- 1 => {
- if huffman.get_bits(reader, 1)? == 1 {
- value = bit;
- } else {
- value = -bit;
- }
- }
- _ => return Err(Error::Format("unexpected huffman code".to_owned())),
- }
-
- let range = Range {
- start: index,
- end: spectral_selection.end,
- };
- index = refine_non_zeroes(reader, coefficients, huffman, range, zero_run_length, bit)?;
-
- if value != 0 {
- coefficients[UNZIGZAG[index as usize] as usize] = value;
- }
-
- index += 1;
- }
- }
-
- Ok(())
-}
-
-fn refine_non_zeroes<R: Read>(
- reader: &mut R,
- coefficients: &mut [i16; 64],
- huffman: &mut HuffmanDecoder,
- range: Range<u8>,
- zrl: u8,
- bit: i16,
-) -> Result<u8> {
- debug_assert_eq!(coefficients.len(), 64);
-
- let last = range.end - 1;
- let mut zero_run_length = zrl;
-
- for i in range {
- let index = UNZIGZAG[i as usize] as usize;
-
- let coefficient = &mut coefficients[index];
-
- if *coefficient == 0 {
- if zero_run_length == 0 {
- return Ok(i);
- }
-
- zero_run_length -= 1;
- } else if huffman.get_bits(reader, 1)? == 1 && *coefficient & bit == 0 {
- if *coefficient > 0 {
- *coefficient = coefficient
- .checked_add(bit)
- .ok_or_else(|| Error::Format("Coefficient overflow".to_owned()))?;
- } else {
- *coefficient = coefficient
- .checked_sub(bit)
- .ok_or_else(|| Error::Format("Coefficient overflow".to_owned()))?;
- }
- }
- }
-
- Ok(last)
-}
-
-fn compute_image(
- components: &[Component],
- mut data: Vec<Vec<u8>>,
- output_size: Dimensions,
- color_transform: ColorTransform,
-) -> Result<Vec<u8>> {
- if data.is_empty() || data.iter().any(Vec::is_empty) {
- return Err(Error::Format("not all components have data".to_owned()));
- }
-
- if components.len() == 1 {
- let component = &components[0];
- let mut decoded: Vec<u8> = data.remove(0);
-
- let width = component.size.width as usize;
- let height = component.size.height as usize;
- let size = width * height;
- let line_stride = component.block_size.width as usize * component.dct_scale;
-
- // if the image width is a multiple of the block size,
- // then we don't have to move bytes in the decoded data
- if usize::from(output_size.width) != line_stride {
- // The first line already starts at index 0, so we need to move only lines 1..height
- // We move from the top down because all lines are being moved backwards.
- for y in 1..height {
- let destination_idx = y * width;
- let source_idx = y * line_stride;
- let end = source_idx + width;
- decoded.copy_within(source_idx..end, destination_idx);
- }
- }
- decoded.resize(size, 0);
- Ok(decoded)
- } else {
- compute_image_parallel(components, data, output_size, color_transform)
- }
-}
-
-pub(crate) fn choose_color_convert_func(
- component_count: usize,
- color_transform: ColorTransform,
-) -> Result<fn(&[Vec<u8>], &mut [u8])> {
- match component_count {
- 3 => match color_transform {
- ColorTransform::None => Ok(color_no_convert),
- ColorTransform::Grayscale => Err(Error::Format(
- "Invalid number of channels (3) for Grayscale data".to_string(),
- )),
- ColorTransform::RGB => Ok(color_convert_line_rgb),
- ColorTransform::YCbCr => Ok(color_convert_line_ycbcr),
- ColorTransform::CMYK => Err(Error::Format(
- "Invalid number of channels (3) for CMYK data".to_string(),
- )),
- ColorTransform::YCCK => Err(Error::Format(
- "Invalid number of channels (3) for YCCK data".to_string(),
- )),
- ColorTransform::JcsBgYcc => Err(Error::Unsupported(
- UnsupportedFeature::ColorTransform(ColorTransform::JcsBgYcc),
- )),
- ColorTransform::JcsBgRgb => Err(Error::Unsupported(
- UnsupportedFeature::ColorTransform(ColorTransform::JcsBgRgb),
- )),
- ColorTransform::Unknown => Err(Error::Format("Unknown colour transform".to_string())),
- },
- 4 => match color_transform {
- ColorTransform::None => Ok(color_no_convert),
- ColorTransform::Grayscale => Err(Error::Format(
- "Invalid number of channels (4) for Grayscale data".to_string(),
- )),
- ColorTransform::RGB => Err(Error::Format(
- "Invalid number of channels (4) for RGB data".to_string(),
- )),
- ColorTransform::YCbCr => Err(Error::Format(
- "Invalid number of channels (4) for YCbCr data".to_string(),
- )),
- ColorTransform::CMYK => Ok(color_convert_line_cmyk),
- ColorTransform::YCCK => Ok(color_convert_line_ycck),
-
- ColorTransform::JcsBgYcc => Err(Error::Unsupported(
- UnsupportedFeature::ColorTransform(ColorTransform::JcsBgYcc),
- )),
- ColorTransform::JcsBgRgb => Err(Error::Unsupported(
- UnsupportedFeature::ColorTransform(ColorTransform::JcsBgRgb),
- )),
- ColorTransform::Unknown => Err(Error::Format("Unknown colour transform".to_string())),
- },
- _ => panic!(),
- }
-}
-
-fn color_convert_line_rgb(data: &[Vec<u8>], output: &mut [u8]) {
- assert!(data.len() == 3, "wrong number of components for rgb");
- let [r, g, b]: &[Vec<u8>; 3] = data.try_into().unwrap();
- for (((chunk, r), g), b) in output
- .chunks_exact_mut(3)
- .zip(r.iter())
- .zip(g.iter())
- .zip(b.iter())
- {
- chunk[0] = *r;
- chunk[1] = *g;
- chunk[2] = *b;
- }
-}
-
-fn color_convert_line_ycbcr(data: &[Vec<u8>], output: &mut [u8]) {
- assert!(data.len() == 3, "wrong number of components for ycbcr");
- let [y, cb, cr]: &[_; 3] = data.try_into().unwrap();
-
- #[cfg(not(feature = "platform_independent"))]
- let arch_specific_pixels = {
- if let Some(ycbcr) = crate::arch::get_color_convert_line_ycbcr() {
- #[allow(unsafe_code)]
- unsafe {
- ycbcr(y, cb, cr, output)
- }
- } else {
- 0
- }
- };
-
- #[cfg(feature = "platform_independent")]
- let arch_specific_pixels = 0;
-
- for (((chunk, y), cb), cr) in output
- .chunks_exact_mut(3)
- .zip(y.iter())
- .zip(cb.iter())
- .zip(cr.iter())
- .skip(arch_specific_pixels)
- {
- let (r, g, b) = ycbcr_to_rgb(*y, *cb, *cr);
- chunk[0] = r;
- chunk[1] = g;
- chunk[2] = b;
- }
-}
-
-fn color_convert_line_ycck(data: &[Vec<u8>], output: &mut [u8]) {
- assert!(data.len() == 4, "wrong number of components for ycck");
- let [c, m, y, k]: &[Vec<u8>; 4] = data.try_into().unwrap();
-
- for ((((chunk, c), m), y), k) in output
- .chunks_exact_mut(4)
- .zip(c.iter())
- .zip(m.iter())
- .zip(y.iter())
- .zip(k.iter())
- {
- let (r, g, b) = ycbcr_to_rgb(*c, *m, *y);
- chunk[0] = r;
- chunk[1] = g;
- chunk[2] = b;
- chunk[3] = 255 - *k;
- }
-}
-
-fn color_convert_line_cmyk(data: &[Vec<u8>], output: &mut [u8]) {
- assert!(data.len() == 4, "wrong number of components for cmyk");
- let [c, m, y, k]: &[Vec<u8>; 4] = data.try_into().unwrap();
-
- for ((((chunk, c), m), y), k) in output
- .chunks_exact_mut(4)
- .zip(c.iter())
- .zip(m.iter())
- .zip(y.iter())
- .zip(k.iter())
- {
- chunk[0] = 255 - c;
- chunk[1] = 255 - m;
- chunk[2] = 255 - y;
- chunk[3] = 255 - k;
- }
-}
-
-fn color_no_convert(data: &[Vec<u8>], output: &mut [u8]) {
- let mut output_iter = output.iter_mut();
-
- for pixel in data {
- for d in pixel {
- *(output_iter.next().unwrap()) = *d;
- }
- }
-}
-
-const FIXED_POINT_OFFSET: i32 = 20;
-const HALF: i32 = (1 << FIXED_POINT_OFFSET) / 2;
-
-// ITU-R BT.601
-// Based on libjpeg-turbo's jdcolext.c
-fn ycbcr_to_rgb(y: u8, cb: u8, cr: u8) -> (u8, u8, u8) {
- let y = y as i32 * (1 << FIXED_POINT_OFFSET) + HALF;
- let cb = cb as i32 - 128;
- let cr = cr as i32 - 128;
-
- let r = clamp_fixed_point(y + stbi_f2f(1.40200) * cr);
- let g = clamp_fixed_point(y - stbi_f2f(0.34414) * cb - stbi_f2f(0.71414) * cr);
- let b = clamp_fixed_point(y + stbi_f2f(1.77200) * cb);
- (r, g, b)
-}
-
-fn stbi_f2f(x: f32) -> i32 {
- (x * ((1 << FIXED_POINT_OFFSET) as f32) + 0.5) as i32
-}
-
-fn clamp_fixed_point(value: i32) -> u8 {
- (value >> FIXED_POINT_OFFSET).min(255).max(0) as u8
-}
diff --git a/vendor/jpeg-decoder/src/decoder/lossless.rs b/vendor/jpeg-decoder/src/decoder/lossless.rs
deleted file mode 100644
index 6422220..0000000
--- a/vendor/jpeg-decoder/src/decoder/lossless.rs
+++ /dev/null
@@ -1,259 +0,0 @@
-use std::io::Read;
-use crate::decoder::{Decoder, MAX_COMPONENTS};
-use crate::error::{Error, Result};
-use crate::huffman::HuffmanDecoder;
-use crate::marker::Marker;
-use crate::parser::Predictor;
-use crate::parser::{Component, FrameInfo, ScanInfo};
-
-impl<R: Read> Decoder<R> {
- /// decode_scan_lossless
- pub fn decode_scan_lossless(
- &mut self,
- frame: &FrameInfo,
- scan: &ScanInfo,
- ) -> Result<(Option<Marker>, Vec<Vec<u16>>)> {
- let ncomp = scan.component_indices.len();
- let npixel = frame.image_size.height as usize * frame.image_size.width as usize;
- assert!(ncomp <= MAX_COMPONENTS);
- let mut results = vec![vec![0u16; npixel]; ncomp];
-
- let components: Vec<Component> = scan
- .component_indices
- .iter()
- .map(|&i| frame.components[i].clone())
- .collect();
-
- // Verify that all required huffman tables has been set.
- if scan
- .dc_table_indices
- .iter()
- .any(|&i| self.dc_huffman_tables[i].is_none())
- {
- return Err(Error::Format(
- "scan makes use of unset dc huffman table".to_owned(),
- ));
- }
-
- let mut huffman = HuffmanDecoder::new();
- let reader = &mut self.reader;
- let mut mcus_left_until_restart = self.restart_interval;
- let mut expected_rst_num = 0;
- let mut ra = [0u16; MAX_COMPONENTS];
- let mut rb = [0u16; MAX_COMPONENTS];
- let mut rc = [0u16; MAX_COMPONENTS];
-
- let width = frame.image_size.width as usize;
- let height = frame.image_size.height as usize;
-
- let mut differences = vec![Vec::with_capacity(npixel); ncomp];
- for _mcu_y in 0..height {
- for _mcu_x in 0..width {
- if self.restart_interval > 0 {
- if mcus_left_until_restart == 0 {
- match huffman.take_marker(reader)? {
- Some(Marker::RST(n)) => {
- if n != expected_rst_num {
- return Err(Error::Format(format!(
- "found RST{} where RST{} was expected",
- n, expected_rst_num
- )));
- }
-
- huffman.reset();
-
- expected_rst_num = (expected_rst_num + 1) % 8;
- mcus_left_until_restart = self.restart_interval;
- }
- Some(marker) => {
- return Err(Error::Format(format!(
- "found marker {:?} inside scan where RST{} was expected",
- marker, expected_rst_num
- )))
- }
- None => {
- return Err(Error::Format(format!(
- "no marker found where RST{} was expected",
- expected_rst_num
- )))
- }
- }
- }
-
- mcus_left_until_restart -= 1;
- }
-
- for (i, _component) in components.iter().enumerate() {
- let dc_table = self.dc_huffman_tables[scan.dc_table_indices[i]]
- .as_ref()
- .unwrap();
- let value = huffman.decode(reader, dc_table)?;
- let diff = match value {
- 0 => 0,
- 1..=15 => huffman.receive_extend(reader, value)? as i32,
- 16 => 32768,
- _ => {
- // Section F.1.2.1.1
- // Table F.1
- return Err(Error::Format(
- "invalid DC difference magnitude category".to_owned(),
- ));
- }
- };
- differences[i].push(diff);
- }
- }
- }
-
- if scan.predictor_selection == Predictor::Ra {
- for (i, _component) in components.iter().enumerate() {
- // calculate the top left pixel
- let diff = differences[i][0];
- let prediction = 1 << (frame.precision - scan.point_transform - 1) as i32;
- let result = ((prediction + diff) & 0xFFFF) as u16; // modulo 2^16
- let result = result << scan.point_transform;
- results[i][0] = result;
-
- // calculate leftmost column, using top pixel as predictor
- let mut previous = result;
- for mcu_y in 1..height {
- let diff = differences[i][mcu_y * width];
- let prediction = previous as i32;
- let result = ((prediction + diff) & 0xFFFF) as u16; // modulo 2^16
- let result = result << scan.point_transform;
- results[i][mcu_y * width] = result;
- previous = result;
- }
-
- // calculate rows, using left pixel as predictor
- for mcu_y in 0..height {
- for mcu_x in 1..width {
- let diff = differences[i][mcu_y * width + mcu_x];
- let prediction = results[i][mcu_y * width + mcu_x - 1] as i32;
- let result = ((prediction + diff) & 0xFFFF) as u16; // modulo 2^16
- let result = result << scan.point_transform;
- results[i][mcu_y * width + mcu_x] = result;
- }
- }
- }
- } else {
- for mcu_y in 0..height {
- for mcu_x in 0..width {
- for (i, _component) in components.iter().enumerate() {
- let diff = differences[i][mcu_y * width + mcu_x];
-
- // The following lines could be further optimized, e.g. moving the checks
- // and updates of the previous values into the prediction function or
- // iterating such that diagonals with mcu_x + mcu_y = const are computed at
- // the same time to exploit independent predictions in this case
- if mcu_x > 0 {
- ra[i] = results[i][mcu_y * frame.image_size.width as usize + mcu_x - 1];
- }
- if mcu_y > 0 {
- rb[i] =
- results[i][(mcu_y - 1) * frame.image_size.width as usize + mcu_x];
- if mcu_x > 0 {
- rc[i] = results[i]
- [(mcu_y - 1) * frame.image_size.width as usize + (mcu_x - 1)];
- }
- }
- let prediction = predict(
- ra[i] as i32,
- rb[i] as i32,
- rc[i] as i32,
- scan.predictor_selection,
- scan.point_transform,
- frame.precision,
- mcu_x,
- mcu_y,
- self.restart_interval > 0
- && mcus_left_until_restart == self.restart_interval - 1,
- );
- let result = ((prediction + diff) & 0xFFFF) as u16; // modulo 2^16
- results[i][mcu_y * width + mcu_x] = result << scan.point_transform;
- }
- }
- }
- }
-
- let mut marker = huffman.take_marker(&mut self.reader)?;
- while let Some(Marker::RST(_)) = marker {
- marker = self.read_marker().ok();
- }
- Ok((marker, results))
- }
-}
-
-/// H.1.2.1
-fn predict(
- ra: i32,
- rb: i32,
- rc: i32,
- predictor: Predictor,
- point_transform: u8,
- input_precision: u8,
- ix: usize,
- iy: usize,
- restart: bool,
-) -> i32 {
- if (ix == 0 && iy == 0) || restart {
- // start of first line or restart
- if input_precision > 1 + point_transform {
- 1 << (input_precision - point_transform - 1)
- } else {
- 0
- }
- } else if iy == 0 {
- // rest of first line
- ra
- } else if ix == 0 {
- // start of other line
- rb
- } else {
- // use predictor Table H.1
- match predictor {
- Predictor::NoPrediction => 0,
- Predictor::Ra => ra,
- Predictor::Rb => rb,
- Predictor::Rc => rc,
- Predictor::RaRbRc1 => ra + rb - rc,
- Predictor::RaRbRc2 => ra + ((rb - rc) >> 1),
- Predictor::RaRbRc3 => rb + ((ra - rc) >> 1),
- Predictor::RaRb => (ra + rb) / 2,
- }
- }
-}
-
-pub fn compute_image_lossless(frame: &FrameInfo, mut data: Vec<Vec<u16>>) -> Result<Vec<u8>> {
- if data.is_empty() || data.iter().any(Vec::is_empty) {
- return Err(Error::Format("not all components have data".to_owned()));
- }
- let output_size = frame.output_size;
- let components = &frame.components;
- let ncomp = components.len();
-
- if ncomp == 1 {
- let decoded = convert_to_u8(frame, data.remove(0));
- Ok(decoded)
- } else {
- let mut decoded: Vec<u16> =
- vec![0u16; ncomp * output_size.width as usize * output_size.height as usize];
- for (x, chunk) in decoded.chunks_mut(ncomp).enumerate() {
- for (i, (component_data, _)) in data.iter().zip(components.iter()).enumerate() {
- chunk[i] = component_data[x];
- }
- }
- let decoded = convert_to_u8(frame, decoded);
- Ok(decoded)
- }
-}
-
-fn convert_to_u8(frame: &FrameInfo, data: Vec<u16>) -> Vec<u8> {
- if frame.precision == 8 {
- data.iter().map(|x| *x as u8).collect()
- } else {
- // we output native endian, which is the standard for image-rs
- let ne_bytes: Vec<_> = data.iter().map(|x| x.to_ne_bytes()).collect();
- ne_bytes.concat()
- }
-}
diff --git a/vendor/jpeg-decoder/src/error.rs b/vendor/jpeg-decoder/src/error.rs
deleted file mode 100644
index c5fe7b6..0000000
--- a/vendor/jpeg-decoder/src/error.rs
+++ /dev/null
@@ -1,75 +0,0 @@
-use alloc::boxed::Box;
-use alloc::fmt;
-use alloc::string::String;
-use core::result;
-use std::error::Error as StdError;
-use std::io::Error as IoError;
-
-use crate::ColorTransform;
-
-pub type Result<T> = result::Result<T, Error>;
-
-/// An enumeration over JPEG features (currently) unsupported by this library.
-///
-/// Support for features listed here may be included in future versions of this library.
-#[derive(Debug, Clone, PartialEq, Eq, Hash)]
-pub enum UnsupportedFeature {
- /// Hierarchical JPEG.
- Hierarchical,
- /// JPEG using arithmetic entropy coding instead of Huffman coding.
- ArithmeticEntropyCoding,
- /// Sample precision in bits. 8 bit sample precision is what is currently supported in non-lossless coding process.
- SamplePrecision(u8),
- /// Number of components in an image. 1, 3 and 4 components are currently supported.
- ComponentCount(u8),
- /// An image can specify a zero height in the frame header and use the DNL (Define Number of
- /// Lines) marker at the end of the first scan to define the number of lines in the frame.
- DNL,
- /// Subsampling ratio.
- SubsamplingRatio,
- /// A subsampling ratio not representable as an integer.
- NonIntegerSubsamplingRatio,
- /// Colour transform
- ColorTransform(ColorTransform),
-}
-
-/// Errors that can occur while decoding a JPEG image.
-#[derive(Debug)]
-pub enum Error {
- /// The image is not formatted properly. The string contains detailed information about the
- /// error.
- Format(String),
- /// The image makes use of a JPEG feature not (currently) supported by this library.
- Unsupported(UnsupportedFeature),
- /// An I/O error occurred while decoding the image.
- Io(IoError),
- /// An internal error occurred while decoding the image.
- Internal(Box<dyn StdError + Send + Sync + 'static>), //TODO: not used, can be removed with the next version bump
-}
-
-impl fmt::Display for Error {
- fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
- match *self {
- Error::Format(ref desc) => write!(f, "invalid JPEG format: {}", desc),
- Error::Unsupported(ref feat) => write!(f, "unsupported JPEG feature: {:?}", feat),
- Error::Io(ref err) => err.fmt(f),
- Error::Internal(ref err) => err.fmt(f),
- }
- }
-}
-
-impl StdError for Error {
- fn source(&self) -> Option<&(dyn StdError + 'static)> {
- match *self {
- Error::Io(ref err) => Some(err),
- Error::Internal(ref err) => Some(&**err),
- _ => None,
- }
- }
-}
-
-impl From<IoError> for Error {
- fn from(err: IoError) -> Error {
- Error::Io(err)
- }
-}
diff --git a/vendor/jpeg-decoder/src/huffman.rs b/vendor/jpeg-decoder/src/huffman.rs
deleted file mode 100644
index fca57c1..0000000
--- a/vendor/jpeg-decoder/src/huffman.rs
+++ /dev/null
@@ -1,346 +0,0 @@
-use alloc::borrow::ToOwned;
-use alloc::vec;
-use alloc::vec::Vec;
-use core::iter;
-use std::io::Read;
-use crate::read_u8;
-use crate::error::{Error, Result};
-use crate::marker::Marker;
-use crate::parser::ScanInfo;
-
-const LUT_BITS: u8 = 8;
-
-#[derive(Debug)]
-pub struct HuffmanDecoder {
- bits: u64,
- num_bits: u8,
- marker: Option<Marker>,
-}
-
-impl HuffmanDecoder {
- pub fn new() -> HuffmanDecoder {
- HuffmanDecoder {
- bits: 0,
- num_bits: 0,
- marker: None,
- }
- }
-
- // Section F.2.2.3
- // Figure F.16
- pub fn decode<R: Read>(&mut self, reader: &mut R, table: &HuffmanTable) -> Result<u8> {
- if self.num_bits < 16 {
- self.read_bits(reader)?;
- }
-
- let (value, size) = table.lut[self.peek_bits(LUT_BITS) as usize];
-
- if size > 0 {
- self.consume_bits(size);
- Ok(value)
- }
- else {
- let bits = self.peek_bits(16);
-
- for i in LUT_BITS .. 16 {
- let code = (bits >> (15 - i)) as i32;
-
- if code <= table.maxcode[i as usize] {
- self.consume_bits(i + 1);
-
- let index = (code + table.delta[i as usize]) as usize;
- return Ok(table.values[index]);
- }
- }
-
- Err(Error::Format("failed to decode huffman code".to_owned()))
- }
- }
-
- pub fn decode_fast_ac<R: Read>(&mut self, reader: &mut R, table: &HuffmanTable) -> Result<Option<(i16, u8)>> {
- if let Some(ref ac_lut) = table.ac_lut {
- if self.num_bits < LUT_BITS {
- self.read_bits(reader)?;
- }
-
- let (value, run_size) = ac_lut[self.peek_bits(LUT_BITS) as usize];
-
- if run_size != 0 {
- let run = run_size >> 4;
- let size = run_size & 0x0f;
-
- self.consume_bits(size);
- return Ok(Some((value, run)));
- }
- }
-
- Ok(None)
- }
-
- #[inline]
- pub fn get_bits<R: Read>(&mut self, reader: &mut R, count: u8) -> Result<u16> {
- if self.num_bits < count {
- self.read_bits(reader)?;
- }
-
- let bits = self.peek_bits(count);
- self.consume_bits(count);
-
- Ok(bits)
- }
-
- #[inline]
- pub fn receive_extend<R: Read>(&mut self, reader: &mut R, count: u8) -> Result<i16> {
- let value = self.get_bits(reader, count)?;
- Ok(extend(value, count))
- }
-
- pub fn reset(&mut self) {
- self.bits = 0;
- self.num_bits = 0;
- }
-
- pub fn take_marker<R: Read>(&mut self, reader: &mut R) -> Result<Option<Marker>> {
- self.read_bits(reader).map(|_| self.marker.take())
- }
-
- #[inline]
- fn peek_bits(&mut self, count: u8) -> u16 {
- debug_assert!(count <= 16);
- debug_assert!(self.num_bits >= count);
-
- ((self.bits >> (64 - count)) & ((1 << count) - 1)) as u16
- }
-
- #[inline]
- fn consume_bits(&mut self, count: u8) {
- debug_assert!(self.num_bits >= count);
-
- self.bits <<= count as usize;
- self.num_bits -= count;
- }
-
- fn read_bits<R: Read>(&mut self, reader: &mut R) -> Result<()> {
- while self.num_bits <= 56 {
- // Fill with zero bits if we have reached the end.
- let byte = match self.marker {
- Some(_) => 0,
- None => read_u8(reader)?,
- };
-
- if byte == 0xFF {
- let mut next_byte = read_u8(reader)?;
-
- // Check for byte stuffing.
- if next_byte != 0x00 {
- // We seem to have reached the end of entropy-coded data and encountered a
- // marker. Since we can't put data back into the reader, we have to continue
- // reading to identify the marker so we can pass it on.
-
- // Section B.1.1.2
- // "Any marker may optionally be preceded by any number of fill bytes, which are bytes assigned code X’FF’."
- while next_byte == 0xFF {
- next_byte = read_u8(reader)?;
- }
-
- match next_byte {
- 0x00 => return Err(Error::Format("FF 00 found where marker was expected".to_owned())),
- _ => self.marker = Some(Marker::from_u8(next_byte).unwrap()),
- }
-
- continue;
- }
- }
-
- self.bits |= (byte as u64) << (56 - self.num_bits);
- self.num_bits += 8;
- }
-
- Ok(())
- }
-}
-
-// Section F.2.2.1
-// Figure F.12
-fn extend(value: u16, count: u8) -> i16 {
- let vt = 1 << (count as u16 - 1);
-
- if value < vt {
- value as i16 + (-1 << count as i16) + 1
- } else {
- value as i16
- }
-}
-
-#[derive(Clone, Copy, Debug, PartialEq)]
-pub enum HuffmanTableClass {
- DC,
- AC,
-}
-
-pub struct HuffmanTable {
- values: Vec<u8>,
- delta: [i32; 16],
- maxcode: [i32; 16],
-
- lut: [(u8, u8); 1 << LUT_BITS],
- ac_lut: Option<[(i16, u8); 1 << LUT_BITS]>,
-}
-
-impl HuffmanTable {
- pub fn new(bits: &[u8; 16], values: &[u8], class: HuffmanTableClass) -> Result<HuffmanTable> {
- let (huffcode, huffsize) = derive_huffman_codes(bits)?;
-
- // Section F.2.2.3
- // Figure F.15
- // delta[i] is set to VALPTR(I) - MINCODE(I)
- let mut delta = [0i32; 16];
- let mut maxcode = [-1i32; 16];
- let mut j = 0;
-
- for i in 0 .. 16 {
- if bits[i] != 0 {
- delta[i] = j as i32 - huffcode[j] as i32;
- j += bits[i] as usize;
- maxcode[i] = huffcode[j - 1] as i32;
- }
- }
-
- // Build a lookup table for faster decoding.
- let mut lut = [(0u8, 0u8); 1 << LUT_BITS];
-
- for (i, &size) in huffsize.iter().enumerate().filter(|&(_, &size)| size <= LUT_BITS) {
- let bits_remaining = LUT_BITS - size;
- let start = (huffcode[i] << bits_remaining) as usize;
-
- let val = (values[i], size);
- for b in &mut lut[start..][..1 << bits_remaining] {
- *b = val;
- }
- }
-
- // Build a lookup table for small AC coefficients which both decodes the value and does the
- // equivalent of receive_extend.
- let ac_lut = match class {
- HuffmanTableClass::DC => None,
- HuffmanTableClass::AC => {
- let mut table = [(0i16, 0u8); 1 << LUT_BITS];
-
- for (i, &(value, size)) in lut.iter().enumerate() {
- let run_length = value >> 4;
- let magnitude_category = value & 0x0f;
-
- if magnitude_category > 0 && size + magnitude_category <= LUT_BITS {
- let unextended_ac_value = (((i << size) & ((1 << LUT_BITS) - 1)) >> (LUT_BITS - magnitude_category)) as u16;
- let ac_value = extend(unextended_ac_value, magnitude_category);
-
- table[i] = (ac_value, (run_length << 4) | (size + magnitude_category));
- }
- }
-
- Some(table)
- },
- };
-
- Ok(HuffmanTable {
- values: values.to_vec(),
- delta,
- maxcode,
- lut,
- ac_lut,
- })
- }
-}
-
-// Section C.2
-fn derive_huffman_codes(bits: &[u8; 16]) -> Result<(Vec<u16>, Vec<u8>)> {
- // Figure C.1
- let huffsize = bits.iter()
- .enumerate()
- .fold(Vec::new(), |mut acc, (i, &value)| {
- acc.extend(iter::repeat((i + 1) as u8).take(value as usize));
- acc
- });
-
- // Figure C.2
- let mut huffcode = vec![0u16; huffsize.len()];
- let mut code_size = huffsize[0];
- let mut code = 0u32;
-
- for (i, &size) in huffsize.iter().enumerate() {
- while code_size < size {
- code <<= 1;
- code_size += 1;
- }
-
- if code >= (1u32 << size) {
- return Err(Error::Format("bad huffman code length".to_owned()));
- }
-
- huffcode[i] = code as u16;
- code += 1;
- }
-
- Ok((huffcode, huffsize))
-}
-
-// https://www.loc.gov/preservation/digital/formats/fdd/fdd000063.shtml
-// "Avery Lee, writing in the rec.video.desktop newsgroup in 2001, commented that "MJPEG, or at
-// least the MJPEG in AVIs having the MJPG fourcc, is restricted JPEG with a fixed -- and
-// *omitted* -- Huffman table. The JPEG must be YCbCr colorspace, it must be 4:2:2, and it must
-// use basic Huffman encoding, not arithmetic or progressive.... You can indeed extract the
-// MJPEG frames and decode them with a regular JPEG decoder, but you have to prepend the DHT
-// segment to them, or else the decoder won't have any idea how to decompress the data.
-// The exact table necessary is given in the OpenDML spec.""
-pub fn fill_default_mjpeg_tables(scan: &ScanInfo,
- dc_huffman_tables: &mut[Option<HuffmanTable>],
- ac_huffman_tables: &mut[Option<HuffmanTable>]) {
- // Section K.3.3
-
- if dc_huffman_tables[0].is_none() && scan.dc_table_indices.iter().any(|&i| i == 0) {
- // Table K.3
- dc_huffman_tables[0] = Some(HuffmanTable::new(
- &[0x00, 0x01, 0x05, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00],
- &[0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B], HuffmanTableClass::DC).unwrap());
- }
- if dc_huffman_tables[1].is_none() && scan.dc_table_indices.iter().any(|&i| i == 1) {
- // Table K.4
- dc_huffman_tables[1] = Some(HuffmanTable::new(
- &[0x00, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00],
- &[0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B], HuffmanTableClass::DC).unwrap());
- }
- if ac_huffman_tables[0].is_none() && scan.ac_table_indices.iter().any(|&i| i == 0) {
- // Table K.5
- ac_huffman_tables[0] = Some(HuffmanTable::new(
- &[0x00, 0x02, 0x01, 0x03, 0x03, 0x02, 0x04, 0x03, 0x05, 0x05, 0x04, 0x04, 0x00, 0x00, 0x01, 0x7D],
- &[0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12, 0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,
- 0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xA1, 0x08, 0x23, 0x42, 0xB1, 0xC1, 0x15, 0x52, 0xD1, 0xF0,
- 0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0A, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x25, 0x26, 0x27, 0x28,
- 0x29, 0x2A, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
- 0x4A, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5A, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
- 0x6A, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7A, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
- 0x8A, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9A, 0xA2, 0xA3, 0xA4, 0xA5, 0xA6, 0xA7,
- 0xA8, 0xA9, 0xAA, 0xB2, 0xB3, 0xB4, 0xB5, 0xB6, 0xB7, 0xB8, 0xB9, 0xBA, 0xC2, 0xC3, 0xC4, 0xC5,
- 0xC6, 0xC7, 0xC8, 0xC9, 0xCA, 0xD2, 0xD3, 0xD4, 0xD5, 0xD6, 0xD7, 0xD8, 0xD9, 0xDA, 0xE1, 0xE2,
- 0xE3, 0xE4, 0xE5, 0xE6, 0xE7, 0xE8, 0xE9, 0xEA, 0xF1, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xF7, 0xF8,
- 0xF9, 0xFA
- ], HuffmanTableClass::AC).unwrap());
- }
- if ac_huffman_tables[1].is_none() && scan.ac_table_indices.iter().any(|&i| i == 1) {
- // Table K.6
- ac_huffman_tables[1] = Some(HuffmanTable::new(
- &[0x00, 0x02, 0x01, 0x02, 0x04, 0x04, 0x03, 0x04, 0x07, 0x05, 0x04, 0x04, 0x00, 0x01, 0x02, 0x77],
- &[0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21, 0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,
- 0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91, 0xA1, 0xB1, 0xC1, 0x09, 0x23, 0x33, 0x52, 0xF0,
- 0x15, 0x62, 0x72, 0xD1, 0x0A, 0x16, 0x24, 0x34, 0xE1, 0x25, 0xF1, 0x17, 0x18, 0x19, 0x1A, 0x26,
- 0x27, 0x28, 0x29, 0x2A, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
- 0x49, 0x4A, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5A, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
- 0x69, 0x6A, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7A, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
- 0x88, 0x89, 0x8A, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9A, 0xA2, 0xA3, 0xA4, 0xA5,
- 0xA6, 0xA7, 0xA8, 0xA9, 0xAA, 0xB2, 0xB3, 0xB4, 0xB5, 0xB6, 0xB7, 0xB8, 0xB9, 0xBA, 0xC2, 0xC3,
- 0xC4, 0xC5, 0xC6, 0xC7, 0xC8, 0xC9, 0xCA, 0xD2, 0xD3, 0xD4, 0xD5, 0xD6, 0xD7, 0xD8, 0xD9, 0xDA,
- 0xE2, 0xE3, 0xE4, 0xE5, 0xE6, 0xE7, 0xE8, 0xE9, 0xEA, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xF7, 0xF8,
- 0xF9, 0xFA
- ], HuffmanTableClass::AC).unwrap());
- }
-}
diff --git a/vendor/jpeg-decoder/src/idct.rs b/vendor/jpeg-decoder/src/idct.rs
deleted file mode 100644
index ad8dc4c..0000000
--- a/vendor/jpeg-decoder/src/idct.rs
+++ /dev/null
@@ -1,657 +0,0 @@
-// Malicious JPEG files can cause operations in the idct to overflow.
-// One example is tests/crashtest/images/imagetestsuite/b0b8914cc5f7a6eff409f16d8cc236c5.jpg
-// That's why wrapping operators are needed.
-
-// Note: we have many values that are straight from a reference.
-// Do not warn on them or try to automatically change them.
-#![allow(clippy::excessive_precision)]
-// Note: consistency for unrolled, scaled offset loops
-#![allow(clippy::erasing_op)]
-#![allow(clippy::identity_op)]
-use crate::parser::Dimensions;
-use core::{convert::TryFrom, num::Wrapping};
-
-pub(crate) fn choose_idct_size(full_size: Dimensions, requested_size: Dimensions) -> usize {
- fn scaled(len: u16, scale: usize) -> u16 {
- ((len as u32 * scale as u32 - 1) / 8 + 1) as u16
- }
-
- for &scale in &[1, 2, 4] {
- if scaled(full_size.width, scale) >= requested_size.width
- || scaled(full_size.height, scale) >= requested_size.height
- {
- return scale;
- }
- }
-
- 8
-}
-
-#[test]
-fn test_choose_idct_size() {
- assert_eq!(
- choose_idct_size(
- Dimensions {
- width: 5472,
- height: 3648
- },
- Dimensions {
- width: 200,
- height: 200
- }
- ),
- 1
- );
- assert_eq!(
- choose_idct_size(
- Dimensions {
- width: 5472,
- height: 3648
- },
- Dimensions {
- width: 500,
- height: 500
- }
- ),
- 1
- );
- assert_eq!(
- choose_idct_size(
- Dimensions {
- width: 5472,
- height: 3648
- },
- Dimensions {
- width: 684,
- height: 456
- }
- ),
- 1
- );
- assert_eq!(
- choose_idct_size(
- Dimensions {
- width: 5472,
- height: 3648
- },
- Dimensions {
- width: 999,
- height: 456
- }
- ),
- 1
- );
- assert_eq!(
- choose_idct_size(
- Dimensions {
- width: 5472,
- height: 3648
- },
- Dimensions {
- width: 684,
- height: 999
- }
- ),
- 1
- );
- assert_eq!(
- choose_idct_size(
- Dimensions {
- width: 500,
- height: 333
- },
- Dimensions {
- width: 63,
- height: 42
- }
- ),
- 1
- );
-
- assert_eq!(
- choose_idct_size(
- Dimensions {
- width: 5472,
- height: 3648
- },
- Dimensions {
- width: 685,
- height: 999
- }
- ),
- 2
- );
- assert_eq!(
- choose_idct_size(
- Dimensions {
- width: 5472,
- height: 3648
- },
- Dimensions {
- width: 1000,
- height: 1000
- }
- ),
- 2
- );
- assert_eq!(
- choose_idct_size(
- Dimensions {
- width: 5472,
- height: 3648
- },
- Dimensions {
- width: 1400,
- height: 1400
- }
- ),
- 4
- );
-
- assert_eq!(
- choose_idct_size(
- Dimensions {
- width: 5472,
- height: 3648
- },
- Dimensions {
- width: 5472,
- height: 3648
- }
- ),
- 8
- );
- assert_eq!(
- choose_idct_size(
- Dimensions {
- width: 5472,
- height: 3648
- },
- Dimensions {
- width: 16384,
- height: 16384
- }
- ),
- 8
- );
- assert_eq!(
- choose_idct_size(
- Dimensions {
- width: 1,
- height: 1
- },
- Dimensions {
- width: 65535,
- height: 65535
- }
- ),
- 8
- );
- assert_eq!(
- choose_idct_size(
- Dimensions {
- width: 5472,
- height: 3648
- },
- Dimensions {
- width: 16384,
- height: 16384
- }
- ),
- 8
- );
-}
-
-pub(crate) fn dequantize_and_idct_block(
- scale: usize,
- coefficients: &[i16; 64],
- quantization_table: &[u16; 64],
- output_linestride: usize,
- output: &mut [u8],
-) {
- match scale {
- 8 => dequantize_and_idct_block_8x8(
- coefficients,
- quantization_table,
- output_linestride,
- output,
- ),
- 4 => dequantize_and_idct_block_4x4(
- coefficients,
- quantization_table,
- output_linestride,
- output,
- ),
- 2 => dequantize_and_idct_block_2x2(
- coefficients,
- quantization_table,
- output_linestride,
- output,
- ),
- 1 => dequantize_and_idct_block_1x1(
- coefficients,
- quantization_table,
- output_linestride,
- output,
- ),
- _ => panic!("Unsupported IDCT scale {}/8", scale),
- }
-}
-
-pub fn dequantize_and_idct_block_8x8(
- coefficients: &[i16; 64],
- quantization_table: &[u16; 64],
- output_linestride: usize,
- output: &mut [u8],
-) {
- #[cfg(not(feature = "platform_independent"))]
- if let Some(idct) = crate::arch::get_dequantize_and_idct_block_8x8() {
- #[allow(unsafe_code)]
- unsafe {
- return idct(coefficients, quantization_table, output_linestride, output);
- }
- }
-
- let output = output.chunks_mut(output_linestride);
- dequantize_and_idct_block_8x8_inner(coefficients, quantization_table, output)
-}
-
-// This is based on stb_image's 'stbi__idct_block'.
-fn dequantize_and_idct_block_8x8_inner<'a, I>(
- coefficients: &[i16; 64],
- quantization_table: &[u16; 64],
- output: I,
-) where
- I: IntoIterator<Item = &'a mut [u8]>,
- I::IntoIter: ExactSizeIterator<Item = &'a mut [u8]>,
-{
- let output = output.into_iter();
- debug_assert!(
- output.len() >= 8,
- "Output iterator has the wrong length: {}",
- output.len()
- );
-
- let mut temp = [Wrapping(0); 64];
-
- // columns
- for i in 0..8 {
- if coefficients[i + 8] == 0
- && coefficients[i + 16] == 0
- && coefficients[i + 24] == 0
- && coefficients[i + 32] == 0
- && coefficients[i + 40] == 0
- && coefficients[i + 48] == 0
- && coefficients[i + 56] == 0
- {
- let dcterm = dequantize(coefficients[i], quantization_table[i]) << 2;
- temp[i] = dcterm;
- temp[i + 8] = dcterm;
- temp[i + 16] = dcterm;
- temp[i + 24] = dcterm;
- temp[i + 32] = dcterm;
- temp[i + 40] = dcterm;
- temp[i + 48] = dcterm;
- temp[i + 56] = dcterm;
- } else {
- let s0 = dequantize(coefficients[i], quantization_table[i]);
- let s1 = dequantize(coefficients[i + 8], quantization_table[i + 8]);
- let s2 = dequantize(coefficients[i + 16], quantization_table[i + 16]);
- let s3 = dequantize(coefficients[i + 24], quantization_table[i + 24]);
- let s4 = dequantize(coefficients[i + 32], quantization_table[i + 32]);
- let s5 = dequantize(coefficients[i + 40], quantization_table[i + 40]);
- let s6 = dequantize(coefficients[i + 48], quantization_table[i + 48]);
- let s7 = dequantize(coefficients[i + 56], quantization_table[i + 56]);
-
- let Kernel {
- xs: [x0, x1, x2, x3],
- ts: [t0, t1, t2, t3],
- } = kernel(
- [s0, s1, s2, s3, s4, s5, s6, s7],
- // constants scaled things up by 1<<12; let's bring them back
- // down, but keep 2 extra bits of precision
- 512,
- );
-
- temp[i] = (x0 + t3) >> 10;
- temp[i + 56] = (x0 - t3) >> 10;
- temp[i + 8] = (x1 + t2) >> 10;
- temp[i + 48] = (x1 - t2) >> 10;
- temp[i + 16] = (x2 + t1) >> 10;
- temp[i + 40] = (x2 - t1) >> 10;
- temp[i + 24] = (x3 + t0) >> 10;
- temp[i + 32] = (x3 - t0) >> 10;
- }
- }
-
- for (chunk, output_chunk) in temp.chunks_exact(8).zip(output) {
- let chunk = <&[_; 8]>::try_from(chunk).unwrap();
-
- // constants scaled things up by 1<<12, plus we had 1<<2 from first
- // loop, plus horizontal and vertical each scale by sqrt(8) so together
- // we've got an extra 1<<3, so 1<<17 total we need to remove.
- // so we want to round that, which means adding 0.5 * 1<<17,
- // aka 65536. Also, we'll end up with -128 to 127 that we want
- // to encode as 0..255 by adding 128, so we'll add that before the shift
- const X_SCALE: i32 = 65536 + (128 << 17);
-
- // eliminate downstream bounds checks
- let output_chunk = &mut output_chunk[..8];
-
- // TODO When the minimum rust version supports it
- // let [s0, rest @ ..] = chunk;
- let (s0, rest) = chunk.split_first().unwrap();
- if *rest == [Wrapping(0); 7] {
- let dcterm = stbi_clamp((stbi_fsh(*s0) + Wrapping(X_SCALE)) >> 17);
- output_chunk[0] = dcterm;
- output_chunk[1] = dcterm;
- output_chunk[2] = dcterm;
- output_chunk[3] = dcterm;
- output_chunk[4] = dcterm;
- output_chunk[5] = dcterm;
- output_chunk[6] = dcterm;
- output_chunk[7] = dcterm;
- } else {
- let Kernel {
- xs: [x0, x1, x2, x3],
- ts: [t0, t1, t2, t3],
- } = kernel(*chunk, X_SCALE);
-
- output_chunk[0] = stbi_clamp((x0 + t3) >> 17);
- output_chunk[7] = stbi_clamp((x0 - t3) >> 17);
- output_chunk[1] = stbi_clamp((x1 + t2) >> 17);
- output_chunk[6] = stbi_clamp((x1 - t2) >> 17);
- output_chunk[2] = stbi_clamp((x2 + t1) >> 17);
- output_chunk[5] = stbi_clamp((x2 - t1) >> 17);
- output_chunk[3] = stbi_clamp((x3 + t0) >> 17);
- output_chunk[4] = stbi_clamp((x3 - t0) >> 17);
- }
- }
-}
-
-struct Kernel {
- xs: [Wrapping<i32>; 4],
- ts: [Wrapping<i32>; 4],
-}
-
-#[inline]
-fn kernel_x([s0, s2, s4, s6]: [Wrapping<i32>; 4], x_scale: i32) -> [Wrapping<i32>; 4] {
- // Even `chunk` indicies
- let (t2, t3);
- {
- let p2 = s2;
- let p3 = s6;
-
- let p1 = (p2 + p3) * stbi_f2f(0.5411961);
- t2 = p1 + p3 * stbi_f2f(-1.847759065);
- t3 = p1 + p2 * stbi_f2f(0.765366865);
- }
-
- let (t0, t1);
- {
- let p2 = s0;
- let p3 = s4;
-
- t0 = stbi_fsh(p2 + p3);
- t1 = stbi_fsh(p2 - p3);
- }
-
- let x0 = t0 + t3;
- let x3 = t0 - t3;
- let x1 = t1 + t2;
- let x2 = t1 - t2;
-
- let x_scale = Wrapping(x_scale);
-
- [x0 + x_scale, x1 + x_scale, x2 + x_scale, x3 + x_scale]
-}
-
-#[inline]
-fn kernel_t([s1, s3, s5, s7]: [Wrapping<i32>; 4]) -> [Wrapping<i32>; 4] {
- // Odd `chunk` indicies
- let mut t0 = s7;
- let mut t1 = s5;
- let mut t2 = s3;
- let mut t3 = s1;
-
- let p3 = t0 + t2;
- let p4 = t1 + t3;
- let p1 = t0 + t3;
- let p2 = t1 + t2;
- let p5 = (p3 + p4) * stbi_f2f(1.175875602);
-
- t0 *= stbi_f2f(0.298631336);
- t1 *= stbi_f2f(2.053119869);
- t2 *= stbi_f2f(3.072711026);
- t3 *= stbi_f2f(1.501321110);
-
- let p1 = p5 + p1 * stbi_f2f(-0.899976223);
- let p2 = p5 + p2 * stbi_f2f(-2.562915447);
- let p3 = p3 * stbi_f2f(-1.961570560);
- let p4 = p4 * stbi_f2f(-0.390180644);
-
- t3 += p1 + p4;
- t2 += p2 + p3;
- t1 += p2 + p4;
- t0 += p1 + p3;
-
- [t0, t1, t2, t3]
-}
-
-#[inline]
-fn kernel([s0, s1, s2, s3, s4, s5, s6, s7]: [Wrapping<i32>; 8], x_scale: i32) -> Kernel {
- Kernel {
- xs: kernel_x([s0, s2, s4, s6], x_scale),
- ts: kernel_t([s1, s3, s5, s7]),
- }
-}
-
-#[inline(always)]
-fn dequantize(c: i16, q: u16) -> Wrapping<i32> {
- Wrapping(i32::from(c) * i32::from(q))
-}
-
-// 4x4 and 2x2 IDCT based on Rakesh Dugad and Narendra Ahuja: "A Fast Scheme for Image Size Change in the Compressed Domain" (2001).
-// http://sylvana.net/jpegcrop/jidctred/
-fn dequantize_and_idct_block_4x4(
- coefficients: &[i16; 64],
- quantization_table: &[u16; 64],
- output_linestride: usize,
- output: &mut [u8],
-) {
- debug_assert_eq!(coefficients.len(), 64);
- let mut temp = [Wrapping(0i32); 4 * 4];
-
- const CONST_BITS: usize = 12;
- const PASS1_BITS: usize = 2;
- const FINAL_BITS: usize = CONST_BITS + PASS1_BITS + 3;
-
- // columns
- for i in 0..4 {
- let s0 = Wrapping(coefficients[i + 8 * 0] as i32 * quantization_table[i + 8 * 0] as i32);
- let s1 = Wrapping(coefficients[i + 8 * 1] as i32 * quantization_table[i + 8 * 1] as i32);
- let s2 = Wrapping(coefficients[i + 8 * 2] as i32 * quantization_table[i + 8 * 2] as i32);
- let s3 = Wrapping(coefficients[i + 8 * 3] as i32 * quantization_table[i + 8 * 3] as i32);
-
- let x0 = (s0 + s2) << PASS1_BITS;
- let x2 = (s0 - s2) << PASS1_BITS;
-
- let p1 = (s1 + s3) * stbi_f2f(0.541196100);
- let t0 = (p1 + s3 * stbi_f2f(-1.847759065) + Wrapping(512)) >> (CONST_BITS - PASS1_BITS);
- let t2 = (p1 + s1 * stbi_f2f(0.765366865) + Wrapping(512)) >> (CONST_BITS - PASS1_BITS);
-
- temp[i + 4 * 0] = x0 + t2;
- temp[i + 4 * 3] = x0 - t2;
- temp[i + 4 * 1] = x2 + t0;
- temp[i + 4 * 2] = x2 - t0;
- }
-
- for i in 0..4 {
- let s0 = temp[i * 4 + 0];
- let s1 = temp[i * 4 + 1];
- let s2 = temp[i * 4 + 2];
- let s3 = temp[i * 4 + 3];
-
- let x0 = (s0 + s2) << CONST_BITS;
- let x2 = (s0 - s2) << CONST_BITS;
-
- let p1 = (s1 + s3) * stbi_f2f(0.541196100);
- let t0 = p1 + s3 * stbi_f2f(-1.847759065);
- let t2 = p1 + s1 * stbi_f2f(0.765366865);
-
- // constants scaled things up by 1<<12, plus we had 1<<2 from first
- // loop, plus horizontal and vertical each scale by sqrt(8) so together
- // we've got an extra 1<<3, so 1<<17 total we need to remove.
- // so we want to round that, which means adding 0.5 * 1<<17,
- // aka 65536. Also, we'll end up with -128 to 127 that we want
- // to encode as 0..255 by adding 128, so we'll add that before the shift
- let x0 = x0 + Wrapping(1 << (FINAL_BITS - 1)) + Wrapping(128 << FINAL_BITS);
- let x2 = x2 + Wrapping(1 << (FINAL_BITS - 1)) + Wrapping(128 << FINAL_BITS);
-
- let output = &mut output[i * output_linestride..][..4];
- output[0] = stbi_clamp((x0 + t2) >> FINAL_BITS);
- output[3] = stbi_clamp((x0 - t2) >> FINAL_BITS);
- output[1] = stbi_clamp((x2 + t0) >> FINAL_BITS);
- output[2] = stbi_clamp((x2 - t0) >> FINAL_BITS);
- }
-}
-
-fn dequantize_and_idct_block_2x2(
- coefficients: &[i16; 64],
- quantization_table: &[u16; 64],
- output_linestride: usize,
- output: &mut [u8],
-) {
- debug_assert_eq!(coefficients.len(), 64);
-
- const SCALE_BITS: usize = 3;
-
- // Column 0
- let s00 = Wrapping(coefficients[8 * 0] as i32 * quantization_table[8 * 0] as i32);
- let s10 = Wrapping(coefficients[8 * 1] as i32 * quantization_table[8 * 1] as i32);
-
- let x0 = s00 + s10;
- let x2 = s00 - s10;
-
- // Column 1
- let s01 = Wrapping(coefficients[8 * 0 + 1] as i32 * quantization_table[8 * 0 + 1] as i32);
- let s11 = Wrapping(coefficients[8 * 1 + 1] as i32 * quantization_table[8 * 1 + 1] as i32);
-
- let x1 = s01 + s11;
- let x3 = s01 - s11;
-
- let x0 = x0 + Wrapping(1 << (SCALE_BITS - 1)) + Wrapping(128 << SCALE_BITS);
- let x2 = x2 + Wrapping(1 << (SCALE_BITS - 1)) + Wrapping(128 << SCALE_BITS);
-
- // Row 0
- output[0] = stbi_clamp((x0 + x1) >> SCALE_BITS);
- output[1] = stbi_clamp((x0 - x1) >> SCALE_BITS);
-
- // Row 1
- output[output_linestride + 0] = stbi_clamp((x2 + x3) >> SCALE_BITS);
- output[output_linestride + 1] = stbi_clamp((x2 - x3) >> SCALE_BITS);
-}
-
-fn dequantize_and_idct_block_1x1(
- coefficients: &[i16; 64],
- quantization_table: &[u16; 64],
- _output_linestride: usize,
- output: &mut [u8],
-) {
- debug_assert_eq!(coefficients.len(), 64);
-
- let s0 = (Wrapping(coefficients[0] as i32 * quantization_table[0] as i32) + Wrapping(128 * 8)) / Wrapping(8);
- output[0] = stbi_clamp(s0);
-}
-
-// take a -128..127 value and stbi__clamp it and convert to 0..255
-fn stbi_clamp(x: Wrapping<i32>) -> u8 {
- x.0.max(0).min(255) as u8
-}
-
-fn stbi_f2f(x: f32) -> Wrapping<i32> {
- Wrapping((x * 4096.0 + 0.5) as i32)
-}
-
-fn stbi_fsh(x: Wrapping<i32>) -> Wrapping<i32> {
- x << 12
-}
-
-#[test]
-fn test_dequantize_and_idct_block_8x8() {
- #[cfg_attr(rustfmt, rustfmt_skip)]
- let coefficients: [i16; 8 * 8] = [
- -14, -39, 58, -2, 3, 3, 0, 1,
- 11, 27, 4, -3, 3, 0, 1, 0,
- -6, -13, -9, -1, -2, -1, 0, 0,
- -4, 0, -1, -2, 0, 0, 0, 0,
- 3, 0, 0, 0, 0, 0, 0, 0,
- -3, -2, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0
- ];
-
- #[cfg_attr(rustfmt, rustfmt_skip)]
- let quantization_table: [u16; 8 * 8] = [
- 8, 6, 5, 8, 12, 20, 26, 31,
- 6, 6, 7, 10, 13, 29, 30, 28,
- 7, 7, 8, 12, 20, 29, 35, 28,
- 7, 9, 11, 15, 26, 44, 40, 31,
- 9, 11, 19, 28, 34, 55, 52, 39,
- 12, 18, 28, 32, 41, 52, 57, 46,
- 25, 32, 39, 44, 52, 61, 60, 51,
- 36, 46, 48, 49, 56, 50, 52, 50
- ];
- let output_linestride: usize = 8;
- let mut output = [0u8; 8 * 8];
- dequantize_and_idct_block_8x8(
- &coefficients,
- &quantization_table,
- output_linestride,
- &mut output,
- );
- #[cfg_attr(rustfmt, rustfmt_skip)]
- let expected_output = [
- 118, 92, 110, 83, 77, 93, 144, 198,
- 172, 116, 114, 87, 78, 93, 146, 191,
- 194, 107, 91, 76, 71, 93, 160, 198,
- 196, 100, 80, 74, 67, 92, 174, 209,
- 182, 104, 88, 81, 68, 89, 178, 206,
- 105, 64, 59, 59, 63, 94, 183, 201,
- 35, 27, 28, 37, 72, 121, 203, 204,
- 37, 45, 41, 47, 98, 154, 223, 208
- ];
- for i in 0..64 {
- assert!((output[i] as i16 - expected_output[i] as i16).abs() <= 1);
- }
-}
-
-#[test]
-fn test_dequantize_and_idct_block_8x8_all_zero() {
- let mut output = [0u8; 8 * 8];
- dequantize_and_idct_block_8x8(&[0; 8 * 8], &[666; 8 * 8], 8, &mut output);
- assert_eq!(&output[..], &[128; 8 * 8][..]);
-}
-
-#[test]
-fn test_dequantize_and_idct_block_8x8_saturated() {
- // Arch-specific IDCT implementations need not handle i16::MAX values.
- #[cfg(not(feature = "platform_independent"))]
- if crate::arch::get_dequantize_and_idct_block_8x8().is_some() {
- return;
- }
- let mut output = [0u8; 8 * 8];
- dequantize_and_idct_block_8x8(&[i16::MAX; 8 * 8], &[u16::MAX; 8 * 8], 8, &mut output);
- #[cfg_attr(rustfmt, rustfmt_skip)]
- let expected = [
- 0, 0, 0, 255, 255, 0, 0, 255,
- 0, 0, 215, 0, 0, 255, 255, 0,
- 255, 255, 255, 255, 255, 0, 0, 255,
- 0, 0, 255, 0, 255, 0, 255, 255,
- 0, 0, 255, 255, 0, 255, 0, 0,
- 255, 255, 0, 255, 255, 255, 170, 0,
- 0, 255, 0, 0, 0, 0, 0, 255,
- 255, 255, 0, 255, 0, 255, 0, 0
- ];
- assert_eq!(&output[..], &expected[..]);
-}
diff --git a/vendor/jpeg-decoder/src/lib.rs b/vendor/jpeg-decoder/src/lib.rs
deleted file mode 100644
index ff1ceb1..0000000
--- a/vendor/jpeg-decoder/src/lib.rs
+++ /dev/null
@@ -1,66 +0,0 @@
-//! This crate contains a JPEG decoder.
-//!
-//! # Examples
-//!
-//! ```
-//! use jpeg_decoder::Decoder;
-//! use std::fs::File;
-//! use std::io::BufReader;
-//!
-//! let file = File::open("tests/reftest/images/extraneous-data.jpg").expect("failed to open file");
-//! let mut decoder = Decoder::new(BufReader::new(file));
-//! let pixels = decoder.decode().expect("failed to decode image");
-//! let metadata = decoder.info().unwrap();
-//! ```
-//!
-//! Get metadata from a file without decoding it:
-//!
-//! ```
-//! use jpeg_decoder::Decoder;
-//! use std::fs::File;
-//! use std::io::BufReader;
-//!
-//! let file = File::open("tests/reftest/images/extraneous-data.jpg").expect("failed to open file");
-//! let mut decoder = Decoder::new(BufReader::new(file));
-//! decoder.read_info().expect("failed to read metadata");
-//! let metadata = decoder.info().unwrap();
-//! ```
-
-#![deny(missing_docs)]
-#![deny(unsafe_code)]
-#![cfg_attr(feature = "platform_independent", forbid(unsafe_code))]
-
-extern crate alloc;
-extern crate core;
-
-#[cfg(feature = "rayon")]
-extern crate rayon;
-
-pub use decoder::{ColorTransform, Decoder, ImageInfo, PixelFormat};
-pub use error::{Error, UnsupportedFeature};
-pub use parser::CodingProcess;
-
-use std::io;
-
-#[cfg(not(feature = "platform_independent"))]
-mod arch;
-mod decoder;
-mod error;
-mod huffman;
-mod idct;
-mod marker;
-mod parser;
-mod upsampler;
-mod worker;
-
-fn read_u8<R: io::Read>(reader: &mut R) -> io::Result<u8> {
- let mut buf = [0];
- reader.read_exact(&mut buf)?;
- Ok(buf[0])
-}
-
-fn read_u16_from_be<R: io::Read>(reader: &mut R) -> io::Result<u16> {
- let mut buf = [0, 0];
- reader.read_exact(&mut buf)?;
- Ok(u16::from_be_bytes(buf))
-}
diff --git a/vendor/jpeg-decoder/src/marker.rs b/vendor/jpeg-decoder/src/marker.rs
deleted file mode 100644
index 2fe74be..0000000
--- a/vendor/jpeg-decoder/src/marker.rs
+++ /dev/null
@@ -1,136 +0,0 @@
-// Table B.1
-#[derive(Clone, Copy, Debug, PartialEq)]
-// Note: Established names.
-#[allow(clippy::upper_case_acronyms)]
-pub enum Marker {
- /// Start Of Frame markers
- ///
- /// - SOF(0): Baseline DCT (Huffman coding)
- /// - SOF(1): Extended sequential DCT (Huffman coding)
- /// - SOF(2): Progressive DCT (Huffman coding)
- /// - SOF(3): Lossless (sequential) (Huffman coding)
- /// - SOF(5): Differential sequential DCT (Huffman coding)
- /// - SOF(6): Differential progressive DCT (Huffman coding)
- /// - SOF(7): Differential lossless (sequential) (Huffman coding)
- /// - SOF(9): Extended sequential DCT (arithmetic coding)
- /// - SOF(10): Progressive DCT (arithmetic coding)
- /// - SOF(11): Lossless (sequential) (arithmetic coding)
- /// - SOF(13): Differential sequential DCT (arithmetic coding)
- /// - SOF(14): Differential progressive DCT (arithmetic coding)
- /// - SOF(15): Differential lossless (sequential) (arithmetic coding)
- SOF(u8),
- /// Reserved for JPEG extensions
- JPG,
- /// Define Huffman table(s)
- DHT,
- /// Define arithmetic coding conditioning(s)
- DAC,
- /// Restart with modulo 8 count `m`
- RST(u8),
- /// Start of image
- SOI,
- /// End of image
- EOI,
- /// Start of scan
- SOS,
- /// Define quantization table(s)
- DQT,
- /// Define number of lines
- DNL,
- /// Define restart interval
- DRI,
- /// Define hierarchical progression
- DHP,
- /// Expand reference component(s)
- EXP,
- /// Reserved for application segments
- APP(u8),
- /// Reserved for JPEG extensions
- JPGn(u8),
- /// Comment
- COM,
- /// For temporary private use in arithmetic coding
- TEM,
- /// Reserved
- RES,
-}
-
-impl Marker {
- pub fn has_length(self) -> bool {
- use self::Marker::*;
- ! matches!(self, RST(..) | SOI | EOI | TEM)
- }
-
- pub fn from_u8(n: u8) -> Option<Marker> {
- use self::Marker::*;
- match n {
- 0x00 => None, // Byte stuffing
- 0x01 => Some(TEM),
- 0x02 ..= 0xBF => Some(RES),
- 0xC0 => Some(SOF(0)),
- 0xC1 => Some(SOF(1)),
- 0xC2 => Some(SOF(2)),
- 0xC3 => Some(SOF(3)),
- 0xC4 => Some(DHT),
- 0xC5 => Some(SOF(5)),
- 0xC6 => Some(SOF(6)),
- 0xC7 => Some(SOF(7)),
- 0xC8 => Some(JPG),
- 0xC9 => Some(SOF(9)),
- 0xCA => Some(SOF(10)),
- 0xCB => Some(SOF(11)),
- 0xCC => Some(DAC),
- 0xCD => Some(SOF(13)),
- 0xCE => Some(SOF(14)),
- 0xCF => Some(SOF(15)),
- 0xD0 => Some(RST(0)),
- 0xD1 => Some(RST(1)),
- 0xD2 => Some(RST(2)),
- 0xD3 => Some(RST(3)),
- 0xD4 => Some(RST(4)),
- 0xD5 => Some(RST(5)),
- 0xD6 => Some(RST(6)),
- 0xD7 => Some(RST(7)),
- 0xD8 => Some(SOI),
- 0xD9 => Some(EOI),
- 0xDA => Some(SOS),
- 0xDB => Some(DQT),
- 0xDC => Some(DNL),
- 0xDD => Some(DRI),
- 0xDE => Some(DHP),
- 0xDF => Some(EXP),
- 0xE0 => Some(APP(0)),
- 0xE1 => Some(APP(1)),
- 0xE2 => Some(APP(2)),
- 0xE3 => Some(APP(3)),
- 0xE4 => Some(APP(4)),
- 0xE5 => Some(APP(5)),
- 0xE6 => Some(APP(6)),
- 0xE7 => Some(APP(7)),
- 0xE8 => Some(APP(8)),
- 0xE9 => Some(APP(9)),
- 0xEA => Some(APP(10)),
- 0xEB => Some(APP(11)),
- 0xEC => Some(APP(12)),
- 0xED => Some(APP(13)),
- 0xEE => Some(APP(14)),
- 0xEF => Some(APP(15)),
- 0xF0 => Some(JPGn(0)),
- 0xF1 => Some(JPGn(1)),
- 0xF2 => Some(JPGn(2)),
- 0xF3 => Some(JPGn(3)),
- 0xF4 => Some(JPGn(4)),
- 0xF5 => Some(JPGn(5)),
- 0xF6 => Some(JPGn(6)),
- 0xF7 => Some(JPGn(7)),
- 0xF8 => Some(JPGn(8)),
- 0xF9 => Some(JPGn(9)),
- 0xFA => Some(JPGn(10)),
- 0xFB => Some(JPGn(11)),
- 0xFC => Some(JPGn(12)),
- 0xFD => Some(JPGn(13)),
- 0xFE => Some(COM),
- 0xFF => None, // Fill byte
- }
- }
-}
diff --git a/vendor/jpeg-decoder/src/parser.rs b/vendor/jpeg-decoder/src/parser.rs
deleted file mode 100644
index 72ba00d..0000000
--- a/vendor/jpeg-decoder/src/parser.rs
+++ /dev/null
@@ -1,685 +0,0 @@
-use alloc::borrow::ToOwned;
-use alloc::{format, vec};
-use alloc::vec::Vec;
-use core::ops::{self, Range};
-use std::io::{self, Read};
-use crate::{read_u16_from_be, read_u8};
-use crate::error::{Error, Result, UnsupportedFeature};
-use crate::huffman::{HuffmanTable, HuffmanTableClass};
-use crate::marker::Marker;
-use crate::marker::Marker::*;
-
-#[derive(Clone, Copy, Debug, PartialEq)]
-pub struct Dimensions {
- pub width: u16,
- pub height: u16,
-}
-
-#[derive(Clone, Copy, Debug, PartialEq)]
-pub enum EntropyCoding {
- Huffman,
- Arithmetic,
-}
-
-/// Represents the coding process of an image.
-#[derive(Clone, Copy, Debug, PartialEq)]
-pub enum CodingProcess {
- /// Sequential Discrete Cosine Transform
- DctSequential,
- /// Progressive Discrete Cosine Transform
- DctProgressive,
- /// Lossless
- Lossless,
-}
-
-// Table H.1
-#[derive(Clone, Copy, Debug, PartialEq)]
-pub enum Predictor {
- NoPrediction,
- Ra,
- Rb,
- Rc,
- RaRbRc1, // Ra + Rb - Rc
- RaRbRc2, // Ra + ((Rb - Rc) >> 1)
- RaRbRc3, // Rb + ((Ra - Rb) >> 1)
- RaRb, // (Ra + Rb)/2
-}
-
-
-#[derive(Clone)]
-pub struct FrameInfo {
- pub is_baseline: bool,
- pub is_differential: bool,
- pub coding_process: CodingProcess,
- pub entropy_coding: EntropyCoding,
- pub precision: u8,
-
- pub image_size: Dimensions,
- pub output_size: Dimensions,
- pub mcu_size: Dimensions,
- pub components: Vec<Component>,
-}
-
-#[derive(Debug)]
-pub struct ScanInfo {
- pub component_indices: Vec<usize>,
- pub dc_table_indices: Vec<usize>,
- pub ac_table_indices: Vec<usize>,
-
- pub spectral_selection: Range<u8>,
- pub predictor_selection: Predictor, // for lossless
- pub successive_approximation_high: u8,
- pub successive_approximation_low: u8,
- pub point_transform: u8, // for lossless
-}
-
-#[derive(Clone, Debug)]
-pub struct Component {
- pub identifier: u8,
-
- pub horizontal_sampling_factor: u8,
- pub vertical_sampling_factor: u8,
-
- pub quantization_table_index: usize,
-
- pub dct_scale: usize,
-
- pub size: Dimensions,
- pub block_size: Dimensions,
-}
-
-#[derive(Debug)]
-pub enum AppData {
- Adobe(AdobeColorTransform),
- Jfif,
- Avi1,
- Icc(IccChunk),
- Exif(Vec<u8>),
-}
-
-// http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe
-#[derive(Clone, Copy, Debug, PartialEq)]
-pub enum AdobeColorTransform {
- // RGB or CMYK
- Unknown,
- YCbCr,
- // YCbCrK
- YCCK,
-}
-#[derive(Debug)]
-pub struct IccChunk {
- pub num_markers: u8,
- pub seq_no: u8,
- pub data: Vec<u8>,
-}
-
-impl FrameInfo {
- pub(crate) fn update_idct_size(&mut self, idct_size: usize) -> Result<()> {
- for component in &mut self.components {
- component.dct_scale = idct_size;
- }
-
- update_component_sizes(self.image_size, &mut self.components)?;
-
- self.output_size = Dimensions {
- width: (self.image_size.width as f32 * idct_size as f32 / 8.0).ceil() as u16,
- height: (self.image_size.height as f32 * idct_size as f32 / 8.0).ceil() as u16
- };
-
- Ok(())
- }
-}
-
-fn read_length<R: Read>(reader: &mut R, marker: Marker) -> Result<usize> {
- assert!(marker.has_length());
-
- // length is including itself.
- let length = usize::from(read_u16_from_be(reader)?);
-
- if length < 2 {
- return Err(Error::Format(format!("encountered {:?} with invalid length {}", marker, length)));
- }
-
- Ok(length - 2)
-}
-
-fn skip_bytes<R: Read>(reader: &mut R, length: usize) -> Result<()> {
- let length = length as u64;
- let to_skip = &mut reader.by_ref().take(length);
- let copied = io::copy(to_skip, &mut io::sink())?;
- if copied < length {
- Err(Error::Io(io::ErrorKind::UnexpectedEof.into()))
- } else {
- Ok(())
- }
-}
-
-// Section B.2.2
-pub fn parse_sof<R: Read>(reader: &mut R, marker: Marker) -> Result<FrameInfo> {
- let length = read_length(reader, marker)?;
-
- if length <= 6 {
- return Err(Error::Format("invalid length in SOF".to_owned()));
- }
-
- let is_baseline = marker == SOF(0);
- let is_differential = match marker {
- SOF(0 ..= 3) | SOF(9 ..= 11) => false,
- SOF(5 ..= 7) | SOF(13 ..= 15) => true,
- _ => panic!(),
- };
- let coding_process = match marker {
- SOF(0) | SOF(1) | SOF(5) | SOF(9) | SOF(13) => CodingProcess::DctSequential,
- SOF(2) | SOF(6) | SOF(10) | SOF(14) => CodingProcess::DctProgressive,
- SOF(3) | SOF(7) | SOF(11) | SOF(15) => CodingProcess::Lossless,
- _ => panic!(),
- };
- let entropy_coding = match marker {
- SOF(0 ..= 3) | SOF(5 ..= 7) => EntropyCoding::Huffman,
- SOF(9 ..= 11) | SOF(13 ..= 15) => EntropyCoding::Arithmetic,
- _ => panic!(),
- };
-
- let precision = read_u8(reader)?;
-
- match precision {
- 8 => {},
- 12 => {
- if is_baseline {
- return Err(Error::Format("12 bit sample precision is not allowed in baseline".to_owned()));
- }
- },
- _ => {
- if coding_process != CodingProcess::Lossless || precision > 16 {
- return Err(Error::Format(format!("invalid precision {} in frame header", precision)))
- }
- },
- }
-
- let height = read_u16_from_be(reader)?;
- let width = read_u16_from_be(reader)?;
-
- // height:
- // "Value 0 indicates that the number of lines shall be defined by the DNL marker and
- // parameters at the end of the first scan (see B.2.5)."
- if height == 0 {
- return Err(Error::Unsupported(UnsupportedFeature::DNL));
- }
-
- if width == 0 {
- return Err(Error::Format("zero width in frame header".to_owned()));
- }
-
- let component_count = read_u8(reader)?;
-
- if component_count == 0 {
- return Err(Error::Format("zero component count in frame header".to_owned()));
- }
- if coding_process == CodingProcess::DctProgressive && component_count > 4 {
- return Err(Error::Format("progressive frame with more than 4 components".to_owned()));
- }
-
- if length != 6 + 3 * component_count as usize {
- return Err(Error::Format("invalid length in SOF".to_owned()));
- }
-
- let mut components: Vec<Component> = Vec::with_capacity(component_count as usize);
-
- for _ in 0 .. component_count {
- let identifier = read_u8(reader)?;
-
- // Each component's identifier must be unique.
- if components.iter().any(|c| c.identifier == identifier) {
- return Err(Error::Format(format!("duplicate frame component identifier {}", identifier)));
- }
-
- let byte = read_u8(reader)?;
- let horizontal_sampling_factor = byte >> 4;
- let vertical_sampling_factor = byte & 0x0f;
-
- if horizontal_sampling_factor == 0 || horizontal_sampling_factor > 4 {
- return Err(Error::Format(format!("invalid horizontal sampling factor {}", horizontal_sampling_factor)));
- }
- if vertical_sampling_factor == 0 || vertical_sampling_factor > 4 {
- return Err(Error::Format(format!("invalid vertical sampling factor {}", vertical_sampling_factor)));
- }
-
- let quantization_table_index = read_u8(reader)?;
-
- if quantization_table_index > 3 || (coding_process == CodingProcess::Lossless && quantization_table_index != 0) {
- return Err(Error::Format(format!("invalid quantization table index {}", quantization_table_index)));
- }
-
- components.push(Component {
- identifier,
- horizontal_sampling_factor,
- vertical_sampling_factor,
- quantization_table_index: quantization_table_index as usize,
- dct_scale: 8,
- size: Dimensions {width: 0, height: 0},
- block_size: Dimensions {width: 0, height: 0},
- });
- }
-
- let mcu_size = update_component_sizes(Dimensions { width, height }, &mut components)?;
-
- Ok(FrameInfo {
- is_baseline,
- is_differential,
- coding_process,
- entropy_coding,
- precision,
- image_size: Dimensions { width, height },
- output_size: Dimensions { width, height },
- mcu_size,
- components,
- })
-}
-
-/// Returns ceil(x/y), requires x>0
-fn ceil_div(x: u32, y: u32) -> Result<u16> {
- if x == 0 || y == 0 {
- // TODO Determine how this error is reached. Can we validate input
- // earlier and error out then?
- return Err(Error::Format("invalid dimensions".to_owned()));
- }
- Ok((1 + ((x - 1) / y)) as u16)
-}
-
-fn update_component_sizes(size: Dimensions, components: &mut [Component]) -> Result<Dimensions> {
- let h_max = components.iter().map(|c| c.horizontal_sampling_factor).max().unwrap() as u32;
- let v_max = components.iter().map(|c| c.vertical_sampling_factor).max().unwrap() as u32;
-
- let mcu_size = Dimensions {
- width: ceil_div(size.width as u32, h_max * 8)?,
- height: ceil_div(size.height as u32, v_max * 8)?,
- };
-
- for component in components {
- component.size.width = ceil_div(size.width as u32 * component.horizontal_sampling_factor as u32 * component.dct_scale as u32, h_max * 8)?;
- component.size.height = ceil_div(size.height as u32 * component.vertical_sampling_factor as u32 * component.dct_scale as u32, v_max * 8)?;
-
- component.block_size.width = mcu_size.width * component.horizontal_sampling_factor as u16;
- component.block_size.height = mcu_size.height * component.vertical_sampling_factor as u16;
- }
-
- Ok(mcu_size)
-}
-
-#[test]
-fn test_update_component_sizes() {
- let mut components = [Component {
- identifier: 1,
- horizontal_sampling_factor: 2,
- vertical_sampling_factor: 2,
- quantization_table_index: 0,
- dct_scale: 8,
- size: Dimensions { width: 0, height: 0 },
- block_size: Dimensions { width: 0, height: 0 },
- }];
- let mcu = update_component_sizes(
- Dimensions { width: 800, height: 280 },
- &mut components).unwrap();
- assert_eq!(mcu, Dimensions { width: 50, height: 18 });
- assert_eq!(components[0].block_size, Dimensions { width: 100, height: 36 });
- assert_eq!(components[0].size, Dimensions { width: 800, height: 280 });
-}
-
-// Section B.2.3
-pub fn parse_sos<R: Read>(reader: &mut R, frame: &FrameInfo) -> Result<ScanInfo> {
- let length = read_length(reader, SOS)?;
- if 0 == length {
- return Err(Error::Format("zero length in SOS".to_owned()));
- }
-
- let component_count = read_u8(reader)?;
-
- if component_count == 0 || component_count > 4 {
- return Err(Error::Format(format!("invalid component count {} in scan header", component_count)));
- }
-
- if length != 4 + 2 * component_count as usize {
- return Err(Error::Format("invalid length in SOS".to_owned()));
- }
-
- let mut component_indices = Vec::with_capacity(component_count as usize);
- let mut dc_table_indices = Vec::with_capacity(component_count as usize);
- let mut ac_table_indices = Vec::with_capacity(component_count as usize);
-
- for _ in 0 .. component_count {
- let identifier = read_u8(reader)?;
-
- let component_index = match frame.components.iter().position(|c| c.identifier == identifier) {
- Some(value) => value,
- None => return Err(Error::Format(format!("scan component identifier {} does not match any of the component identifiers defined in the frame", identifier))),
- };
-
- // Each of the scan's components must be unique.
- if component_indices.contains(&component_index) {
- return Err(Error::Format(format!("duplicate scan component identifier {}", identifier)));
- }
-
- // "... the ordering in the scan header shall follow the ordering in the frame header."
- if component_index < *component_indices.iter().max().unwrap_or(&0) {
- return Err(Error::Format("the scan component order does not follow the order in the frame header".to_owned()));
- }
-
- let byte = read_u8(reader)?;
- let dc_table_index = byte >> 4;
- let ac_table_index = byte & 0x0f;
-
- if dc_table_index > 3 || (frame.is_baseline && dc_table_index > 1) {
- return Err(Error::Format(format!("invalid dc table index {}", dc_table_index)));
- }
- if ac_table_index > 3 || (frame.is_baseline && ac_table_index > 1) {
- return Err(Error::Format(format!("invalid ac table index {}", ac_table_index)));
- }
-
- component_indices.push(component_index);
- dc_table_indices.push(dc_table_index as usize);
- ac_table_indices.push(ac_table_index as usize);
- }
-
- let blocks_per_mcu = component_indices.iter().map(|&i| {
- frame.components[i].horizontal_sampling_factor as u32 * frame.components[i].vertical_sampling_factor as u32
- }).fold(0, ops::Add::add);
-
- if component_count > 1 && blocks_per_mcu > 10 {
- return Err(Error::Format("scan with more than one component and more than 10 blocks per MCU".to_owned()));
- }
-
- // Also utilized as 'Predictor' in lossless coding, as MEAN in JPEG-LS etc.
- let spectral_selection_start = read_u8(reader)?;
- // Also utilized as ILV parameter in JPEG-LS.
- let mut spectral_selection_end = read_u8(reader)?;
-
- let byte = read_u8(reader)?;
- let successive_approximation_high = byte >> 4;
- let successive_approximation_low = byte & 0x0f;
-
- // The Differential Pulse-Mode prediction used (similar to png). Only utilized in Lossless
- // coding. Don't confuse with the JPEG-LS parameter coded using the same scan info portion.
- let predictor_selection;
- let point_transform = successive_approximation_low;
-
- if frame.coding_process == CodingProcess::DctProgressive {
- predictor_selection = Predictor::NoPrediction;
- if spectral_selection_end > 63 || spectral_selection_start > spectral_selection_end ||
- (spectral_selection_start == 0 && spectral_selection_end != 0) {
- return Err(Error::Format(format!("invalid spectral selection parameters: ss={}, se={}", spectral_selection_start, spectral_selection_end)));
- }
- if spectral_selection_start != 0 && component_count != 1 {
- return Err(Error::Format("spectral selection scan with AC coefficients can't have more than one component".to_owned()));
- }
-
- if successive_approximation_high > 13 || successive_approximation_low > 13 {
- return Err(Error::Format(format!("invalid successive approximation parameters: ah={}, al={}", successive_approximation_high, successive_approximation_low)));
- }
-
- // Section G.1.1.1.2
- // "Each scan which follows the first scan for a given band progressively improves
- // the precision of the coefficients by one bit, until full precision is reached."
- if successive_approximation_high != 0 && successive_approximation_high != successive_approximation_low + 1 {
- return Err(Error::Format("successive approximation scan with more than one bit of improvement".to_owned()));
- }
- }
- else if frame.coding_process == CodingProcess::Lossless {
- if spectral_selection_end != 0 {
- return Err(Error::Format("spectral selection end shall be zero in lossless scan".to_owned()));
- }
- if successive_approximation_high != 0 {
- return Err(Error::Format("successive approximation high shall be zero in lossless scan".to_owned()));
- }
- predictor_selection = match spectral_selection_start {
- 0 => Predictor::NoPrediction,
- 1 => Predictor::Ra,
- 2 => Predictor::Rb,
- 3 => Predictor::Rc,
- 4 => Predictor::RaRbRc1,
- 5 => Predictor::RaRbRc2,
- 6 => Predictor::RaRbRc3,
- 7 => Predictor::RaRb,
- _ => {
- return Err(Error::Format(format!("invalid predictor selection value: {}", spectral_selection_start)));
- },
- };
- }
- else {
- predictor_selection = Predictor::NoPrediction;
- if spectral_selection_end == 0 {
- spectral_selection_end = 63;
- }
- if spectral_selection_start != 0 || spectral_selection_end != 63 {
- return Err(Error::Format("spectral selection is not allowed in non-progressive scan".to_owned()));
- }
- if successive_approximation_high != 0 || successive_approximation_low != 0 {
- return Err(Error::Format("successive approximation is not allowed in non-progressive scan".to_owned()));
- }
- }
-
- Ok(ScanInfo {
- component_indices,
- dc_table_indices,
- ac_table_indices,
- spectral_selection: Range {
- start: spectral_selection_start,
- end: spectral_selection_end + 1,
- },
- predictor_selection,
- successive_approximation_high,
- successive_approximation_low,
- point_transform,
- })
-}
-
-// Section B.2.4.1
-pub fn parse_dqt<R: Read>(reader: &mut R) -> Result<[Option<[u16; 64]>; 4]> {
- let mut length = read_length(reader, DQT)?;
- let mut tables = [None; 4];
-
- // Each DQT segment may contain multiple quantization tables.
- while length > 0 {
- let byte = read_u8(reader)?;
- let precision = (byte >> 4) as usize;
- let index = (byte & 0x0f) as usize;
-
- // The combination of 8-bit sample precision and 16-bit quantization tables is explicitly
- // disallowed by the JPEG spec:
- // "An 8-bit DCT-based process shall not use a 16-bit precision quantization table."
- // "Pq: Quantization table element precision – Specifies the precision of the Qk
- // values. Value 0 indicates 8-bit Qk values; value 1 indicates 16-bit Qk values. Pq
- // shall be zero for 8 bit sample precision P (see B.2.2)."
- // libjpeg allows this behavior though, and there are images in the wild using it. So to
- // match libjpeg's behavior we are deviating from the JPEG spec here.
- if precision > 1 {
- return Err(Error::Format(format!("invalid precision {} in DQT", precision)));
- }
- if index > 3 {
- return Err(Error::Format(format!("invalid destination identifier {} in DQT", index)));
- }
- if length < 65 + 64 * precision {
- return Err(Error::Format("invalid length in DQT".to_owned()));
- }
-
- let mut table = [0u16; 64];
-
- for item in table.iter_mut() {
- *item = match precision {
- 0 => u16::from(read_u8(reader)?),
- 1 => read_u16_from_be(reader)?,
- _ => unreachable!(),
- };
- }
-
- if table.iter().any(|&val| val == 0) {
- return Err(Error::Format("quantization table contains element with a zero value".to_owned()));
- }
-
- tables[index] = Some(table);
- length -= 65 + 64 * precision;
- }
-
- Ok(tables)
-}
-
-// Section B.2.4.2
-pub fn parse_dht<R: Read>(reader: &mut R, is_baseline: Option<bool>) -> Result<(Vec<Option<HuffmanTable>>, Vec<Option<HuffmanTable>>)> {
- let mut length = read_length(reader, DHT)?;
- let mut dc_tables = vec![None, None, None, None];
- let mut ac_tables = vec![None, None, None, None];
-
- // Each DHT segment may contain multiple huffman tables.
- while length > 17 {
- let byte = read_u8(reader)?;
- let class = byte >> 4;
- let index = (byte & 0x0f) as usize;
-
- if class != 0 && class != 1 {
- return Err(Error::Format(format!("invalid class {} in DHT", class)));
- }
- if is_baseline == Some(true) && index > 1 {
- return Err(Error::Format("a maximum of two huffman tables per class are allowed in baseline".to_owned()));
- }
- if index > 3 {
- return Err(Error::Format(format!("invalid destination identifier {} in DHT", index)));
- }
-
- let mut counts = [0u8; 16];
- reader.read_exact(&mut counts)?;
-
- let size = counts.iter().map(|&val| val as usize).fold(0, ops::Add::add);
-
- if size == 0 {
- return Err(Error::Format("encountered table with zero length in DHT".to_owned()));
- }
- else if size > 256 {
- return Err(Error::Format("encountered table with excessive length in DHT".to_owned()));
- }
- else if size > length - 17 {
- return Err(Error::Format("invalid length in DHT".to_owned()));
- }
-
- let mut values = vec![0u8; size];
- reader.read_exact(&mut values)?;
-
- match class {
- 0 => dc_tables[index] = Some(HuffmanTable::new(&counts, &values, HuffmanTableClass::DC)?),
- 1 => ac_tables[index] = Some(HuffmanTable::new(&counts, &values, HuffmanTableClass::AC)?),
- _ => unreachable!(),
- }
-
- length -= 17 + size;
- }
-
- if length != 0 {
- return Err(Error::Format("invalid length in DHT".to_owned()));
- }
-
- Ok((dc_tables, ac_tables))
-}
-
-// Section B.2.4.4
-pub fn parse_dri<R: Read>(reader: &mut R) -> Result<u16> {
- let length = read_length(reader, DRI)?;
-
- if length != 2 {
- return Err(Error::Format("DRI with invalid length".to_owned()));
- }
-
- Ok(read_u16_from_be(reader)?)
-}
-
-// Section B.2.4.5
-pub fn parse_com<R: Read>(reader: &mut R) -> Result<Vec<u8>> {
- let length = read_length(reader, COM)?;
- let mut buffer = vec![0u8; length];
-
- reader.read_exact(&mut buffer)?;
-
- Ok(buffer)
-}
-
-// Section B.2.4.6
-pub fn parse_app<R: Read>(reader: &mut R, marker: Marker) -> Result<Option<AppData>> {
- let length = read_length(reader, marker)?;
- let mut bytes_read = 0;
- let mut result = None;
-
- match marker {
- APP(0) => {
- if length >= 5 {
- let mut buffer = [0u8; 5];
- reader.read_exact(&mut buffer)?;
- bytes_read = buffer.len();
-
- // http://www.w3.org/Graphics/JPEG/jfif3.pdf
- if buffer[0..5] == *b"JFIF\0" {
- result = Some(AppData::Jfif);
- // https://sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#AVI1
- } else if buffer[0..5] == *b"AVI1\0" {
- result = Some(AppData::Avi1);
- }
- }
- }
- // Exif Data
- APP(1) => {
- if length >= 6 {
- let mut buffer = [0u8; 6];
- reader.read_exact(&mut buffer)?;
- bytes_read = buffer.len();
-
- // https://web.archive.org/web/20190624045241if_/http://www.cipa.jp:80/std/documents/e/DC-008-Translation-2019-E.pdf
- // 4.5.4 Basic Structure of JPEG Compressed Data
- if buffer == *b"Exif\x00\x00" {
- let mut data = vec![0; length - bytes_read];
- reader.read_exact(&mut data)?;
- bytes_read += data.len();
- result = Some(AppData::Exif(data));
- }
- }
- }
- APP(2) => {
- if length > 14 {
- let mut buffer = [0u8; 14];
- reader.read_exact(&mut buffer)?;
- bytes_read = buffer.len();
-
- // http://www.color.org/ICC_Minor_Revision_for_Web.pdf
- // B.4 Embedding ICC profiles in JFIF files
- if buffer[0..12] == *b"ICC_PROFILE\0" {
- let mut data = vec![0; length - bytes_read];
- reader.read_exact(&mut data)?;
- bytes_read += data.len();
- result = Some(AppData::Icc(IccChunk {
- seq_no: buffer[12],
- num_markers: buffer[13],
- data,
- }));
- }
- }
- }
- APP(14) => {
- if length >= 12 {
- let mut buffer = [0u8; 12];
- reader.read_exact(&mut buffer)?;
- bytes_read = buffer.len();
-
- // http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe
- if buffer[0 .. 6] == *b"Adobe\0" {
- let color_transform = match buffer[11] {
- 0 => AdobeColorTransform::Unknown,
- 1 => AdobeColorTransform::YCbCr,
- 2 => AdobeColorTransform::YCCK,
- _ => return Err(Error::Format("invalid color transform in adobe app segment".to_owned())),
- };
-
- result = Some(AppData::Adobe(color_transform));
- }
- }
- },
- _ => {},
- }
-
- skip_bytes(reader, length - bytes_read)?;
- Ok(result)
-}
diff --git a/vendor/jpeg-decoder/src/upsampler.rs b/vendor/jpeg-decoder/src/upsampler.rs
deleted file mode 100644
index a5c39d4..0000000
--- a/vendor/jpeg-decoder/src/upsampler.rs
+++ /dev/null
@@ -1,252 +0,0 @@
-use alloc::boxed::Box;
-use alloc::vec;
-use alloc::vec::Vec;
-use crate::error::{Error, Result, UnsupportedFeature};
-use crate::parser::Component;
-
-pub struct Upsampler {
- components: Vec<UpsamplerComponent>,
- line_buffer_size: usize
-}
-
-struct UpsamplerComponent {
- upsampler: Box<dyn Upsample + Sync>,
- width: usize,
- height: usize,
- row_stride: usize,
-}
-
-impl Upsampler {
- pub fn new(components: &[Component], output_width: u16, output_height: u16) -> Result<Upsampler> {
- let h_max = components.iter().map(|c| c.horizontal_sampling_factor).max().unwrap();
- let v_max = components.iter().map(|c| c.vertical_sampling_factor).max().unwrap();
- let mut upsampler_components = Vec::with_capacity(components.len());
-
- for component in components {
- let upsampler = choose_upsampler((component.horizontal_sampling_factor,
- component.vertical_sampling_factor),
- (h_max, v_max),
- output_width,
- output_height)?;
- upsampler_components.push(UpsamplerComponent {
- upsampler,
- width: component.size.width as usize,
- height: component.size.height as usize,
- row_stride: component.block_size.width as usize * component.dct_scale,
- });
- }
-
- let buffer_size = components.iter().map(|c| c.size.width).max().unwrap() as usize * h_max as usize;
-
- Ok(Upsampler {
- components: upsampler_components,
- line_buffer_size: buffer_size
- })
- }
-
- pub fn upsample_and_interleave_row(&self, component_data: &[Vec<u8>], row: usize, output_width: usize, output: &mut [u8], color_convert: fn(&[Vec<u8>], &mut [u8])) {
- let component_count = component_data.len();
- let mut line_buffers = vec![vec![0u8; self.line_buffer_size]; component_count];
-
- debug_assert_eq!(component_count, self.components.len());
-
- for (i, component) in self.components.iter().enumerate() {
- component.upsampler.upsample_row(&component_data[i],
- component.width,
- component.height,
- component.row_stride,
- row,
- output_width,
- &mut line_buffers[i]);
- }
- color_convert(&line_buffers, output);
- }
-}
-
-struct UpsamplerH1V1;
-struct UpsamplerH2V1;
-struct UpsamplerH1V2;
-struct UpsamplerH2V2;
-
-struct UpsamplerGeneric {
- horizontal_scaling_factor: u8,
- vertical_scaling_factor: u8
-}
-
-fn choose_upsampler(sampling_factors: (u8, u8),
- max_sampling_factors: (u8, u8),
- output_width: u16,
- output_height: u16) -> Result<Box<dyn Upsample + Sync>> {
- let h1 = sampling_factors.0 == max_sampling_factors.0 || output_width == 1;
- let v1 = sampling_factors.1 == max_sampling_factors.1 || output_height == 1;
- let h2 = sampling_factors.0 * 2 == max_sampling_factors.0;
- let v2 = sampling_factors.1 * 2 == max_sampling_factors.1;
-
- if h1 && v1 {
- Ok(Box::new(UpsamplerH1V1))
- }
- else if h2 && v1 {
- Ok(Box::new(UpsamplerH2V1))
- }
- else if h1 && v2 {
- Ok(Box::new(UpsamplerH1V2))
- }
- else if h2 && v2 {
- Ok(Box::new(UpsamplerH2V2))
- }
- else {
- if max_sampling_factors.0 % sampling_factors.0 != 0 || max_sampling_factors.1 % sampling_factors.1 != 0 {
- Err(Error::Unsupported(UnsupportedFeature::NonIntegerSubsamplingRatio))
- }
- else {
- Ok(Box::new(UpsamplerGeneric {
- horizontal_scaling_factor: max_sampling_factors.0 / sampling_factors.0,
- vertical_scaling_factor: max_sampling_factors.1 / sampling_factors.1
- }))
- }
- }
-}
-
-trait Upsample {
- fn upsample_row(&self,
- input: &[u8],
- input_width: usize,
- input_height: usize,
- row_stride: usize,
- row: usize,
- output_width: usize,
- output: &mut [u8]);
-}
-
-impl Upsample for UpsamplerH1V1 {
- fn upsample_row(&self,
- input: &[u8],
- _input_width: usize,
- _input_height: usize,
- row_stride: usize,
- row: usize,
- output_width: usize,
- output: &mut [u8]) {
- let input = &input[row * row_stride ..];
-
- output[..output_width].copy_from_slice(&input[..output_width]);
- }
-}
-
-impl Upsample for UpsamplerH2V1 {
- fn upsample_row(&self,
- input: &[u8],
- input_width: usize,
- _input_height: usize,
- row_stride: usize,
- row: usize,
- _output_width: usize,
- output: &mut [u8]) {
- let input = &input[row * row_stride ..];
-
- if input_width == 1 {
- output[0] = input[0];
- output[1] = input[0];
- return;
- }
-
- output[0] = input[0];
- output[1] = ((input[0] as u32 * 3 + input[1] as u32 + 2) >> 2) as u8;
-
- for i in 1 .. input_width - 1 {
- let sample = 3 * input[i] as u32 + 2;
- output[i * 2] = ((sample + input[i - 1] as u32) >> 2) as u8;
- output[i * 2 + 1] = ((sample + input[i + 1] as u32) >> 2) as u8;
- }
-
- output[(input_width - 1) * 2] = ((input[input_width - 1] as u32 * 3 + input[input_width - 2] as u32 + 2) >> 2) as u8;
- output[(input_width - 1) * 2 + 1] = input[input_width - 1];
- }
-}
-
-impl Upsample for UpsamplerH1V2 {
- fn upsample_row(&self,
- input: &[u8],
- _input_width: usize,
- input_height: usize,
- row_stride: usize,
- row: usize,
- output_width: usize,
- output: &mut [u8]) {
- let row_near = row as f32 / 2.0;
- // If row_near's fractional is 0.0 we want row_far to be the previous row and if it's 0.5 we
- // want it to be the next row.
- let row_far = (row_near + row_near.fract() * 3.0 - 0.25).min((input_height - 1) as f32);
-
- let input_near = &input[row_near as usize * row_stride ..];
- let input_far = &input[row_far as usize * row_stride ..];
-
- let output = &mut output[..output_width];
- let input_near = &input_near[..output_width];
- let input_far = &input_far[..output_width];
- for i in 0..output_width {
- output[i] = ((3 * input_near[i] as u32 + input_far[i] as u32 + 2) >> 2) as u8;
- }
- }
-}
-
-impl Upsample for UpsamplerH2V2 {
- fn upsample_row(&self,
- input: &[u8],
- input_width: usize,
- input_height: usize,
- row_stride: usize,
- row: usize,
- _output_width: usize,
- output: &mut [u8]) {
- let row_near = row as f32 / 2.0;
- // If row_near's fractional is 0.0 we want row_far to be the previous row and if it's 0.5 we
- // want it to be the next row.
- let row_far = (row_near + row_near.fract() * 3.0 - 0.25).min((input_height - 1) as f32);
-
- let input_near = &input[row_near as usize * row_stride ..];
- let input_far = &input[row_far as usize * row_stride ..];
-
- if input_width == 1 {
- let value = ((3 * input_near[0] as u32 + input_far[0] as u32 + 2) >> 2) as u8;
- output[0] = value;
- output[1] = value;
- return;
- }
-
- let mut t1 = 3 * input_near[0] as u32 + input_far[0] as u32;
- output[0] = ((t1 + 2) >> 2) as u8;
-
- for i in 1 .. input_width {
- let t0 = t1;
- t1 = 3 * input_near[i] as u32 + input_far[i] as u32;
-
- output[i * 2 - 1] = ((3 * t0 + t1 + 8) >> 4) as u8;
- output[i * 2] = ((3 * t1 + t0 + 8) >> 4) as u8;
- }
-
- output[input_width * 2 - 1] = ((t1 + 2) >> 2) as u8;
- }
-}
-
-impl Upsample for UpsamplerGeneric {
- // Uses nearest neighbor sampling
- fn upsample_row(&self,
- input: &[u8],
- input_width: usize,
- _input_height: usize,
- row_stride: usize,
- row: usize,
- _output_width: usize,
- output: &mut [u8]) {
- let mut index = 0;
- let start = (row / self.vertical_scaling_factor as usize) * row_stride;
- let input = &input[start..(start + input_width)];
- for val in input {
- for _ in 0..self.horizontal_scaling_factor {
- output[index] = *val;
- index += 1;
- }
- }
- }
-}
diff --git a/vendor/jpeg-decoder/src/worker/immediate.rs b/vendor/jpeg-decoder/src/worker/immediate.rs
deleted file mode 100644
index 8c6e7db..0000000
--- a/vendor/jpeg-decoder/src/worker/immediate.rs
+++ /dev/null
@@ -1,80 +0,0 @@
-use alloc::vec;
-use alloc::vec::Vec;
-use core::mem;
-use core::convert::TryInto;
-use crate::decoder::MAX_COMPONENTS;
-use crate::error::Result;
-use crate::idct::dequantize_and_idct_block;
-use crate::alloc::sync::Arc;
-use crate::parser::Component;
-use super::{RowData, Worker};
-
-pub struct ImmediateWorker {
- offsets: [usize; MAX_COMPONENTS],
- results: Vec<Vec<u8>>,
- components: Vec<Option<Component>>,
- quantization_tables: Vec<Option<Arc<[u16; 64]>>>,
-}
-
-impl Default for ImmediateWorker {
- fn default() -> Self {
- ImmediateWorker {
- offsets: [0; MAX_COMPONENTS],
- results: vec![Vec::new(); MAX_COMPONENTS],
- components: vec![None; MAX_COMPONENTS],
- quantization_tables: vec![None; MAX_COMPONENTS],
- }
- }
-}
-
-impl ImmediateWorker {
- pub fn start_immediate(&mut self, data: RowData) {
- assert!(self.results[data.index].is_empty());
-
- self.offsets[data.index] = 0;
- self.results[data.index].resize(data.component.block_size.width as usize * data.component.block_size.height as usize * data.component.dct_scale * data.component.dct_scale, 0u8);
- self.components[data.index] = Some(data.component);
- self.quantization_tables[data.index] = Some(data.quantization_table);
- }
-
- pub fn append_row_immediate(&mut self, (index, data): (usize, Vec<i16>)) {
- // Convert coefficients from a MCU row to samples.
-
- let component = self.components[index].as_ref().unwrap();
- let quantization_table = self.quantization_tables[index].as_ref().unwrap();
- let block_count = component.block_size.width as usize * component.vertical_sampling_factor as usize;
- let line_stride = component.block_size.width as usize * component.dct_scale;
-
- assert_eq!(data.len(), block_count * 64);
-
- for i in 0..block_count {
- let x = (i % component.block_size.width as usize) * component.dct_scale;
- let y = (i / component.block_size.width as usize) * component.dct_scale;
-
- let coefficients = data[i * 64..(i + 1) * 64].try_into().unwrap();
- let output = &mut self.results[index][self.offsets[index] + y * line_stride + x..];
-
- dequantize_and_idct_block(component.dct_scale, coefficients, quantization_table, line_stride, output);
- }
-
- self.offsets[index] += block_count * component.dct_scale * component.dct_scale;
- }
-
- pub fn get_result_immediate(&mut self, index: usize) -> Vec<u8> {
- mem::take(&mut self.results[index])
- }
-}
-
-impl Worker for ImmediateWorker {
- fn start(&mut self, data: RowData) -> Result<()> {
- self.start_immediate(data);
- Ok(())
- }
- fn append_row(&mut self, row: (usize, Vec<i16>)) -> Result<()> {
- self.append_row_immediate(row);
- Ok(())
- }
- fn get_result(&mut self, index: usize) -> Result<Vec<u8>> {
- Ok(self.get_result_immediate(index))
- }
-}
diff --git a/vendor/jpeg-decoder/src/worker/mod.rs b/vendor/jpeg-decoder/src/worker/mod.rs
deleted file mode 100644
index d6c2b10..0000000
--- a/vendor/jpeg-decoder/src/worker/mod.rs
+++ /dev/null
@@ -1,128 +0,0 @@
-mod immediate;
-mod multithreaded;
-#[cfg(all(
- not(any(target_arch = "asmjs", target_arch = "wasm32")),
- feature = "rayon"
-))]
-mod rayon;
-
-use crate::decoder::{choose_color_convert_func, ColorTransform};
-use crate::error::Result;
-use crate::parser::{Component, Dimensions};
-use crate::upsampler::Upsampler;
-
-use alloc::sync::Arc;
-use alloc::vec::Vec;
-use core::cell::RefCell;
-
-pub struct RowData {
- pub index: usize,
- pub component: Component,
- pub quantization_table: Arc<[u16; 64]>,
-}
-
-pub trait Worker {
- fn start(&mut self, row_data: RowData) -> Result<()>;
- fn append_row(&mut self, row: (usize, Vec<i16>)) -> Result<()>;
- fn get_result(&mut self, index: usize) -> Result<Vec<u8>>;
- /// Default implementation for spawning multiple tasks.
- fn append_rows(&mut self, row: &mut dyn Iterator<Item = (usize, Vec<i16>)>) -> Result<()> {
- for item in row {
- self.append_row(item)?;
- }
- Ok(())
- }
-}
-
-#[allow(dead_code)]
-pub enum PreferWorkerKind {
- Immediate,
- Multithreaded,
-}
-
-#[derive(Default)]
-pub struct WorkerScope {
- inner: core::cell::RefCell<Option<WorkerScopeInner>>,
-}
-
-enum WorkerScopeInner {
- #[cfg(all(
- not(any(target_arch = "asmjs", target_arch = "wasm32")),
- feature = "rayon"
- ))]
- Rayon(rayon::Scoped),
- #[cfg(not(any(target_arch = "asmjs", target_arch = "wasm32")))]
- Multithreaded(multithreaded::MpscWorker),
- Immediate(immediate::ImmediateWorker),
-}
-
-impl WorkerScope {
- pub fn with<T>(with: impl FnOnce(&Self) -> T) -> T {
- with(&WorkerScope {
- inner: RefCell::default(),
- })
- }
-
- pub fn get_or_init_worker<T>(
- &self,
- prefer: PreferWorkerKind,
- f: impl FnOnce(&mut dyn Worker) -> T,
- ) -> T {
- let mut inner = self.inner.borrow_mut();
- let inner = inner.get_or_insert_with(move || match prefer {
- #[cfg(all(
- not(any(target_arch = "asmjs", target_arch = "wasm32")),
- feature = "rayon"
- ))]
- PreferWorkerKind::Multithreaded => WorkerScopeInner::Rayon(Default::default()),
- #[allow(unreachable_patterns)]
- #[cfg(not(any(target_arch = "asmjs", target_arch = "wasm32")))]
- PreferWorkerKind::Multithreaded => WorkerScopeInner::Multithreaded(Default::default()),
- _ => WorkerScopeInner::Immediate(Default::default()),
- });
-
- f(match &mut *inner {
- #[cfg(all(
- not(any(target_arch = "asmjs", target_arch = "wasm32")),
- feature = "rayon"
- ))]
- WorkerScopeInner::Rayon(worker) => worker,
- #[cfg(not(any(target_arch = "asmjs", target_arch = "wasm32")))]
- WorkerScopeInner::Multithreaded(worker) => worker,
- WorkerScopeInner::Immediate(worker) => worker,
- })
- }
-}
-
-pub fn compute_image_parallel(
- components: &[Component],
- data: Vec<Vec<u8>>,
- output_size: Dimensions,
- color_transform: ColorTransform,
-) -> Result<Vec<u8>> {
- #[cfg(all(
- not(any(target_arch = "asmjs", target_arch = "wasm32")),
- feature = "rayon"
- ))]
- return rayon::compute_image_parallel(components, data, output_size, color_transform);
-
- #[allow(unreachable_code)]
- {
- let color_convert_func = choose_color_convert_func(components.len(), color_transform)?;
- let upsampler = Upsampler::new(components, output_size.width, output_size.height)?;
- let line_size = output_size.width as usize * components.len();
- let mut image = vec![0u8; line_size * output_size.height as usize];
-
- for (row, line) in image.chunks_mut(line_size).enumerate() {
- upsampler.upsample_and_interleave_row(
- &data,
- row,
- output_size.width as usize,
- line,
- color_convert_func,
- );
- }
-
- Ok(image)
- }
-}
diff --git a/vendor/jpeg-decoder/src/worker/multithreaded.rs b/vendor/jpeg-decoder/src/worker/multithreaded.rs
deleted file mode 100644
index c820702..0000000
--- a/vendor/jpeg-decoder/src/worker/multithreaded.rs
+++ /dev/null
@@ -1,123 +0,0 @@
-//! This module implements per-component parallelism.
-//! It should be possible to implement per-row parallelism as well,
-//! which should also boost performance of grayscale images
-//! and allow scaling to more cores.
-//! However, that would be more complex, so we use this as a starting point.
-
-use super::immediate::ImmediateWorker;
-use super::{RowData, Worker};
-use crate::decoder::MAX_COMPONENTS;
-use crate::error::Result;
-use std::{
- mem,
- sync::mpsc::{self, Receiver, Sender},
-};
-
-enum WorkerMsg {
- Start(RowData),
- AppendRow(Vec<i16>),
- GetResult(Sender<Vec<u8>>),
-}
-
-#[derive(Default)]
-pub struct MpscWorker {
- senders: [Option<Sender<WorkerMsg>>; MAX_COMPONENTS],
-}
-
-impl MpscWorker {
- fn start_with(
- &mut self,
- row_data: RowData,
- spawn_worker: impl FnOnce(usize) -> Result<Sender<WorkerMsg>>,
- ) -> Result<()> {
- // if there is no worker thread for this component yet, start one
- let component = row_data.index;
- if let None = self.senders[component] {
- let sender = spawn_worker(component)?;
- self.senders[component] = Some(sender);
- }
-
- // we do the "take out value and put it back in once we're done" dance here
- // and in all other message-passing methods because there's not that many rows
- // and this should be cheaper than spawning MAX_COMPONENTS many threads up front
- let sender = self.senders[component].as_mut().unwrap();
- sender
- .send(WorkerMsg::Start(row_data))
- .expect("jpeg-decoder worker thread error");
- Ok(())
- }
-
- fn append_row(&mut self, row: (usize, Vec<i16>)) -> Result<()> {
- let component = row.0;
- let sender = self.senders[component].as_mut().unwrap();
- sender
- .send(WorkerMsg::AppendRow(row.1))
- .expect("jpeg-decoder worker thread error");
- Ok(())
- }
-
- fn get_result_with(
- &mut self,
- index: usize,
- collect: impl FnOnce(Receiver<Vec<u8>>) -> Vec<u8>,
- ) -> Result<Vec<u8>> {
- let (tx, rx) = mpsc::channel();
- let sender = mem::take(&mut self.senders[index]).unwrap();
- sender
- .send(WorkerMsg::GetResult(tx))
- .expect("jpeg-decoder worker thread error");
- Ok(collect(rx))
- }
-}
-
-impl Worker for MpscWorker {
- fn start(&mut self, row_data: RowData) -> Result<()> {
- self.start_with(row_data, spawn_worker_thread)
- }
- fn append_row(&mut self, row: (usize, Vec<i16>)) -> Result<()> {
- MpscWorker::append_row(self, row)
- }
- fn get_result(&mut self, index: usize) -> Result<Vec<u8>> {
- self.get_result_with(index, collect_worker_thread)
- }
-}
-
-fn create_worker() -> (Sender<WorkerMsg>, impl FnOnce() + 'static) {
- let (tx, rx) = mpsc::channel();
- let closure = move || {
- let mut worker = ImmediateWorker::default();
-
- while let Ok(message) = rx.recv() {
- match message {
- WorkerMsg::Start(mut data) => {
- // we always set component index to 0 for worker threads
- // because they only ever handle one per thread and we don't want them
- // to attempt to access nonexistent components
- data.index = 0;
- worker.start_immediate(data);
- }
- WorkerMsg::AppendRow(row) => {
- worker.append_row_immediate((0, row));
- }
- WorkerMsg::GetResult(chan) => {
- let _ = chan.send(worker.get_result_immediate(0));
- break;
- }
- }
- }
- };
-
- (tx, closure)
-}
-
-fn spawn_worker_thread(component: usize) -> Result<Sender<WorkerMsg>> {
- let (tx, worker) = create_worker();
- let thread_builder =
- std::thread::Builder::new().name(format!("worker thread for component {}", component));
- thread_builder.spawn(worker)?;
- Ok(tx)
-}
-
-fn collect_worker_thread(rx: Receiver<Vec<u8>>) -> Vec<u8> {
- rx.recv().expect("jpeg-decoder worker thread error")
-}
diff --git a/vendor/jpeg-decoder/src/worker/rayon.rs b/vendor/jpeg-decoder/src/worker/rayon.rs
deleted file mode 100644
index ec7df25..0000000
--- a/vendor/jpeg-decoder/src/worker/rayon.rs
+++ /dev/null
@@ -1,221 +0,0 @@
-use core::convert::TryInto;
-
-use rayon::iter::{IndexedParallelIterator, ParallelIterator};
-use rayon::slice::ParallelSliceMut;
-
-use crate::decoder::{choose_color_convert_func, ColorTransform};
-use crate::error::Result;
-use crate::idct::dequantize_and_idct_block;
-use crate::parser::Component;
-use crate::upsampler::Upsampler;
-use crate::{decoder::MAX_COMPONENTS, parser::Dimensions};
-
-use std::sync::Arc;
-
-use super::{RowData, Worker};
-
-/// Technically similar to `immediate::ImmediateWorker` but we copy it since we may prefer
-/// different style of managing the memory allocation, something that multiple actors can access in
-/// parallel.
-#[derive(Default)]
-struct ImmediateWorker {
- offsets: [usize; MAX_COMPONENTS],
- results: [Vec<u8>; MAX_COMPONENTS],
- components: [Option<Component>; MAX_COMPONENTS],
- quantization_tables: [Option<Arc<[u16; 64]>>; MAX_COMPONENTS],
-}
-
-#[derive(Clone, Copy)]
-struct ComponentMetadata {
- block_width: usize,
- block_count: usize,
- line_stride: usize,
- dct_scale: usize,
-}
-
-#[derive(Default)]
-pub struct Scoped {
- inner: ImmediateWorker,
-}
-
-impl ImmediateWorker {
- pub fn start_immediate(&mut self, data: RowData) {
- let elements = data.component.block_size.width as usize
- * data.component.block_size.height as usize
- * data.component.dct_scale
- * data.component.dct_scale;
- self.offsets[data.index] = 0;
- self.results[data.index].resize(elements, 0u8);
- self.components[data.index] = Some(data.component);
- self.quantization_tables[data.index] = Some(data.quantization_table);
- }
-
- pub fn get_result_immediate(&mut self, index: usize) -> Vec<u8> {
- core::mem::take(&mut self.results[index])
- }
-
- pub fn component_metadata(&self, index: usize) -> Option<ComponentMetadata> {
- let component = self.components[index].as_ref()?;
- let block_size = component.block_size;
- let block_width = block_size.width as usize;
- let block_count = block_size.width as usize * component.vertical_sampling_factor as usize;
- let line_stride = block_size.width as usize * component.dct_scale;
- let dct_scale = component.dct_scale;
-
- Some(ComponentMetadata {
- block_width,
- block_count,
- line_stride,
- dct_scale,
- })
- }
-
- pub fn append_row_locked(
- quantization_table: Arc<[u16; 64]>,
- metadata: ComponentMetadata,
- data: Vec<i16>,
- result_block: &mut [u8],
- ) {
- // Convert coefficients from a MCU row to samples.
- let ComponentMetadata {
- block_count,
- line_stride,
- block_width,
- dct_scale,
- } = metadata;
-
- assert_eq!(data.len(), block_count * 64);
-
- let mut output_buffer = [0; 64];
- for i in 0..block_count {
- let x = (i % block_width) * dct_scale;
- let y = (i / block_width) * dct_scale;
-
- let coefficients: &[i16; 64] = &data[i * 64..(i + 1) * 64].try_into().unwrap();
-
- // Write to a temporary intermediate buffer, a 8x8 'image'.
- dequantize_and_idct_block(
- dct_scale,
- coefficients,
- &*quantization_table,
- 8,
- &mut output_buffer,
- );
-
- let write_back = &mut result_block[y * line_stride + x..];
-
- let buffered_lines = output_buffer.chunks_mut(8);
- let back_lines = write_back.chunks_mut(line_stride);
-
- for (buf, back) in buffered_lines.zip(back_lines).take(dct_scale) {
- back[..dct_scale].copy_from_slice(&buf[..dct_scale]);
- }
- }
- }
-}
-
-impl Worker for Scoped {
- fn start(&mut self, row_data: RowData) -> Result<()> {
- self.inner.start_immediate(row_data);
- Ok(())
- }
-
- fn append_row(&mut self, row: (usize, Vec<i16>)) -> Result<()> {
- let inner = &mut self.inner;
- let (index, data) = row;
-
- let quantization_table = inner.quantization_tables[index].as_ref().unwrap().clone();
- let metadata = inner.component_metadata(index).unwrap();
- let result_block = &mut inner.results[index][inner.offsets[index]..];
- inner.offsets[index] += metadata.bytes_used();
-
- ImmediateWorker::append_row_locked(quantization_table, metadata, data, result_block);
- Ok(())
- }
-
- fn get_result(&mut self, index: usize) -> Result<Vec<u8>> {
- let result = self.inner.get_result_immediate(index);
- Ok(result)
- }
-
- // Magic sauce, these _may_ run in parallel.
- fn append_rows(&mut self, iter: &mut dyn Iterator<Item = (usize, Vec<i16>)>) -> Result<()> {
- let inner = &mut self.inner;
- rayon::in_place_scope(|scope| {
- let metadatas = [
- inner.component_metadata(0),
- inner.component_metadata(1),
- inner.component_metadata(2),
- inner.component_metadata(3),
- ];
-
- let [res0, res1, res2, res3] = &mut inner.results;
-
- // Lazily get the blocks. Note: if we've already collected results from a component
- // then the result vector has already been deallocated/taken. But no more tasks should
- // be created for it.
- let mut result_blocks = [
- res0.get_mut(inner.offsets[0]..).unwrap_or(&mut []),
- res1.get_mut(inner.offsets[1]..).unwrap_or(&mut []),
- res2.get_mut(inner.offsets[2]..).unwrap_or(&mut []),
- res3.get_mut(inner.offsets[3]..).unwrap_or(&mut []),
- ];
-
- // First we schedule everything, making sure their index is right etc.
- for (index, data) in iter {
- let metadata = metadatas[index].unwrap();
- let quantization_table = inner.quantization_tables[index].as_ref().unwrap().clone();
-
- inner.offsets[index] += metadata.bytes_used();
- let (result_block, tail) =
- core::mem::take(&mut result_blocks[index]).split_at_mut(metadata.bytes_used());
- result_blocks[index] = tail;
-
- scope.spawn(move |_| {
- ImmediateWorker::append_row_locked(
- quantization_table,
- metadata,
- data,
- result_block,
- )
- });
- }
- });
-
- Ok(())
- }
-}
-
-impl ComponentMetadata {
- fn bytes_used(&self) -> usize {
- self.block_count * self.dct_scale * self.dct_scale
- }
-}
-
-pub fn compute_image_parallel(
- components: &[Component],
- data: Vec<Vec<u8>>,
- output_size: Dimensions,
- color_transform: ColorTransform,
-) -> Result<Vec<u8>> {
- let color_convert_func = choose_color_convert_func(components.len(), color_transform)?;
- let upsampler = Upsampler::new(components, output_size.width, output_size.height)?;
- let line_size = output_size.width as usize * components.len();
- let mut image = vec![0u8; line_size * output_size.height as usize];
-
- image
- .par_chunks_mut(line_size)
- .with_max_len(1)
- .enumerate()
- .for_each(|(row, line)| {
- upsampler.upsample_and_interleave_row(
- &data,
- row,
- output_size.width as usize,
- line,
- color_convert_func,
- );
- });
-
- Ok(image)
-}